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Preface

The explosive growth in data collection in business and scienti�c �elds has liter-
ally forced upon us the need to analyze and mine useful knowledge from it. Data
mining refers to the entire process of extracting useful and novel patterns/models
from large datasets. Due to the huge size of data and amount of computation
involved in data mining, high-performance computing is an essential component
for any successful large-scale data mining application.

This workshop provided a forum for presenting recent results in high perfor-
mance computing for data mining including applications, algorithms, software,
and systems. High-performance was broadly interpreted to include scalable se-
quential as well as parallel and distributed algorithms and systems. Relevant
topics for the workshop included:

1. Scalable and/or parallel/distributed algorithms for various mining tasks like
classi�cation, clustering, sequences, associations, trend and deviation detec-
tion, etc.

2. Methods for pre/post-processing like feature extraction and selection, dis-
cretization, rule pruning, model scoring, etc.

3. Frameworks for KDD systems, and parallel or distributed mining.
4. Integration issues with databases and data-warehouses.

These proceedings contain 9 papers that were accepted for presentation at the
workshop. Each paper was reviewed by two members of the program committee.
In keeping with the spirit of the workshop some of these papers also represent
work-in-progress. In all cases, however, the workshop program highlights avenues
of active research in high performance data mining.

We would like to thank all the authors and attendees for contributing to the
success of the workshop. Special thanks are due to the program committee and
external reviewers for help in reviewing the submissions.
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Abstract This paper investigates scalable implementations of out-of-
core I/O-intensive Data Mining algorithms on a�ordable parallel archi-
tectures, such as clusters of workstations. In order to validate our ap-
proach, the K-means algorithm, a well known DM Clustering algorithm,
was used as a test case.

1 Introduction

Data Mining (DM) applications exploit huge amounts of data, stored in �les or
databases. Such data need to be accessed to discover patterns and correlations
useful for various purposes, above all for guiding strategic decision making in
the business domain. Many DM applications are strongly I/O intensive since
they need to read and process the input dataset several times [1,6,7]. Several
techniques have been proposed in order to improve the performance of DM
applications. Many of them are based on parallel processing [5]. In general, their
main goals are to reduce the computation time and/or reduce the time spent on
accessing out-of-memory data.

Since the early 1990s there has been an increasing trend to move away from
expensive and specialized proprietary parallel supercomputers towards clusters
of workstations (COWs) [3]. Historically, COWs have been used primarily for
science and engineering applications, but their low cost, scalability, and gener-
ality provide a wide array of opportunities for new domains of application [13].
DM is certainly one of these domains, since DM algorithms generally exhibit
large amounts of data parallelism. However, to eÆciently exploit COWs, par-
allel implementations should be adaptive with respect to the speci�c features
of the machine (e.g. they must take into account the memory hierarchies and
caching policies adopted by modern hardware/software architectures).

Speci�cOut-of-Core (OoC) techniques (also known as External Memory tech-
niques) [3,14] can be exploited to approach DM problems that require huge
amounts of memory. OoC techniques are useful for all applications that do not
completely �t into the physical memory. Their main goal is to reduce memory
hierarchy overheads by bypassing the OS virtual memory system and explicitly



managing I/O. Direct control over data movements between main memory and
secondary storage is achieved by splitting the dataset into several small blocks.
These blocks are then loaded into data structures which will certainly �t into
physical memory. They are processed and, if necessary, written back to disks.
The knowledge of the patterns used by the algorithm to access the data can
be exploited in an e�ective way to reduce I/O overheads by overlapping them
with useful computations. The access pattern exploited by the DM algorithm
discussed in this paper is simple, since read-only datasets are accessed sequen-
tially and iteratively. Note that the general purpose external memory mechanism
provided by the operating system { in our case, the Unix read() system call {
is speci�cally optimized for this kind of data access.

This paper investigates scalable implementations of I/O-intensive DM algo-
rithms on a�ordable parallel architectures, such as clusters of PCs equipped with
main memories of a limited size, which are not suÆciently big to store the whole
dataset (or even a partition of it). The test case DM application used to vali-
date our approach is based on the on-line K-means algorithm, a well known DM

Clustering algorithm [8,10]. The testbed COW was composed of three SMPs, in-
terconnected by a 100BaseT switched Ethernet, where each SMP was equipped
with two Pentium II - 233 MHz processors, 128 MB of main memory, and a 4GB
UW-SCSI disk. Their OS was Linux, kernel version 2.2.5-15. The paper is orga-
nized as follows. Section 2 discusses implementation issues related to the design
of I/O-intensive DM applications. Section 3 deals with the K-means algorithm
and its parallel implementation. Finally, Section 4 discusses the results of our
experiments and draws some conclusions.

2 Implementation of I/O Intensive DM Applications

As mentioned above, we are interested in DM algorithms that access sequentially
the same dataset several times. The repeated scanning of the whole dataset en-
tails good spatial locality but scarce temporal locality. The latter can only be
exploited if the whole dataset entirely �ts into the physical memory. In general,
however, this condition cannot be taken for granted because \real life" datasets
are generally very large. Moreover, the physical memory is of limited size, and
other running processes contend for its usage. The adoption of an OoC algo-
rithm, which takes advantage of possible prefetching policies implemented by
both software drivers and disk controllers [11], and which allows to exploit mul-

titasking ormultithreading strategies in order to overlap I/O latencies with useful
computations, is thus mandatory.

The best policy might thus appear to be to adopt OoC algorithms only if a
dataset does not �t into the physical memory. When the memory is large enough,
an in-core approach might seem more eÆcient, since all the dataset is read once
from disk, and is repeatedly accessed without further I/O operations. Clearly
such an in-core strategy might fail when other processes use the main memory,
thus causing swapping on the disk. We believe that \smart" OoC approaches
are always preferable to their in-core counterparts, even when datasets are small



with respect to memory size. This assertion is due to the existence of a bu�er

cache for block devices in modern OSs, such as Linux [2]. The available physical
memory left unused by the kernel and processes is dynamically enrolled in the
bu�er cache on demand. When the requirement for primary memory increases,
for example because new processes enter the system, the memory allocated to
bu�ers is reduced. We conducted experiments to compare in-core and out-of-core
versions of a simple test program that repeatedly scans a dataset which �ts into
physical memory. We observed that the two versions of the program have similar
performances. In fact, if we consider the OoC version of this simple program, at
the end of the �rst scan the bu�er cache contains the blocks of the whole dataset.
The following scans of the dataset will not actually access the disk at all, since
they �nd all the blocks to be read in the main memory, i.e. in the bu�er cache.
In other words, due to the mechanisms provided by the OS, the actual behavior
of the OoC program becomes in-core.
We also observed another advantage of the OoC program over the in-core solu-
tion. During the �rst scan of the dataset, the OoC program takes advantage of
OS prefetching. In fact, during the processing of a block the OS prefetches the
next one, thus hiding some I/O time. On the contrary, I/O time of in-core pro-
grams cannot be overlapped with useful computations because the whole dataset
has to be read before starting the computation.

In summary, the OoC approach not only works well for small datasets, but
it also scales-up when the problem size exceeds the physical memory size, i.e.,
in those cases when in-core algorithms fail due to memory swapping. More-
over, to improve scalability for large datasets, we can also exploit multitasking
techniques in conjunction with OoC techniques to hide I/O time. To exploit
multitasking, non-overlapping partitions of the whole dataset must be assigned
to distinct tasks. The same technique can also be used to parallelize the applica-
tion, by mapping these tasks onto distinct machines. This kind of data-parallel
paradigm is usually very e�ective for implementing DM algorithms, since compu-
tation is generally uniform, data exchange between tasks is limited, and generally
involves a global synchronization at the end of each scan of the whole dataset.
This synchronization is used to check termination conditions and to restore a
consistent global state. Consistency restoration is needed since the tasks start
each iteration on the basis of a consistent state, generating new local states that
only re
ect their partial view of the whole dataset.
Finally, parallel DM algorithms implemented on COWs also have to deal with
load imbalance. In fact, workload imbalance may derive either from di�erent
capacities of the machines involved or from unexpected arrivals of external jobs.
Since the programming paradigm adopted is data parallel, a possible solution to
this problem is to dynamically change partition sizes.

3 A Test Case DM Algorithm and its Implementation

There is a variety of applications, ranging from marketing to biology, astro-
physics, and so on [8], that need to identify subsets of records (clusters) present-



ing characteristics of homogeneity. In this paper we used a well known clustering
algorithm, the K-means algorithm [10] as a case study representative of a class
of I/O intensive DM algorithms. We deal with the on-line formulation of K-
means, which can be considered as a competitive learning formulation of the
classical K-means algorithm. K-means considers records in a dataset to be rep-
resented as data-points in a high dimensional space. Clusters are identi�ed by
using the concept of proximity among data-points in this space. The K-means
algorithm is known to have some limitations regarding the dependence on the
initial conditions and the shape and size of the clusters found [9,10]. Moreover,
it is necessary to de�ne a priori the number K of clusters that we expect to
�nd, even though it is also possible to start with a small number of clusters
(and associated centers), and increase this number when speci�c conditions are
observed. The three main steps of the on-line K-means sequential algorithm are:
(1) start with a given number of centers randomly chosen; (2) scan all the data-
points of the dataset, and for each point p �nd the center closest to p, assign
p to the cluster associated with this center, and move the center toward p; (3)
repeat step 2 until the assignment of data-points to the various clusters remains
unchanged. Note that the repetition of step 2 ensures that centers gradually get
attracted into the middle of the clusters. In our tests we used synthetic datasets
and we �xed a priori K.

Parallel Implementation. We implemented the OoC version of the algorithm
mentioned above, where data-points are repeatedly scanned by sequentially read-
ing small blocks of 4 KBytes from the disk. The program was implemented using
MPI according to an SPMD paradigm. A non overlapping partition of the in-
put �le, univocally identi�ed by a pair of boundaries, is processed by each task
of the SPMD program. The number of tasks involved in the execution may be
greater than the number of physical processors, thus exploiting multitasking.
This parallel formulation of our test case is similar to those described in [12,4],
and requires a new consistent global state to be established once each scan of
the whole dataset is completed. Our global state corresponds with the new po-
sitions reached by the K centers. These positions are determined by summing
the vectors corresponding with the centers' movements which were separately
computed by the various tasks involved. In our implementation, the new center
positions are computed by a single task, the root one, and are broadcast to the
others. The root task also checks the termination condition.

The load balancing strategy adopted is simple but e�ective. It is based on
past knowledge of the bandwidths of all concurrent tasks (i.e. number of points
computed in a unit of time). If a load imbalance is detected, the size of the
partitions is increased for \faster" tasks and decreased for \slower" ones. This
requires input datasets to be replicated on all the disks of our testbed. If com-
plete replication is too expensive or not possible, �le partitions with overlap-
ping boundaries can be exploited as well. Let NP be the total number of data-
points, and fp1; : : : ; png the n tasks of the SPMD program. At the �rst iteration
np1i = NP=n data-points are assigned to each pi. During iteration j each pi
measures the elapsed time T j

i spent on elaborating its own block of npji points,



so that tji = T j
i =np

j
i is the time taken by each pi to elaborate a single point,

and bji = 1=tji = npji=T
j
i is its bandwidth. In order to balance the workload,

the numbers npj+1i of data-points which each pi has to process in the next it-

eration are then computed on the basis of the various bji (npj+1i = �ji � NP ,

where �ji = bji=
Pn

i=1 b
j
i ). Finally, values np

j+1
i are easily translated into parti-

tion boundaries, i.e. a pair of o�sets within the replicated or partially replicated
input �le.

4 Experimental Results and Conclusions

Several experiments were conducted on the testbed with our parallel implementa-
tion of K-means based on MPI. Data-parallelism, OoC techniques, multitasking,
and load balancing strategies were exploited. Note that the successful adoption
of multitasking mainly depends on (1) the number of disks with respect to the
number of processors available on each machine, and (2) the computation gran-
ularity (i.e., the time spent on processing each data block) with respect to the
I/O bandwidth. In our experiments on synthetic datasets, we tuned this compu-
tational granularity by changing the number K of clusters to look for. Another
important characteristics of our approach is the size of the partitions assigned
to the tasks mapped on a single SMP machine. If the sum of these sizes is less
than the size of the physical main memory, we guess that the behavior of the
OoC application will be similar to its in-core counterpart, due to a large enough
bu�er cache. Otherwise, sequential accesses carried out by a task to its dataset
partition will entail disk accesses, so that the only possibility of hiding these I/O
times is to exploit, besides OS prefetching, some form of moderated multitasking.

Figure 1 shows the e�ects of the presence of the bu�er cache. On a single
SMP we ran our test case algorithm with a small dataset (64 MB) and small
computational granularity (K=3). Bars show the time spent by the tasks in
computing (t comp), in doing I/O and being idle in some OS queue (t io +

t idle), and in communication and synchronization (t comm). The two bars on
the left hand side represent the �rst and the second iterations of a sequential
implementation of the test case. The four bars on the right hand side regard
the parallel implementation (2 tasks mapped on the same SMP). Note that in
both cases the t io and t idle are high during the �rst iteration, since the
bu�er cache is not able to ful�ll the read requests (cache misses). On the other
hand, these times almost disappear from the the second iteration bars, since the
accessed blocks are found in the bu�er cache (cache hits).

Figure 2 shows the e�ects of multitasking on a single SMP when the disk has
to be accessed. Although a small dataset was used for these experiments, the
bars only refer to the �rst iteration, during which we certainly need to access
the disk. Now recall that our testbed machines are equipped with a single disk
each. This represents a strong constraint on the I/O bandwidth of our platform.
This is particularly evident when several I/O-bound tasks, running in parallel
on an SMP, try to access this single disk. In this regard, we found that our
test case has di�erent behaviors depending on the computational granularity.



For a �ne granularity (K=8), the computation is completely I/O-bound. In this
condition it is better to allocate a single task to each SMP (see Figure 2.(a)).
When we allocated more then one task, the performance worsened because of
the limited I/O bandwidth and I/O con
icts. For a coarser granularity (K= 32),
the performance improved when two tasks were used (see Figure 2.(b)). In the
case of higher degrees of parallelism the performance decreases. This is due to
the overloading of the single disk, and to noises introduced by multitasking into
the OS prefetching policy.

Figure 3 shows some speedup curves. The plots refer to 20 iterations with
K=16. We used at most two tasks per SMP. Note the super-linear speedup
achieved when 2 or 3 processors were used. These processors belong to distinct
SMPs, so that this super-linear speedup is due to the exploitation of multiple
disks and to the e�ects of the bu�er cache. In fact, when moderately large
datasets were used (64 MB or 128 MB) the data partitions associated with
the tasks mapped on each SMP �t into the bu�er caches. Overheads due to
communications, occurring at the end of each iteration, are very small and do
not a�ect speedup.
In the case of a larger dataset (384 MB), whose size is greater than the whole
main memory available, when the number of tasks remains under three, linear
speedups were obtained. For larger degrees of parallelism, the speedup decreases.
This is still due to the limited I/O bandwidth on each SMP.

K=3 - 64 MB 
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Figure1. Execution times of two iterations of the test case on a single SMP.

Figure 4 shows the e�ectiveness of the load balancing strategy adopted. Both
plots refer to experiments conducted using all the six processors of our testbed
with the 64MB dataset and K = 32. The plot in the left hand side of the �g-
ure shows the number of blocks dynamically assigned to each task by our load
balancing algorithm as a function of the iteration index. During time interval
[t1; t3] ([t2; t4]) we executed a CPU-intensive process on the SMP A (M) running
tasks A0 and A1 (M1 and M1). As it can be seen, the load balancing algorithm
quickly detects the variation in the capacities of the machines, and correspond-
ingly adjusts the size of the partitions by narrowing partitions assigned to slower
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Figure2. Execution times of the �rst iteration on a single SMP by varying the number
of tasks exploited and the computational granularities: (a) K=8 and (b) K=32.
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Figure3. Speedup curves for di�erent dataset sizes (20 iterations, K = 16).

machines and enlarging the others. The plot in the right hand side compares the
execution times obtained exploiting or not our load balancing strategy as a func-
tion of the external load present in one of the machines. We can see that in the
absence of external load the overhead introduced by the load balancing strategy
is negligible. As the external load increases, the bene�ts of exploiting the load
balancing strategy increase as well.

In conclusion, this work has investigated the issues related to the implemen-
tation of a test case application, chosen as a representative of a large class of
DM I/O-intensive applications, on an inexpensive COW. E�ective strategies for
managing I/O requests and for overlapping their latencies with useful compu-
tations have been devised and implemented. Issues related to data parallelism
exploitation, OoC techniques, multitasking, and load balancing strategies have
been discussed. To validate our approach we conducted several experiments and
discussed the encouraging results achieved. Future work regards the evaluation
of the possible advantages of exploiting lightweight threads for intra-SMP paral-
lelism and multitasking. Moreover, other I/O intensive DM algorithms have to
be considered in order to de�ne a framework of techniques/functionalities useful
for eÆciently solving general DM applications on COWs, which, unlike homo-
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geneous MPPs, impose additional issues that must be addressed using adaptive
strategies.

References

1. Jain A.K. and Dubes R.C. Algorithms for Clustering Data. Prentice Hall, 1988.
2. M. Beck et al. Linux Kernel Internals, 2nd ed. Addison-Wesley, 1998.
3. Rajkumar Buyya, editor. High Performance Cluster Computing. Prentice Hall

PTR, 1999.
4. I. S. Dhillon and D. S. Modha. A data clustering algorithm on distributed memory

machines. In ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,
1999.

5. A. A. Freitas and S. H. Lavington. Mining Very Large Databases with Parallel
Processing. Kluwer Academin Publishers, 1998.

6. V. Ganti, J. Gehrke, and R. Ramakrishnan. Mining Very Large Databases. IEEE
Computer, 32(8):38{45, 1999.

7. E. Han, G. Karypis, and V. Kumar. Scalable Parallel Data Mining for Association
Rules. IEEE Transactions on Knowledge and Data Engineering. To appear.

8. J.A. Hartigan. Clustering Algorithms. Wiley & Sons, 1975.
9. G. Karypis, E. Han, and V. Kumar. Chameleon: Hierarchical Clustering Using

Dynamic Modeling. IEEE Computer, 32:68{75, 1999.
10. Mac Queen, J.B. Some Methods for Classi�cation and Analysis of Multivariate

Observation. 5th Berkeley Symp. on Mathematical Statistics and Probability, pages
281{297. Univ. of California Press, 1967.

11. Chris Ruemmler and John Wilkes. An Introduction to Disk Drive Modeling. IEEE
Computer, 27(3):17{28, March 1994.

12. K. Sto�el and A. Belkoniene. Parallel k-means clustering for large datasets.
EuroPar'99 Parallel Processing, Lecture Notes in Computer Science, No. 1685.
Springer-Verlag, 1999.

13. Sterling T.L., Salmon J., Becker D.J., and Savarese D.F. How to Build a Beowulf.
A guide to the Implementation and Application of PC Clusters. The MIT Press,
1999.

14. J. S. Vitter. External Memory Algorithms and Data Structures. In External
Memory Algorithms (DIMACS Series on Discrete Mathematics and Theoretical
Computer Science). American Mathematical Society, 1999.



A Requirements Analysis for Parallel KDD Systems

William A. Maniatty1 and Mohammed J. Zaki2

1 Computer Science Dept., University at Albany, Albany, NY 12222
maniatty@cs.albany.edu, http://www.cs.albany.edu/�maniatty/

2 Computer Science Dept., Rensselaer Polytechnic Institute, Troy, NY 12180
zaki@cs.rpi.edu, http://www.cs.rpi.edu/�zaki/

Abstract. The current generation of data mining tools have limited ca-
pacity and performance, since these tools tend to be sequential. This
paper explores a migration path out of this bottleneck by considering
an integrated hardware and software approach to parallelize data min-
ing. Our analysis shows that parallel data mining solutions require the
following components: parallel data mining algorithms, parallel and dis-
tributed data bases, parallel �le systems, parallel I/O, tertiary storage,
management of online data, support for heterogeneous data representa-
tions, security, quality of service and pricing metrics. State of the art
technology in these areas is surveyed with an eye towards an integration
strategy leading to a complete solution.

1 Introduction

Knowledge discovery in databases (KDD) employs a variety of techniques, col-
lectively called data mining, to uncover trends in large volumes of data. Many
applications generate (or acquire) data faster than it can be analyzed using exist-
ing KDD tools, leading to perpetual data archival without retrieval or analysis.
Furthermore, analyzing suÆciently large data sets can exceed the available com-
putational resources of existing computers. In order to reverse the vicious cycle
induced by these two problematic trends, the issues of performing KDD faster
than the rate of arrival and increasing capacity must simultaneously be dealt
with. Fortunately, novel applications of parallel computing techniques should
assist in solving these large problems in a timely fashion.

Parallel KDD (PKDD) techniques are not currently that common, though
recent algorithmic advances seek to address these problems (Freitas and Lav-
ington 1998; Zaki 1999; Zaki and Ho 2000; Kargupta and Chan 2000). However,
there has been no work in designing and implementing large-scale parallel KDD
systems, which must not only support the mining algorithms, but also the entire
KDD process, including the pre-processing and post-processing steps (in fact,
it has been posited that around 80% of the KDD e�ort is spent in these steps,
rather than mining). The picture gets even more complicated when one considers
persistent data management of mined patterns and models.

Given the infancy of KDD in general, and PKDD in particular, it is not
clear how or where to start, to realize the goal of building a PKDD system



that can handle terabyte-sized (or larger) central or distributed datasets. Part
of the problem stems from the fact that PKDD draws input from diverse areas
that have been traditionally studied in isolation. Typically, the KDD process
is supported by a hierarchical architecture consisting of the following layers:
(from bottom to top) I/O Support, File System, Data Base, Query Manager,
and Data Mining. However, the current incarnations of this architecture tend
to be sequential, limiting both problem size and performance. To implement
a successful PKDD toolkit, we need to borrow, adapt, and enhance research in
�elds such as super-, meta- and heterogeneous-computing environments, parallel
and distributed databases, parallel and distributed �le systems, parallel I/O,
mass storage systems, and so on (not to mention the other �elds that make up
KDD | statistics, machine learning, visualization, etc.).

This paper represents a �rst step in the process of unifying these diverse
technologies and leveraging them within the PKDD system. We do this by dis-
cussing the system requirements for PKDD and the extant solutions (or lack
thereof), i.e., the what and the how of PKDD. These requirements follow from:
the basic requirements imposed by KDD (Section 2), current KDD algorithmic
techniques (Section 3), the trends in commodity hardware design (Section 4)
and software requirements (Section 5). One diÆculty in making such a survey
is that each research community has its own jargon, which we will try to make
accessible by describing it within a common PKDD framework.

2 PKDD Requirements

We begin by discussing the wish-list or desirable features of a functional PKDD
system, using it to guide the rest of the survey. We mainly concentrate on aspects
that have not received wide attention as yet.
Algorithm Evaluation: Algorithmic aspects that need attention are the ability to
handle high dimensional datasets, to support terabyte data-stores, to minimize
number of data scans, etc. An even more important research area is to provide
a rapid development framework to implement and conduct the performance e-
valuation of a number of competing parallel methods for a given mining task.
Currently this is a very time-consuming process, and there are no guidelines
when to use a particular algorithm over another.
Process Support: The toolkit should support all KDD steps, from pre-processing
operations for like sampling, discretization, and feature subset selection, to post-
processing operations like rule grouping and pruning and model scoring. Other
aspects include (persistent) pattern management operations like caching, eÆ-
cient retrieval, and meta-level mining.
Location Transparency: The PKDD system should be able to seamlessly access
and mine datasets regardless of their location, be they centralized or distributed.
Data Type Transparency: The system should be able to cope with heterogeneity
(e.g., di�erent database schemas), without having to materialize a join of multi-
ple tables. Other diÆcult aspects deal with handling unstructured (hyper-)text,
spreadsheet, and a variety of other data types.



System Transparency: This refers to the fact that the PKDD system should be
able to seamlessly access �le systems, databases, or data archives. Databases and
data warehouses represent one kind of data repositories, and thus it is crucial
to integrate mining with DBMS to avoid extracting data to 
at �les. On the
other hand, a huge amount of data remains outside databases in 
at-�les, web-
logs, etc. The PKDD system must therefore bridge the gap that exists today
between the database and �le-systems worlds (Choudhary and Kotz 1996). This
is required since database systems today o�er little functionality to support
mining applications (Agrawal et al. 1993), and most research on parallel �le
systems and parallel I/O has looked at scienti�c applications, while data mining
operations have very di�erent workload characteristics.
Security, QoS and Pricing: In an increasingly networked world one constant-
ly needs access to proprietary third-party and other remote datasets. The two
main issues that need attention here are security and Quality-of-Service (QoS)
issues in data mining. We need to prevent unauthorized mining, and we need to
provide cost-sensitive mining to guarantee a level of performance. These issues
are paramount in web-mining for e-commerce.
Availability, Fault Tolerance and Mobility: Distributed and parallel systems have
more points of failure than centralized systems. Furthermore temporary discon-
nections (which are frequent in mobile computing environments) and reconnec-
tions by users should be tolerated with a minimal penalty to the user. Many real
world applications cannot tolerate outages, and in the presence of QoS guaran-
tees and contracts outages, can breach the agreements between providers and
users. Little work has been done to address this area as well.

In the discussion below, due to space constraints, we choose to concentrate
only on the algorithmic and hardware trends, and system transparency issues
(i.e., parallel I/O and parallel and distributed databases), while brie
y touching
on other aspects (a more detailed paper is forthcoming).

3 Mining Methods

Faster and scalable algorithms for mining will always be required. Parallel and
distributed computing seems ideally placed to address these big data perfor-
mance issues. However, achieving good performance on today's multiprocessor
systems is a non-trivial task. The main challenges include synchronization and
communication minimization, work-load balancing, �nding good data layout and
data decomposition, and disk I/O minimization.

The parallel design space spans a number of systems and algorithmic compo-
nents such as the hardware platform (shared vs. distributed), kind of parallelism
(task vs. data), load balancing strategy (static vs. dynamic), data layout (hori-
zontal vs. vertical) and search procedure used (complete vs. greedy).

Recent algorithmic work has been very successful in showing the bene�t-
s of parallelism for many of the common data mining tasks including associ-
ation rules (Agrawal and Shafer 1996; Cheung et al. 1996; Han et al. 1997;
Zaki et al. 1997), sequential patterns (Shintani and Kitsuregawa 1998; Zak-



i 2000), classi�cation (Shafer et al. 1996; Joshi et al. 1998; Zaki et al. 1999;
Sreenivas et al. 1999), regression (Williams et al. 2000) and clustering (Judd et
al. 1996; Dhillon and Modha 2000; S. Goil and Choudhary 1999).

The typical trend in parallel mining is to start with a sequential method and
pose various parallel formulations, implement them, and conduct a performance
evaluation. While this is very important, it is a very costly process. After all,
the parallel design space is vast and results on the parallelization of one serial
method may not be applicable to other methods. The result is that there is
a proliferation of parallel algorithms without any standardized benchmarking
to compare and provide guidelines on which methods work better under what
circumstances. The problem becomes even worse when a new and improved serial
algorithm is found, and one is forced to come up with new parallel formulations.
Thus, it is crucial that the PKDD system support rapid development and testing
of algorithms to facilitate algorithmic performance evaluation.

One recent e�ort in this direction is discussed by (Skillicorn 1999). He em-
phasizes the importance of and presents a set of cost measures that can be
applied to parallel algorithms to predict their computation, data access, and
communication performance. These measures make it possible to compare d-
i�erent parallel implementation strategies for data-mining techniques without
benchmarking each one.

A di�erent approach is to build a data mining kernel that supports common
data mining operations, and is modular in design so that new algorithms or their
\primitive" components can be easily added to increase functionality. An exam-
ple is the MKS (Anand et al. 1997) kernel. Also, generic set-oriented primitive
operations were proposed in (Freitas and Lavington 1998) for classi�cation and
clustering, which were integrated with a parallel DBMS.

4 Hardware Models and Trends

The current hardware trends are that memory and disk capacity are increasing
at a much higher rate than their speed. Furthermore, CPU capacity is roughly
obeying Moore's law, which predicts doubling performance approximately every
18 months. To combat bus and memory bandwidth limitations, caching is used
to improve the mean access time, giving rise to Non-Uniform Memory Access
architectures. To accelerate the rate of computation, modern machines frequent-
ly increase the number of processing elements in an architecture. Logically, the
memory of such machines is kept consistent, giving rise to a shared memory
model, called Symmetric Multiprocessing (SMP) in the architecture communi-
ty and shared everything in the database community (DeWitt and Gray 1992;
Valduriez 1993). However the scalability of such architectures is limited, so for
higher degrees of parallelism, a cluster of SMP nodes is used. This model, called
shared-nothing in database literature, is also the preferred architecture for par-
allel databases (DeWitt and Gray 1992).

Redundant arrays of independent (or inexpensive) disks (RAID) (Chen et al.
1994) has gained popularity to increase I/O bandwidth and storage capacity,



reduce latency, and (optionally) support fault tolerance. In many systems, since
the amount of data exceeds that which can be stored on disk, tertiary storage
is used, typically consisting of one or more removable media devices with a juke
box to swap the loaded media.

In addition to the current trends, there have been other ideas to improve the
memory and storage bottlenecks. Active Disks (Riedel et al. 1997) and Intelligent
Disks (Keeton et al. 1998) have been proposed as a means to exploit the improved
processor performance of embedded processors in disk controllers to allow more
complex I/O operations and optimizations, while reducing the amount of traÆc
over a congested I/O bus. Intelligent RAM (IRAM) (Kozyrakis and Patterson
1998) seeks to integrate processing elements in the memory. Active disks and
IRAM are not currently prevalent, as the required hardware and systems software
are not commonly available.

5 Software Infrastructure

Since our goal is to use commodity hardware, much of the support for our desired
functionality is pushed back into the software. In this section we discuss some
of the system transparency issues in PKDD systems, i.e., support for seamless
access to databases and �le systems and parallel I/O. We review selected aspects
of these areas.

The most common database constructions currently in use are relational
databases, object oriented databases, and object-relational databases. The data
base layer ensures referential integrity and provides support for queries and/or
transactions on the data set (Oszu and Valduriez 1999). The data base layer
is frequently accessed via a query language, such as SQL. We are primarily in-
terested in parallel and distributed database systems (DeWitt and Gray 1992;
Valduriez 1993), which have data sets spanning disks. The primary advantages
of such systems are that capacity of storage is improved and that parallelizing of
disk access improves bandwidth and (for large I/O's) can reduce latency. Early on
parallel database research explored special-purpose database machines for per-
formance (Hsiao 1983), but today the consensus is that its better to use available
parallel platforms, with shared-nothing paradigm as the architecture of choice.
Shared-nothing database systems include Teradata, Gamma (D. DeWitt et al.
1990), Tandem (Tandem Performance Group 1988), Bubba (Boral et al. 1990),
Arbre (Lorie et al. 1989), etc. We refer the reader to (DeWitt and Gray 1992;
Valduriez 1993; Khan et al. 1999) for excellent survey articles on parallel and
distributed databases. Issues within parallel database research of relevance to
PKDD include the data partitioning (over disks) methods used, such as simple
round-robin partitioning, where records are distributed evenly among the disks.
Hash partitioning is most e�ective for applications requiring associative access
since records are partitioned based on a hash function. Finally, range partition-
ing clusters records with similar attributes together. Most parallel data mining
work to-date has used a round-robin approach to data partitioning. Other meth-
ods might be more suitable. Exploration of eÆcient multidimensional indexing



structures for PKDD is required (Gaede and Gunther 1998). The vast amount of
work on parallel relational query operators, particularly parallel join algorithms,
is also of relevance (Pirahesh et al. 1990). The use of DBMS views (Oszu and
Valduriez 1999) to restrict the access of a DBMS user to a subset of the data,
can be used to provide security in KDD systems.

Parallel I/O and �le systems techniques are geared to handling large data
sets in a distributed memory environment, and appear to be a better �t than
distributed �le systems for managing the large data sets found in KDD ap-
plications. Parallel File Systems and Parallel I/O techniques have been widely
studied; (Kotz ) maintains an archive and bibliography, which has a nice ref-
erence guide (Stockinger 1998). Use of parallel I/O and �le systems becomes
necessary if RAID devices have insuÆcient capacity (due to scaling limitations)
or contention for shared resources (e.g. buses or processors) exceeds the capacity
of SMP architectures. The Scalable I/O initiative (SIO) includes many group-
s, including the Message Passing Interface (MPI) forum, which has adopted a
MPI-IO API (Thakur et al. 1999) for parallel �le management. MPI-IO is lay-
ered on top of local �le systems. MPI uses a run time type de�nition scheme
to de�ne communication and I/O entity types. The ROMIO library (Thakur
et al. 1999) implements MPI-IO in Argonne's MPICH implementation of MPI.
ROMIO automates scheduling of aggregated I/O requests and uses the ADIO
middleware layer to provide portability and isolate implementation dependent
parts of MPIO. PABLO, another SIO member group, has created the portable
parallel �le systems (PPFS II), designed to support eÆcient access of large
data sets in scienti�c applications with irregular access patterns. More infor-
mation on parallel and distributed I/O and �le systems appears in (Kotz ;
Carretero et al. 1996; Gibson et al. 1999; Initiative ; Moyer and Sunderam 1994;
Nieuwejaar and Kotz 1997; Schikuta et al. 1998; Seamons and Winslett 1996).

Users of PKDD systems are interested in maximizing performance. Prefetch-
ing is an important performance enhancing technique that can reduce the impact
of latency by overlapping computation and I/O (Cortes 1999; Kimbrel et al. 1996;
Patterson III 1997). In order for prefetching to be e�ective, the distributed sys-
tem uses hints which indicate what data is likely to be used in the near future.
Generation of accurate hints (not surprisingly) tends to be diÆcult since it re-
lies on predicting a program's 
ow of control. Many hint generation techniques
rely on traces of a program's I/O access patterns. (Kimbrel et al. 1996) sur-
veyed a range of trace driven techniques and prefetching strategies, and provided
performance comparisons. (Madhyastha and Reed 1997) recently used machine
learning tools to analyze I/O traces from the PPFS, relying on arti�cial neural
networks for on-line analysis of the current trace, and hidden markov model-
s to analyze data obtained by pro�ling. (Chang and Gibson 1999) developed
SpecHint which generates hints via speculative execution. We conjecture that
PKDD techniques can be used to identify reference patterns, to provide hint
generation and to address open performance analysis issues (Reed et al. 1998).

As we noted earlier, integration of various systems components for e�ective
KDD is lagging. The current state of KDD tools can accurately be captured by



the term 
at-�le mining, i.e., prior to mining, all the data is extracted into a

at-�le, which is then used for mining, e�ectively bypassing all database func-
tionality. This is mainly because traditional databases are ill-equipped to han-
dle/optimize the complex query structure of mining methods. However, recent
work has recognized the need for integrating of the database, query manage-
ment and data mining layers (Agrawal and Shim 1996; Sarawagi et al. 1998).
(Agrawal and Shim 1996) postulated that better integration of the query man-
ager, database and data mining layers would provide a speedup. (Sarawagi et
al. 1998) con�rmed that performance improvements could be attained, with the
best performance obtained in cache-mine which caches and mines the query
results on a local disk. SQL-like operators for mining association rules have al-
so been developed (Meo et al. 1996). Further, proposals for data mining query
language (Han et al. 1996; Imielinski and Mannila 1996; Imielinski et al. 1996;
Siebes 1995) have emerged. We note that most of this work is targeted for serial
environments. PKDD e�orts will bene�t from this research, but the optimiza-
tion problems will of course be di�erent in a parallel setting. Some exceptions
include the parallel generic primitives proposed in (Freitas and Lavington 1998),
and Data Surveyor (Holsheimer et al. 1996), a mining tool that uses the Mon-
et database server for parallel classi�cation rule induction. We further argue
that we need a wider integration of parallel and distributed databases and �le
systems, to fully mine all available data (only a modest fraction of which actu-
ally resides in databases). Integration of PKDD and parallel �le systems should
enhance performance by improving hint generation in prefetching. Integrated
PKDD can use parallel �le systems for storing and managing large data sets
and use distributed �le system as an access point suited to mobile clients for
management of query results.

6 Conclusions

We described a list of desirable design features of parallel KDD systems. These
requirements motivated a brief survey of existing algorithmic and systems sup-
port for building such large-scale mining tools. We focused on the state-of-the-art
in databases, and parallel I/O techniques. We observe that implementing a e�ec-
tive PKDD system requires integration of these diverse sub-�elds into a coherent
and seamless system. Emerging issues in PKDD include benchmarking, securi-
ty, availability, mobility and QoS, motivating fresh research in these disciplines.
Finally, PKDD approaches may be used as a tool in these areas (e.g. hint gener-
ation for prefetching in parallel I/O), resulting in a bootstrapping approach to
software development.
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Abstract. In this paper, we have constructed a large scale ATM-connected
PC cluster consists of 100 PCs, implemented a data mining application,
and optimized its execution environment. Default parameters of TCP
retransmission mechanism cannot provide good performance for data
mining application, since a lot of collisions occur in the case of all-to-all
multicasting in the large scale PC cluster. Using a TCP retransmission
parameters according to the proposed parameter optimization, reason-
ably good performance improvement is achieved for parallel data mining
on 100 PCs.
Association rule mining, one of the best-known problems in data min-
ing, di�ers from conventional scienti�c calculations in its usage of main
memory. We have investigated the feasibility of using available memory
on remote nodes as a swap area when working nodes need to swap out
their real memory contents. According to the experimental results on our
PC cluster, the proposed method is expected to be considerably better
than using hard disks as a swapping device.

1 Introduction

Looking over the recent technology trends, PC/WS clusters connected with high
speed networks such as ATM are considered to be a principal platform for future
high performance parallel computers. Applications which formerly could only be
implemented on expensive massively parallel processors can now be executed on
inexpensive clusters of PCs. Various research projects to develop and examine
PC/WS clusters have been performed until now[1][2][3]. Most of them however,
only measured basic characteristics of PCs and networks, and/or some small
benchmark programs were examined. We believe that data intensive applica-
tions such as data mining and ad-hoc query processing in databases are quite
important for future high performance computers, in addition to the conven-
tional scienti�c applications[4].

Data mining has attracted a lot of attention recently from both the research
and commercial community, for �nding interesting trends hidden in large trans-
action logs. Since data mining is a very computation and I/O intensive process,



parallel processing is required to supply the necessary computational power for
very large mining operations. In this paper, we report the results on parallel
data mining on ATM-connected PC clusters, consists of 100 Pentium Pro PCs.

2 Our ATM-connected PC cluster and its communication

characteristics

We have constructed a PC cluster pilot system which consists of 100 nodes of
200MHz Pentium Pro PCs connected with an ATM switch. An overview of the
PC cluster is shown in Figure 1. Each node of the cluster is equipped with
64Mbytes main memory, 2.5Gbytes IDE hard disk, and 4.3Gbytes SCSI hard
disk. Solaris ver.2.5.1 is used as an operating system.

All nodes of the cluster are connected by a 155Mbps ATM LAN as well as
an Ethernet. HITACHI's AN1000-20, which has 128 port 155Mbps UTP-5, is
used as an ATM switch. Interphase 5515 PCI ATM adapter and RFC-1483 PVC
driver, which support LLC/SNAP encapsulation for IP over ATM, are used.
Only UBR tra�c class is supported in this driver.

TCP/IP is used as a communication protocol. TCP is not only a very popular
reliable protocol for computer communication, but also contains all functions as
a general transport layer. Thus the results of our experiments must be valid
even if other transport protocol is used, for investigating reliable communication
protocols on a large scale cluster.

64MB Memory

Pentium Pro

           200MHz

Personal Computer

ATM Switch (155Mbps X 128 ports)

ATM (UTP-5 155Mbps)

Ethernet (10Base-T)
2.5GB IDE Hard Disk
4.3GB SCSI Hard Disk

X 100

Fig. 1. An overview of the PC cluster



3 Parallel data mining application and its implementation

on the cluster

3.1 Association rule mining

Data mining is a method of the e�cient discovery of useful information such as
rules and previously unknown patterns existing among data items embedded in
large databases, which allows more e�ective utilization of existing data. One of
the best known problems in data mining is mining of the association rules from
a database, so called \basket analysis"[5][6]. Basket type transactions typically
consist of transaction id and items bought per-transaction. An example of an
association rule is \if customers buy A and B then 90% of them also buy C". The
best known algorithm for association rule mining is Apriori algorithm proposed
by R. Agrawal of IBM Almaden Research[7].

In order to improve the quality of the rule, we have to analyze very large
amounts of transaction data, which requires considerably long computation time.
We have studied several parallel algorithms for mining association rules until
now[8], based on Apriori. One of these algorithms, called HPA(Hash Partitioned
Apriori), is implemented and evaluated.

Apriori �rst generates candidate itemsets, then scans the transaction database
to determine whether the candidates satisfy the user speci�ed minimum support.
At �rst pass (pass 1), a support for each item is counted by scanning the transac-
tion database, and all items which satisfy the minimum support are picked out.
These items are called large 1-itemsets. In the second pass (pass 2), 2-itemsets
(length 2) are generated using the large 1-itemsets. These 2-itemsets are called
candidate 2-itemsets. Then supports for the candidate 2-itemsets are counted by
scanning the transaction database, large 2-itemsets which satisfy the minimum
support are determined. This iterative procedure terminates when large item-
set or candidate itemset becomes empty. Association rules which satisfy user
speci�ed minimum con�dence can be derived from these large itemsets.

HPA partitions the candidate itemsets among processors using a hash func-
tion, like the hash join in relational databases. HPA e�ectively utilizes the whole
memory space of all the processors. Hence it works well for large scale data
mining. In the detail of HPA, please refer to [8][9].

3.2 Implementation of HPA program on PC cluster

We have implemented HPA program on our PC cluster. Each node of the cluster
has a transaction data �le on its own hard disk. Solaris socket library is used for
the inter-process communication. All processes are connected with each other
by socket connections, thus forming mesh topology. In the ATM level, PVC
(Permanent Virtual Channel) switching is used since the data is transferred
continuously among all the processes.

Transaction data is produced using data generation program developed by
Agrawal, designating some parameters such as the number of transaction, the



Table 1. The number of candidate and large itemsets

C the number of candidate itemsets
L the number of large itemsets
T the execution time of each pass [sec]

pass C L T

pass 1 1023 11.2
pass 2 522753 32 69.8
pass 3 19 19 3.2
pass 4 7 7 6.2
pass 5 1 0 12.1

number of di�erent items, and so on. The produced data is divided by the number
of nodes, and copied to each node's hard disk.

The parameters used in the evaluation is as follows: The number of transac-
tion is 10,000,000, the number of di�erent items is 5000 and minimum support is
0.7%. The size of the transaction data is about 800Mbytes in total. The message
block size is set to be 8Kbytes and the disk I/O block size is 64Kbytes.

The numbers of candidate itemsets and large itemsets, and the execution
time of each pass executed on 100 nodes PC cluster are shown in Table 1. Note
that the number of candidate itemsets in pass 2 is extremely larger than other
passes, which often happens in association rules mining.

4 Optimization of transport layer protocol parameters

4.1 Broadcasting on the cluster and TCP retransmission

The execution times of pass 3 � 5 are relatively long in Table 1, although they
do not have large number of itemsets. At the end of each pass, a barrier syn-
chronization and exchange of data are needed among all nodes, that is, all-to-all
broadcasting takes place. Even if the amount of broadcasting data is not large,
cells must be discarded at the ATM switch if timing of the broadcasting is the
same at all nodes. Since pass 3 � 5 have little data to process, actual execution
time is quite short, thus broadcasting is performed almost simultaneously in all
nodes, which tend to cause network congestion and TCP retransmission as a
result. We have executed several experiments to �nd the better retransmission
parameters setting suitable for such cases.

We use TCP protocol implemented in Solaris OS, whose parameters can be
changed with user level commands. Two parameters changed here are `maximum
interval of TCP retransmission' and `minimum interval of TCP retransmission',
which we call `MAX' and `MIN' respectively. The default setting is MAX = 60000
[msec] and MIN = 200 [msec] in the current version of Solaris. The interval of
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Fig. 2. Execution time of HPA program on PC cluster

TCP retransmission is dynamically changed in the protocol, within the limits
between MAX and MIN.

As a result of experiments, we have found that the default value of MAX is not
suitable for the cluster, which might cause the unnecessary long retransmission
interval. MAX should be set to be smaller than the default value, such as MAX
= MIN + 100[msec]. Moreover, MIN is better to be set as random value, which
can prevent the collision of the cells at ATM switch.

4.2 Total performance of HPA program using proposed method

HPA program is executed using the proposed parameter setting of TCP on the
PC cluster pilot system. The execution time of HPA program is shown in Figure
2. In this Figure, one line indicates the case using default TCP retransmission
parameters, i.e. MAX = 60000[msec] and MIN = 200[msec], and the other line
indicates the case using random parameters (MIN = 250 ... 350[ms], MAX =
MIN + 100[ms]).

Reasonably good speedup is achieved up to 100 PCs using proposed opti-
mized parameters. Since the application itself is not changed, the di�erence only
comes from TCP retransmission, occurred along with barrier synchronization
and all-to-all data broadcasting.

5 Dynamic remote memory acquisition

5.1 Dynamic remote memory acquisition and its experiments

As shown in section 3, the number of candidate itemsets in pass 2 is very much
larger than in other passes in association rule mining. The number of itemsets is



strongly dependent on user-speci�ed conditions, such as the minimum support
value, and it is di�cult to predict how large the number will be before execu-
tion. Therefore, it may happen that the number of candidate itemsets increases
dramatically in this step so that the memory requirement becomes extremely
large. When the required memory is larger than the real memory size, part of
the contents of memory must be swapped out. However, because the size of each
data item is rather small and all the data is accessed almost at random, swapping
out to a storage device is expected to degrade the total performance severely.

We have executed several experiments in which available memory in remote
nodes is used as a swap area when huge memory is dynamically required. In the
experiments, a limit value for memory usage of candidate itemsets is set at each
node. When the amount of memory used exceeds this value during the execution
of the HPA program(in Pass 2), part of the contents is swapped out to available
memory in remote nodes, that is, application execution nodes acquire remote
memory dynamically. Although such available remote nodes could be found dy-
namically in a real system, we selected them statically in these experiments. On
the other hand, when an application execution node trys to access an item that
had been swapped out, a pagefault occurs.

The basic behavior of this approach has something in common with dis-
tributed shared memory systems[10], memory management system in distributed
operating systems[11], or cache mechanism in client-server database systems[12].
For example, if data structures inside applications are considered in distributed
shared memory, almost the same e�ect can be expected. That is to say, it is
possible to program almost the same mechanism using some types of distributed
shared memory systems. Thus, our mechanism might be regarded as equivalent
to a case of distributed shared memory optimized for a particular application.

We have executed experiments of the proposed mechanism on the PC cluster.
The parameters used in the experiment are as follows. The number of transac-
tions is 1,000,000, the number of di�erent items is 5,000, and the minimum
support is 0.1%. The number of application execution nodes is 8 in this evalua-
tion. The number of memory available nodes is varied from 1 to 16. With these
conditions, the total number of candidate itemsets in pass 2 is 4,871,881. Since
each candidate itemset occupied 24 bytes in total(structure area + data area),
approximately 14-15Mbytes of memory were �lled with these candidate itemsets
at each node.

5.2 Remote update method

When memory usage is limited, the execution time is much longer than when
there is no memory limit. This is because the number of swapouts is extremely
large. In Table 2 the numbers of pagefaults on each application execution node
are shown. Because most of the memory contents are accessed repeatedly, a kind
of thrashing seems to happen in these cases. In order to prevent this phenomenon,
a method for restricting swapping operations is proposed.

When usage of memory reaches the limit value at a node, it acquires re-
mote memory and swaps out part of its memory contents. The contents will be



Table 2. The numbers of pagefaults on each application node

Usage limit node 1 node 2 node 3 node 4 node 5 node 6 node 7 node 8

12[MB] 1606258 2925254 1306521 2361756 1671840 1723410 2166277 2545003

13[MB] 885798 1896226 593000 1374688 932374 896150 1326941 1375398

14[MB] 254094 1003757 512984 286945 191102 601657 407628

15[MB] 268039

swapped in again if this data is accessed later. Instead of swapping, it is some-
times better to send update information to the remote memory when a pagefault
occurs. That is to say, once some contents are swapped out to memory in a dis-
tant node, they are �xed there and accessed only through a remote memory
access interface provided by library functions. This remote update method has
been applied only to the itemsets counting phase, for simplicity.

The access interface function has been developed to realize the remote update
operations. The execution time using this method is shown in Figure 3. This �g-
ure shows the execution time of pass 2 of the HPA program, when the number of
memory available nodes is 16. The execution times for dynamic remote memory
acquisition, according to this method and the previous simple swapping case,
are compared in the Figure. The execution time using hard disks as a swapping
device is also shown, for comparison. Seagate Barracuda 7,200[rpm] SCSI hard
disks have been used for this purpose. Other conditions are the same as the case
of dynamic remote memory acquisition.

The execution time using hard disks as swapping devices is very long, espe-
cially when the memory usage limit is small, because each access time to a hard
disk is much longer than that for remote memory through the network. The
execution time of dynamic remote memory acquisition with simple swapping
is better than for swapping out to hard disks. It increases, however, when the
memory usage limit is small, since the number of pagefaults becomes extremely
large in such a case.

Compared to these results, the execution time of dynamic remote memory
acquisition with remote update operations is quite short, even when the memory
usage limit is small. It seems to be e�ective to provide a simple remote access
interface for the itemsets counting phase, because the number of swapping oper-
ations during this phase is very large. These results indicate that, performance
of the proposed remote memory acquisition with remote update operations is
considerably better than other methods.
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The Parallelization of a Knowledge Discovery
System with Hypergraph Representation?
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Abstract. Knowledge discovery is a time-consuming and space inten-
sive endeavor. By distributing such an endeavor, we can diminish both
time and space. System INDED(pronounced \indeed") is an induc-
tive implementation that performs rule discovery using the techniques
of inductive logic programming and accumulates and handles knowl-
edge using a deductive nonmonotonic reasoning engine. We present four
schemes of transforming this large serial inductive logic programming
(ILP) knowledge-based discovery system into a distributed ILP discov-
ery system running on a Beowulf cluster. We also present our data parti-
tioning algorithm based on locality used to accomplish the data decom-
position used in the scenarios.

1 Introduction

Knowledge discovery in databases has been de�ned as the non-trivial process
of identifying valid, novel, potentially useful, and understandable patterns in
data [PSF91]. Data mining is a commonly used knowledge discovery technique
that attempts to reveal patterns within a database in order to exploit implicit
information that was previously unknown [CHY96]. One of the more useful ap-
plications of data mining is to generate all signi�cant associations between items
in a data set [AIS93]. A discovered pattern is often denoted in the form of an
IF-THEN rule (IF antecedent THEN consequent), where the antecedent and con-
sequent are logical conjunctions of predicates (�rst order logic) or propositions
(propositional logic) [Qui86]. Graphs and hypergraphs are used extensively as
knowledge representation constructs because of their ability to depict causal
chains or networks of implications by interconnecting the consequent of one rule
to the antecedent of another.

In this work, using the language of logic programming, we use a hypergraph
to represent the knowledge base from which rules are mined. Because the hyper-
graph gets inordinantly large in the serial version of our system [Sei99], we have
devised a parallel implementationwhere, on each node, a smaller sub-hypergraph
is created. Consequently, because there is a memory limit to the size of a storable
hypergraph, by using this parallel version, we are able to grapple with problems

? This work is partially supported under Grant 9806184 of the National Science
Foundation.



involving larger knowledge bases than those workable on the serial system. A
great deal of work has been done in parallelizing unguided discovery of asso-
ciation rules originally in [ZPO97] and recently re�ned in [SSC99]. The novel
aspects of this work include the parallelization of both a nonmonotonic reason-
ing system and an ILP learner. In this paper, we present the schemes we have
explored and are currently exploring in this pursuit.

2 Serial System INDED

System INDED is a knowledge discovery system that uses inductive logic pro-
gramming (ILP) [LD94] as its discovery technique. To maintain a database of
background knowledge, INDED houses a deduction engine that uses deductive
logic programming to compute the current state (current set of true facts) as
new rules and facts are procured.

2.1 Inductive Logic Programming

Inductive logic programming (ILP) is a new research area in arti�cial intelligence
which attempts to attain some of the goals of machine learning while using
the techniques, language, and methodologies of logic programming. Some of the
areas to which ILP has been applied are data mining, knowledge acquisition, and
scienti�c discovery [LD94]. The goal of an inductive logic programming system
is to output a rule which covers (entails) an entire set of positive observations,
or examples, and excludes or does not cover a set of negative examples [Mug92].
This rule is constructed using a set of known facts and rules, knowledge, called
domain or background knowledge. In essence, the ILP objective is to synthesize
a logic program, or at least part of a logic program using examples, background
knowledge, and an entailment relation. The following de�nitions are from [LD94].

De�nition 2.1 (coverage, completeness, consistency) Given background
knowledge B, hypothesis H, and example set E, hypothesis H covers example
e 2 E with respect to B if B [H j= e. A hypothesis H is complete with respect
to background B and examples E if all positive examples are covered, i.e., if for
all e 2E+ , B [H j= e. A hypothesis H is consistent with respect to background
B and examples E if no negative examples are covered, i.e., if for all e 2E� ,
B [H 6j= e.

De�nition 2.2 (Formal Problem Statement) Let E be a set of training ex-
amples consisting of true E+ and false E� ground facts of an unknown (target)
predicate T . Let L be a description language specifying syntactic restrictions on
the de�nition of predicate T . Let B be background knowledge de�ning predicates
qi which may be used in the de�nition of T and which provide additional infor-
mation about the arguments of the examples of predicate T . The ILP problem
is to produce a de�nition H for T , expressed in L, such that H is complete and
consistent with respect to the examples E and background knowledge B. [LD94]



2.2 Serial Arichitecture

System INDED (pronounced \indeed") is comprised of two main computation
engines. The deduction engine is a bottom-up reasoning system that computes
the current state by generating a stable model 2, if there is one, of the current
ground instantiation represented internally as a hypergraph, and by generat-
ing the well-founded model [VRS91], if there is no stable model[GL90]. This
deduction engine is, in essence, a justi�cation truth maintenance system which
accommodates non-monotonic updates in the forms of positive or negative facts.

The induction engine, using the current state created by the deduction engine
as the background knowledge base, along with positive examples E+ and nega-
tive examples E� , induces a rule(s) which is then used to augment the deductive
engine's hypergraph. We use a standard top-down hypothesis construction algo-
rithm (learning algorithm) in INDED[LD94]. This algorithm uses two nested
programming loops. The outer (covering) loop attempts to cover all positive
examples, while the inner loop (specialization) attempts to exclude all negative
examples. Termination is dictated by two user-input values to indicate su�ciency
and necessity stopping criterea. The following diagram illustrates the discovery
constituents of INDED and their symbiotic interaction.
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Architecture of System INDED

The input �les to INDED that initialize the system are the extensional database
(EDB) and the intensional database (IDB). The EDB is made up of initial
ground facts (facts with no variables, only constants). The IDB is made up
of universally quanti�ed rules with no constants, only variables. Together, these
form the internal ground instantiation represented internally as the deduction
engine hypergraph.

3 Parallelizing INDED

Our main goals in parallelizing INDED are to obtain reasonably accurate rules
faster and to decrease the size of the internal deduction hypergraph so that the

2 Although the formal de�nitions of these semantics are cited above, for this paper,
we can intuitively accept stable and well-founded models as those sets of facts that
are generated by transitively applying modus ponens to rules.



problem space is increased. The serial version is very limited in what problems
it can solve because of memory limitations. Work has been done in the direct
partitioning of a hypergraph [KAK99]. In our pursuit to parallelize INDED,
however, we are exploring the following schemes where indirect hypergraph re-
ductions are performed. Each of the following scenarios has been devised to be
implemented on a Beowulf cluster [Buy99] using MPI [GLS99]:

1. large grained control parallel decomposition where one node runs the induc-
tion engine while another node runs the deduction engine

2. large grained control parallel decomposition where a pipeline of processors
are established each operating on a di�erent current state as created in
previous (or subsequent) pipelined iterations

3. data parallel decomposition where each node runs the same program with
smaller input �les (hence smaller internal hypergraphs).

4. speculative parallel approach where each node attempts to learn the same
rule using a di�erent predicate ranking alogrithm in the induction engine.

4 Naive Decomposition

In this decomposition, we create a very coarse grain system in which two nodes
share the execution. One node houses the deduction engine; the other houses
the induction. Our strategy lets the induction engine initially discover a target
predicate from positive and negative examples and an initial background knowl-
edge base. Meanwhile, the deduction engine computes the current state using
initial input �les. This current state is sent to the induction engine as its back-
ground knowledge base in the subsequent iteration. The learned predicate from
the induction engine from one iteration is then fed into the deductive engine to
be used during the next iteration in its computation of the current state. This
is then used as the background knowledge for the induction engine during the
subsequent iteration.

In general, during iteration i, the induction engine computes new intensional
rules for the deduction engine to use in its computation of the current state in
iteration i+ 1. Simultaneously, during iteration i, the deduction engine computes
a new current state for the induction engine to use as its background knowledge in
iteration i+ 1. The above process is repeated until all target predicates speci�ed
have been discovered. As we extend this implementation, we expect to acquire a
pipe-lined system where the deduction engine is computing state Si+1 while the
induction engine is using Si to induce new rules (where i is the current iteration
number).

5 Data Parallel Decomposition with Data Partitioning

In this method, each worker node runs INDED when invoked by a master MPI
node [GLS99]; each worker executes by running a partial background knowledge



base which, as in the serial version, is spawned by its deduction engine. In par-
ticular, each worker receives the full serial intensional knowledge base (IDB) but
only a partial extensional knowledge base (EDB). The use of a partial EDB cre-
ates a signi�cantly smaller (and di�erent) hypergraph on each Beowulf worker
node. This decomposition led to a faster execution due to a signi�cantly smaller
internal hypergraph being built. The challenge was to determine the best way to
decompose the serial large EDB into smaller EDB's so that the rules obtained
were as accurate as those learned by the serial version.

5.1 Data Partitioning and Locality

In this data parallel method, our attention centered on decomposition of the
input �les to reduce the size of any node's deduction hypergraph. We found
that in many cases data transactions exhibited a form of locality of reference.
Locality of reference is a phenomenon ardently exploited by cache systems where
the general area of memory referenced by sequential instructions tends to be
repeatedly accessed. Locality of reference in the context of knowledge discovery
also exists and should be exploited to increase the e�ciency of rule mining.
A precept of knowledge discovery is that data in a knowledge base system are
nonrandomand tend to cluster in a somewhat predictable manner. This tendency
mimics locality of reference. There are three types of locality of reference which
may coexist in a knowledge base system: spatial, temporal, and functional. In
spatial locality of reference, certain data items appear together in a physical
section of a database. In temporal locality of reference, the data items that are
used in the recent past appear in the near future. For example, if there is a
sale in a supermarket for a particular brand of toothpaste on Monday, we will
see a lot of sales for this brand of toothpaste on that day. In functional locality
of reference, we appeal to a semantic relationship between entities that have a
strong semantic tie that a�ects data transactions relating to them. For example,
cereal and milk are two semantically related objects. Although they are typically
located in di�erent areas of a store, many purchase transactions of one, include
the other. All three of these localities can be exploited in distributed knowledge
mining, and help justify the schemes adpoted in our implementations discussed
in the following sections.

5.2 Partitioning Algorithm

To retain all global dependencies among the predicates in the current state, all
Beowulf nodes receive a full copy of the serial IDB. The serial EDB, the initial
large set of facts, therefore, is decomposed and partitioned among the nodes.
The following algorithm transforms a large serial extensional database (EDB)
into p smaller EDB's to be placed on p Beowulf nodes. It systematically creates
sets based on constants appearing in the positive example set E+ . Some facts
from the serial EDB could appear on more than one processor. The algorithm is
of linear complexity requiring only one scan through the serial EDB and positive
example set E+.



Algorithm 5.1 (EDB Partitioning Algorithm) This algorithm isO(n), where
n is the number of facts in the EDB.

Input: Number of processors p in Beowulf
Serial extensional database (EDB)
Positive and negative example set E+ , E�

Output: p individual worker node EDB's

BEGIN ALGORITHM 5.1
For each example e 2E+ [E� Do

For each constant c 2 e Do
create an initially empty set Sc of facts

Create one (initially empty) set Snone for facts that have
no constants in any example e 2 E+ [E�

For each fact f 2 EDB Do
For each constant c0 2 f Do

Sc0 = Sc0 [ f
If no set exists for c then

Snone = Snone [ f
Distribute the contents of Snone among all constant sets
Determine load balance by summing all set cardinalities

to re
ect total parallel EDB entries K
De�ne min local load = dK=pe
Distribute all sets Sci evenly among the processors

so that each processor has an EDB of roughly
equal cardinality such that each node has EDB of
cardinality � min local load as de�ned above.

END ALGORITHM 5.1

6 Global Hypergraph using Speculative Parallelism

In this parallelization, each Beowulf node searches the space of all possible rules
independently and di�erently. All input �les are the same on all machines. There-
fore, each worker is discovering from the same background knowledge base. Every
rule discovered by INDED is constructed by systematically appending chosen
predicate expressions to an originally empty rule body. The predicate expressions
are ranked by employing various algorithms, each of which designates a di�erent
search strategy. The highest ranked expressions are chosen to constitute the rule
body under construction. In this parallelization of INDED, each node of the
Beowulf employs a di�erent ranking procedure, and hence, may construct very
di�erent rules.

We are considering two possibilities for handling the rules generated by each
worker. In the �rst, as soon as a process converges (�nds a valid set of rules), it
broadcasts a message to announce the end of the procedure. When the message
is received by other processes, they are terminated. The other possibility we



are considering is to combine the rules of each worker. Di�erent processes may
generate di�erent rules due to the use of di�erent ranking algorithms. These
rules may be combined after all the processes are terminated, and only good
rules are retained. In this way, not only can we speed up the mining process, but
we can also achieve a better and richer quality of solutions.

7 Current Status and Results

The current status of our work in these parallelization schemes is as follows. We
have implemented the naive decomposition and enjoyed a 50 per cent reduction
in execution time. Thus far, however, the bulk of our e�orts have centered on
implementing and testing the data parallel implementation on an eleven node
Beowulf cluster. Here, we also experienced a great reduction in execution time.
Figure 1 illustrates the consistent reduction of time as the number of nodes in-
creased. The problem domain with which we are currently experimenting relates
to the diagnosis of diabetes. The accuracy of the discovered rules by the cluster
has varied. The rule learned by serial INDED is

inject_insulin(A) <-- insulin_test4(A) .

inject_insulin(A) <-- iddm(A) .

We attribute the variance of rule accuracy by the clusters to our partitioning
algorithm. We anticipate extensive re�nement of this algorithm as we continue
this work.
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8 Current and Future Work

We have delineated four parallelization schemes of transforming a large serial
reasoning system that both deduces new facts as well as discovers new rules.
In successfully implementing two of these schemes,we have found that one of
the most interesting problems of parallel rule discovery is e�ective partitioning
of the data. We have performed experimentation with one algorithm and antic-
ipate extensive experimentation with new partitioning algorithms of the EDB
and background knowlege. Additionally, we are currently implementing the spec-
ulative parallelization scheme discussed above, and are enhancing and devising
new predicate ranking algorithms used by the induction engine.
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Parallelisation of C4.5 as a Particular

Divide and Conquer Computation
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Abstract In this work we show the research track and the current re-
sults about the application of structured parallel programming tools to
develop scalable data-mining applications. We discuss the exploitation of
the divide and conquer nature of the well known C4.5 classi�cation al-
gorithm in spite of its in-core memory requirements. The opportunity of
applying external memory techniques to manage the data is advocated.
Current results of the experiments are reported.

The main research goal of our group in the past years has been the design
and implementation of parallel programming environments to ease the engineer-
ing of High Performance applications. To provide a test bed for the current
environment, as well as to investigate the theoretical problems involved in the
parallelisation of largely used algorithms, we are developing parallel versions of
Data-Mining (DM) applications.

Work is ongoing [2,3] to develop DM computational kernels that exhibit
both code and performance portability over various parallel architectures, where
performance means parallel speed-up and scalability to large databases.

Here we present the current results about the C4.5 algorithm, focusing on
two main issues:

{ the parallel scalability achievable using structured programming tools (a
software engineering perspective)

{ the evaluation of strategies to improve the support for tree-structured irregu-
lar computations, regarding C4.5 as an algorithm of the Divide and Conquer
class.

Dealing with data which exceeds in size the local memory is the most common
issue in High Performance Data Mining. We plan to enhance C4.5, which is an
in-core classi�er, to eÆciently manage huge data sets.

We will introduce in the SkIE programming environment some external mem-
ory operations (like scan and sort), that exploit at �rst the sum of all the local
memories. We will use those primitives to turn the C4.5 algorithm into a kind
of out-of-core classi�er. We will investigate if the same approach can be applied
to the lower level of the memory hierarchy, disk-resident data.

The the paper is organized as follows. In section 1 we de�ne the problem.
Section 2 describes our programming environment. We compare our approach
with previous ones in section 3, together with the explanation of the �rst results.
Section 4 explains in detail the current results. The aim and the improvements
expected from future work are the subject of the last section.



1 Problem statement

We are interested in the parallelisation of the C4.5 core, that is the building of
the decision tree, as described in [5]. We'll leave out the evaluation and simpli-
�cation phases, and we won't discuss the replication of cases with unspeci�ed
attributes, nor the windowing and trials techniques, even if these can be conve-
niently applied.

General divide-and-conquer (D&C) algorithms split (divide) large problems
into smaller and smaller ones of the same form; the smallest ones are solved,
then a recomposition (conquer) phase combines the solutions of larger and larger
subproblems, up to the initial one. We give here a D&C description of the core
of C4.5.

Input: a database D of n elements, each one a k-tuple of attributes
(a1; : : : ak). Each ai 2 Ai, where Ai can be an interval (continuous attributes)
or a �nite set of values (categorical ones). One of the categorical attributes
is distinguished as the class of each tuple.

Output: a decision tree T , i.e. a tree which predicts the class of tuples in
terms of the values of the other attributes. Leaves of the tree are homoge-
neous subsets of the data. Each interior node (decision node) de�nes a split
in the data determined by the test of the values of a single attribute, one
branch is made for each outcome of the test.

D1: 8i 2 f1; kg evaluate for attribute i the information gain g(D; i); let
j be the index that maximizes it.

D2cat: if Aj is categorical, let c = jAj j. Split D into c classes according to
the value of ac of each tuple.

D2cont: if Aj is continuous, let c = 2 and split D in half such that D1 � D2.
(*) Find in all the data the threshold value t 2 Ac that is the best approxi-
mation of the split point.

D3: build the root node for T and register the choices made so far.
Rec: each D1; : : : Dc that does satisfy the stopping criterion becomes a

leaf. Process recursively all the others.
Conquer: add each returned leaf or tree T1; : : : Tc as the corresponding son

of the root of T . Return T as answer.

This is the growth phase of the tree, that is followed by a prune phase which
is less hard to accomplish and we do not describe here.

Steps D1{D3 are the divide phase. The cost of step D1 is O(n) operations for
each categorical attribute, O(n logn) for continuous ones. Categorical attributes
already used by an ancestor node are never checked again, since their information
gain is zero. Both D2 steps, which are exclusive, require O(n) operations, but
�nding the threshold (*) in step D2cont has an additional cost O(N logN) in
the size N of the whole initial database.

This behaviour, more deeply analyzed in [6], can impair load predictability
and balancing of parallel implementations, and prevents them from being truly
D&C computations. As already noted in [4], the threshold information is not



needed until the pruning phase, so the threshold selection can be delayed and
computed in an amortized way at the end of the classi�cation phase.

We will assume now that the Conquer step in C4.5 has nearly no cost, and
we will come back later to this point.

From an I/O operational point of view, all the steps require linear scans, or
sorting and searching through the data in the current partition. Other parallel
algorithms like [7] and [8] have been devised to deal with huge data partitions
through special data structures and scheduling policies. We want to design a
small set of general primitives that allow us to express the algorithm and can
be implemented in a standard, user-friendly way in a high-level language. The
research in the �eld of external memory algorithms [10] has produced theoretical
analysis and scalable solutions for such a class of basic operations, that are
suitable for application to the memory hierarchy of a parallel architecture.

We wanted to maintain the C4.5 sequential results as a reference point1,
and exploit the D&C aspect of the computation. Thus solutions that require
to change the split criterion to binary, like in [7], or using a di�erent splitting
method [8], were regarded as not fully satisfying.

2 The Programming Environment

The SkIE environment [9] we are using and developing is a parallel coordination
language based on the concept of skeleton . A skeleton is a basic form of paral-
lelism that builds blocks of parallel code by composing simpler blocks (eventu-
ally sequential code) in an abstract, modular way. The aim of this approach is at
reaching both source code and performance portability across di�erent parallel
architectures.

The skeleton run-time support deals with almost all the low level details of
parallelism and concurrency (i.e. process mappings, communications, schedul-
ing and load balancing). Application development is thus enhanced by software
reuse, rapid prototyping, and a lesser need for performance debugging.

The SkIE user has to pick up a conceptual parallelisation that can be ex-
pressed using only the available skeletons. He is relieved of most of the low-level
details of the parallelisation, but on the other hand he has little intervention on
these aspects, in a trade-o� between expressive power and eÆciency.

The SkIE semantics is data-
ow oriented, with an explicit vision of the
streams of tasks. Among the used skeletons, the farm exploits task parallelism
over a stream, providing automatic load distribution and balancing. The pipe is
the functional composition, with pipeline parallelism exploited. A loop skeleton
allows repeated processing of (part of) a stream by another parallel module.
Other skeletons like map, reduce, deal with the basic forms of data-parallelism.

All communication set-up is transparently handled by the compiler at the
interfaces between the modules, but this imposes some constraints on having
�xed-size data structures as parameters. To overcome this limitation and allow

1 Even if it is argued in the literature that a split criterion that requires sorting uses
too much computation w.r. to the accuracy of the results.



more expressiveness, a virtual shared memory support is being integrated into
the high-level interface. The abstraction is de�ned of dynamic, out-of-core shared
data objects (SO), that are stored in the aggregate memory of the computer.

3 Related work and �rst experiments

With respect to the parallelisation, following [4] we can classify most of the
previous approaches into attribute parallel, which assign each Ai to a processor
to execute step D1 in parallel, data parallel ones, which split the database among
the processors and handle most operations collectively, and task parallel ones,
which try to exploit the recursive de�nition to start separate computations at
each branch.

The tree structure can be highly irregular, and this re
ects in the computa-
tion. Since the classi�cation workload cannot be foreseen for any given subtree,
pure data parallel solutions in the literature exhibit no good parallel scalability,
like the synchronous approach in [8]. As discussed in the same paper, even parti-
tioned, more task-oriented solutions with static load-balancing cannot properly
handle the irregular load, and a hybrid solutions is proposed.

We choose, instead, to explore task parallelism at �rst. A similar choice was
made in [11], where data parallelism is combined with pipelining. Our experi-
ments are a valuable research alternative, since we take advantage of the auto-
matic load balancing and task pipelining in the SkIE skeletons.

Our prototypes exploits task parallelism, with each worker processor expand-
ing a node of the C4.5 tree into a subtree, up to a certain depth l.

We refer to [1] for a detailed presentation of the �rst parallel version, which
uses farm parallelism in a structure close to that in Fig.1.

Since the user has no control on the task distribution done by the farm

skeleton, in our pure task approach there are only two parameters to tune: the
depth l of each expansion, and the selection order of waiting tasks.

Using a �xed, on-demand scheduling of tasks requires some property to hold
for the given task stream. This �rst version of the program, which we call MP,
was impaired by an excessive communication load and computation variance.
The communications were all the same size, comparable to the database size.

The computation of thresholds in step D2cont (*), and the use of too high
values for the l parameter led to a highly variable worker load, which resulted
in poor load balancing. Only minor improvements were obtained by using more
complex or adaptive strategies to adjust the value of l at run-time.

To improve upon the MP solution, we have started a new research path
by introducing in the environment the abstraction of shared objects (SO), to
be used to remove data replication and unwanted centralization points. This
strategy has lead to (1) use the SO to improve communications, (2) switch
to a full D&C computation, delaying threshold calculation. Next steps are (3)
distribute the database among the workers, providing remote access methods,
(4) turn the decision tree into a SO itself, thus removing the centralization point.



It is correctly pointed out in [8] that task parallelism alone for classi�cation
is not scalable because of large nodes. A further step will be to introduce data-
parallel collective operations on the external data structures. Once distributed
operation are provided, a �rst phase of the computation could proceed in a data
parallel fashion (either doing attribute or data partitioning).

We argue that it is possible to achieve an eÆcient implementation of these
operations. We will take advantage of the fact that, in the SkIE environment,
this implementation is completely independent from the details of the DM algo-
rithms.

4 Current results

Up to now, the path described has been followed to its 2nd step, with work
ongoing to reach step 3. We call the prototype at step 1 MP+SM, and the
current one DT (it is the same with the Delayed Threshold calculation ).

Fig. 1 shows the parallel structure we used for both. The data are still repli-
cated. The task parallelism is applied in the Divide phase through a farm skele-
ton, each task contains a single node which has to be expanded into a subtree. As
we have said, the depth l of the computed subtrees is used to tune the amount
of expansion. The expansion politics is explained later.

A single process owns the decision tree and does the Conquer step; it collects
and joins subtrees. Nodes still needing to be expanded are sent back to the input
of the parallel loop. The Conquer phase is executed in pipeline with the Divide
phase inside the loop, to hide its latency.

All the test results are measured on a QSW CS-2 with 10 SPARC processors
and a high performance communication network, using the data set Adult from
the UCI repository.

With the farm dynamic load balancing, we don't need to evaluate in advance
the computation needed by the subtree, which is repeatedly expanded no more
than l levels each time. It is enough that the variance of the node workload is
bounded. Our work has been oriented at reducing this variance.

Each task requires an amount of communication proportional to the size of
its partition, so using the shared objects to store the data keeps communication
and computation costs closer. The gain is clear in Fig.2a from the comparison
between MP and MP+SM execution times.

Init

Divide

Conquer

Figure1. Parallel structure of the prototype



The communication latency becomes almost independent from the size of the
task, see in Fig.3b the communication cost for one worker. The communication
overhead exceeds the computation only for very small tasks.

The MP+SM solution has another source of load imbalancing in the threshold
calculation, which is O(N logN) operations. Delaying the calculation of thresh-
olds until the end of the growth phase minimizes the load variance, allows a
D&C formalisation and reduces the computational e�ort [4,6].

The comparison of MP+SM and TD in �g.3a underlines the positive e�ect
of delaying the threshold calculation. The overall e�ect on the completion time
is even greater, as reported in �g.2a.

Now the behaviour of the application is easier to analyze than with MP and
MP+SM, with di�erent parameters having more understandable e�ects.

Using a simple depth-�rst visit does not allow to exploit task parallelism in
full. Moreover, since the average expansion cost increases with node size, giving
priority to the bigger nodes results in a regular, decreasing computational load,
which can be easily balanced.

The depth �rst selection in the �rst versions of MP made unsuccessful both
the standard scheduling policies of the support and any attempt to use adaptive
expansion at the workers.

If task computation time is too low w.r. to communication, parallelism is
useless. Varying the amount of node expansion in the sequential code now suc-
ceeds in controlling the computation to communication ratio. In �g.3b it is easy
to see the task size where communication (and idle) time and computation time
on average balance. Here a second parameter controlling the expansion comes
into play, the maximum amount of nodes for a subtree. In �g.2b we can see that
raising this parameter from 512 to 2048 allows most of the small nodes to be
computed immediatly instead of becoming new smaller tasks, this way improving
the computation to communication ratio.

In �g.3b the communication time is higher for the same code when run with
6 workers instead of just one. The Conquer process is too busy to keep up with
the output of the farm: it de�nitely becomes a bottleneck. This is partly due to
the amount of communication, and mostly to the fact that the sequential code
inside the module spends most of the time inside recursive visits the tree.

Theoretically the conquer operation should be fast, but the amount of work
required to update the centralized data structure, as well as some ineÆciency
in its implementation, are no longer negligible. The e�ect shows up clearly with
more and more worker nodes, and gets worse when there is more useful paral-
lelism, as the arrival rate of new tasks increases.

5 Expected Results and Future work

The next change to the application will be needed to remove the Conquer bottle-
neck. We could change the tree visits into heap accesses, lowering the overhead,
but we see as a long term solution to store the tree in the shared memory space.
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Handling the merge operations in a decentralized way will lead to higher parallel
scalability.

The utilization of the shared space is also needed to overcome the current
assumption that the database �ts in memory. A separate development path has
already started about maintaining the database and the tree as linked structures
in the shared memory space.

The current results, obtained through the integration of the shared objects
abstraction into the SkIE skeleton programming model, strongly suggest that the
approach is e�ective in solving the communication/computation problems for a
class of irregular computations involving large data sets.

SkIE makes also easy to use the current parallel application as a building
block for bigger ones. It is straightforward to set up a control loop that uses a
set of C4.5 parallel blocks to scan multiple windows of a database at the same
time.



We have not yet addressed the �rst few iterations in the task parallelisation:
the expansion time for the �rst nodes accounts for 10% to 20% of the compu-
tation time, and things would get worse with bigger databases. The solution
will be to compute the huge tasks exploiting data parallelism, and to switch to
task parallelism as soon as no big tasks are still waiting. This can be done by
using a new skeleton of the SkIE environment, which can switch from on demand
scheduling to data-driven one. Secondary memory algorithms could be used to
eÆciently implement global operations like distributed sorting of the data.

Summing up we could move from a main-memory implementation of C4.5
to a skeleton structured implementation, where the main layer of the memory is
the aggregate memory of the parallel architecture, whether a massively parallel
architecture or a cluster of workstation with virtual shared memory support.
The solutions devised should also be applied to the design of a generic skeleton
composition that implements, at least, those D&C computations in which the
conquer function is basically a merge operation.
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Abstract. This paper describes the design and implementation on MIMD
parallel machines of P-AutoClass, a parallel version of the AutoClass system
based upon the Bayesian method for determining optimal classes in large
datasets. The P-AutoClass implementation divides the clustering task among
the processors of a multicomputer so that they work on their own partition and
exchange their intermediate results. The system architecture, its implementation
and experimental performance results on different processor numbers and
dataset sizes are presented and discussed. In particular, efficiency and
scalability of P-AutoClass versus the sequential AutoClass system are evaluated
and compared.

1   Introduction

Clustering algorithms arranges data items into several groups so that similar items fall
into the same group. This is done without any suggestion from an external supervisor,
classes and training examples are not given a priori. Most of the early cluster analysis
algorithms come from the area of statistics and have been originally designed for
relatively small data sets. In the recent years, clustering algorithms have been
extended to efficiently work  for knowledge discovery in large databases and some of
them are able to deal with high-dimensional feature items. When used to classify
large data sets, clustering algorithms are very computing demanding and require high-
performance machines to get results in reasonable time. Experiences of clustering
algorithms taking from one week to about 20 days of computation time on sequential
machines are not rare. Thus, scalable parallel computers can provide the appropriate
setting where to execute clustering algorithms for extracting knowledge from large-
scale data repositories.

Recently there has been an increasing interest in parallel implementations of data
clustering algorithms. Parallel approaches to clustering can be found in [8, 4, 9, 5,
10]. In this paper we consider a parallel clustering algorithm based on Bayesian
classification for distributed memory multicomputers. We propose a parallel
implementation of the AutoClass algorithm, called P-AutoClass, and validate by
experimental measurements the scalability of our parallelization strategy. The P-
AutoClass algorithm divides the clustering task among the processors of a parallel



machine that work on their own partition and exchange their intermediate results. It is
based on the message passing model for shared-nothing MIMD computers.

This paper describes the design and implementation of P-AutoClass. Furthermore,
experimental performance results on different processor numbers and dataset sizes are
presented and discussed. The rest of the paper is organized as follows. Section 2
provides a very short overview of Bayesian classification and sequential AutoClass.
Section 3 describes the design and implementation of P-Autoclass for
multicomputers. Section 4 presents the main experimental performance results of the
algorithm. Section 5 describes related work and section 6 contains conclusions.

2   Bayesian Classification and AutoClass

The Bayesian approach to unsupervised classification provides a probabilistic
approach to induction. Given a set { }IXXX ,,1 �=  of data instances iX , with

unknown classes, the goal of Bayesian classification is to search for the best class
description that predict the data. Instances iX  are represented as ordered vectors of

attribute values  { }ikii XXX ,,1 �= .

In this approach class membership is expressed probabilistically, that is an instance
is not assigned to a unique class, instead it has a probability of belonging to each of
the possible classes. The classes provides probabilities for all attribute values of each
instance. Class membership probabilities are then determined by combining all these
probabilities. Class membership probabilities of each instance must sum to 1, thus
there not precise boundaries for classes: every instance must be a member of some
class, even though we do not know which one. When every instance has a probability
of about 0.5 in any class, the classification is not well defined because it means that
classes are abundantly overlapped. On the contrary, when the probability of each
instance is about 0.99 in its most probable class, the classes are well separated.

A Bayesian classification model consists of two sets of parameters: a set of discrete
parameters T which describes the functional form of the model, such as number of

classes and whether attributes are correlated, and a set of continuos parameters V  that
specifies values for the variables appearing in T, needed to complete the general form
of the model. The probability of observing an instance having particular attribute
value vector is referred to as probability distribution or density function (p.d.f.).

Given a set of data X, AutoClass searches for the most probable pair V , T which
classifies X. This is done in two steps:
• For a given T,  AutoClass seeks the maximum posterior (MAP) parameter values

V .

• Regardless of any V ,  AutoClass searches for the most probable T, from a set of
possible Ts with different attribute dependencies and class structure.

Thus there are two levels of search: parameter level search and model level search.
Fixed the number classes and their class model, the space of allowed parameter values

is searched for finding the most probable V . Given the parameter values, AutoClass



calculates the likelihood of each case belonging to each class L and then calculates a
set of weights wij=(L i / ΣjLj) for each case.  Given these weigths, weighted statistics
relevant to each term of the class likelihood are calculated. These statistics are then
used to generate new MAP values for the parameters and the cycle is repeated.

Based on this theory, Cheeseman and colleagues at NASA Ames Research Center
developed AutoClass [1] originally in Lisp. Then the system has been ported from
Lisp to C. The C version of AutoClass improved the performance of the system of
about ten times and has provided a version of the system that can be easily accessed
and used by researchers at a variety of universities and research laboratories.

3   P-AutoClass

In spite of the significant improvement of the C version performance, because of the
computational needs of the algorithm, the execution of AutoClass with large datasets
requires times that in many cases are very high. For instance, the sequential
AutoClass runs on a dataset of 14K tuples, each one composed of a few hundreds
bytes, have taken more the 3 hours on Pentium-based PC. Considering that the
execution time increases linearly with the size of dataset, more than 1 day is necessary
to analyze a dataset composed of about 140K tuples, that is not a very large dataset.
For the clustering of a satellite image AutoClass took more than 130 hours [6] and the
analysis of protein sequences the discovery process required from 300 to 400 hours
[3].

These considerations and experiences suggest that it is necessary to implement
faster versions of AutoClass to handle very large data set in reasonable time. This can
be done by exploiting the inherent parallelism present in the AutoClass algorithm
implementing it in parallel on MIMD multicomputers. Among the different
parallelization strategies, we selected the SPMD approach. In AutoClass, the SPMD
approach can be exploited by dividing up the dataset among the processors and by the
parallel updating on different processors of the weights and parameters of
classifications. This strategy does not require to replicate the entire dataset on each
processor. Furthermore, it also does not have load balancing problems because each
processor execute the same code on data of equal size. Finally, the amount of data
exchanged among the processors is not so large since most operations are performed
locally at each processor.

3.1  Design of the parallel algorithm

The main steps of the structure of the AutoClass program are described in figure 1.
After program starting and structure initialization, the main part of the algorithm is
devoted to classification generation and evaluation (step 3). This loop is composed of
a set of substeps specified in figure 2. Among those substeps, the new try of
classification step is the most computationally intensive. It computes the weights of
each items for each class and computes the parameters of the classification. These
operations are executed by the function base_cycle  which calls the three functions
update_wts , update_parameters  and update_approximations  as shown in figure 3.



Fig. 1. Scheme of the sequential AutoClass algorithm.

Fig. 2. Main steps of the BIG_LOOP.

We analyzed the time spent in the base_cycle  function and it resulted about the
99,5% of the total time, therefore we identified this function as that one where
parallelism must be exploited to speed up the AutoClass performance.

Fig. 3. The structure of the base_cycle function.

In particular, analyzing the time spent in each of the three functions called by
base_cycle , it appears, as observed in other experiences [7], that the update_wts  and
update_parameters  functions are the time consuming functions whereas the time
spent in the update_approximation  is negligible. Therefore, we studied the
parallelization of these two functions using the SPMD approach. To maintain the
same semantics of the sequential algorithm of AutoClass, we designed the parallel
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version by partitioning data and local computation on each of 22 processors of a
distributed memory MIMD computer and by exchanging among the processors all the
local variables that contribute to form global values of a classification.

3.1.1  Parallel update_wts
In AutoClass the class membership of each data item is expressed probabilistically.
Thus every item has a probability that it belongs to each of the possible classes. In the
AutoClass algorithm, class membership is expressed by weights. The function
update_wts  calculates the weights wij for each item i of the active classes to be the
normalized class probabilities with respect to the current parameterizations.

The parallel version of this function first calculates on each processing element the
weights wij for each item belonging to the local partition of the data set and sum the
weights wj of each class j (wj=Σi wij) relatively to its own data. Then all the partial wj

values are exchanged among all the processors and summed in each of them to have
the same value in every processor. This strategy is described in figure 4.

Fig. 4. The parallel version of the update_wts function.

To implement the total exchange of the wj values in the update_wts  function we
used a global reduction operation (#NNTGFWEG� that sums all the local copies in the all
processes (reduction operation) and places the results on all the processors (broadcast
operation).

3.1.2 Parallel update_parameters
The update_parameters  function computes for each class a set of class posterior
parameter values, which specify how the class is distributed along the various
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attributes. To do this, the function is composed of three nested loops, the external loop
scans all the classes, then for each class all the attributes are analyzed and in the inner
loop all the items are read and their values are used to compute the class parameters.

In parallelizing this function, we executed the partial computation of parameters in
parallel on all the processors, then all the local values are collected on each processor
before to utilize them for computing the global values of the classification parameters.
Figure 5 shows the scheme of the parallel version of the function. To implement the
total exchange of the parameter values in the update_parameters  function we used a
global reduction operation that sums all the local copies in all the processes and
places the results on every processor.

Fig. 5. The parallel version of the update_parameters function.

P-AutoClass has been implemented using the Message Passing Interface (MPI) toolkit
on a Meiko Computing Surface 2 using the version 3.3 of sequential AutoClass C.
Because of the large availability of MPI, P-AutoClass is portable practically on every
parallel machine from supercomputers to PC clusters.

4   Experimental results

We run our experiments on a Meiko CS 2 with up to 10 SPARC processors connected
by a fat tree topology with a communication bandwidth of 50 Mbytes/s in both
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directions. We used a synthetic dataset composed of 100000 tuples each one
composed of two real attributes. To perform our experiments we used different
partitions of data from 5000 tuples to the entire dataset, and asked the system to find
the best clustering starting with different number of clusters (start_j_list=2, 4, 8, 16,
24, 50, 64). Each classification has been repeated 10 times and results presented here
represent the mean values obtained after these classifications. We measured the
elapsed time, the speedup and the scaleup of P-AutoClass. Speedup gives the
efficiency of the parallel algorithm when the number of processors varies. It is
defined as the ratio of the execution time for clustering a dataset on 1 processor to the
execution time for clustering the same dataset on P processors. Another interesting
measure is scaleup. Scaleup captures how a parallel algorithm handles larger datasets
when more processors are available.

Figure 6 shows the elapsed times of P-AutoClass on different numbers of
processors. We can see that the total execution time substantially decreases as the
number of used processors increases. In particular, for the largest datasets the time
decreases in a more significant way. We can observe that as the dataset size increases
the time gain increases as well.

Fig. 6. Average elapsed times of P-AutoClass on different numbers of processors.

In figure 7 the speedup results obtained for different datasets are given. We can
observe that the P-AutoClass algorithm scales well up to 10 processors for the largest
datasets, whereas for small datasets the speedup increases until the optimal number of
processors are used for the given problem (e.g., 4 procs for 5000 tuples or 8 procs for
20000 tuples). When more processes are used we observe that the algorithm does not
scale because the processors are not effectively used and the communication costs
increases.

For scaleup measures we evaluated the execution time of a single iteration of the
base_cycle function by keeping the number of data items per processor fixed while
increasing the number of processors. To obtain more stable results we asked P-
AutoClass to group data into 8 and 16 clusters. Figure 8 shows the scaleup results. For
all the experiments we have 10000 tuples per processor. We started with 10000 tuples
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on 1 processor up to 100000 tuples on 10 processors. It can be seen that the parallel
AutoClass algorithm, for a given classification, shows a nearly stable pattern. Thus it
delivers nearly constant execution times in number of processors showing good
scaleup.

Fig. 7. Speedup of P-AutoClass on different numbers of processors.

Fig. 8. Scaleup of the base_cycle of P-AutoClass on different sets of tuples scaled by the
number of processors.

5   Related work

In the past few years there has been an increasing interest in parallel implementations
of data mining algorithms [2]. The first approaches to the parallelization of AutoClass
have been done on SIMD parallel machines by using compilers that automatically
generated data-parallel code starting from the sequential program to which only few
instructions have been added. The first data-parallel version of AutoClass has been
developed in *Lisp to run on a Connection Machine-2 [1], and the second one has
been developed adding C* code to the C source to run it on a CM-5 [9]. These
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approaches are simple from the programming point-of-view but they do not exploit all
the potential parallelism. In fact, it is not known how well compilers extract
parallelism from sequential programs.

The only experience we know about the implementation of AutoClass on a MIMD
computer is described in [7]. This prototype is based on the exploitation of parallelism
in the update_wts  function. Concerning to the SIMD approach, our implementation is
more general and allows to exploit parallelism in a more complete, flexible, and
portable way. On the other hand, considering the mentioned MIMD parallel
implementation, P-AutoClass exploits parallelism also in the parameters computing
phase, with a further improvement of performance.

6 Conclusion

In this paper we proposed P-AutoClass, a parallel implementation of the AutoClass
algorithm based upon the Bayesian method for determining optimal classes in large
datasets. We have described and evaluated the P-AutoClass algorithm on a MIMD
parallel computer. The experimental results show that P-AutoClass is scalable both in
terms of speedup and scaleup. This means that for a given dataset, the execution times
can be reduced as the number of processors increases, and the execution times do not
increase if, while increasing the size of datasets, more processors are available.
Finally, our algorithm is easily portable to various MIMD distributed-memory parallel
computers that are now currently available from a large number of vendors. It allows
to perform efficient clustering on very large datasets significantly reducing the
computation times on several parallel computing platforms.
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Abstract. The notion of similarity is an important one in data mining.
It can be used to provide useful structural information on data as well as
enable clustering. In this paper we present an elegant method for measuring
the similarity between homogeneous datasets. The algorithm presented is
eÆcient in storage and scale, has the ability to adjust to time constraints.
and can provide the user with likely causes of similarity or dis-similarity.

One potential application of our similarity measure is in the distributed data
mining domain. Using the notion of similarity across databases as a distance
metric one can generate clusters of similar datasets. Once similar datasets
are clustered, each cluster can be independently mined to generate the ap-
propriate rules for a given cluster. The similarity measure is evaluated on a
dataset from the Census Bureau, and synthetic datasets from IBM.

1 Introduction

Similarity is a central concept in data mining. Research in this area has primarily
progressed along two fronts: object similarity [2, 8, 7] and attribute similarity [5,
9]. The former quanti�es how far from each other two objects in the database are
while the latter refers to the distance between attributes. Discovering the similarity
between objects and attributes enables reduction in dimensions of object pro�les as
well as provides useful structural information on the hierarchy of attributes.

In this paper we extend this notion of similarity to homogeneous distributed
datasets. Discovering the similarity between datasets enables us to perform \mean-
ingful" distributed datamining. Large business organizations with nation-wide and
international interests usually rely on a homogeneous distributed database to store
their transaction data. This leads to multiple data sources with a common structure.
In order to analyze such collection of databases it seems important to cluster them
into small number of groups to contrast global trends with local trends rather than
apply traditional methods which simply combine them into a single logical resource.
A limitation of traditional methods is that the joining is not based on the database
characteristics, such as the demographic, economic conditions, and geo-thermal con-
ditions. Mining each database individually is unacceptable as it is likely to generate
too many spurious patterns (outliers). We argue for a hybrid solution. First cluster

? This work was supported in part by NSF grants CDA{9401142, CCR{9702466, CCR{
9701911, CCR{9725021, INT{9726724, and CCR{9705594; and an external research
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the datasets, and then apply the traditional distributed mining approach to generate
a set of rules for each resulting cluster.

The primary problem with clustering such homogenous datasets is to identify a
suitable distance (similarity) metric. The similarity metric depends not only on the
kind of mining task being performed but also on the data. Therefore, any measure of
similarity should be 
exible to both the needs of the task, and data. In this paper we
present and evaluate such a similarity metric for distributed association mining. We
believe that this metric can be naturally extended to handle other mining tasks such
as discretization and sequence mining as well. We then show how one can cluster
the database sources based on our similarity metric in an I/O and communication
eÆcient manner. A novelty of our approach to clustering, other than the similarity
measure is how we merge datasets without communicating the raw data itself.

The rest of this paper is organized as follows: Section 2 formally de�nes the prob-
lem, and describes our proposed similarity measure. We then present our method
for clustering distributed datasets using the aforementioned similarity metric in Sec-
tion 3. We experimentally validate our approach on real and synthetic datasets in
Section 4. Finally, we conclude in Section 5.

2 Similarity Measure

Our similarity measure adopts an idea recently proposed by Das et al [5] for mea-
suring attribute similarity in transaction databases. They propose comparing the
attributes in terms of how they are individually correlated with other attributes
in the database. The choice of the other attributes (called the probe set) re
ects
the examiner's viewpoint of relevant attributes to the two. A crucial issue in using
this similarity metric is the selection of the probe set. Das et al . [5] observed that
this choice strongly a�ects the outcome. However, they do not provide any insight
to automating this choice when no apriori knowledge about the data is available.
Furthermore, while the approach itself does not limit probe elements to singleton
attributes, allowing for complex (boolean) probe elements and computing the simi-
larities across such elements can quickly lead to problems of scale.

We propose to extend this notion of similarity to datasets in the following manner.
Our similarity measure compares the datasets in terms of how they are correlated
with the attributes in the database. By restricting ourselves to frequently occurring
patterns, as probe elements, we can leverage existing solutions (Apriori [3]) for such
problems to generate and interactively prune the probe set. This allows us to leverage
certain powerful features of associations to handle the limitations described above.
First, by using associations as the initial probe set we are able to obtain a \�rst
guess" as to the similarity between two attributes. Second, since eÆcient solutions
for the association problem exist, similarities can be computed rapidly. Third, once
this \�rst guess" is obtained we are able to leverage and extend 1 existing work
in interactive (online) association mining [1] to quickly compute similarities under
boolean constraints, provide insights into the causes of similarity and dis-similarity,
as well as to allow the user to interact and prune the probe space. Finally, we can
leverage existing work on sampling to compute the similarity metric accurately and
eÆciently in a distributed setting.
1 In addition to the interactions supported in [1] we also support in
uential attribute
identi�cation. This interaction basically identi�es the (set of) probe attribute(s) that
contribute most to the similarity metric.
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2.1 Association Mining Concepts

We �rst provide basic concepts for association mining, following the work of Agrawal
et al . [3]. Let I = fi1; i2; � � � ; img be a set of m distinct attributes , also called items .
A set of items is called an itemset where for each nonnegative integer k, an itemset
with exactly k items is called a k-itemset. A transaction is a set of items that has a
unique identi�er TID . The support of an itemset A in database D, denoted supD(A),
is the percentage of the transactions in in D containing A as the subset. The itemsets
that meet a user speci�ed minimum support are referred to as frequent itemsets or as
associations . An association rule is an expression of the form A) B, where A and

B are disjoint itemsets. The con�dence of an association rule A ) B is sup
D
(A[B)

sup
D
(A) ,

i.e., the fraction of the datasets containing B over those containing A.
The data mining task for discovering association rules consists of two steps: �nd-

ing all frequent itemsets (i.e., all associations) and �nding all rules whose con�dence
levels are at least a certain value, the minimum con�dence. We use our group's
ECLAT [11] association mining algorithm to compute the associations.

2.2 Similarity Metric

A measure of similarity between two entities re
ects how close they are to one
another. Let X and Y be two entities whose similarity we want to measure. We
denote Sim(X;Y ) to mean the similarity measure between X and Y . Ideally we
would like Sim to satisfy the following three properties:

{ Identity: Sim(X;Y ) = 1 corresponds to the fact that the two entities are iden-
tical in all respects.

{ Distinction: Sim(X;Y ) = 0 corresponds to the fact that the two entities are
distinct in all respects.

{ Relative Ordinality: If Sim(X;Y ) > Sim(X;Z), then it should imply that X is
more similar to Y than it is to Z.

The �rst two properties bound the range of the measure while the third property
ensures that similarities across objects can be meaningfully compared. This last
property is particularly useful for clustering purposes.

Now we de�ne our metric. Let A and B respectively be the association sets for
a database D and that for a database E . For an element x 2 A (respectively in B),
let supD(x) (respectively supE(x)) be the frequency of x in D (respectively in E).
De�ne

Sim(A;B) =

P
x2A\B

maxf0; 1� �j supD(x)� supE (x)jg

kA [Bk

where � is a scaling parameter. The parameter � has the default value of 1 and is
to re
ect how signi�cance the user view variations in supports are (the higher � is
the more in
uential variations are). For � = 0 the similarity measure is identical to
kA\Bk
kA[Bk , i.e., support variance carries no signi�cance.

2.3 Sampling and Association Rules

The use of sampling for approximate, quick computation of associations has been
studied in the literature [10]. While computing the similarity measure, sampling can
be used at two levels. First, if generating the associations is expensive (for large
datasets) one can sample the dataset and subsequently generate the association set
from the sample, resulting in huge I/O savings. Second, if the association sets are

3



large one can estimate the distance between them by sampling, appropriately mod-
ifying the similarity measure presented above. Sampling at this level is particularly
useful in a distributed setting when the association sets, which have to be commu-
nicated to a common location, are very large.

3 Clustering Datasets

Clustering is commonly used for partitioning data [6]. The clustering technique we
adopt is the simple tree clustering. We use the similarity metric of databases de�ned
in Section 2 for as the distance metric for our clustering algorithm. Input to the
algorithm is simply the number of clusters in the �nal result. At the start of the
clustering process each database constitutes a unique cluster. Then we repeatedly
merge the pair of clusters with the highest similarity and merge the pair into one
cluster until there are the desired number of clusters left.

As our similarity metric is based on associations, there is an issue of how to
merge their association lattices when two clusters are merged. A solution would be
to combine all the datasets and recompute the associations, but this would be time-
consuming and involve heavy communication overheads (all the datasets will have to
be re-accessed). Another solution would be to intersect the two association lattices
and use the intersection as the lattice for the new cluster, but this would be very
inaccurate. We take the half-way point of these two extremes.

Suppose we are merging two clusters D and E , whose association sets are re-
spectively A and B. The value of supD(x) is known only for all x 2 A and that of
supE(x) is known only for all x 2 B. The actual support of x in the join of D and E
is given as

supD(x) � kDk+ supE(x) � kEk

kDk+ kEk
:

When x does not belong to A or B, we will approximate the unknown sup-value by
a \guess" � 2 , which can be speci�c to the cluster as well as to the association x.

4 Experimental Analysis

In this section we experimentally evaluate our similarity metric3. We evaluate the
performance and sensitivity of computing this metric using sampling in a distributed
setting. We then apply our dataset clustering technique to synthetic datasets from
IBM and on a real dataset from the Census Bureau, and evaluate the results ob-
tained.

4.1 Setup

All the experiments (association generation, similarity computation) were performed
on a single processor of a DECStation 4100 containing four 600MHz Alpha 21164
processors, with 256MB of memory per processor.
2 We are evaluating two methods to estimate �. The strawman is to randomly guess a value
between 0 and the minimum support. The second approach is to estimate the support of
an item based on the available supports of its subsets.

3 Due to lack of space we do not detail our experimentation on choice of �.
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We used di�erent synthetic databases with size ranging from 3MB to 30MB,
which are generated using the procedure described in [3]. These databases mimic the
transactions in a retailing environment. Table 1 shows the databases used and their
properties. The number of transactions is denoted as numT , the average transaction
size as Tl, the average maximal potentially frequent itemset size as I , the number of
maximal potentially frequent itemsets as kLk, and the number of items as Size. We
refer the reader to [3] for more detail on the database generation.

Database numT Tl I kLk Size

D100 100000 8 2000 4 5MB
D200 200000 12 6000 2 12MB
D300 300000 10 4000 3 16MB
D400 400000 10 10000 6 25MB

Table 1. Database properties

The Census data used in this work was derived from the County Business Pat-
terns (State) database from the Census Bureau. Each dataset we derive (dataset
per state) from this database contains one transaction per county. Each transac-
tion contains items which highlight information on subnational economic data by
industry. Each industry is divided into small, medium and large scale concerns. The
original data has numeric data corresponding to number of such concerns occurring
in the county. We discretize these numeric values into three categories: high, middle
and low. So an item \high-small-agriculture" would correspond to a high number of
small agricultural concerns. The resulting set of datasets have as many transactions
as counties in the state and a high degree of associativity.

4.2 Sensitivity to Sampling Rate

In Section 2 we mentioned that sampling can be used at two levels to estimate the
similarity eÆciently in a distributed setting. If association generation proves to be
expensive, one can sample the transactions to generate the associations and subse-
quently use these associations to estimate the similarity accurately. Alternatively,
if the number of associations in the lattice are large, one can sample the associa-
tions to directly estimate the similarity. We evaluate the impact of using sampling
to compute the approximate the similarity metric below.

For this experiment we breakdown the execution time of computing the simi-
larity between two of our databases D300 and D400 under varying sampling rates.
The two datasets were located in physically separate locations. We measured the
total time to generate the associations for a minimum support of 0.05% (Computing
Associations) for both datasets (run in parallel), the time to communicate the asso-
ciations from one machine (Communication Overhead) to another and the time to
compute the similarity metric (Computing Similarity) from these association sets.
Transactional sampling in
uences the computing the associations while association
sampling in
uences the latter two aspects of this experiment. Under association
sampling, each processor computes a sample of its association set and sends it to
the other, both then compute a part of similarity metric (in parallel). These two
values are then merged appropriately, accounting for duplicates in the samples used.
While both these sampling levels (transaction and association) could have di�erent
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sampling rates, for expository simplicity we chose to set both at a common value.
We evaluate the performance under the following sampling rates, 5%, 10%, 12.5%,
20%, and 25%. Figure 1 shows the results from this experiment.

Breaking down the performance it is clear that by using sampling at both levels
the performance improves dramatically. For a sampling rate of 10% the time to
compute associations goes down by a factor of 4. The communication overhead goes
down by a factor of 6 and the time to compute the similarity goes down by a factor
of 7. This yields an overall speedup of close to 5. Clearly, the dominant factor in this
experiment is computing the associations (85% of total execution time). However,
with more traÆc in the system, as will be the case when computing the similarity
across several datasets (such as in clustering), and when one is modifying the probe
set interactively, the communication overhead will play a more dominant role.

The above experiment aÆrms the performance gains from association and trans-
actional sampling. Next, we evaluate the quality of the similarity metric estimated
using such approximation techniques for two minimum support values (0.05% and
0.1%). From Table 2 it is clear that using sampling for estimating the similarity
metric can be very accurate (within 2% of the ideal (Sampling Rate 100%)) for all
sampling rates above 5%. We have observed similar results (speedup and accuracy)
for the other dataset pairs as well.

Support SR-100% SR-25% SR-20% SR-10% SR-5%

0.05% 0.135 0.134 0.136 0.133 0.140
0.1% 0.12 0.12 0.12 0.12 0.115

Table 2. Sampling Accuracy: Sim(D300,D400)

4.3 Synthetic Dataset Clustering

We evaluated the eÆcacy of clustering homogeneous distributed datasets based on
similarity. We used the synthetic datasets described earlier as a start point. We
randomly split each of the datasets D100, D200, D300, and D400 into 10 datasets
of roughly equal size. For the sake of simplicity in exposition we describe only the
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experiment that used only �rst three subsets from each. We ran a simple tree-based
clustering algorithm on these twelve datasets. Figure 2 shows the result. The numbers
attached to the joins are the Sim metric with � = 1:0. Clearly the datasets from
the same origin are merged �rst. Given four as the desired number of clusters (or a
merge cuto� of 0.2), the algorithm stops right after executing all the merges depicted
by full lines, combining all the children from the same parents into single clusters
and leaving apart those from di�erent parents. This experiment illustrates two key
points. First, the similarity metric coupled with our merging technique seem to be
an eÆcient yet e�ective way to cluster datasets. Second, hypothetically speaking, if
these 12 datasets were representative of a distributed database, combining all 12 and
mining for rules would have destroyed any potentially useful structural rules that
could have been found if each cluster were mined independently (our approach).
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Fig. 2. Dataset Clustering

4.4 Census Dataset Evaluation

Table 3 shows the Sim values (with � = 1:0) for a subset of the Census data for
the year of 1988. As mentioned earlier each dataset corresponds to a state in the
US. When asked to break the eight states into four clusters the clustering algorithm
returned the clusters [IL, IA, TX], [NY, PA], [FL], and [OR,WA]. On looking at
the actual Sim values it is clear that NY and PA have a closeted preference for
one another IL, IA, and TX have strong preference for one another. OR has a
stronger preference for IL, IA and TX, but once IL, IA, and TX were merged it
preferred being merged with WA. Interestingly three pairs of neighboring states,
i.e., (OR,WA), (IL,IA), and (NY,PA), are found in the same cluster.

An interesting by-play of discretization of the number of industrial concerns into
three categories (high, middle and low) is that states with larger counties (area-wise),
such as PA, NY and FL tend to have higher associativity (since each county has many
items) and thereby tend to have less aÆnity to states with lower associativity. By
probing the similarity between IA and IL further the most in
uential attribute is
found to be agricultural concerns (no surprise there). The reason TX was found to be
similar to these states was again due to agricultural concerns, a somewhat surprising
result. However, this made sense, when we realized that cattle farming is also grouped
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under agricultural concerns! Interestingly, we found that the Census data bene�ted,
performance-wise, from association sampling due its high associativity.

State IL NY PA FL TX OR WA

IA 0.54 0.01 0.01 0.16 0.44 0.26 0.1
IL 0.02 0.02 0.24 0.52 0.30 0.16
NY 0.31 0.14 0.01 0.04 0.08
PA 0.05 0.01 0.03 0.04
FL 0.24 0.21 0.21
TX 0.32 0.16
OR 0.25

Table 3. Census Dataset: Sim Values (support = 20%)

5 Conclusions

In this paper we propose a method to measure the similarity among homogeneous
databases and show how one can use this measure to cluster similar datasets to per-
form meaningful distributed data mining. An interesting feature of our algorithm
is the ability to interact via informative querying to identify attributes in
uencing
similarity. Experimental results show that our algorithm can adapt to time con-
straints by providing quick (speedup of 5-7) and accurate estimates (within 2%) of
similarity. We evaluate our work on several datasets, synthetic and real, and show
the e�ectiveness of our techniques. As part of future work we will focus on evaluating
and applying dataset clustering to other real world distributed data mining tasks. It
seems likely that the notion of similarity introduced here would work well for tasks
such as Discretization and Sequence Mining with minor modi�cations if any. We are
also evaluating the e�ectiveness of the merging criteria described in Section 3.
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1 Introduction

Research in Knowledge Discovery from Databases (KDD) has developed along two
main dimensions: (1) improving the knowledge discovery process, and (2) scaling up
this same process to very large databases. Machine Learning, as an important field re-
lated to KDD, is founded on three principles [19]:

1. Modeling of cognitive processes, aiming to select characteristics of interest to be
formalized as knowledge;

2. Computer science, which offers a formalism to support the descriptions of those
characteristics, as well as providing approaches to evaluate the degree of computa-
tional difficulty of the issues involved; and

3. Applications, where one departs from practical needs to the implementation of sys-
tems.

In this article, we depart from a characterization of the concept formation activity as
a cognitive process, proposing a computational approach to support this activity, from
the point of view of KDD. We take the concept of performance as given by the relation
functionality/resources applied. By this way, we present a model where funcionality is
increased while the resources applied are just slightly changed.

2 Motivation

According to Wrobel [19], a concept is ”a generalized description of sets of objects”. In
this sense, Easterlin and Langley [5] analyse the concept formation process as follows:

1. Given a set of objects (instances, events, cases) descriptions, usually presented in-
crementally;

2. find sets of objects that can be grouped together (aggregation), and
3. find intensional description of these sets of objects (characterization).

Murphy and Medin [14] discuss two hypothesis that constrain the way objects are
grouped in concepts:

1. Similarity hypothesis: this hypothesis sustain that what defines a class is that its
members are similar to each other and not similar to members of other classes.

2. Correlated attribute hypothesis: this hypothesis states that ”natural groups” are de-
scribed according to clusters of features and that categories reflect the cluster struc-
ture of correlations.

The first hypothesis presents a problem that is: the similarity criteria must be applied
to a pre-defined set of features and the definition of this set is affected by the previous
knowledge one has over the objects. However, when just a small knowledge about the
data exists, this criteria is used as a first approximation. Over this approximation, the
correlated attribute hypothesis is applied. In a broad sense, what is desirable in this
process is to provoke the mental operations that can lead to a problem solution ([16] and
[15]). Actually, since it seems that the discovery process, as a rule, requires the human
judgment [9], it is useful to leave available to the analyst all relevant information to
evaluate both hypothesis when searching for the classes' structures.



3 Proposed Architecture

The research on the KDD realm has emphasized improvements in the processes of
supervised and unsupervised learning. More recently, many unsupervised learning al-
gorithms have been scaled up according to the desiderata proposed by Agrawalet al.
[1] for this kind of learning algorithm. Considering these advances and the ones in su-
pervised learning, we believe there is enough room to scale up the combined process
of unsupervised and supervised learning in order to obtain better descriptions of un-
classified data. By ”better descriptions” we mean obtaining intensional (what are the
main characteristics of each class) descriptions, beyond the extensional (what objects
are members of each class) ones, usually provided. We explore our idea with a hybrid
architecture, based into two well-know models: ART1 [4], used for cluster binary data,
and CNM ([11] and [12]), used to map the input space in the formed classes. Both
ANNs present an important characteristic to support data mining: they learn in just one
pass of the entire data set. The model is illustrated by Figure 1.

Fig. 1. Describing unclassified data

The architecture is composed by five layers according to the schema: Input layer
(F0, where the examples are introduced in the architecure); Aggregation module (F1
and F2, where the classes are defined); Characterization module (F2, F3 , and F4, where
the classes are explained).

For the characterization module, it requires the pre-existence of classes that would
not be available when the process starts. We overcome this problem by creating the



classes by means of a sampling subsystem. The creation of classes through sampling
was explored by Guha [8] with consistent results. As a consequence of the sampling
process, a complete execution of the system will take more than one pass of the input
data set. Considering
 the size of the sample andD the size of the input data set, a
complete execution of the system will take, precisely,D + 
 records. In the next two
sections, we describe each model used as building blocks for our architecture.

4 ART1 Neural Network

ART1 (F1 and F2 layers) is a member of the so-called ART family, that stands by
Adaptive Resonance Theory [10], [3], [4] and [6].

ART1 is a competitive recurrent network with two layers, the input layer and the
clustering layer. This network was developed to overcome the plasticity-stability dilemma
[7], allowing an incremental learning, with a continuous updating of the clusters proto-
types, and preserving the previously stored patterns. The clustering algorithm proceeds,
in general steps, as folows: (a) the first input is selected to be the first cluster; (b) each
next input is compared with each existing cluster; the first cluster where the distance
to the input is less then a threshold is chosen to cluster the input. Otherwise, the input
defines a new cluster. It can be observed that the number of clusters depends on the
threshold and the distance metric used to compare the inputs with the clusters. For each
input pattern presented to the network, one output unit is declared winner (at the first
pattern, the own input pattern defines the cluster). The winner backpropagates a sig-
nal that encodes the expected pattern template. If the current input pattern differs more
than a defined threshold from the backpropagated signal, the winner are temporarily
disabled (by the Orienting System) and the next closest unit is declared winner. The
process continues until an output unit become a winner, considering the threshold. If
no one of the output units become a winner, a new output unit is defined to cluster the
input pattern. Graphically, an ART1 network can be illustrated by Figure 2, where it
appears with four input and six ouput neurons.tij andbij are, respectively, bottom-up
and top-down connections.

One important characteristic of this ANN is that it works in just one pass, what is
interesting when we are processing a huge amount of data. The training algorithm for
this network is the following:

– Step1. Initialization: The bottom-upbij(t) and top-downtij(t) weight connection
between input nodei and output nodej at timet are set up. The fraction� (vigilance
parameter) is defined, indicating how close an input must be to a stored exemplar
to match. InitializeN andM , numbers of input and output nodes.

– Step 2. Apply New Input
– Step 3. Compute Matching Scores: The bottom-up weights are applied to the

input pattern, generating the output signal:�j .
– Step 4. Select Best Matching Exemplar: ��j = maxf�jg is taken as the best

exemplar.
– Step 5. Vigilance Test: The best exemplar and the input pattern are compared,

according to�. If the distance is acceptable, the control flows toStep 7, otherwise
Step 6proceeds.



Inputs
Winner

t ij

b ij

i nodes

j nodes

Fig. 2.Architecture of an ART network [3]

– Step 6. Disable Best Matching Exemplar: The ouput of the best matching node
selected in Step4 is temporarily set to zero and no longer takes part in the maxi-
mization of Step4. Then go to Step 3.

– Step 7. Adapt Best Matching Exemplar:

tij�(t+ 1) = tij�(t)t(xi)

bij�(t+ 1) =
tij�(t)xi

1

2
+
PN�1

i=0 tij�(t)xi

– Step 8. Repeat by Going to Step 2: First enable any node disabled in Step 6.

5 Combinatorial Neural Model (CNM)

CNM (F2, F3, and F4 layers) is a hybrid architecture for intelligent systems that inte-
grates symbolic and connectionist computational paradigms. This model is able to rec-
ognize regularities from high-dimensional symbolic data, performing mappings from
this input space to a lower dimensional output space. Like ART1, this ANN also over-
comes the plasticity-stability dilemma [7].

The CNM uses supervised learning and a feedforward topology with: one input
layer, one hidden layer - here called combinatorial - and one output layer (Figure 3).
Each neuron in the input layer corresponds to a concept - a complete idea about an
object of the domain, expressed in an object-attribute-value form. They represent the
evidences of the domain application. On the combinatorial layer there are aggregative
fuzzy AND neurons, each one connected to one or more neurons of the input layer
by arcs with adjustable weights. The output layer contains one aggregative fuzzy OR
neuron for each possible class (also called hypothesis), linked to one or more neurons
on the combinatorial layer. The synapses may be excitatory or inhibitory and they are



characterized by a strength value (weight) between zero (not connected) to one (fully
connected synapses).

1 2

8765321

h h
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Fig. 3.Complete version of CNM for 3 input evidences and 2 hypotheses [11]

The network is created completely uncommited, according to the following steps:
(a) one neuron in the input layer for each evidence in the training set; (b) a neuron in the
output layer for each class in the training set; and (c) for each neuron in the output layer,
there is a complete set of hidden neurons in the combinatorial layer which corresponds
to all possible combinations (length between two and nine) of connections with the
input layer. There is no neuron in the combinatorial layer for single connections. In this
case, input neurons are connected directly to the hypotheses.

The learning mechanism works in only one iteration, and it is described bellow:
PUNISHMENT AND REWARD LEARNING RULE

– Setto each arc of the network an accumulator with initial value zero;
– For eachexample case from the training data base,do:

� Propagatethe evidence beliefs from input nodes until the hypotheses layer;
� For eacharc reaching a hypothesis node,do:

� If the reached hypothesis node corresponds to the correct class of the case
� Then backpropagatefrom this node until input nodes, increasing the ac-

cumulator of each traversed arc by its evidencial flow (Reward)
� Elsebackpropagatefrom the hypothesis node until input nodes, decreasing

the accumulator of each traversed arc by its evidencial flow (Punishment).
After training, the value of accumulators associated to each arc arriving to the out-

put layer will be between [-T, T], where T is the number of cases present in the training
set. The last step is the prunning of network; it is performed by the following actions:
(a) remove all arcs whose accumulator is lower than a threshold (specified by a spe-
cialist); (b) remove all neurons from the input and combinatorial layers that became
disconnected from all hypotheses in the output layer; and (c) make weights of the arcs



arriving at the output layer equal to the value obtained by dividing the arc accumulators
by the largest arc accumulator value in the network. After this pruning, the network
becomes operational for classification tasks. This ANN has been applied with success
in data mining tasks ([2], [17], and [18]).

6 Ongoing Work

This paper presents an architecture to scale up the whole process of concept formation
according two main constraints: the identification of groups composed by similar ob-
jects and the description of this groups by the higher correlated features. The ongoing
work includes the implementation and evaluation of this architecture, instantiated to
ART1 and CNM, and its extension to cope with continuous data.
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Abstract. Global telecommunication systems are built with extensive
redundancy and complex management systems to ensure robustness.
Fault identi�cation and management of this complexity is an open re-
search issue with which data mining can greatly assist.
This paper proposes a hybrid data mining architecture and a parallel ge-
netic algorithm (PGA) applied to the mining of Bayesian Belief Networks
(BBN) from Telecommunication Management Network (TMN) data.

1 Introduction and the Global Picture

High-speed broadband telecommunication systems are built with extensive re-
dundancy and complex management systems to ensure robustness. The presence
of a fault may not only be detected by the o�ending component and its parent
but the consequence of that fault discovered by other components. This can po-
tentially result in a net e�ect of a large number of alarm events being raised
and cascaded to the element controller, possibility 
ooding it in a testing envi-
ronment with raw alarm events. In an operational network a 
ood is prevent by
�ltering and masking functions on the actual network elements (NE). Yet there
can still be a considerable amount of alarms depending on size and con�guration
of the network, for instance, although unusual to execute, there does exist the
facility for the user to disable the �ltering/masking on some of the alarm types.

The behaviour of the alarms is so complex it appears non-deterministic. It is
very diÆcult to isolate the true cause of the fault/multiple faults. Data mining
aims at the discovery of interesting regularities or exceptions from vast amounts
of data and as such can assist greatly in this area.

Failures in the network are unavoidable but quick detection and identi�cation
of the fault is essential to ensure robustness. To this end the ability to correlate
alarm events becomes very important.

This paper will describe how the authors, in collaboration with NITEC, a
Nortel Networks R&D lab, have used parallel techniques for mining bayesian
networks from telecommunications network data. The primary purpose being
fault management - the induction of a bayesian network by correlating o�ine



event data, and deducing the cause (fault identi�cation) using this bayesian
network with live events.

The problems encountered using traditional computing and how these can be
overcome using a high performance computing architecture and algorithm are
reported along with the results of the architecture and parallel algorithm.

1.1 Telecommunication Fault Management, Fault Correlation and
Data Mining BBNs

Arti�cial intelligence and database techniques are useful tools in the interroga-
tion of databases for hitherto unseen information to support managerial decision
making or aid advanced system modelling. Knowledge discovery in databases is
a technique for combing through large amounts of information for relationships
that may be of interest to a domain expert but have either been obscured by the
sheer volume of data involved or are a product of the volume[1].

Bayesian Belief Networks is a technique for representing and reasoning with
uncertainty[2]. It represents CAUSEs and EFFECTs as nodes and connects
CAUSEs and EFFECTs as networks with a probability distribution. Bayesian
Belief Networks have been successfully used to build applications, such as med-
ical diagnosis, where multiple causes bear on a single e�ect[2]. We proposed to
employ both techniques in conjunction to model complex systems that act in
a non-deterministic manner. These problems are common to real-life industrial
systems that produce large amounts of information. The data-handling require-
ments, computationally expensive techniques and real-time responsiveness make
parallel processing a necessity.

The exemplar under which the architecture is being developed is a telecom-
munications application, involving the Synchronous Digital Hierarchy (SDH) -
the backbone of global communications. It o�ers 
exibility in dealing with ex-
isting bandwidth requirements and provide capabilities for increasingly sophis-
ticated telecommunications services of the future[3]. One key area of interest
to engineers is the management of events and faults in a network of SDH mul-
tiplexers[4]. An event is a change of status within a network that produces a
corresponding alarm message or fault. When a network error occurs, each multi-
plexer determines the nature of the problem and takes steps to minimise any loss
in signal or service. To facilitate the process of error recovery, there are many
levels of redundancy built into a network, e.g. signal re-routing and the use of
self-healing rings. The management of faults is complex because :

{ the occurrence of faults is time-variant and non-deterministic;
{ faults can produce a cascade of other faults;
{ fault-handling must be performed in real-time.

Although the behaviour of individual multiplexers is accurately speci�ed, the
complex interactions between a number of multiplexers and the variability of
real-life network topologies means that the process of fault occurrence is more
complicated than a single speci�cation will imply. This problem is compounded



by the growth of networks and the increasing variety of network topology. The
application of data mining and in particular parallel data mining can assist
greatly.

Data mining aims at the discovery of interesting regularities or exceptions
from vast amounts of data. As has been stated, fault management is a critical but
diÆcult area of telecommunication network management since networks produce
a vast quantity of data that must be analysed and interpreted before faults can
be located. Alarm correlation is a central technique in fault identi�cation yet it
is diÆcult to cope with incomplete data and the sheer complexity involved.

At the heart of alarm event correlation is the determination of the cause.
The alarms represent the symptoms and as such are not of general interest[5].
There are two real world concerns, the;

{ sheer volume of alarm event traÆc when a fault occurs;
{ cause not the symptoms.

A technique that can tackle both these concerns would be best, yet this can be
diÆcult to achieve.

1.2 The Architecture

We proposed a parallel mining architecture for the elucidation of an accurate
system representation based primarily on Bayesian Belief Networks that are in-
duced using Knowledge Discovery techniques. The architecture has a modular
design that can be recon�gured according to application speci�cation. The sys-
tem was prototyped using the INMOS transputer as the target hardware. Within
the telecommunications domain, it is hoped that the application of the system
will ultimately assist in fault management but also in the analysis of test data.

The actual realisation of the architecture for the situation is shown in Figure
1. It can be seen that the input data is available in the form of log data from
the element controller. The team identi�ed a need for the eÆcient preparatory
processing of data that appeared in the event log format. This led to the design
and preliminary implementation of a data cleaner and a data pre-processor.
The data cleaner allows a user to specify the format of a text document in a
generic way using a template, and to specify �ltering conditions on the output.
In the telecommunications application the text document is an event log, and
the template �le can be altered if the structure of the event records changes. The
data cleaner parses a log �le and passes the resulting events to the pre-processor
which time-slices the information and creates an intermediate �le for use in the
induction module.

The Bayesian net, created as a result of induction, is potentially useful in a
fault situation where the faults most likely to be responsible for observed alarms
can be computed from the net and relayed to a human operator. For this reason
there is a deduction module in the architecture whereby observed conditions in
the telecommunications network can be fed into the Bayesian net and changes
in the probabilities of underlying fault conditions can be computed[6].



However, the components are able to operate in isolation, provided that they
are provided with �les in the correct input format. In particular the induction
component and the deduction component use data in Bayesian Network Inter-
change format[7].

Fig. 1. The Architecture

2 The Parallel Data Mining Algorithm

2.1 The Need for Parallelism

In this case, as in many others, the structure of the graphical model (the Bayesian
net) is not known in advance, but there is a database of information concerning
the frequencies of occurrence of combinations of di�erent variable values (the
alarms). In such a case the problem is that of induction - to induce the structure
from the data. Heckerman has a good description of the problem[8]. There has
been a lot of work in the literature in the area, including that of Cooper and
Herskovits[9]. Unfortunately the general problem is NP-hard [10]. For a given
number of variables there is a very large number of potential graphical structures
which can be induced. To determine the best structure then in theory one should
�t the data to each possible graphical structure, score the structure, and then
select the structure with the best score. Consequently algorithms for learning
networks from data are usually heuristic, once the number of variables gets to
be of reasonable size. There are 2k(k�1)=2 distinct possible independence graphs
for a k-dimensional random vector: this translates to 64 probabilistic models for
k= 4, and 32, 768 models for k = 6. Several di�erent algorithms were prototyped
and tested using the telecommunications data but since the potential number of
graph candidates is so large a genetic algorithm was developed.

2.2 Parallel Cause And E�ect Genetic Algorithm (P-CAEGA)

Goldberg describes many ways to view genetic algorithms (GA) [11]: as problems
solvers, as a basis for competent machine learning, as a computational model of
innovation and creativity and so on. In the work described here the problem
is to �nd the best cause-and-e�ect network in a very large solution space of



all possible cause-and-e�ect networks since the problem is NP-hard a heuristic
search technique must be used. This led to a consideration of genetic algorithms,
since they have been shown to work well in many application areas[12] and o�ers
a robust means of searching for the globally optimal solution[13].

The genetic algorithm works on a population of solutions, which change as the
algorithm cycles through a sequence of generations, until a satisfactory solution
has been found. Initialisation consists of the creation of an initial population, a
pool of breeders. In each generation each breeder is scored, and the best breeders
are selected (possibly with some uncertainty) to breed and create solutions for
the next generation. A solution created by breeding is a genetic mixture of its two
parents, and may also have been subject to random mutations which allow new
gene sequences to be created. Solutions are directed graphs, viable solutions
(those which will be scored and allowed to breed in the next generation) are
directed acyclic graphs. The scoring function used was an adaptation of one
proposed by Cooper and Herskovits[9], in which the best �t to the experimental
data is calculated using Bayesian techniques. High scoring structures have a
greater chance of being selected as parents for the next generation.

Due to the sheer volume of data involved in data mining[1], the time re-
quired to execute genetic algorithms and the intrinsic parallel nature of genetic
algorithms[14], it was decided to implement a parallel version of the CAEGA
algorithm (P-CAEGA).

There are a number of approaches to parallelising an algorithm for execution
on more than one processor. An architecture with common memory can be used
which allows eÆcient communication and synchronisation. Unfortunately these
systems cannot be scaled to a large number of processors because of physical
construction diÆculties and contention for the memory bus[15].

An alternative is the distributed programming model or message passing
model. Two environments widely researched in this area are the Local Area Net-
work (LAN) using Parallel Virtual Machine (PVM) and Transputer Networks
using Inmos development languages[16]. In the network architecture the hard-
ware scales easily to a relatively large number of processors but this is eventually
limited because of network contention. The Transputer hardware is a point-to-
point architecture with dedicated high-speed communications with no contention
and no need for addressing. The system can be highly scaleable if the program
is constructed accordingly.

The parallel prototype implementation was carried out on T805 INMOS
Transputers connected to a Sun Workstation with development performed in
parallel C. The sequential prototype of CAEGA had been coded in Pascal. This
was converted to C. The C code was then decomposed into processes that needed
to be run sequentially and those that could be executed in parallel. Communi-
cations channels were used to transfer data between processes.

The �rst parallel version is a straightforward master-slave (processor farm)
implementation. Breeding (reproduction, crossover and mutation) was carried
out in parallel. In fact the scoring was also implemented in parallel. The se-
lection had to be implemented sequentially and thus remained on the master



(the root processor which is the controller, and is connected to the host). This
was necessary, as all of the structures from the new generation needed to be re-
mixed to form new parents from the gene pool before distribution to the slaves
for breeding. The remaining processors are utilised as slaves, which carry out
the breeding in parallel and report the new structures and their scores to the
master (root processor).

As was anticipated from preliminary investigations the scaleability achievable
is limited because of the overhead of communications. For less than 8 proces-
sors the echo n-2 holds (excluding the master; n-1). It is believed, with further
work on the eÆciency of the algorithm this could be improved, but a linear in-
crease (excluding the master) is not expected because of the sheer amount of
communications involved.

This implementation represents a straight forward �rst prototype. It is a
direct parallelisation of an CAEGA which did not change the underlying nature
of the algorithm. This has resulted in global communications, which limits the
scaleable - speedup ratio. In a LAN implementation this would be even more
restrictive due to communications costs. In general an e�ective concurrent design
will require returning to �rst principles.

2.3 Results

Typical results of the application of the algorithms described are shown below.
The data which is shown results from an overnight run of automated testing, but
does not show dependencies on underlying faults. About 12,000 individual events
were recorded and the graph in Figure 2 shows a generated directed graph in
which the width of the edge between two nodes (alarms) is proportional to the
strength of connection of the two variables. It can be seen that PPI-AIS and
LP-EXC have the strongest relationship, followed by the relationship between
PPI-Unexp-Signal and LP-PLM. Note that the directions of the arrows are not
important as causal indicators but variables sharing the same parents do form a
group.

The graph in Figure 3 shows the edge strengths as strongest if the edge
remains in models which become progressively less complex - where there is a
penalty for complexity. It can be seen that the broad patterns are the same in
the two graphs but that the less strong edges are di�erent in the two graphs.
In the second graph the node NE-Unexpected-Card shows links to three other
nodes, whereas it has no direct links in the �rst graph.

The results from an industrial point of view are very encouraging. The case
for using a genetic algorithm holds and parallelising it speeds up this process.
The algorithm is currently being used by NITEC to analyse their data produced
by a SDH network when a fault occurs. From their point of view it has been a
worthwhile e�ort for the speed-up.

It has been established that genetic scoring and scaling could be implemented
in parallel but the communications cost in transmitting these back to the master
removed any bene�t from just having the master perform these functions.



Fig. 2. Example results BBN of TMN
data

Fig. 3. Another set of results

2.4 Future Potential Research

This study assessed GAs as a solution provider. As Goldberg states "some of us
leave the encounter with far more"[11] . Future development will take the basic
solution further and remove the limitation on scaleability. What is required is a
concurrent algorithm as opposed to a modi�cation of a sequential algorithm. The
next planned development is a redesign of the algorithm into the "continental"
algorithm (current development name).

P-CAEGA as it stands can be classi�ed as global parallelisation. Every in-
dividual has a chance to mate with all the rest (i.e. random breeding), thus the
implementation did not a�ect the behaviour of the original algorithm (CAEGA).

The "continental" version would be a more sophisticated parallel approach
where the population is divided into sub-populations , relatively isolated from
each other. This model introduces a migration element that would be used to
send some individuals from one sub-population to another. This adapted algo-
rithm would yield local parallelism and each processor could be thought of as
a continent where the majority of the breeding occurs between residents with
limited migration. This modi�cation to the behaviour of the original algorithm
would vastly decrease the communications cost, and present a more scaleable
implementation.

3 Conclusion

The association between the University of Ulster and Nortel in the area of fault
analysis has continued with the Garnet project. Garnet is using the techniques
developed in NETEXTRACT to develop useful tools in the area of live testing.
The basic idea is to regard the Bayesian nets as abstract views of the test net-
work's response to stimuli. In a further development, the Jigsaw project entails



the construction of a data warehouse for the storage of the test data, with a
direct link to data mining algorithms.

Although this paper has described the work completed with reference to
Nortel's telecommunications network, the architecture is generic in that it can
extract cause-and-e�ect nets from large, noisy databases, the data arising in
many areas of science and technology, industry and business and in social and
medical domains. The corresponding hypothesis to the aim of this project could
be proposed - that cause and e�ect graphs can be derived to simulate domain
experts' knowledge and even extend it.

The authors would like to thanks Nortel Networks and the EPSRC for their
support during the project.
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