
A Requirements Analysis for Parallel KDD Systems

William A. Maniatty1 and Mohammed J. Zaki2

1 Computer Science Dept., University at Albany, Albany, NY 12222
maniatty@cs.albany.edu, http://www.cs.albany.edu/∼maniatty/

2 Computer Science Dept., Rensselaer Polytechnic Institute, Troy, NY 12180
zaki@cs.rpi.edu, http://www.cs.rpi.edu/∼zaki/

Abstract. The current generation of data mining tools have limited ca-
pacity and performance, since these tools tend to be sequential. This
paper explores a migration path out of this bottleneck by considering
an integrated hardware and software approach to parallelize data min-
ing. Our analysis shows that parallel data mining solutions require the
following components: parallel data mining algorithms, parallel and dis-
tributed data bases, parallel file systems, parallel I/O, tertiary storage,
management of online data, support for heterogeneous data representa-
tions, security, quality of service and pricing metrics. State of the art
technology in these areas is surveyed with an eye towards an integration
strategy leading to a complete solution.

1 Introduction

Knowledge discovery in databases (KDD) employs a variety of techniques, col-
lectively called data mining, to uncover trends in large volumes of data. Many
applications generate (or acquire) data faster than it can be analyzed using exist-
ing KDD tools, leading to perpetual data archival without retrieval or analysis.
Furthermore, analyzing sufficiently large data sets can exceed the available com-
putational resources of existing computers. In order to reverse the vicious cycle
induced by these two problematic trends, the issues of performing KDD faster
than the rate of arrival and increasing capacity must simultaneously be dealt
with. Fortunately, novel applications of parallel computing techniques should
assist in solving these large problems in a timely fashion.

Parallel KDD (PKDD) techniques are not currently that common, though
recent algorithmic advances seek to address these problems (Freitas and Lav-
ington 1998; Zaki 1999; Zaki and Ho 2000; Kargupta and Chan 2000). However,
there has been no work in designing and implementing large-scale parallel KDD
systems, which must not only support the mining algorithms, but also the entire
KDD process, including the pre-processing and post-processing steps (in fact,
it has been posited that around 80% of the KDD effort is spent in these steps,
rather than mining). The picture gets even more complicated when one considers
persistent data management of mined patterns and models.

Given the infancy of KDD in general, and PKDD in particular, it is not
clear how or where to start, to realize the goal of building a PKDD system



that can handle terabyte-sized (or larger) central or distributed datasets. Part
of the problem stems from the fact that PKDD draws input from diverse areas
that have been traditionally studied in isolation. Typically, the KDD process
is supported by a hierarchical architecture consisting of the following layers:
(from bottom to top) I/O Support, File System, Data Base, Query Manager,
and Data Mining. However, the current incarnations of this architecture tend
to be sequential, limiting both problem size and performance. To implement
a successful PKDD toolkit, we need to borrow, adapt, and enhance research in
fields such as super-, meta- and heterogeneous-computing environments, parallel
and distributed databases, parallel and distributed file systems, parallel I/O,
mass storage systems, and so on (not to mention the other fields that make up
KDD — statistics, machine learning, visualization, etc.).

This paper represents a first step in the process of unifying these diverse
technologies and leveraging them within the PKDD system. We do this by dis-
cussing the system requirements for PKDD and the extant solutions (or lack
thereof), i.e., the what and the how of PKDD. These requirements follow from:
the basic requirements imposed by KDD (Section 2), current KDD algorithmic
techniques (Section 3), the trends in commodity hardware design (Section 4)
and software requirements (Section 5). One difficulty in making such a survey
is that each research community has its own jargon, which we will try to make
accessible by describing it within a common PKDD framework.

2 PKDD Requirements

We begin by discussing the wish-list or desirable features of a functional PKDD
system, using it to guide the rest of the survey. We mainly concentrate on aspects
that have not received wide attention as yet.
Algorithm Evaluation: Algorithmic aspects that need attention are the ability to
handle high dimensional datasets, to support terabyte data-stores, to minimize
number of data scans, etc. An even more important research area is to provide
a rapid development framework to implement and conduct the performance e-
valuation of a number of competing parallel methods for a given mining task.
Currently this is a very time-consuming process, and there are no guidelines
when to use a particular algorithm over another.
Process Support: The toolkit should support all KDD steps, from pre-processing
operations for like sampling, discretization, and feature subset selection, to post-
processing operations like rule grouping and pruning and model scoring. Other
aspects include (persistent) pattern management operations like caching, effi-
cient retrieval, and meta-level mining.
Location Transparency: The PKDD system should be able to seamlessly access
and mine datasets regardless of their location, be they centralized or distributed.
Data Type Transparency: The system should be able to cope with heterogeneity
(e.g., different database schemas), without having to materialize a join of multi-
ple tables. Other difficult aspects deal with handling unstructured (hyper-)text,
spreadsheet, and a variety of other data types.



System Transparency: This refers to the fact that the PKDD system should be
able to seamlessly access file systems, databases, or data archives. Databases and
data warehouses represent one kind of data repositories, and thus it is crucial
to integrate mining with DBMS to avoid extracting data to flat files. On the
other hand, a huge amount of data remains outside databases in flat-files, web-
logs, etc. The PKDD system must therefore bridge the gap that exists today
between the database and file-systems worlds (Choudhary and Kotz 1996). This
is required since database systems today offer little functionality to support
mining applications (Agrawal et al. 1993), and most research on parallel file
systems and parallel I/O has looked at scientific applications, while data mining
operations have very different workload characteristics.
Security, QoS and Pricing: In an increasingly networked world one constant-
ly needs access to proprietary third-party and other remote datasets. The two
main issues that need attention here are security and Quality-of-Service (QoS)
issues in data mining. We need to prevent unauthorized mining, and we need to
provide cost-sensitive mining to guarantee a level of performance. These issues
are paramount in web-mining for e-commerce.
Availability, Fault Tolerance and Mobility: Distributed and parallel systems have
more points of failure than centralized systems. Furthermore temporary discon-
nections (which are frequent in mobile computing environments) and reconnec-
tions by users should be tolerated with a minimal penalty to the user. Many real
world applications cannot tolerate outages, and in the presence of QoS guaran-
tees and contracts outages, can breach the agreements between providers and
users. Little work has been done to address this area as well.

In the discussion below, due to space constraints, we choose to concentrate
only on the algorithmic and hardware trends, and system transparency issues
(i.e., parallel I/O and parallel and distributed databases), while briefly touching
on other aspects (a more detailed paper is forthcoming).

3 Mining Methods

Faster and scalable algorithms for mining will always be required. Parallel and
distributed computing seems ideally placed to address these big data perfor-
mance issues. However, achieving good performance on today’s multiprocessor
systems is a non-trivial task. The main challenges include synchronization and
communication minimization, work-load balancing, finding good data layout and
data decomposition, and disk I/O minimization.

The parallel design space spans a number of systems and algorithmic compo-
nents such as the hardware platform (shared vs. distributed), kind of parallelism
(task vs. data), load balancing strategy (static vs. dynamic), data layout (hori-
zontal vs. vertical) and search procedure used (complete vs. greedy).

Recent algorithmic work has been very successful in showing the benefit-
s of parallelism for many of the common data mining tasks including associ-
ation rules (Agrawal and Shafer 1996; Cheung et al. 1996; Han et al. 1997;
Zaki et al. 1997), sequential patterns (Shintani and Kitsuregawa 1998; Zak-



i 2000), classification (Shafer et al. 1996; Joshi et al. 1998; Zaki et al. 1999;
Sreenivas et al. 1999), regression (Williams et al. 2000) and clustering (Judd et
al. 1996; Dhillon and Modha 2000; S. Goil and Choudhary 1999).

The typical trend in parallel mining is to start with a sequential method and
pose various parallel formulations, implement them, and conduct a performance
evaluation. While this is very important, it is a very costly process. After all,
the parallel design space is vast and results on the parallelization of one serial
method may not be applicable to other methods. The result is that there is
a proliferation of parallel algorithms without any standardized benchmarking
to compare and provide guidelines on which methods work better under what
circumstances. The problem becomes even worse when a new and improved serial
algorithm is found, and one is forced to come up with new parallel formulations.
Thus, it is crucial that the PKDD system support rapid development and testing
of algorithms to facilitate algorithmic performance evaluation.

One recent effort in this direction is discussed by (Skillicorn 1999). He em-
phasizes the importance of and presents a set of cost measures that can be
applied to parallel algorithms to predict their computation, data access, and
communication performance. These measures make it possible to compare d-
ifferent parallel implementation strategies for data-mining techniques without
benchmarking each one.

A different approach is to build a data mining kernel that supports common
data mining operations, and is modular in design so that new algorithms or their
“primitive” components can be easily added to increase functionality. An exam-
ple is the MKS (Anand et al. 1997) kernel. Also, generic set-oriented primitive
operations were proposed in (Freitas and Lavington 1998) for classification and
clustering, which were integrated with a parallel DBMS.

4 Hardware Models and Trends

The current hardware trends are that memory and disk capacity are increasing
at a much higher rate than their speed. Furthermore, CPU capacity is roughly
obeying Moore’s law, which predicts doubling performance approximately every
18 months. To combat bus and memory bandwidth limitations, caching is used
to improve the mean access time, giving rise to Non-Uniform Memory Access
architectures. To accelerate the rate of computation, modern machines frequent-
ly increase the number of processing elements in an architecture. Logically, the
memory of such machines is kept consistent, giving rise to a shared memory
model, called Symmetric Multiprocessing (SMP) in the architecture communi-
ty and shared everything in the database community (DeWitt and Gray 1992;
Valduriez 1993). However the scalability of such architectures is limited, so for
higher degrees of parallelism, a cluster of SMP nodes is used. This model, called
shared-nothing in database literature, is also the preferred architecture for par-
allel databases (DeWitt and Gray 1992).

Redundant arrays of independent (or inexpensive) disks (RAID) (Chen et al.
1994) has gained popularity to increase I/O bandwidth and storage capacity,



reduce latency, and (optionally) support fault tolerance. In many systems, since
the amount of data exceeds that which can be stored on disk, tertiary storage
is used, typically consisting of one or more removable media devices with a juke
box to swap the loaded media.

In addition to the current trends, there have been other ideas to improve the
memory and storage bottlenecks. Active Disks (Riedel et al. 1997) and Intelligent
Disks (Keeton et al. 1998) have been proposed as a means to exploit the improved
processor performance of embedded processors in disk controllers to allow more
complex I/O operations and optimizations, while reducing the amount of traffic
over a congested I/O bus. Intelligent RAM (IRAM) (Kozyrakis and Patterson
1998) seeks to integrate processing elements in the memory. Active disks and
IRAM are not currently prevalent, as the required hardware and systems software
are not commonly available.

5 Software Infrastructure

Since our goal is to use commodity hardware, much of the support for our desired
functionality is pushed back into the software. In this section we discuss some
of the system transparency issues in PKDD systems, i.e., support for seamless
access to databases and file systems and parallel I/O. We review selected aspects
of these areas.

The most common database constructions currently in use are relational
databases, object oriented databases, and object-relational databases. The data
base layer ensures referential integrity and provides support for queries and/or
transactions on the data set (Oszu and Valduriez 1999). The data base layer
is frequently accessed via a query language, such as SQL. We are primarily in-
terested in parallel and distributed database systems (DeWitt and Gray 1992;
Valduriez 1993), which have data sets spanning disks. The primary advantages
of such systems are that capacity of storage is improved and that parallelizing of
disk access improves bandwidth and (for large I/O’s) can reduce latency. Early on
parallel database research explored special-purpose database machines for per-
formance (Hsiao 1983), but today the consensus is that its better to use available
parallel platforms, with shared-nothing paradigm as the architecture of choice.
Shared-nothing database systems include Teradata, Gamma (D. DeWitt et al.
1990), Tandem (Tandem Performance Group 1988), Bubba (Boral et al. 1990),
Arbre (Lorie et al. 1989), etc. We refer the reader to (DeWitt and Gray 1992;
Valduriez 1993; Khan et al. 1999) for excellent survey articles on parallel and
distributed databases. Issues within parallel database research of relevance to
PKDD include the data partitioning (over disks) methods used, such as simple
round-robin partitioning, where records are distributed evenly among the disks.
Hash partitioning is most effective for applications requiring associative access
since records are partitioned based on a hash function. Finally, range partition-
ing clusters records with similar attributes together. Most parallel data mining
work to-date has used a round-robin approach to data partitioning. Other meth-
ods might be more suitable. Exploration of efficient multidimensional indexing



structures for PKDD is required (Gaede and Gunther 1998). The vast amount of
work on parallel relational query operators, particularly parallel join algorithms,
is also of relevance (Pirahesh et al. 1990). The use of DBMS views (Oszu and
Valduriez 1999) to restrict the access of a DBMS user to a subset of the data,
can be used to provide security in KDD systems.

Parallel I/O and file systems techniques are geared to handling large data
sets in a distributed memory environment, and appear to be a better fit than
distributed file systems for managing the large data sets found in KDD ap-
plications. Parallel File Systems and Parallel I/O techniques have been widely
studied; (Kotz ) maintains an archive and bibliography, which has a nice ref-
erence guide (Stockinger 1998). Use of parallel I/O and file systems becomes
necessary if RAID devices have insufficient capacity (due to scaling limitations)
or contention for shared resources (e.g. buses or processors) exceeds the capacity
of SMP architectures. The Scalable I/O initiative (SIO) includes many group-
s, including the Message Passing Interface (MPI) forum, which has adopted a
MPI-IO API (Thakur et al. 1999) for parallel file management. MPI-IO is lay-
ered on top of local file systems. MPI uses a run time type definition scheme
to define communication and I/O entity types. The ROMIO library (Thakur
et al. 1999) implements MPI-IO in Argonne’s MPICH implementation of MPI.
ROMIO automates scheduling of aggregated I/O requests and uses the ADIO
middleware layer to provide portability and isolate implementation dependent
parts of MPIO. PABLO, another SIO member group, has created the portable
parallel file systems (PPFS II), designed to support efficient access of large
data sets in scientific applications with irregular access patterns. More infor-
mation on parallel and distributed I/O and file systems appears in (Kotz ;
Carretero et al. 1996; Gibson et al. 1999; Initiative ; Moyer and Sunderam 1994;
Nieuwejaar and Kotz 1997; Schikuta et al. 1998; Seamons and Winslett 1996).

Users of PKDD systems are interested in maximizing performance. Prefetch-
ing is an important performance enhancing technique that can reduce the impact
of latency by overlapping computation and I/O (Cortes 1999; Kimbrel et al. 1996;
Patterson III 1997). In order for prefetching to be effective, the distributed sys-
tem uses hints which indicate what data is likely to be used in the near future.
Generation of accurate hints (not surprisingly) tends to be difficult since it re-
lies on predicting a program’s flow of control. Many hint generation techniques
rely on traces of a program’s I/O access patterns. (Kimbrel et al. 1996) sur-
veyed a range of trace driven techniques and prefetching strategies, and provided
performance comparisons. (Madhyastha and Reed 1997) recently used machine
learning tools to analyze I/O traces from the PPFS, relying on artificial neural
networks for on-line analysis of the current trace, and hidden markov model-
s to analyze data obtained by profiling. (Chang and Gibson 1999) developed
SpecHint which generates hints via speculative execution. We conjecture that
PKDD techniques can be used to identify reference patterns, to provide hint
generation and to address open performance analysis issues (Reed et al. 1998).

As we noted earlier, integration of various systems components for effective
KDD is lagging. The current state of KDD tools can accurately be captured by



the term flat-file mining, i.e., prior to mining, all the data is extracted into a
flat-file, which is then used for mining, effectively bypassing all database func-
tionality. This is mainly because traditional databases are ill-equipped to han-
dle/optimize the complex query structure of mining methods. However, recent
work has recognized the need for integrating of the database, query manage-
ment and data mining layers (Agrawal and Shim 1996; Sarawagi et al. 1998).
(Agrawal and Shim 1996) postulated that better integration of the query man-
ager, database and data mining layers would provide a speedup. (Sarawagi et
al. 1998) confirmed that performance improvements could be attained, with the
best performance obtained in cache-mine which caches and mines the query
results on a local disk. SQL-like operators for mining association rules have al-
so been developed (Meo et al. 1996). Further, proposals for data mining query
language (Han et al. 1996; Imielinski and Mannila 1996; Imielinski et al. 1996;
Siebes 1995) have emerged. We note that most of this work is targeted for serial
environments. PKDD efforts will benefit from this research, but the optimiza-
tion problems will of course be different in a parallel setting. Some exceptions
include the parallel generic primitives proposed in (Freitas and Lavington 1998),
and Data Surveyor (Holsheimer et al. 1996), a mining tool that uses the Mon-
et database server for parallel classification rule induction. We further argue
that we need a wider integration of parallel and distributed databases and file
systems, to fully mine all available data (only a modest fraction of which actu-
ally resides in databases). Integration of PKDD and parallel file systems should
enhance performance by improving hint generation in prefetching. Integrated
PKDD can use parallel file systems for storing and managing large data sets
and use distributed file system as an access point suited to mobile clients for
management of query results.

6 Conclusions

We described a list of desirable design features of parallel KDD systems. These
requirements motivated a brief survey of existing algorithmic and systems sup-
port for building such large-scale mining tools. We focused on the state-of-the-art
in databases, and parallel I/O techniques. We observe that implementing a effec-
tive PKDD system requires integration of these diverse sub-fields into a coherent
and seamless system. Emerging issues in PKDD include benchmarking, securi-
ty, availability, mobility and QoS, motivating fresh research in these disciplines.
Finally, PKDD approaches may be used as a tool in these areas (e.g. hint gener-
ation for prefetching in parallel I/O), resulting in a bootstrapping approach to
software development.



References

R. Agrawal and J. Shafer. Parallel mining of asso-
ciation rules. IEEE Trans. on Knowledge and Data Engg.,
8(6):962–969, December 1996.

R. Agrawal and K. Shim. Developing tightly-coupled
data mining applications on a relational DBMS. In Int’l
Conf. on Knowledge Discovery and Data Mining, 1996.

R. Agrawal, T. Imielinski, and A. Swami. Database
mining: A performance perspective. IEEE Trans. on
Knowledge and Data Engg., 5(6):914–925, December 1993.

S. Anand, et al.Designing a kernel for data mining. IEEE
Expert, pages 65–74, March 1997.

H. Boral, et al. Prototyping Bubba, a highly parallel
database system. IEEE Trans. on Knowledge and Data Eng-
g., 2(1), March 1990.

J. Carretero, et al. ParFiSys: A parallel file system for
MPP. ACM Operating Systems Review, 30(2):74–80, 1996.

F. Chang and G. Gibson. Automatic i/o hint genera-
tion through speculative execution. In Symp. on Operat-
ing Systems Design and Implementation, February 1999.

P. M. Chen, et al.RAID: High-performance, reliable sec-
ondary storage. ACM Computing Surveys, 26(2):145–185,
June 1994.

D. Cheung, et al.A fast distributed algorithm for mining
association rules. In 4th Int’l Conf. Parallel and Distributed
Info. Systems, December 1996.

A. Choudhary and D. Kotz. Large-scale file systems
with the flexibility of databases. ACM Computing Surveys,
28A(4), December 1996.

T. Cortes. High Performance Cluster Computing, Vol. 1,
chapter Software Raid and Parallel File Systems, pages
463–495. Prentice Hall, 1999.

D. DeWitt et al. The GAMMA database machine
project. IEEE Trans. on Knowledge and Data Engg., 2(1):44–
62, March 1990.

D. DeWitt and J. Gray. Parallel database systems: The
future of high-performance database systems. Commu-
nications of the ACM, 35(6):85–98, June 1992.

I. S. Dhillon and D. S. Modha. A clustering algorithm
on distributed memory machines. In Zaki and Ho, 2000.

A. Freitas and S. Lavington. Mining very large databases
with parallel processing. Kluwer Academic Pub., 1998.

V. Gaede and O. Gunther. Multidimensional access
methods. ACM Computing Surveys, 30(2):170–231, 1998.

G. Gibson, et al. NASD scalable storage systems. In
USENIX99, Extreme Linux Workshop, June 1999.

J. Han, et al.DMQL: A data mining query language for
relational databases. In SIGMOD Workshop on Research
Issues in Data Mining and Knowledge Discovery, June 1996.

E-H. Han, G. Karypis, and V. Kumar. Scalable parallel
data mining for association rules. In ACM SIGMOD Conf.
Management of Data, May 1997.

M. Holsheimer, M. L. Kersten, and A. Siebes. Data sur-
veyor: Searching the nuggets in parallel. In U. Fayyad,
G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy,
editors, Advances in Knowledge Discovery and Data Mining.
AAAI Press, 1996.

D. Hsiao. Advanced Database Machine Architectures. Pren-
tice Hall, 1983.

T. Imielinski and H. Mannila. A database perspec-
tive on knowledge discovery. Communications of the ACM,
39(11), November 1996.

T. Imielinski, A. Virmani, and A. Abdulghani.
DataMine: Application programming interface and query
language for database mining. In Int’l Conf. Knowledge
Discovery and Data Mining, August 1996.

Scalable I/O Initiative. http://www.cacr.caltech.edu/SIO.
California Institute of Technology.

M. Joshi, G. Karypis, and V. Kumar. ScalParC: A s-
calable and parallel classification algorithm for mining
large datasets. In Int’l Parallel Processing Symposium, 1998.

D. Judd, P. McKinley, and A. Jain. Large-scale parallel
data clustering. In Int’l Conf. Pattern Recognition, 1996.

H. Kargupta and P. Chan, editors. Advances in Distributed
Data Mining. AAAI Press, 2000.

K. Keeton, D. Patterson, and J.M. Hellerstein. The
case for intelligent disks. SIGMOD Record, 27(3):42–52,
September 1998.

M.F. Khan, et al. Intensive data management in paral-
lel systems: A survey. Distributed and Parallel Databases,
7:383–414, 1999.

T. Kimbrel, et al. A trace-driven comparison of al-
gorithms for parallel prefetching and caching. In
USENIX Symp. on Operating Systems Design and Implemen-
tation, pages 19–34, October 1996.

D. Kotz. The parallel i/o archive. Includes point-
ers to his Parallel I/O Bibliography, can be found at
http://www.cs.dartmouth.edu/pario/.
C. E. Kozyrakis and D. A. Patterson. New direction in
computer architecture research. IEEE Computer, pages
24–32, November 1998.
R. Lorie, et al. Adding inter-transaction parallelism to
existing DBMS: Early experience. IEEE Data Engineering
Newsletter, 12(1), March 1989.
T. M. Madhyastha and D. A. Reed. Exploiting global
input/output access pattern classification. In Proceed-
ings of SC’97, 1997. On CDROM.
R. Meo, G. Psaila, and S. Ceri. A new SQL-like opera-
tor for mining association rules. In Int’l Conf. Very Large
Databases, 1996.
S. A. Moyer and V. S. Sunderam. PIOUS: a scalable
parallel I/O system for distributed computing environ-
ments. In Scalable High-Performance Computing Conf., 1994.
N. Nieuwejaar and D. Kotz. The galley parallel file
system. Parallel Computing, 23(4), June 1997.
M. T. Oszu and P. Valduriez. Principles of Distributed
Database Systems. Prentice Hall, 1999.
R. H. Patterson III. Informed Prefetching and Caching. PhD
thesis, Carnegie Mellon University, December 1997.
Pirahesh et al. Parallelism in Relational Data Base Systems.
In nt’l Symp. on Parallel and Distributed Systems, July 1990.
D. A. Reed, et al. Performance analysis of parallel sys-
tems: Approaches and open problems. In Joint Sympo-
sium on Parallel Processing (JSPP), June 1998.
E. Riedel, G. A. Gibson, and C. Faloutsos. Active s-
torage for large-scale data mining and multimedia. In
Int’l Conf. on Very Large Databases, August 1997.
H. Nagesh S. Goil and A. Choudhary. MAFIA: Efficien-
t and scalable subspace clustering for very large data
sets. Technical Report 9906-010, Northwestern Univer-
sity, June 1999.
S. Sarawagi, S. Thomas, and R. Agrawal. Integrat-
ing association rule mining with databases: alternatives
and implications. In ACM SIGMOD Conf. on Management
of Data, June 1998.
E. Schikuta, T. Fuerle, and H. Wanek. ViPIOS: The
vienna parallel input/output system. In Euro-Par’98,
September 1998.
K. E. Seamons and M. Winslett. Multidimension-
al array I/O in Panda 1.0. Journal of Supercomputing,
10(2):191–211, 1996.
J. Shafer, R. Agrawal, and M. Mehta. Sprint: A scalable
parallel classifier for data mining. In Int’l Conf. on Very
Large Databases, March 1996.
T. Shintani and M. Kitsuregawa. Mining algorithms for
sequential patterns in parallel: Hash based approach.
In 2nd Pacific-Asia Conf. on Knowledge Discovery and Data
Mining, April 1998.
A. Siebes. Foundations of an inductive query language.
In Int’l Conf. on Knowledge Discovery and Data Mining, Au-
gust 1995.
D. Skillicorn. Strategies for parallel data mining. IEEE
Concurrency, 7(4):26–35, October-December 1999.
M. Sreenivas, K. Alsabti, and S. Ranka. Parallel out-of-
core divide and conquer techniques with application to
classification trees. In Int’l Parallel Processing Symposium,
April 1999.
H. Stockinger. Dictionary on parallel input/output.
Master’s thesis, Dept. of Data Engineering, Universi-
ty of Vienna, February 1998.
Tandem Performance Group. A benchmark of non-stop
SQL on the debit credit transaction. In SIGMOD Con-
ference, June 1988.
R. Thakur, W. Gropp, and E. Lusk. On implementing
mpi-io portably and with high performance. In Work-
shop on I/O in Parallel and Distributed Systems, May 1999.
P. Valduriez. Parallel database systems: Open problems
and new issues. Distributed and Parallel Databases, 1:137–
165, 1993.
G. Williams, et al.The integrated delivery of large-scale
data mining: The ACSys data mining project. In Zaki
and Ho, 2000.
M. J. Zaki and C-T. Ho, editors. Large-Scale Parallel Data
Mining, LNCS Vol. 1759. Springer-Verlag, 2000.
M. J. Zaki, et al. Parallel algorithms for fast discovery
of association rules. Data Mining and Knowledge Discovery:
An International Journal, 1(4):343-373, December 1997.
M. J. Zaki, C.-T. Ho, and R. Agrawal. Parallel classifi-
cation for data mining on shared-memory multiproces-
sors. In Int’l Conf. on Data Engineering, March 1999.
M. J. Zaki. Parallel and distributed association mining:
A survey. IEEE Concurrency, 7(4):14–25, 1999.
M. J. Zaki. Parallel sequence mining on SMP machines.
In Zaki and Ho, 2000.


