Customized Dynamic L oad Balancing for a Network of Workstations *

Mohammed Javeed Zaki, Wel Li, Srinivasan Parthasarathy
Computer Science Department, University of Rochester, Rochester NY 14627
{zaki,wei,srini } @cs.rochester.edu

Abstract

Load baancing involves assigning to each processor,
work proportional to its performance, minimizing the ex-
ecution time of the program. Although static load balancing
can solve many problems (e.g., those caused by processor
heterogeneity and non-uniform loops) for most regular ap-
plications, the transient external load due to multiple-users
on a network of workstations necessitates a dynamic ap-
proach to load balancing. In this paper we examine the
behavior of global vslocal, and centralized vs distributed,
load balancing strategies. We show that different schemes
are best for different applications under varying program
and system parameters. Therefore, customized load balanc-
ing schemes become essential for good performance. We
present a hybrid compile-time and run-time modeling and
decision processwhich sel ects(customizes) thebest scheme,
along with automatic generation of parallel code with cals
toaruntime library for load balancing.

1 Introduction

Network of Workstations (NOW) provide attractive scal -
ability in terms of computation power and memory size.
With the rapid advances in new high speed computer net-
work technologies (e.g., ATMs), a NOW is becoming in-
creasingly competitive compared to expensive parallel ma-
chines. However, NOWSs are much harder to program than
dedicated parallel machines. For example, multi-user envi-
ronment with sharing of CPU and network may contribute
tovarying performance. Heterogeneity in processors, mem-
ory, and network are a so contributing factors.

The common programming style on these machines uses
explicit message passing to share data, while each process
has its own private address space. The programs are usu-
ally written using the Single Program Multiple Data Stream
(SPMD) moded, i.e., al processes essentiadly execute the
same program, but on different data-sets. In these programs,

*Thiswork was supported in part by an NSF Research I nitiation Award
(CCR-9409120) and ARPA contract F19628-94-C-0057.

it istypically the loops which provide arich source of par-
allelism. The iterations of the loop are partitioned among
the available processors, which execute them in paraldl.
Scheduling parale loops involves finding the appropriate
granularity of tasks so that overhead is kept small, and load
is balanced among the processors.

Load balancing involves assigning the tasks to each pro-
cessor in proportion to its performance. This assignment
can be static — done at compile-time, or it may be dynamic
—done at run-time. The distribution of tasksisfurther com-
plicated if processors have differing speeds and memory
resources, or dueto transient external oad and non-uniform
iteration executiontimes. Whilestatic scheduling avoidsthe
run-time scheduling overhead, in a multi-user environment
with load changes on the nodes, a more dynamic approach
iswarranted.

A large number of 1oop scheduling techniques have been
proposed in the literature. Moreover, different schemes are
best for different applications under varying program and
system parameters. Therefore, customized load balancing
becomes essential for good performance. This paper ad-
dresses the above problem. In particular we make the fol-
lowing contributions: 1) We compare different strategiesfor
dynamic load balancing in the presence of transient external
load. We examine both global vs. local, and centralized vs.
distributed schemes, 2) We present a hybrid compile and
run-time system that automatically sel ects the best 1oad bal-
ancing scheme for a given loop/task from among the reper-
toireof different strategies. Wealso automatically transform
an annotated sequential program to a paralel program with
appropriate callsto our run-timeload balancing library, and
3) We present experimental results to substantiate our ap-
proach.

The rest of the paper is organized as follows. The next
section looks at related work. In Section 3 we present our
load balancing approach, and adescription of our strategies.
In section 4 we describe a compile-time model for the dif-
ferent strategies, and a compile-time decision methodol ogy
for choosing among the different load balancing schemes.
Section 5 describes how the model is used to customize the
schemes, and how the compiler automatically generates the

codeincorporatingour methodol ogy. Section 6 providesex-
perimenta evidenceindicating that different load balancing
strategies are best for different applications under varying
parameters. This section also containsthe modeling results.
Finally, in Section 7 we present our conclusions.

2 Reated Work

In this section we look at some of the load balancing
schemes which have been proposed in the literature.

2.1 Static Scheduling

Compile-timestaticloop schedulingisefficient andintro-
duces no additional runtime overhead. For UMA (Uniform
Memory Access) parallel machines, usually loop iterations
can be scheduled in block or cyclic fashion. For NUMA
(Non-Uniform Memory Access) paralel machines, loop
scheduling has to take data distribution into account [7].
Static scheduling algorithms for heterogeneous programs,
processors, and network were proposed in [3].

2.2 Dynamic Scheduling

Predicting the Future: A common approach taken for load
balancing on a workstation network isto predict future per-
formance based on past information. For example, in[9], a
global distributed scheme is presented, and load balancing
involves periodic information exchanges. Dome [1] imple-
ments a global central and a local distributed scheme, and
theload balancing involvesperiodic exchanges. Siegell [13]
also presented aglobal centralized scheme, with periodicin-
formation exchanges. The main contribution of this paper
was the methodology for automatic generation of paralel
programs with dynamic load balancing. In Phish[2], alo-
cal distributed receiver-initiated scheme is described, where
the processor requesting more tasks, chooses a processor at
random from which to steal more work. CHARM [12] im-
plements a local distributed receiver-initiated scheme. The
information exchanged isthe Forecasted Finish Time (FFT),
i.e., thetime for the processor to finish the remaining work.
If the FFT falsbelow athreshold, thenoderequestsaneigh-
bor with higher FFT for more work.

In our approach, which aso falls under the “predicting
the future’” model, instead of periodic exchanges of infor-
mation, we have ainterrupt-based receiver-initiated scheme.
Moreover, we look at both central vs distributed, and local
vs global approaches. In theloca schemes, instead of ran-
dom selection of a processor from which to request more
work, work isexchanged among al the neighbors(the num-
ber of neighborsis selected statically). These strategies are
explained in more detail in the next section. In [10], an ap-
proach was presented, where a user specifies homogeneous

load balancers for different tasks within a heterogeneous
application. They also present a global load balancer that
handles the interactions among the different homogeneous
load balancers. However, our goal isto providecompileand
run-time support to automatically select the best load bal-
ancing scheme for agiven loop/task from among arepertoire
of different strategies.

Task Queue Model: A host of approaches have been pro-
posed in the literature targeting shared memory machines.
These fall under the task queue model, where there is a
logically central task queue of loop iterations. Once the
processors have finished their assigned portion, more work
is obtained from this queue. The simplest approach in this
mode is self-scheduling [14], where each processor isalo-
cated only oneiteration at atime. In fixed-size chunking [6],
each processor is alocated K iterations, while in guided
self-scheduling [11] each processor is assigned 1/ P-th of
the remaining iterations, where P isthe number of proces-
sors. Affinity scheduling[8] al so takes processor affinity into
account. A number of more elaborate schemes based on the
self-scheduling idea are al so extant.

3 Dynamic Load Balancing (DL B)

Thegoal of |oad balancing isto assign to each processing
node work proportiona to its performance, thereby mini-
mizing the execution time of the application. In this section
we describe our dynamic load balancing approach, and the
different strategies we chose to study our concepts.

3.1 Basic Steps

After theinitial assignment of work (the iterations of the
loop) to each processor, dynamic load balancing is done
in four basic steps: monitoring processor performance, ex-
changing this information between processors, calculating
new distributionsand making the work movement decision,
and the actual data movement. The data is moved directly
between the daves, and the load balancing decisions are
made by the load balancer.

Synchronization: In our approach, a synchronization is
triggered by the first processor that finishesits portion of the
work. Thisprocessor then sends an interrupt to al the other
active slaves, who then send their performance profiles to
the load balancer.

Performance Metric: We try to predict the future perfor-
mance based on past information, which depends on the
past load function. We can use the whole past history or a
portion of it. Usually, the most recent window isused as an
indication of the future. The metric we use is the number
of iterationsdone per second, since thelast synchronization
point.

Work Movement: Oncetheload balancer hasall the profile
information, it calculates a new distribution. If the amount
of work to be moved is below a threshold, then work is not
moved, since this may indicate that the system is almost
balanced, or that only a small portion of the work still re-
mainsto bedone. If thereisasufficient amount of work that
needs to be moved, we invoke a profitability analysis rou-
tine, and move the work only if there is 10% improvement
in execution time. If it is profitable to move work, then the
load balancer broadcasts the new distributioninformation to
the processors. The work is then re-distributed between the
slaves.

Data Movement and Profitability Analysis: Work redis-
tribution a so entails the movement of the data arrays which
will be accessed in the iterations. There is a trade-off be-
tween the benefits of moving work to balance load, and the
cost of data movement. Accounting for this cost/benefit
is a subtle matter. The reason is that inaccuracies in data
movement cost estimation may predict a higher cost for the
work re-distribution, thereby nullifying the potential bene-
fits of moving work. In our scheme, since we synchronize
only when a processor needs more work, cancelling work
re-distributionwould lead to an idle processor, lowering the
overal utilization. We thusre-distributework aslong asthe
potential benefit (predicted execution time, excluding the
cost of actual datamovement) of the new assignment results
inat least a 10% improvement.

3.2 Load Balancing Strategies

We chose four different strategies differing aong two
axes. The techniques are either global or local, based on
the information they use to make load balancing decisions,
and they are either centralized or distributed, depending on
whether the load balancer islocated at one master processor
(which alsotakespart incomputation), or if theload balancer
isdistributed among the processors, respectively. For al the
strategies, the compiler initially distributes the iterations of
the loop equally among al the processors.

Global Strategies: In the global schemes, the load bal-
ancing decision is made using global knowledge, i.e., al
the processors take part in the synchronization, and send
their performance profiles to the load balancer. The global
schemes we consider are given below.

¢ Global Centralized DLB (GCDLB): In this scheme the
load balancer islocated on a master processor (centralized).
After calculating the new distribution, and profitability of
work movement, the load balancer sends instructionsto the
processors who have to send work to others, indicating the
recipient and the amount of work to be moved. The receiv-
ing processors just wait till they have collected the amount
of work they need.

¢ Global Distributed DLB (GDDLB): In this scheme the

load balancer is replicated on al the processors. So, un-
like GCDLB, where profile information is sent to only the
master, in GDDLB, the profile information is broadcast to
every other processor. This aso eliminatesthe need for the
load balancer to send out instructions, as that information
isavailable to all the processors. The receiving processors
wait for work, while the sending processors ship the data.
Local Strategies. In the local schemes, the processors are
partitionedinto different groupsof sizeK. Thispartitioncan
be done by considering the physical proximity of the ma
chines, as in K-nearest neighbors scheme. The groups can
also be formed in a K-block fashion, or the group members
can be selected randomly. Furthermore, the groups can re-
main fixed for the duration of execution, or the membership
can be changed dynamically. We used the K-block fixed-
group approach in our implementation. In these schemes
the load balancing decisions are only done within a group.
In fact the Global strategies are an instance of the respective
local strategies, where thegroup size, K, equalsthe number
of processors. Thetwo local strategies we look at are:

o Local Centralized DLB (LCDLB): Thisscheme issimilar
to GCDLB. Thefastest processor in agroup only interrupts
the other processors in that group. There isone centralized
load bal ancer, which asynchronously handles all the differ-
ent groups. Once it receives the profile information from
one group, it send instructions for re-distribution for that
group before proceeding to the other groups.

o Local Distributed DLB (LDDLB): Inthis scheme, theload
balancer is replicated on al the processors, but the profile
information is broadcast only to the members of the group.

3.3 Discussion

These four strategies lie a the four extreme points on
the two axes. For example, in the local approach, there is
no exchange of work between different groups. In thelocal
centralized (LCDLB) version, we have only one master |oad
balancer, instead of having one master per group. Further-
more, in the distributed strategies we have full replication
of the load balancer. There are many conceivable pointsin
between, and many other hybrid strategies possible. Explor-
ing the behavior of these strategies is part of future work.
At the present time, we believe that the extreme pointswill
serve to highlight the differences, and help to gain a basic
understanding of these schemes.

Global vs. Local: The advantage of the global schemes is
that thework re-distributionisoptimal,, based oninformation
known till that point (the futureis unpredictable, soit’s not
optimal for the whole duration). However, synchronization
ismore expensive. On the other hand, in thelocal schemes,
the work re-distribution is not optimal, resulting in slower
convergence. However, the amount of communication or
synchronization cost is lower. Another factor affecting the

local strategiesisthe difference in performance among the
different groups. For example, if one group has processors
with poor performance (high load), and the other group has
very fast processors (little or no load), the latter will finish
quiteearly, and remain idle, whilethe former groupis over-
loaded. Thiscould be remedied by providing a mechanism
for exchange of data between groups. It could also be fixed
by having dynamic group memberships, instead of having
dtatic partitions. In this paper we restrict our attention, to
the static group partition scheme only.

Centralized vs. Distributed: In the centralized schemes,
the central point of control could prevent the scalability of
the strategy to alarge number of machines. The distributed
schemes hel p solvethisproblem. However, inthese schemes
the synchronization involves an al-to-all broadcast. The
centralized schemesrequirean all-to-one profile send, which
isfollowed by a one-to-al instruction send. Thereisaso a
trade-off between sequential |oad bal ancing decision making
in the centralized approach, and the paralel (replicated)
decision making in the distributed schemes.

4 DLB Modeling and Decision Process

In this section, we present a compile and run-time mod-
eling and decision process for choosing among the different
load balancing strategies. We begin with a discussion of the
different parameters that may influence the performance of
these schemes. Thisisfollowed by thederivation of thetotal
cost function for each of these approaches in terms of the
different parameters. Finally we show how thismodeling is
used.

41 Modeling Parameters

The various parameters which affect the modeling are
presented bel ow.
Processor Parameters: These give information about the
different processors available to the application.
o Number of Processors; We assume that we have a fixed
number of processors available for the computation. This
number is specified by the user, and is denoted as P.
o Processor Speeds: This specifiestheratio of aprocessor’s
performance w.r.t a base processor. Sincethisratio isappli-
cation specific [16], we can obtain this by a profiling run.
We may also try to predict this at compile-time. The speed
for processor 7 isdenoted as S;.
o Number of Neighbors: This is used for the local strate-
gies, and may be dictated by the physical proximity of the
machines, or it may be user specified. It isdenoted as K.
Program Parameters: These parameters give information
about the application.
eData Sze: This could be different for different arrays (it
could also be different for the different dimensions of the

same array). Thisisdenoted as N4, where d specifies the
dimension, and a specifies the array name.

eNumber of Loop Iterations: Thisis usually some function
of thedatasize, and isdenoted asZ; (N, 4), Where i specifies
the loop.

o Work per Iteration: The amount of work is measured in
terms of the number of basic operations per iteration, and is
afunction of the deta size. Thisis denoted as W;;(Naq),
where i specifiestheloop, and j specifiestheiteration num-
ber.

o Intrinsic Communication: This specifies the amount of
communication per iteration, which is inherent to the pro-
gram. For example, communication caused due to data
dependencies. Thisis denoted asZC;;(P, Nyq), Wherei is
theloop, and j istheiteration.

o Data Communication: This specifies the communication
cost dueto datamovement caused by thel oad balancing pro-
cess. Thisisaper array cost, which indicatesthe number of
bytes that need to be communicated per iteration. In arow
or a column distribution of the data arrays, thisissimply the
number of the columns, and number of rows respectively.
Thisis denoted as DCq;;(Naq), Where a isthe array name,
i istheloop, and j istheiteration.

o Time per Iteration: This specifiesthetimeit takesto exe-
cutean iterationof aloop onthebase processor. Itisdenoted
as 7;;(W,ZC), where i is the loop, and j is the iteration.
Sincethistimeisw.r.t. the base processor, the timeto exe-
cute an iteration on processor k issimply 7;;/.S,. Thistime
could be obtained by profiling, static analysis, or with the
help of the programmer.

Network Parameters: These specify the properties of the
i nterconnection network.

o Network Latency: Thisisthetimeit takesto send asingle
byte message between processors.

Although the communication latency could be different for
the various processor pairs, we assume it to be uniform, and
denoteitas L.

o Network Bandwidth: Thisis number of bytesthat can be
transferred per second over the network. It includesthe cost
of packing, receiving, and the“real” communicationtimein
the physical medium. We denotethisas 5.

o Network Topology: This influences the latency and band-
width between pairs of processors. It aso has an impact on
the number of neighbors (for local strategies), and may help
in reducing expensive communication while re-distribution.
In this paper, however, we assume full connectivity among
the processors, with uniform latency and bandwidth.

External L oad M odeling: To evaluate our schemes, wehad
to model the external load. In our approach, each processor
has an independent load function, denoted as ¢;. The two
parameters for generating the load function are:

e Maximum Load: This specifies the maximum amount of
load per processor, and isdenoted asm/. 1nour experiments

weset mlé = 5.

o Duration of Persistence: The load value for a processor
is obtained by using a random number generator to get a
value between zero and the maximum load. The duration
of persistence, denoted as ¢¢, indicates the amount of time
before the next invocation of the random number generator,
i.e, we simulate a discrete random load function, with a
maximum amplitude given by m¢, and the discrete block
size given by ¢£. A small value for ¢£ implies a rapidly
changing load, while a large value indicates a relatively
stable load. We use ¢; (k) to denote the load on processor ¢
during the k-th duration of persistence. Figure 1 showsthe
load function for a processor.

ml = Maximum Load, tl = Duration of Persistence

I I

LOAD *

] I

TIME

Figure 1. Load Function

4.2 Modeling—Total Cost Derivation

We now present the cost model for the various strate-
gies. The cost of a scheme can be broken into the following
categories. cost of synchronization, cost of calculating new
distribution, cost of sending instructions, and cost of data
movement. We look at each of these below:

421 Cost of Synchronization

The synchronization involves the sending of interrupt from
the fastest processor to the other processors, who then send
their performance profile to the load balancer. This cost is
specified intermsof thekind of communication required for
the synchronization. The cost for the different strategiesis
given below:

o GCDLB : ¢ = one-to-al(P) + al-to-one(P)

¢ GDDLB : ¢ = one-to-all(P) + dl-to-all(P?)

o LCDLB (per group) : ¢ = one-to-all(K) + al-to-one(K)

o LDDLB (per group) : ¢ = one-to-al(K) + al-to-all(K?)

4.2.2 Cost of Distribution Calculation

Thiscost isusually quite small, and we denote it as§. This
caculation is replicated in the distributed strategies. The
cost for thelocal schemes would be dightly cheaper, since

each group has only K instead of P processors. However,
we ignorethis effect.

4.2.3 Cost of Data Movement

We now present our analysis to calculate the amount of
data movement and the number of messages required to re-
distributework. Let x;(j) denote the iteration distribution,
and let y; (j) denotethe number of iterations|eft to be done
by processor i after the j-th synchronization point. Let
r{) = Zle vi(j), and let t; denote the time at which the
j-th synchronization happens.

Effect of discrete load: The effective speed of processor
isinversely proportional to the amount of load on it, which
is given as S; /(¢ (k) + 1), where ¢;(k) € {0,---, ml}.
Since the performance metric used by the different schemes
is the processor performance since the last synchronization
point, the processor’s performance is given as the average
effective speed over that duration. Let the (j — 1)-th syn-
chronization be during the a-th duration of persistence, i.e.,
a = [t;_1/tl]. Smilearly,letb = [¢;/t¢]. Thentheaverage
effective speed of processor ¢ is given as

Sopea Si/(l(R)+1)
b—a+1 =5/ (

b—a+1)
hema 2 (6(K) 1)
= S5; /X (j), where A;(j) denotes the effective oad on pro-
cessor ¢ between the j-th and the previous synchronization.
Total iterationsdone: We now analyzetheeffect of the j-th
synchronization. We will first look at the case of uniform
loops, i.e., where each iteration of the loop takes the same
time,
o UniformLoops: We will use 7 for the time per iteration.
Attheend of the (j — 1)-th synchronization, each processor
had x;(j — 1) iterationsassigned toit. Let f denotethefirst
processor to finish its portion of the work. Then the time
taken by processor f isgiven as

t=1; —tj_1=xy (_] - 1)7(/\f (])/Sf)

The iterations left to be done on processor ¢ is simply the
old distribution minus the iterations done in time ¢, i.e,
%) =xi(1 = 1) = [75575, |- Usingthevaueof ¢ from
above, we get

i) =i -9 -uti-9 (%2 (535) @

o Non-UniformLoops; We now extend the analysisfor non-
uniform loops. The time taken by processor f to finish its
portion of thework is given as

xr(i-1)

t=tj—tisi= Y TeAs(§)/Ss

k=1

where k isin set of iterationsassigned to processor f. The
iterations done by processor ¢ in time ¢, denoted by X <
x:(j — 1), isnow given by the expression

27; 7)/5Si >t—27;_(

k=1 k=1

xf(7-1)
g) 2
Theiterations|eft to be done on processor : isthen given as

%i(7) = xi(j —1) =R 2

New distribution: The total amount of work left among
al the processors is given as I'(j) = >_ v (j). We now
distribute this work proportional to the average effective
speed of the processors, i.e.

= Si/Ai(J) i 3
XZ(]) (ZkP:lSk//\k(])) (]) (©)

Recall that initially we start out with equal work distribu-
tion among all the processors, therefore we have A;(0) = 1
(or a value proportional to initia processor load), v;(0) =
I(Naq)/P,and~;(0) = x;(0) Vi €1, ---, P. These equa
tionstogether with equations 1, 2, and 3 give us recurrence
functions which can be solved to obtain the total iterations
[eft to be done, and the new distribution at each synchro-
nization point. The termination conditionoccurswhen there
isno more work |eft to be done, i.e,

F(n)=0 (4)

where 7 isthe number of synchronization points required.
Amount of work moved: The amount of basic units of
work (usually iterations) moved during a synchronizationis

given as
1-4{f o)

Data Movement Cost: The movement of iterations entails
movement of dataarrays. The number of messages required
to move the work and data arrays, denoted by 5(j) can be
calculated from the old and new distribution values. The
total cost of data movement isnow given by the expression

K(j) = BUIL + a(§) Y [DPCa/B (5)

where a belongs to the set of arrays that need to be re-
distributed.
424 Cost of Sending Instructions

Thiscost isonly incurred by the centralized schemes, since
the load balancer has to send the work and data movement

instructions to the processors. The number of instructions
is the same as 3(j), which is the number of messages re-
quired to move data, since instructions are only sent to the
processors which have to send data. The cost of sending
instructionsis, therefore, () = 8(j) L for the centralized
schemes, and v(j) = 0 for the distributed schemes.

425 Total Cost

Global strategies: The above set of recurrence relations
can be solved to obtain the cost of data movement (see
equation 5), and to cal cul ate the number of synchronization
points (see equation 4), thereby getting the total cost of the
global strategies as

7
TC=nE+90)+ Z

where ¢ is the synchronization cost, 7 is the number of
synchronizations, 4 is the re-distribution calculation cost,
and «(j) is the data movement cost and () the cost of
sending instructionsfor the j-th synchronization.

Local strategies: In the loca centralized (LCDLB) strat-
egy, even though the load balancer is asynchronous, the
assumption that groups can be treated independently from
the others may not be true. This is because the centra
load balancer goes to another group only once it has fin-
ished calculating the re-distribution and sending instruc-
tions for the current group. This effect is modeled as a
delay factor for each group, which depends on the time for
the synchronization of the different groups, and is given
as A, (j) = YU + i (j)], where v(j) is the num-
ber of groups aready waiting in the queue for the central
load balancer. Note that in the local distributed scheme,
the absence of a central load balancer eliminates this effect
(i.e.Ay(j) = 0). There may still be some effect due to
overlapped synchronization communication, but we do not
modél this.

For the local schemes, the analyses in the previous sub-
sections still hold, but we have a different cost per group for
each of the different categories. The total cost per group is
given as

g

TCy=ny(€ +9) +Z“9

=1

)+ ¥g(5) +8405)]

The total cost of the local strategy is simply the time
taken by the last group to finish its computation, i.e,

7C = MAXIZ 5T TC,).
4.3 Decision Process— Using the M odel

Since al the information used by the modeling process,
like the number of processors, processor speeds, data size,

number of iterations, iteration cost, etc., and particularly the
load function, may not be known at compile time, we pro-
pose a hybrid compile and run-time modeling and decision
process. The compiler collects al necessary information,
and may aso help to generate symbolic cost functions for
the iteration cost and communication cost. The actua de-
cision making for committing to a scheme is deferred until
run-timewhen we have compl ete information about the sys-
tem.

Initialy at run-time, no strategy ischosen for theapplica
tion. Work is partitioned equally among all the processors,
and the program is run till the first synchronization point.
During this time a significant amount of work has been
accomplished, namely, at least 1/ P of the work has been
done. Thiscan be seen by using equation 1 above, and plug-
ging j = 1, i.e, the first synchronization point, x;(0) =
Z(Ngaq)/ P, and summing over al processors, to obtain the
total iterations done at the first synchronization point as
(S (Naa)/ PO (1)/S7)(Si/ M ()] > T(Naa)/P).
At thistime we also know the load function seen on al the
processors so far, and average effective speed of the pro-
cessors. This load function combined with all the other
parameters, can be plugged into the model to obtain quanti-
tative information on the behavior of the different schemes.
Thisinformation isthen used to commit to the best strategy
after this stage. This aso suggests a more adaptive method
for selecting the scheme, where we refine our decision as
moreinformation ontheload isobtained at later points. This
ispart of futurework.

5 Compiler and Run-Time Systems

In this section we describe how our compiler automat-
ically transforms annotated sequential code into code that
can execute in parallel, and that calls routines from the run-
time system using the dynamicload balancing library where

appropriate.

5.1 Run-Time System

The run-time system consists of a uniform interface to
the DLB library for al the strategies, the actua decision
process for choosing among the schemes using the above
model, and it consists of data movement routinesto handle
redistribution. Load balancing is achieved by placing ap-
propriate calls to the DLB library to exchange information
and redistribute work. The compiler, however, generates
code to handle this at run-time. The compiler can also help
to generate symbolic cost functions for the iteration and
communication cost.

5.2 Code Generation

For the source-to-source code translation from a sequen-
tial program to a parallel program using PVM [5] for mes-
sage passing, with DLB library calls, we use the Stanford
University Intermediate Format (SUIF) [15] compiler. The
input to thecompiler consists of the sequential version of the
code, with annotations to indicate the data decomposition
for the shared arrays, and to indicate the loops which have
to be load balanced.

Thecompiler generatescodefor setting up themaster pro-
cessor (pseudo-master in the distributed schemes, which is
only responsiblefor thefirst synchronization, initial scatter-
ing, and final gathering of arrays). Thisinvolves broadcast-
ing initial configuration information parameters, like num-
ber of processors, size of arrays, task ids, etc., calsto the
DLB library for the initial partitioning of shared arrays, fi-
nal collection of resultsand DLB statistics (such as number
of redistributions, number of synchronizations, amount of
work moved, etc.) and acall to the DLB_master _sync() rou-
tine which handles thefirst synchronization, along with the
modeling and strategy selection. It also handles subsequent
synchronizations for the centralized schemes. The arrays
are initidly partitioned equally based on the data distri-
bution specification (BLOCK, CYCLIC, or WHOLE). We
currently support do-all loops only, with data distribution
along one dimension (row or column). The compiler must
also generate code for the dave processors, which perform
the actual computation. This step includes changing the
loop bounds to iterate over the loca assignment, and in-
serting calls to the DLB library checking for interrupts, for
sending profile information to the load balancer (protocol
dependent), for data redistribution, and if local work stack
has run out, for issuing an interrupt to synchronize.

6 Experimental Results

In thissection we present our experimental and modeling
results. Wefirst present experimental evidence showing that
different strategies are better for different applicationsunder
varying parameters. We then present our modeling results
for the applications.

All the experiments were performed on a network of ho-
mogeneous Sun (Sparc LX) workstations, interconnected
via an Ethernet LAN. External load was simulated within
our programs as described in section 4. PVM [5], amessage
passing software system, was used to parallelize the appli-
cations. The applicationswe consider are given below:

o Matrix Multiplication (MXM): Multiplication of two ma-
trices.

e TRFD: TRFD is part of the Perfect Benchmark applica-
tion suite [4]. It simulates the computational aspects of
two-electron integral transformations. We used a modified

version of TRFD, which was enhanced to exploit the paral -
lelism.

« Adjoint Convolution (AC): Convolution of two n? length
vectors. Results for AC are not presented due to lack of
space. Werefer the reader to [17] for more details.

6.1 Network Characterization

The network characterization is done off-line. We mea-
sure the latency and bandwidth for the network, and we
obtain modelsfor the different types of communication pat-
terns among the processors (e.g. al-to-one, one-to-al, all-
to-dl). The latency obtained with PVM is 2414.5 us, and
bandwidthis 0.96 Mbytes/ s.

6.2 MXM : Matrix Multiplication

Matrix multiplicationisgivenas Z = X - Y (Xisan xr
and Y ar x m matrix). We parallelize the outer most 1oop,
by distributingtherowsof Z and X, and replicating Y onthe
processors. Only the rows of X need to be communicated
when we re-distribute work. The data communication is,
therefore, given as PC = r. Thereisno intrinsic commu-
nication (ZC = 0). The work per iteration is uniform, and
isgivenas O(m * r), i.e, itisquadratic. We ran the matrix
multiplication program on 4 and 16 processors. The local
strategies used two groups, i.e., with 2 neighbors on 4 pro-
cessors, and 8 neighborson 16 processors. The experiments
used m = 400 for different values of r, and n.

6.2.1 Experimental Results

16
[] MXM (noDLB)

o 14 [cepLs
1= [cppLB
= 12 Il LcoLB
s Il LopLe
= 10
8
|.>|j 08
E 0.6
«©
£ o4
S
=

0.2

0.0

Nn=400,r=400 N=400,r=800 n=800,r=400 N=800,r=800
Data Size

Figure 2. Matrix multiplication (P=4)

Figures 2 and 3 show the experimenta results for MXM
for different data sizes on 4 and 16 processors, respectively.
In the figure the legend “(no DLB)” stands for arun of the
program in the presence of externa discrete random load,
but with no attempt to balancethework, i.e., we partitionthe

iterationsin equal blocks among all the processors, and let
the program run to completion. The other bars correspond
to running the program under each of the dynamic load
balancing schemes.

We observe that the global distributed (GDDLB) strat-
egy is the best, which is followed closely by the global
centralized (GCDLB) scheme. Among the local strategies,
local distributed (LDDLB) doesbetter thanlocal centralized
(LCDLB). Moreover, the global schemes are better than the
local schemes. We also noticethat on 16 processorsthe gap
between the globals and locals becomes smaller. From our

[] MXM (noDLB)

@ [ceoLe
e 10m M M M [l cpbpLB
[= Il LcoLB
S os Il LopLB
=

j=3

8

Iﬁ 0.6

E 0.4

= .

1S

=

S

= o2

00 - — ! —
n=1600,r=400 n=1600,r=800 n=3200,r=400 n=3200,r=800
Data Size

Figure 3. Matrix multiplication (P=16)

discussion in section 3.3, locd strategies incur less com-
munication overhead than global strategies. However the
redistribution is not optimal. From the results, it can be
observed that if the computation cost (work per iteration)
versus the communication cost (synchronization cost, redis-
tribution cost) ratio is large, globa strategies are favored.
Thistiltstowardsthelocal strategies as thisratio decreases.
Thefactorsthat influencethisratio arethework per iteration,
number of iterations, and the number of processors. More
processors increase the synchronization cost, and should fa-
vor the local schemes. However, in the above experiment
there is sufficient work to outweigh thistrend, and globals
are till better for 16 processors. Comparing across dis-
tributed and central schemes, the centralized master, and
sequential redistribution and instruction send, add sufficient
overhead to the centralized schemes to make the distributed
schemes better. LCDLB incurs additional overhead due
to the delay factor (see section 4.2.5), and also due to the
context switching between thel oad bal ancer and the compu-
tation slave (since the processor housing the load balancer
also takes part in computation).

6.2.2 Modeing Results

Table 1 shows the actual order and the predicted order of
performance of the different strategies under varying pa
rametersfor MXM. We observe that the actua experimental

order and the predicted order of performance matches very
closdly.

(Parameters [Actua [Predicted

[P T »n T r T~ [T T 2737 4] 1T 2T3T3a]
Z 200] 400 | 400] Gb]| GC] LD] LC]| 6D | &€ | b | LC
Z 200 | 800 | 400 || GD | ©C | LD | LC || ©D | &C | D | LIC
2 B0 | 400 | 400 || GD | GC | b | LC || 6D | 6C | Lb | Lc
7 B00 | 800 | 400 || GD | GC | D | IC || © | ©C | b | Ic

16 1600 400 400 GD GC LD LC GC GD LD LC
16 1600 800 400 GC GD LD LC GD GC LD LC
16 3200 400 400 GD GC LD LC GD GC LD LC
16 3200 800 400 GD GC LD LC GD GC LD LC

Table 1. MXM: Actual vs. Predicted Order

6.3 TRFD

TRFD has two main computation loops with an inter-
vening transpose . The two loops are load balanced inde-
pendently, while the transpose is sequentiaized. We paral-
lelized the outer most loop of both the loop nests. There
is only one major array used in both the loops. Itssize is
givenas [n(n + 1)/2] - [n(n + 1)/2], where n is an input
parameter. Theloop iterationsoperate on different columns
of the array, which is distributed in a column block fashion
among all the processors. The data communication, DC,
is smply the row size. Since the loops are do-all loops,
there is no intrinsic communication. The first loop nest is
uniform, with n(n + 1) /2 iterations. Thework per iteration
islinear inthe array size (=~ 2n + 4). The second loop nest
has triangular work per iteration. We transform this into
a uniform loop using the bitonic scheduling technique [3],
i.e., by combiningiterationsi and n(n + 1)/2 — ¢ + 1into
one iteration. The number of iterations for loop 2 is now
given as n(n + 1)/4. The work is also linear in the array
size. We experimented with input parameter value of 30,
40, and 50, which correspond to the array size of 465, 820,
1275, respectively, and we used 4 and 16 processors, with
the local strategies using 2 groups (2 and 8 processors per

group, respectively).

6.3.1 Experimental Results

Figures 4 and 5 show the results for TRFD with different
datasizes for 4 and 16 processors, respectively.

We observethat on4 processors, asthedatasizeincreases
we tend to shift from loca distributed (LDDLB) to global
distributed (GDDLB). Since the amount of work per itera-
tion is small, the computation vs. communication ratio is
small, thus favoring the local distributed scheme on small
data sizes. With increasing data size, this ratio increases,
and GDDLB does better. Among the centralized schemes
the global (GCDLB) is better then the local (LCDLB). On
16 processors however, we find that the local distributed
(LDDLB) strategy is the best, which is followed by the

TRFD (P=4)
12
[C] TRFD (no DLB)|
[cecoLe
g 10 |]] I coobLB
= Il LcoLB
S os Il LooLB
=]
8
|.>|j 0.6
3
N
= 04
£
S
= o2
0.0
N=30 (465) N=40 (820) N=50 (1275)
Data Size

Figure 4. TRFD (P=4)

global distributed (GDDLB) scheme. Among the central-
ized strategies also the local (LCDLB) does better than the
global (GCDLB), since the computation vs. communica
tionratioissmall. Furthermore, the distributed schemes are
better than the centralized ones.

TRFD (P=16)
12
[] TRFD (no DLB)|
[cecoLe
g 10 |]] Il coobLB
= B LcoLB
S os Il LooLB
=]
8
|.>|j 0.6
3
N
= 04
S
S
= o2
0.0
N=30 (465) N=40 (820) N=50 (1275)
Data Size

Figure 5. TRFD (P=16)

The results shown above are for the total execution time
of the TRFD program. It isalso instructive to consider the
loops individualy, as shown in table 2 under the Actual
column. Loop 2 has dmost double the work per iteration
thaninloop 1. We see that on 4 processors, LDDLB isthe
best, followed by GDDLB. For loop 2, however, since the
work per iteration is more, GDDLB tendsto do better with
increasing data size. For both the loops GCDLB is better
than LCDLB. On 16 processors, the order is LDDLB and
LCDLB forloop 1, instead of LDDLB and GDDLB for loop
2. Thisisaso because of the higher work per iteration for
loop 2.

6.3.2 Modeing Results

Table 2 shows the actual order and the predicted order of
performance of thedifferent strategiesunder varying param-

etersfor TRFD. It can be seen that our results are reasonably
accurate.

[Parameters [Loop] Actud [Predicted |
[P T N T [T T 2T 3T 4 T T 2T3T742]
) 30(465) 1 D] G | 6C | LC GD | 6C | LD IC
4 40(820) L1 LD GD GC LC LD GD GC LC
4 50(1275) L1 LD GD GC LC LD GD GC LC
7 30(465) 2 D | G0 | 6C | LC GD | LD | 6C | LC
4 40(820) L2 GD LD GC LC LD GD GC LC
7 50(1275) 2 GD | LD | 6C | LC GD | LD | 6C | LC
16 30(465) 1 D C | Gad | &C D [C | GC | GD
16 40(820) L1 LD LC GD GC LD GD LC GC
16 50(1275) L1 LD LC GD GC LD GD GC LC
16 30(465) L2 LD GD GC LC LD GC GD LC
16 40(820) L2 LD GD LC GC LD GC GD LC
16 50(1275) L2 LD GD LC GC LD GD LC GC

Table 2. TRFD: Actual vs. Predicted Order

Intables 1 and 2, most of the inaccuracies in prediction
occur a the performance cross-over point along the two
axes under consideration (local vs. global or centra vs. dis-
tributed). The differences among the schemes are small at
these points. Therefore, not much should be made of the
relative orderings of these schemes at these points.

7 Conclusions

In this paper we analyzed both global and local, and cen-
tralized and distributed, interrupt-based receiver-initiated
dynamic load bal ancing strategies, on anetwork of worksta-
tionswith transient external 1oad per processor. We showed
that different strategies are best for different applications
under varying parameters such as the number of processors,
data size, iteration cost, communication cost, etc. We then
presented a modeling process to evaluate the behavior of
these schemes. Presenting a hybrid compile and run-time
process, we showed that it is possible to customize the dy-
namic load balancing scheme for a program under differing
parameters. Given thehost of dynamic scheduling strategies
proposed in the literature, such analysis would be useful to
aparallelizing compiler. To take the complexity away from
the programmer, we also automaticaly transform an an-
notated sequential program to a paralel program with the
appropriate calls to the run-time dynamic load balancing
library.

Although our model works reasonably well, more work
needs to be doneto abtain yet accurate information to guide
the decision process. Further work is aso needed to han-
dle do-across loops, i.e., loops having data dependencies
between iterations, and applications with irregular compu-
tation.

References

[1] IN.C. Arabeet. d. Dome: pardld programmingin a

heterogeneous multi-user environment. CMU-CS-95-
137 30786, Carnegie Mellon Univ, Apr 1995.

[2] R.Blumofeet a. Scheduling large-scale parallel com-
putationson NOW. 3rd HPDC, Apr 1994.

[3] M. Cierniak, W. Li, and M. J. Zaki. Loop scheduling
for heterogeneity. In 4th HPDC, Aug 1995.

[4] L.Kipp(ed.). Perfect BenchmarksDoc, Suitel. CSRD,
Univ. of Illinois, Urbana-Champaign, Oct 1993.

[5] A. Geist et al. PVM 3 user’s guide & ref. manual.
ORNL/TM-12187, Oak Ridge Nat. Lab, May 1993.

[6] C.Kruska and A. Weiss. Allocatingindependent sub-
tasks on parallel processors. |EEE Transactions on
Software Engineering, 11:1001-16, Oct 1985.

[7] W. Li and K. Pingali. Access normalization: Loop
restructuring for NUMA compilers. ACM Trans on
Computer Systems, 11(4):353-375, Nov 1993.

[8] E.P. Markatosand T.J. LeBlanc. Using processor affin-
ity in loop scheduling on shared-memory multiproces-
sors. |EEE Trans Parallel Dist Sys, 5(4), Apr 1994.

[9] N. Nedeljkovic and M. J. Quinn. Data-parale pro-
gramming on a network of heterogeneous worksta-
tions. 1st HPDC, Sep 1992.

[10] H.Nishikawaand P. Steenkiste. A genera architecture
for load balancing in a distributed-memory environ-
ment. Intl. Conf. Dist. Computing, May 1993.

[11] C. D. Polychronopoulosand D. J. Kuck. Guided self-
scheduling: a practical scheduling scheme for paral-
lel supercomputers. |EEE Trans on Computers, C-
36(12):1425-1439, Dec 1987.

[12] V. Sdetore et d. Parallel computations on the charm
heterogeneousworkstn. cluster. 3rd HPDC, Apr 1994.

[13] B.S. Siegell. Automatic generation of paralel pro-
grams with dynamic load balancing for a network of
workstations. CMU-CS-95-168 30880, Carnegie Mél -
lon Univ. - Sch. of Computer Science, May 1995.

[14] P. Tang and P-C. Yew. Processor self-scheduling for
multiple nested parallel 1oops. In ICPP, Aug 1986.

[15] R. Wilson et. a. An overview of the suif compiler
system. Unpublished manuscript, Stanford Univ.

[16] M. Zaki et d. Performance impact of processor and
memory heterogeneity in a network of machines. 4th
Heterogeneous Computing Wkshp, Apr 1995.

[17] M. Zaki et al. Customized dynamic load balancing for
NOW. TR602, Univ. of Rochester, Dec 1995.

