
Customized Dynamic Load Balancing for a Network of Workstations �
Mohammed Javeed Zaki, Wei Li, Srinivasan Parthasarathy

Computer Science Department, University of Rochester, Rochester NY 14627fzaki,wei,srinig@cs.rochester.edu

Abstract

Load balancing involves assigning to each processor,
work proportional to its performance, minimizing the ex-
ecution time of the program. Although static load balancing
can solve many problems (e.g., those caused by processor
heterogeneity and non-uniform loops) for most regular ap-
plications, the transient external load due to multiple-users
on a network of workstations necessitates a dynamic ap-
proach to load balancing. In this paper we examine the
behavior of global vs local, and centralized vs distributed,
load balancing strategies. We show that different schemes
are best for different applications under varying program
and system parameters. Therefore, customized load balanc-
ing schemes become essential for good performance. We
present a hybrid compile-time and run-time modeling and
decision process which selects (customizes) the best scheme,
along with automatic generation of parallel code with calls
to a runtime library for load balancing.

1 Introduction

Network of Workstations (NOW) provide attractive scal-
ability in terms of computation power and memory size.
With the rapid advances in new high speed computer net-
work technologies (e.g., ATMs), a NOW is becoming in-
creasingly competitive compared to expensive parallel ma-
chines. However, NOWs are much harder to program than
dedicated parallel machines. For example, multi-user envi-
ronment with sharing of CPU and network may contribute
to varying performance. Heterogeneity in processors, mem-
ory, and network are also contributing factors.

The common programming style on these machines uses
explicit message passing to share data, while each process
has its own private address space. The programs are usu-
ally written using the Single Program Multiple Data Stream
(SPMD) model, i.e., all processes essentially execute the
same program, but on different data-sets. In these programs,�This work was supported in part by an NSF Research Initiation Award
(CCR-9409120) and ARPA contract F19628-94-C-0057.

it is typically the loops which provide a rich source of par-
allelism. The iterations of the loop are partitioned among
the available processors, which execute them in parallel.
Scheduling parallel loops involves finding the appropriate
granularity of tasks so that overhead is kept small, and load
is balanced among the processors.

Load balancing involves assigning the tasks to each pro-
cessor in proportion to its performance. This assignment
can be static – done at compile-time, or it may be dynamic
– done at run-time. The distribution of tasks is further com-
plicated if processors have differing speeds and memory
resources, or due to transient external load and non-uniform
iteration execution times. While static scheduling avoids the
run-time scheduling overhead, in a multi-user environment
with load changes on the nodes, a more dynamic approach
is warranted.

A large number of loop scheduling techniques have been
proposed in the literature. Moreover, different schemes are
best for different applications under varying program and
system parameters. Therefore, customized load balancing
becomes essential for good performance. This paper ad-
dresses the above problem. In particular we make the fol-
lowing contributions: 1) We compare different strategies for
dynamic load balancing in the presence of transient external
load. We examine both global vs. local, and centralized vs.
distributed schemes, 2) We present a hybrid compile and
run-time system that automatically selects the best load bal-
ancing scheme for a given loop/task from among the reper-
toire of different strategies. We also automatically transform
an annotated sequential program to a parallel program with
appropriate calls to our run-time load balancing library, and
3) We present experimental results to substantiate our ap-
proach.

The rest of the paper is organized as follows. The next
section looks at related work. In Section 3 we present our
load balancing approach, and a description of our strategies.
In section 4 we describe a compile-time model for the dif-
ferent strategies, and a compile-time decision methodology
for choosing among the different load balancing schemes.
Section 5 describes how the model is used to customize the
schemes, and how the compiler automatically generates the

code incorporatingour methodology. Section 6 provides ex-
perimental evidence indicating that different load balancing
strategies are best for different applications under varying
parameters. This section also contains the modeling results.
Finally, in Section 7 we present our conclusions.

2 Related Work

In this section we look at some of the load balancing
schemes which have been proposed in the literature.

2.1 Static Scheduling

Compile-time static loop scheduling is efficient and intro-
duces no additional runtime overhead. For UMA (Uniform
Memory Access) parallel machines, usually loop iterations
can be scheduled in block or cyclic fashion. For NUMA
(Non-Uniform Memory Access) parallel machines, loop
scheduling has to take data distribution into account [7].
Static scheduling algorithms for heterogeneous programs,
processors, and network were proposed in [3].

2.2 Dynamic Scheduling

Predicting the Future: A common approach taken for load
balancing on a workstation network is to predict future per-
formance based on past information. For example, in [9], a
global distributed scheme is presented, and load balancing
involves periodic information exchanges. Dome [1] imple-
ments a global central and a local distributed scheme, and
the load balancing involves periodic exchanges. Siegell [13]
also presented a global centralized scheme, with periodic in-
formation exchanges. The main contribution of this paper
was the methodology for automatic generation of parallel
programs with dynamic load balancing. In Phish [2], a lo-
cal distributed receiver-initiated scheme is described, where
the processor requesting more tasks, chooses a processor at
random from which to steal more work. CHARM [12] im-
plements a local distributed receiver-initiated scheme. The
information exchanged is the Forecasted Finish Time (FFT),
i.e., the time for the processor to finish the remaining work.
If the FFT falls below a threshold, the node requests a neigh-
bor with higher FFT for more work.

In our approach, which also falls under the “predicting
the future” model, instead of periodic exchanges of infor-
mation, we have a interrupt-based receiver-initiated scheme.
Moreover, we look at both central vs distributed, and local
vs global approaches. In the local schemes, instead of ran-
dom selection of a processor from which to request more
work, work is exchanged among all the neighbors (the num-
ber of neighbors is selected statically). These strategies are
explained in more detail in the next section. In [10], an ap-
proach was presented, where a user specifies homogeneous

load balancers for different tasks within a heterogeneous
application. They also present a global load balancer that
handles the interactions among the different homogeneous
load balancers. However, our goal is to provide compile and
run-time support to automatically select the best load bal-
ancing scheme for a given loop/task from among a repertoire
of different strategies.
Task Queue Model: A host of approaches have been pro-
posed in the literature targeting shared memory machines.
These fall under the task queue model, where there is a
logically central task queue of loop iterations. Once the
processors have finished their assigned portion, more work
is obtained from this queue. The simplest approach in this
model is self-scheduling [14], where each processor is allo-
cated only one iteration at a time. In fixed-size chunking [6],
each processor is allocated K iterations, while in guided
self-scheduling [11] each processor is assigned 1=P -th of
the remaining iterations, where P is the number of proces-
sors. Affinity scheduling [8] also takes processor affinity into
account. A number of more elaborate schemes based on the
self-scheduling idea are also extant.

3 Dynamic Load Balancing (DLB)

The goal of load balancing is to assign to each processing
node work proportional to its performance, thereby mini-
mizing the execution time of the application. In this section
we describe our dynamic load balancing approach, and the
different strategies we chose to study our concepts.

3.1 Basic Steps

After the initial assignment of work (the iterations of the
loop) to each processor, dynamic load balancing is done
in four basic steps: monitoring processor performance, ex-
changing this information between processors, calculating
new distributions and making the work movement decision,
and the actual data movement. The data is moved directly
between the slaves, and the load balancing decisions are
made by the load balancer.
Synchronization: In our approach, a synchronization is
triggered by the first processor that finishes its portion of the
work. This processor then sends an interrupt to all the other
active slaves, who then send their performance profiles to
the load balancer.
Performance Metric: We try to predict the future perfor-
mance based on past information, which depends on the
past load function. We can use the whole past history or a
portion of it. Usually, the most recent window is used as an
indication of the future. The metric we use is the number
of iterations done per second, since the last synchronization
point.

Work Movement: Once the load balancer has all the profile
information, it calculates a new distribution. If the amount
of work to be moved is below a threshold, then work is not
moved, since this may indicate that the system is almost
balanced, or that only a small portion of the work still re-
mains to be done. If there is a sufficient amount of work that
needs to be moved, we invoke a profitability analysis rou-
tine, and move the work only if there is 10% improvement
in execution time. If it is profitable to move work, then the
load balancer broadcasts the new distribution information to
the processors. The work is then re-distributed between the
slaves.
Data Movement and Profitability Analysis: Work redis-
tribution also entails the movement of the data arrays which
will be accessed in the iterations. There is a trade-off be-
tween the benefits of moving work to balance load, and the
cost of data movement. Accounting for this cost/benefit
is a subtle matter. The reason is that inaccuracies in data
movement cost estimation may predict a higher cost for the
work re-distribution, thereby nullifying the potential bene-
fits of moving work. In our scheme, since we synchronize
only when a processor needs more work, cancelling work
re-distribution would lead to an idle processor, lowering the
overall utilization. We thus re-distribute work as long as the
potential benefit (predicted execution time, excluding the
cost of actual data movement) of the new assignment results
in at least a 10% improvement.

3.2 Load Balancing Strategies

We chose four different strategies differing along two
axes. The techniques are either global or local, based on
the information they use to make load balancing decisions,
and they are either centralized or distributed, depending on
whether the load balancer is located at one master processor
(which also takes part in computation),or if the load balancer
is distributed among the processors, respectively. For all the
strategies, the compiler initially distributes the iterations of
the loop equally among all the processors.
Global Strategies: In the global schemes, the load bal-
ancing decision is made using global knowledge, i.e., all
the processors take part in the synchronization, and send
their performance profiles to the load balancer. The global
schemes we consider are given below.� Global Centralized DLB (GCDLB): In this scheme the
load balancer is located on a master processor (centralized).
After calculating the new distribution, and profitability of
work movement, the load balancer sends instructions to the
processors who have to send work to others, indicating the
recipient and the amount of work to be moved. The receiv-
ing processors just wait till they have collected the amount
of work they need.� Global Distributed DLB (GDDLB): In this scheme the

load balancer is replicated on all the processors. So, un-
like GCDLB, where profile information is sent to only the
master, in GDDLB, the profile information is broadcast to
every other processor. This also eliminates the need for the
load balancer to send out instructions, as that information
is available to all the processors. The receiving processors
wait for work, while the sending processors ship the data.
Local Strategies: In the local schemes, the processors are
partitioned into different groups of size K. This partition can
be done by considering the physical proximity of the ma-
chines, as in K-nearest neighbors scheme. The groups can
also be formed in a K-block fashion, or the group members
can be selected randomly. Furthermore, the groups can re-
main fixed for the duration of execution, or the membership
can be changed dynamically. We used the K-block fixed-
group approach in our implementation. In these schemes
the load balancing decisions are only done within a group.
In fact the Global strategies are an instance of the respective
local strategies, where the group size, K, equals the number
of processors. The two local strategies we look at are:� Local Centralized DLB (LCDLB): This scheme is similar
to GCDLB. The fastest processor in a group only interrupts
the other processors in that group. There is one centralized
load balancer, which asynchronously handles all the differ-
ent groups. Once it receives the profile information from
one group, it send instructions for re-distribution for that
group before proceeding to the other groups.� Local Distributed DLB (LDDLB): In this scheme, the load
balancer is replicated on all the processors, but the profile
information is broadcast only to the members of the group.

3.3 Discussion

These four strategies lie at the four extreme points on
the two axes. For example, in the local approach, there is
no exchange of work between different groups. In the local
centralized (LCDLB) version, we have only one master load
balancer, instead of having one master per group. Further-
more, in the distributed strategies we have full replication
of the load balancer. There are many conceivable points in
between, and many other hybrid strategies possible. Explor-
ing the behavior of these strategies is part of future work.
At the present time, we believe that the extreme points will
serve to highlight the differences, and help to gain a basic
understanding of these schemes.
Global vs. Local: The advantage of the global schemes is
that the work re-distribution is optimal,based on information
known till that point (the future is unpredictable, so it’s not
optimal for the whole duration). However, synchronization
is more expensive. On the other hand, in the local schemes,
the work re-distribution is not optimal, resulting in slower
convergence. However, the amount of communication or
synchronization cost is lower. Another factor affecting the

local strategies is the difference in performance among the
different groups. For example, if one group has processors
with poor performance (high load), and the other group has
very fast processors (little or no load), the latter will finish
quite early, and remain idle, while the former group is over-
loaded. This could be remedied by providing a mechanism
for exchange of data between groups. It could also be fixed
by having dynamic group memberships, instead of having
static partitions. In this paper we restrict our attention, to
the static group partition scheme only.
Centralized vs. Distributed: In the centralized schemes,
the central point of control could prevent the scalability of
the strategy to a large number of machines. The distributed
schemes help solve this problem. However, in these schemes
the synchronization involves an all-to-all broadcast. The
centralized schemes require an all-to-one profile send,which
is followed by a one-to-all instruction send. There is also a
trade-off between sequential load balancing decision making
in the centralized approach, and the parallel (replicated)
decision making in the distributed schemes.

4 DLB Modeling and Decision Process

In this section, we present a compile and run-time mod-
eling and decision process for choosing among the different
load balancing strategies. We begin with a discussion of the
different parameters that may influence the performance of
these schemes. This is followed by the derivation of the total
cost function for each of these approaches in terms of the
different parameters. Finally we show how this modeling is
used.

4.1 Modeling Parameters

The various parameters which affect the modeling are
presented below.
Processor Parameters: These give information about the
different processors available to the application.� Number of Processors: We assume that we have a fixed
number of processors available for the computation. This
number is specified by the user, and is denoted as P .� Processor Speeds: This specifies the ratio of a processor’s
performance w.r.t a base processor. Since this ratio is appli-
cation specific [16], we can obtain this by a profiling run.
We may also try to predict this at compile-time. The speed
for processor i is denoted as Si.� Number of Neighbors: This is used for the local strate-
gies, and may be dictated by the physical proximity of the
machines, or it may be user specified. It is denoted as K.
Program Parameters: These parameters give information
about the application.�Data Size: This could be different for different arrays (it
could also be different for the different dimensions of the

same array). This is denoted as Nad, where d specifies the
dimension, and a specifies the array name.�Number of Loop Iterations: This is usually some function
of the data size, and is denoted as Ii(Nad), where i specifies
the loop.� Work per Iteration: The amount of work is measured in
terms of the number of basic operations per iteration, and is
a function of the data size. This is denoted as Wij(Nad),
where i specifies the loop, and j specifies the iteration num-
ber.� Intrinsic Communication: This specifies the amount of
communication per iteration, which is inherent to the pro-
gram. For example, communication caused due to data
dependencies. This is denoted as ICij(P;Nad), where i is
the loop, and j is the iteration.� Data Communication: This specifies the communication
cost due to data movement caused by the load balancing pro-
cess. This is a per array cost, which indicates the number of
bytes that need to be communicated per iteration. In a row
or a column distribution of the data arrays, this is simply the
number of the columns, and number of rows respectively.
This is denoted as DCaij(Nad), where a is the array name,i is the loop, and j is the iteration.� Time per Iteration: This specifies the time it takes to exe-
cute an iterationof a loop on the base processor. It is denoted
as Tij(W; IC), where i is the loop, and j is the iteration.
Since this time is w.r.t. the base processor, the time to exe-
cute an iteration on processor k is simply Tij=Sk. This time
could be obtained by profiling, static analysis, or with the
help of the programmer.

Network Parameters: These specify the properties of the
interconnection network.� Network Latency: This is the time it takes to send a single
byte message between processors.
Although the communication latency could be different for
the various processor pairs, we assume it to be uniform, and
denote it as L.� Network Bandwidth: This is number of bytes that can be
transferred per second over the network. It includes the cost
of packing, receiving, and the “real” communication time in
the physical medium. We denote this as B.� Network Topology: This influences the latency and band-
width between pairs of processors. It also has an impact on
the number of neighbors (for local strategies), and may help
in reducing expensive communication while re-distribution.
In this paper, however, we assume full connectivity among
the processors, with uniform latency and bandwidth.

External Load Modeling: To evaluate our schemes, we had
to model the external load. In our approach, each processor
has an independent load function, denoted as `i. The two
parameters for generating the load function are:� Maximum Load: This specifies the maximum amount of
load per processor, and is denoted asm`. In our experiments

we set m` = 5.� Duration of Persistence: The load value for a processor
is obtained by using a random number generator to get a
value between zero and the maximum load. The duration
of persistence, denoted as t`, indicates the amount of time
before the next invocation of the random number generator,
i.e., we simulate a discrete random load function, with a
maximum amplitude given by m`, and the discrete block
size given by t`. A small value for t` implies a rapidly
changing load, while a large value indicates a relatively
stable load. We use `i(k) to denote the load on processor i
during the k-th duration of persistence. Figure 1 shows the
load function for a processor.

0

= Maximum Load, = Duration of Persistence

LOAD

TIME

tltltltltltl

tlml

ml

Figure 1. Load Function

4.2 Modeling – Total Cost Derivation

We now present the cost model for the various strate-
gies. The cost of a scheme can be broken into the following
categories: cost of synchronization, cost of calculating new
distribution, cost of sending instructions, and cost of data
movement. We look at each of these below:

4.2.1 Cost of Synchronization

The synchronization involves the sending of interrupt from
the fastest processor to the other processors, who then send
their performance profile to the load balancer. This cost is
specified in terms of the kind of communication required for
the synchronization. The cost for the different strategies is
given below:� GCDLB : � = one-to-all(P) + all-to-one(P)� GDDLB : � = one-to-all(P) + all-to-all(P 2)� LCDLB (per group) : � = one-to-all(K) + all-to-one(K)� LDDLB (per group) : � = one-to-all(K) + all-to-all(K2)

4.2.2 Cost of Distribution Calculation

This cost is usually quite small, and we denote it as �. This
calculation is replicated in the distributed strategies. The
cost for the local schemes would be slightly cheaper, since

each group has only K instead of P processors. However,
we ignore this effect.

4.2.3 Cost of Data Movement

We now present our analysis to calculate the amount of
data movement and the number of messages required to re-
distribute work. Let �i(j) denote the iteration distribution,
and let
i(j) denote the number of iterations left to be done
by processor i after the j-th synchronization point. Let
Γ(j) =PPi=1
i(j), and let tj denote the time at which thej-th synchronization happens.
Effect of discrete load: The effective speed of processor
is inversely proportional to the amount of load on it, which
is given as Si=(`i(k) + 1), where `i(k) 2 f0; � � � ;m`g.
Since the performance metric used by the different schemes
is the processor performance since the last synchronization
point, the processor’s performance is given as the average
effective speed over that duration. Let the (j � 1)-th syn-
chronization be during the a-th duration of persistence, i.e.,a = dtj�1=t`e. Similarly, let b = dtj=t`e. Then the average
effective speed of processor i is given asPbk=a Si=(`i(k) + 1)b� a+ 1

= Si= b� a+ 1Pbk=a 1=(`i(k) + 1)!= Si=�i(j), where �i(j) denotes the effective load on pro-
cessor i between the j-th and the previous synchronization.
Total iterations done: We now analyze the effect of the j-th
synchronization. We will first look at the case of uniform
loops, i.e., where each iteration of the loop takes the same
time.� Uniform Loops: We will use T for the time per iteration.
At the end of the (j�1)-th synchronization, each processor
had �i(j� 1) iterations assigned to it. Let f denote the first
processor to finish its portion of the work. Then the time
taken by processor f is given ast = tj � tj�1 = �f (j � 1)T (�f (j)=Sf)
The iterations left to be done on processor i is simply the
old distribution minus the iterations done in time t, i.e.,
i(j) = �i(j� 1)�d tT �i(j)=Si e. Using the value of t from
above, we get
i(j) = �i(j � 1)� �f (j � 1)��f (j)Sf �� Si�i(j)� (1)�Non-Uniform Loops: We now extend the analysis for non-
uniform loops. The time taken by processor f to finish its
portion of the work is given ast = tj � tj�1 = �f (j�1)Xk=1

Tk�f (j)=Sf

where k is in set of iterations assigned to processor f . The
iterations done by processor i in time t, denoted by @ ��i(j � 1), is now given by the expression@Xk0=1

T 0k�i(j)=Si � t = @Xk0=1

T 0k � ��f (j)Si�i(j)Sf ��f (j�1)Xk=1

Tk
The iterations left to be done on processor i is then given as
i(j) = �i(j � 1)� @ (2)

New distribution: The total amount of work left among
all the processors is given as Γ(j) = P
i(j). We now
distribute this work proportional to the average effective
speed of the processors, i.e.�i(j) = Si=�i(j)PPk=1 Sk=�k(j)!Γ(j) (3)

Recall that initiallywe start out with equal work distribu-
tion among all the processors, therefore we have �i(0) = 1
(or a value proportional to initial processor load), �i(0) =I(Nad)=P , and
i(0) = �i(0) 8i 2 1; � � � ; P . These equa-
tions together with equations 1, 2, and 3 give us recurrence
functions which can be solved to obtain the total iterations
left to be done, and the new distribution at each synchro-
nization point. The termination conditionoccurs when there
is no more work left to be done, i.e.,

Γ(�) = 0 (4)

where � is the number of synchronization points required.
Amount of work moved: The amount of basic units of
work (usually iterations) moved during a synchronization is
given as �(j) = 1

2

 PXi=1

j
i(j) � �i(j)j!
Data Movement Cost: The movement of iterations entails
movement of data arrays. The number of messages required
to move the work and data arrays, denoted by �(j) can be
calculated from the old and new distribution values. The
total cost of data movement is now given by the expression�(j) = �(j)L + �(j)Xa �DCa=B� (5)

where a belongs to the set of arrays that need to be re-
distributed.

4.2.4 Cost of Sending Instructions

This cost is only incurred by the centralized schemes, since
the load balancer has to send the work and data movement

instructions to the processors. The number of instructions
is the same as �(j), which is the number of messages re-
quired to move data, since instructions are only sent to the
processors which have to send data. The cost of sending
instructions is, therefore, (j) = �(j)L for the centralized
schemes, and (j) = 0 for the distributed schemes.

4.2.5 Total Cost

Global strategies: The above set of recurrence relations
can be solved to obtain the cost of data movement (see
equation 5), and to calculate the number of synchronization
points (see equation 4), thereby getting the total cost of the
global strategies asT C = �(� + �) + �Xj=1

[�(j) + (j)]
where � is the synchronization cost, � is the number of
synchronizations, � is the re-distribution calculation cost,
and �(j) is the data movement cost and (j) the cost of
sending instructions for the j-th synchronization.
Local strategies: In the local centralized (LCDLB) strat-
egy, even though the load balancer is asynchronous, the
assumption that groups can be treated independently from
the others may not be true. This is because the central
load balancer goes to another group only once it has fin-
ished calculating the re-distribution and sending instruc-
tions for the current group. This effect is modeled as a
delay factor for each group, which depends on the time for
the synchronization of the different groups, and is given
as ∆g(j) = P�(j)k=1[� + k(j)], where �(j) is the num-
ber of groups already waiting in the queue for the central
load balancer. Note that in the local distributed scheme,
the absence of a central load balancer eliminates this effect
(i.e.,∆g (j) = 0). There may still be some effect due to
overlapped synchronization communication, but we do not
model this.

For the local schemes, the analyses in the previous sub-
sections still hold, but we have a different cost per group for
each of the different categories. The total cost per group is
given asT Cg = �g(� + �) + �gXj=1

[�g(j) + g(j) + ∆g(j)]
The total cost of the local strategy is simply the time
taken by the last group to finish its computation, i.e.,T C = MAXdP=Keg=1 fT Cgg.

4.3 Decision Process – Using the Model

Since all the information used by the modeling process,
like the number of processors, processor speeds, data size,

number of iterations, iteration cost, etc., and particularly the
load function, may not be known at compile time, we pro-
pose a hybrid compile and run-time modeling and decision
process. The compiler collects all necessary information,
and may also help to generate symbolic cost functions for
the iteration cost and communication cost. The actual de-
cision making for committing to a scheme is deferred until
run-time when we have complete information about the sys-
tem.

Initiallyat run-time, no strategy is chosen for the applica-
tion. Work is partitioned equally among all the processors,
and the program is run till the first synchronization point.
During this time a significant amount of work has been
accomplished, namely, at least 1=P of the work has been
done. This can be seen by using equation 1 above, and plug-
ging j = 1, i.e., the first synchronization point, �f (0) =I(Nad)=P , and summing over all processors, to obtain the
total iterations done at the first synchronization point as(PPi=1[I(Nad)=P (�f (1)=Sf)(Si=�i(1))] > I(Nad)=P).
At this time we also know the load function seen on all the
processors so far, and average effective speed of the pro-
cessors. This load function combined with all the other
parameters, can be plugged into the model to obtain quanti-
tative information on the behavior of the different schemes.
This information is then used to commit to the best strategy
after this stage. This also suggests a more adaptive method
for selecting the scheme, where we refine our decision as
more information on the load is obtained at later points. This
is part of future work.

5 Compiler and Run-Time Systems

In this section we describe how our compiler automat-
ically transforms annotated sequential code into code that
can execute in parallel, and that calls routines from the run-
time system using the dynamic load balancing library where
appropriate.

5.1 Run-Time System

The run-time system consists of a uniform interface to
the DLB library for all the strategies, the actual decision
process for choosing among the schemes using the above
model, and it consists of data movement routines to handle
redistribution. Load balancing is achieved by placing ap-
propriate calls to the DLB library to exchange information
and redistribute work. The compiler, however, generates
code to handle this at run-time. The compiler can also help
to generate symbolic cost functions for the iteration and
communication cost.

5.2 Code Generation

For the source-to-source code translation from a sequen-
tial program to a parallel program using PVM [5] for mes-
sage passing, with DLB library calls, we use the Stanford
University Intermediate Format (SUIF) [15] compiler. The
input to the compiler consists of the sequential version of the
code, with annotations to indicate the data decomposition
for the shared arrays, and to indicate the loops which have
to be load balanced.

The compiler generates code for setting up the master pro-
cessor (pseudo-master in the distributed schemes, which is
only responsible for the first synchronization, initial scatter-
ing, and final gathering of arrays). This involves broadcast-
ing initial configuration information parameters, like num-
ber of processors, size of arrays, task ids, etc., calls to the
DLB library for the initial partitioning of shared arrays, fi-
nal collection of results and DLB statistics (such as number
of redistributions, number of synchronizations, amount of
work moved, etc.) and a call to the DLB master sync() rou-
tine which handles the first synchronization, along with the
modeling and strategy selection. It also handles subsequent
synchronizations for the centralized schemes. The arrays
are initially partitioned equally based on the data distri-
bution specification (BLOCK, CYCLIC, or WHOLE). We
currently support do-all loops only, with data distribution
along one dimension (row or column). The compiler must
also generate code for the slave processors, which perform
the actual computation. This step includes changing the
loop bounds to iterate over the local assignment, and in-
serting calls to the DLB library checking for interrupts, for
sending profile information to the load balancer (protocol
dependent), for data redistribution, and if local work stack
has run out, for issuing an interrupt to synchronize.

6 Experimental Results

In this section we present our experimental and modeling
results. We first present experimental evidence showing that
different strategies are better for different applications under
varying parameters. We then present our modeling results
for the applications.

All the experiments were performed on a network of ho-
mogeneous Sun (Sparc LX) workstations, interconnected
via an Ethernet LAN. External load was simulated within
our programs as described in section 4. PVM [5], a message
passing software system, was used to parallelize the appli-
cations. The applications we consider are given below:� Matrix Multiplication (MXM): Multiplication of two ma-
trices.� TRFD: TRFD is part of the Perfect Benchmark applica-
tion suite [4]. It simulates the computational aspects of
two-electron integral transformations. We used a modified

version of TRFD, which was enhanced to exploit the paral-
lelism.� Adjoint Convolution (AC): Convolution of two n2 length
vectors. Results for AC are not presented due to lack of
space. We refer the reader to [17] for more details.

6.1 Network Characterization

The network characterization is done off-line. We mea-
sure the latency and bandwidth for the network, and we
obtain models for the different types of communication pat-
terns among the processors (e.g. all-to-one, one-to-all, all-
to-all). The latency obtained with PVM is 2414.5 �s, and
bandwidth is 0.96 Mbytes=s.
6.2 MXM : Matrix Multiplication

Matrix multiplication is given as Z = X �Y (X is a n � r
and Y a r �m matrix). We parallelize the outer most loop,
by distributing the rows of Z and X, and replicating Y on the
processors. Only the rows of X need to be communicated
when we re-distribute work. The data communication is,
therefore, given as DC = r. There is no intrinsic commu-
nication (IC = 0). The work per iteration is uniform, and
is given as O(m � r), i.e., it is quadratic. We ran the matrix
multiplication program on 4 and 16 processors. The local
strategies used two groups, i.e., with 2 neighbors on 4 pro-
cessors, and 8 neighbors on 16 processors. The experiments
used m = 400 for different values of r, and n.

6.2.1 Experimental Results

n=400,r=400 n=400,r=800 n=800,r=400 n=800,r=800

Data Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

MXM (no DLB)

GCDLB

GDDLB

LCDLB

LDDLB

MXM (P=4)

Figure 2. Matrix multiplication (P=4)

Figures 2 and 3 show the experimental results for MXM
for different data sizes on 4 and 16 processors, respectively.
In the figure the legend “(no DLB)” stands for a run of the
program in the presence of external discrete random load,
but with no attempt to balance the work, i.e., we partition the

iterations in equal blocks among all the processors, and let
the program run to completion. The other bars correspond
to running the program under each of the dynamic load
balancing schemes.

We observe that the global distributed (GDDLB) strat-
egy is the best, which is followed closely by the global
centralized (GCDLB) scheme. Among the local strategies,
local distributed (LDDLB) does better than local centralized
(LCDLB). Moreover, the global schemes are better than the
local schemes. We also notice that on 16 processors the gap
between the globals and locals becomes smaller. From our

n=1600,r=400 n=1600,r=800 n=3200,r=400 n=3200,r=800

Data Size

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

MXM (no DLB)

GCDLB

GDDLB

LCDLB

LDDLB

MXM (P=16)

Figure 3. Matrix multiplication (P=16)

discussion in section 3.3, local strategies incur less com-
munication overhead than global strategies. However the
redistribution is not optimal. From the results, it can be
observed that if the computation cost (work per iteration)
versus the communication cost (synchronization cost, redis-
tribution cost) ratio is large, global strategies are favored.
This tilts towards the local strategies as this ratio decreases.
The factors that influence this ratio are the work per iteration,
number of iterations, and the number of processors. More
processors increase the synchronization cost, and should fa-
vor the local schemes. However, in the above experiment
there is sufficient work to outweigh this trend, and globals
are still better for 16 processors. Comparing across dis-
tributed and central schemes, the centralized master, and
sequential redistribution and instruction send, add sufficient
overhead to the centralized schemes to make the distributed
schemes better. LCDLB incurs additional overhead due
to the delay factor (see section 4.2.5), and also due to the
context switching between the load balancer and the compu-
tation slave (since the processor housing the load balancer
also takes part in computation).

6.2.2 Modeling Results

Table 1 shows the actual order and the predicted order of
performance of the different strategies under varying pa-
rameters for MXM. We observe that the actual experimental

order and the predicted order of performance matches very
closely.

Parameters Actual Predicted
P n r m 1 2 3 4 1 2 3 4

4 400 400 400 GD GC LD LC GD GC LD LC
4 400 800 400 GD GC LD LC GD GC LD LC
4 800 400 400 GD GC LD LC GD GC LD LC
4 800 800 400 GD GC LD LC GD GC LD LC

16 1600 400 400 GD GC LD LC GC GD LD LC
16 1600 800 400 GC GD LD LC GD GC LD LC
16 3200 400 400 GD GC LD LC GD GC LD LC
16 3200 800 400 GD GC LD LC GD GC LD LC

Table 1. MXM: Actual vs. Predicted Order

6.3 TRFD

TRFD has two main computation loops with an inter-
vening transpose . The two loops are load balanced inde-
pendently, while the transpose is sequentialized. We paral-
lelized the outer most loop of both the loop nests. There
is only one major array used in both the loops. Its size is
given as [n(n + 1)=2] � [n(n + 1)=2], where n is an input
parameter. The loop iterations operate on different columns
of the array, which is distributed in a column block fashion
among all the processors. The data communication, DC,
is simply the row size. Since the loops are do-all loops,
there is no intrinsic communication. The first loop nest is
uniform, with n(n+ 1)=2 iterations. The work per iteration
is linear in the array size (� 2n+ 4). The second loop nest
has triangular work per iteration. We transform this into
a uniform loop using the bitonic scheduling technique [3],
i.e., by combining iterations i and n(n+ 1)=2 � i + 1 into
one iteration. The number of iterations for loop 2 is now
given as n(n + 1)=4. The work is also linear in the array
size. We experimented with input parameter value of 30,
40, and 50, which correspond to the array size of 465, 820,
1275, respectively, and we used 4 and 16 processors, with
the local strategies using 2 groups (2 and 8 processors per
group, respectively).

6.3.1 Experimental Results

Figures 4 and 5 show the results for TRFD with different
data sizes for 4 and 16 processors, respectively.

We observe that on 4 processors, as the data size increases
we tend to shift from local distributed (LDDLB) to global
distributed (GDDLB). Since the amount of work per itera-
tion is small, the computation vs. communication ratio is
small, thus favoring the local distributed scheme on small
data sizes. With increasing data size, this ratio increases,
and GDDLB does better. Among the centralized schemes
the global (GCDLB) is better then the local (LCDLB). On
16 processors however, we find that the local distributed
(LDDLB) strategy is the best, which is followed by the

N=30 (465) N=40 (820) N=50 (1275)

Data Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

TRFD (no DLB)

GCDLB

GDDLB

LCDLB

LDDLB

TRFD (P=4)

Figure 4. TRFD (P=4)

global distributed (GDDLB) scheme. Among the central-
ized strategies also the local (LCDLB) does better than the
global (GCDLB), since the computation vs. communica-
tion ratio is small. Furthermore, the distributed schemes are
better than the centralized ones.

N=30 (465) N=40 (820) N=50 (1275)

Data Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

TRFD (no DLB)

GCDLB

GDDLB

LCDLB

LDDLB

TRFD (P=16)

Figure 5. TRFD (P=16)

The results shown above are for the total execution time
of the TRFD program. It is also instructive to consider the
loops individually, as shown in table 2 under the Actual
column. Loop 2 has almost double the work per iteration
than in loop 1. We see that on 4 processors, LDDLB is the
best, followed by GDDLB. For loop 2, however, since the
work per iteration is more, GDDLB tends to do better with
increasing data size. For both the loops GCDLB is better
than LCDLB. On 16 processors, the order is LDDLB and
LCDLB for loop 1, instead of LDDLB and GDDLB for loop
2. This is also because of the higher work per iteration for
loop 2.

6.3.2 Modeling Results

Table 2 shows the actual order and the predicted order of
performance of the different strategies under varying param-

eters for TRFD. It can be seen that our results are reasonably
accurate.

Parameters Loop Actual Predicted
P N 1 2 3 4 1 2 3 4

4 30(465) L1 LD GD GC LC GD GC LD LC
4 40(820) L1 LD GD GC LC LD GD GC LC
4 50(1275) L1 LD GD GC LC LD GD GC LC

4 30(465) L2 LD GD GC LC GD LD GC LC
4 40(820) L2 GD LD GC LC LD GD GC LC
4 50(1275) L2 GD LD GC LC GD LD GC LC

16 30(465) L1 LD LC GD GC LD LC GC GD
16 40(820) L1 LD LC GD GC LD GD LC GC
16 50(1275) L1 LD LC GD GC LD GD GC LC

16 30(465) L2 LD GD GC LC LD GC GD LC
16 40(820) L2 LD GD LC GC LD GC GD LC
16 50(1275) L2 LD GD LC GC LD GD LC GC

Table 2. TRFD: Actual vs. Predicted Order

In tables 1 and 2, most of the inaccuracies in prediction
occur at the performance cross-over point along the two
axes under consideration (local vs. global or central vs. dis-
tributed). The differences among the schemes are small at
these points. Therefore, not much should be made of the
relative orderings of these schemes at these points.

7 Conclusions

In this paper we analyzed both global and local, and cen-
tralized and distributed, interrupt-based receiver-initiated
dynamic load balancing strategies, on a network of worksta-
tions with transient external load per processor. We showed
that different strategies are best for different applications
under varying parameters such as the number of processors,
data size, iteration cost, communication cost, etc. We then
presented a modeling process to evaluate the behavior of
these schemes. Presenting a hybrid compile and run-time
process, we showed that it is possible to customize the dy-
namic load balancing scheme for a program under differing
parameters. Given the host of dynamic scheduling strategies
proposed in the literature, such analysis would be useful to
a parallelizing compiler. To take the complexity away from
the programmer, we also automatically transform an an-
notated sequential program to a parallel program with the
appropriate calls to the run-time dynamic load balancing
library.

Although our model works reasonably well, more work
needs to be done to obtain yet accurate information to guide
the decision process. Further work is also needed to han-
dle do-across loops, i.e., loops having data dependencies
between iterations, and applications with irregular compu-
tation.

References

[1] J.N.C. Arabe et. al. Dome: parallel programming in a

heterogeneous multi-user environment. CMU-CS-95-
137 30786, Carnegie Mellon Univ, Apr 1995.

[2] R. Blumofe et al. Scheduling large-scale parallel com-
putations on NOW. 3rd HPDC, Apr 1994.

[3] M. Cierniak, W. Li, and M. J. Zaki. Loop scheduling
for heterogeneity. In 4th HPDC, Aug 1995.

[4] L. Kipp (ed.). Perfect Benchmarks Doc, Suite 1. CSRD,
Univ. of Illinois, Urbana-Champaign, Oct 1993.

[5] A. Geist et al. PVM 3 user’s guide & ref. manual.
ORNL/TM-12187, Oak Ridge Nat. Lab, May 1993.

[6] C. Kruskal and A. Weiss. Allocating independent sub-
tasks on parallel processors. IEEE Transactions on
Software Engineering, 11:1001–16, Oct 1985.

[7] W. Li and K. Pingali. Access normalization: Loop
restructuring for NUMA compilers. ACM Trans on
Computer Systems, 11(4):353–375, Nov 1993.

[8] E.P. Markatos and T.J. LeBlanc. Using processor affin-
ity in loop scheduling on shared-memory multiproces-
sors. IEEE Trans Parallel Dist Sys, 5(4), Apr 1994.

[9] N. Nedeljkovic and M. J. Quinn. Data-parallel pro-
gramming on a network of heterogeneous worksta-
tions. 1st HPDC, Sep 1992.

[10] H. Nishikawa and P. Steenkiste. A general architecture
for load balancing in a distributed-memory environ-
ment. Intl. Conf. Dist. Computing, May 1993.

[11] C. D. Polychronopoulos and D. J. Kuck. Guided self-
scheduling: a practical scheduling scheme for paral-
lel supercomputers. IEEE Trans on Computers, C-
36(12):1425–1439, Dec 1987.

[12] V. Saletore et al. Parallel computations on the charm
heterogeneous workstn. cluster. 3rd HPDC, Apr 1994.

[13] B.S. Siegell. Automatic generation of parallel pro-
grams with dynamic load balancing for a network of
workstations. CMU-CS-95-168 30880, Carnegie Mel-
lon Univ. - Sch. of Computer Science, May 1995.

[14] P. Tang and P.-C. Yew. Processor self-scheduling for
multiple nested parallel loops. In ICPP, Aug 1986.

[15] R. Wilson et. al. An overview of the suif compiler
system. Unpublished manuscript, Stanford Univ.

[16] M. Zaki et al. Performance impact of processor and
memory heterogeneity in a network of machines. 4th
Heterogeneous Computing Wkshp, Apr 1995.

[17] M. Zaki et al. Customized dynamic load balancing for
NOW. TR602, Univ. of Rochester, Dec 1995.

