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Abstract

This paper deals with new approaches to maintaining frequent itemsets in evolving databases. Our new ap-
proaches make use of incremental techniques to provide significant I/O reduction, and parallel techniques to pro-
vide computational savings. At the same time, our approaches are able to effectively handle online data updates
(deletions/insertions) and interactive response times (approximate/partial results). Some additional highlights of the
proposed approaches include extending the validity of the itemsets (generating approximate models of itemsets), and
performing selective updates (tracking stable and predictable itemsets). These features allow our approaches to mine
evolving data stored in warehouses as well as (potentially) streaming data. Extensive experimental benchmarking on
evolving data demonstrates the potential advantages of the proposed approaches. We believe that this work can have
high impact in application areas such as electronic commerce, web mining, and network intrusion detection.



1 Introduction

Stimulated by progress in computer technology and elec-
tronic data acquisition, recent years have seen the growth
of huge databases, in fields ranging from supermarket sales
and banking, through astronomy, chemistry, medicine and
biology. These databases are viewed as critical resources.
There is much valuable information hidden in them. The
need of the hour is to extract it efficiently.

Data mining and knowledge discovery (KDD) lies at
the interface of statistics, database technology, machine
learning, high-performance computing and other areas. It
is concerned with the computational and data intensive
process of deriving interesting and useful information or
patterns from massive databases. An important data min-
ing task is frequent itemset mining. Frequent itemsets are
used most often to generate correlations and association
rules [1], but more recently they have also been used in
such far-reaching domains as bio-informatics [7, 12] and
information retrieval [8].

Several problems arise in the itemset discovery task,
mostly as a consequence of the large size of the databases
involved in this process. Moreover, many organizations
today have more than large databases; they have databases
that change and grow continuously. For example, retail
chains record millions of transactions, telecommunications
companies connect thousands of calls, and popular web
sites log millions of hits.

In all these applications the evolving database is up-
dated with a new block of data at regular time intervals.
For large time intervals, we have the common scenario
in many data warehouses. For small intervals, we have
streaming data. Issues like interactivity and quick response
times, are paramount. Providing interactivity and quick
response times when the database is evolving is a chal-
lenging task, since changes in the data can invalidate the
model of frequent itemsets and make data understanding
and knowledge discovery difficult. Simply using tradi-
tional approaches to update the model can result in an ex-
plosion in the computational and I/O resources required.

Recognizing the dynamic nature of most operational
databases, much effort has been devoted to the problem of
mining frequent itemsets in evolving databases and sev-
eral researchers [10, 6, 9, 2, 3, 11] have proposed inter-
esting solutions and efficient algorithms. Generally these
algorithms are incremental in the sense that they re-use
previously mined information and try to combine it with
the fresh data to reduce I/O requirements. Also there are
efficient parallel approaches [15] designed to reduce com-
putational requirements.

In this paper we present a new approach for mining
frequent itemsets in evolving databases. Our approach
differs from existing approaches in several ways. To the

best of our knowledge, it is the first approach that com-
bines both parallel and incremental techniques to provide
significant computational and I/O savings. These features
are very effective to facilitate data understanding and knowl-
edge discovery in evolving databases. Our approaches can
be used to mine evolving data arriving in large blocks of
transactions, or even streaming data. We present extensive
experimental results, highlighting the efficiency of our ap-
proaches.

Related Work

There has been a lot of research in developing efficient
algorithms for mining frequent itemsets. Most of them
enumerate all frequent itemsets. There also exist meth-
ods which only generate frequent closed itemsets [13] and
maximal frequent itemsets [5]. While these methods gen-
erate a reduced number of itemsets, they still need to mine
the entire database in order to generate the model of fre-
quent itemsets, and therefore these methods are not effi-
cient in mining evolving databases.

Much effort has been devoted to the problem of in-
crementally mining frequent itemsets [6, 9, 10, 2, 3, 4].
Some of these algorithms cope with the problem of de-
termining when to update, while the others simply treat
arbitrary insertions and deletions of transactions. Lee [6]
proposed the DELI algorithm, which uses statistical sam-
pling methods to determine when to apply the updating
process. Another interesting approach is DEMON [4],
which helps adapt incremental algorithms to work effec-
tively with evolving data by monitoring changes in the
stream. Our approaches are different from all the above
approaches in several ways. First, while these approaches
need to perform ���� database scans (� is the size of the
largest frequent itemset), our approaches require only one
scan on the incremental database and only a partial scan
on the original database. Second, we support selective up-
dates, that is, instead of determining when to update the
entire set of frequent itemsets, we determine which par-
ticularly itemsets need to be updated. But the main dif-
ference stands from the fact that our approaches are also
parallel. The combination of incremental techniques, on-
the-fly data stream analysis, and parallel techniques make
our approach unique.

2 Problem Statement

The problem of mining frequent itemsets can be formally
stated as: Let � � ���� ��� ���� ��� be a set of � distinct
attributes, also called items. Each transaction � in the
database �, has a unique identifier (tid), and contains a
set of items (itemset), such that � � �. An itemset with
exactly � items is called a k-itemset. The set of tids which



contains a given itemset, say � , is called the tidlist of � ,
and is denoted as �����. The vertical projection of � is
the set of the tidlists of all items in �. An itemset is said
to have a support s if s% of the transactions in � con-
tain this itemset. An itemset is frequent if its support is
no less than a user-specified frequency, called minimum
support. A frequent itemset is maximal if it is not a sub-
set of any other frequent itemset. The set of all maximal
frequent itemsets is denoted as MFI or positive border.
The negative border, on the other hand, refers to the min-
imal infrequent itemsets. Mining frequent itemsets is a
very hard problem. Given � items, there are potentially
2� frequent itemsets. Some modest databases have few
thousands of items and many hundreds of thousands of
transactions. So, discovering the lattice of frequent item-
sets requires a lot of computation power, memory and disk
I/O.

This high computational and space cost may be ac-
ceptable when � is static since the discovery is done off-
line, and many mechanisms such as sampling, and mem-
ory and parallel computing techniques have been presented
in the literature.

Incremental Model Maintenance

A model has a concrete definition in the context of data
mining. It is a tool which summarizes the data and can
be used to predict unknown future values of attributes of
interest, based on known values of some attributes in the
database. When the data is changing, the model loses ac-
curacy and becomes obsolete. Model maintenance aims
to maintain an accurate data mining model undergoing in-
sertion and deletion of blocks of data.

The central idea of incremental model maintenance
relies on the re-use of previously mined information to
enhance the performance of future interactions by reduc-
ing the number of database scans. Let �� be the minimum
support threshold used when mining�, and	� be the set
of frequent itemsets obtained. Let � be the information
kept from the current mining operation that will be used
to improve the next mining operation. Using as a starting
point the original database�, a set of new transactions 
�

is added and a set of old transactions 
� is removed, form-
ing the new set of transactions�, i.e.,� � ���
��	
�.
An incremental model maintenance algorithm must find
the set 	�, the frequent itemsets in �, with respect to a
minimum support �� and, more importantly, using � and
minimizing access to� (the original database) to enhance
the algorithm performance and scalability.

An itemset is frequent in � if its support is no less
than ��. Notice that a frequent itemset in � may not
be frequent in � (defined as a declined itemset), on the
other hand, an itemset not frequent in �, may become a

frequent itemset in � (defined as emerged itemset). If a
frequent itemset in � remains frequent in � it is called a
retained itemset.

3 The ZIGZAG and WAVE Algorithms

In previous work [10] we presented the ZIGZAG algo-
rithm, which is able to find 	� within practical time and
memory constraints. This accomplishment is possible by
using an incremental technique based on the MFI, an in-
formation lossless approach. This approach results in sig-
nificant I/O savings, since the number of maximal fre-
quent itemsets can be significantly smaller than the nega-
tive border.

3.1 Determining Frequent Itemsets

To find 	�, ZIGZAG first employs a backtracking search
for the MFI in �. Backtracking algorithms are useful for
many combinatorial problems where the solution can be
represented as a set � = ���� ��� ����, where each �� is cho-
sen from a finite possible set, �� . Initially � is empty; it
is extended one item at a time, as the lattice is traversed.
The length of � is the same as the depth of the correspond-
ing node in the search tree. Given a candidate itemset of
length , �� = ���� ��� ���� �����, the possible values for the
next item �� comes from a subset �� � �� called the com-
bine set. If � 
 ��	��, then nodes in the search tree with
root node �� = ���� ��� ���� �� 	 �� �� will not be considered
by the backtracking algorithm. Each iteration of the algo-
rithm tries extending �� with every item � in the combine
set ��. An extension is valid if the resulting itemset ����
is frequent and is not a subset of any already known max-
imal frequent itemset. The next step is to extract the new
possible set of extensions, ����, which consists only of
items in �� that follow �. The new combine set, ����,
consists of those items in the possible set that produce a
frequent itemset when used to extend � ���.

To efficiently perform this backtracking search, the
algorithm must satisfy two main properties, as follows.
First, the ability to perform fast support computation. This
property is associated with the cost of processing a candi-
date. Second, the ability to quickly remove large branches
of the search space from consideration. This property is
associated with the number of candidates generated in the
search. The smaller the number of candidates generated,
faster the search would be. These two properties deter-
mine the amount of work done in the search. ZIGZAG

utilizes a set of techniques to enhance support computa-
tion and pruning effectiveness.

Fast Support Computation	 While searching for the
MFI, ZIGZAG continuously generates candidates. For each



candidate generated a new combine set must be computed
to make possible to process extensions of it. In order
to generate new combine sets, some support computa-
tions must be applied. To perform support computation,
ZIGZAG is based on the associativity of itemsets, which is
defined as follows. Let� be a �-itemset of items�� � � � ��,
where �� 
 � , and Æ��� the support of � . According
to [14], any itemset can be obtained by joining its atoms
(individual items) and the support can be obtained by in-
tersecting the tidlist of each atom. Since the vertical pro-
jections of 
�, 
�, and � were already constructed in the
ZAG phase, ZIGZAG is able to compute the support of any
itemset in 
�, 
� and�. The desire of course, is to maxi-
mize the number of retained itemsets. These itemsets have
their support counts in � already stored in � . To perform
fast support computation we first verify if the support in�
of the itemset is already stored in � . If so, it is a retained
itemset and its support can be computed just over 
�, 
�,
and using � .

Pruning Techniques 	 Two general principles for ef-
ficient search using backtracking are that: (1) It is more
efficient to make the next choice of a branch to explore
to be the one whose combine set has the fewest items.
This usually minimizes the number of candidates gener-
ated. (2) If we are able to remove a node as early as possi-
ble from the backtracking search tree we effectively prune
many branches.

Reordering the elements in the combine set to achieve
these two goals is a very effective mean of cutting down
the search space. The basic heuristic is to sort the combine
set in increasing order of support; it is likely to produce
small combine sets in the next level. However, traditional
algorithms can apply just a static ordering once at the first
level, since the supports of longer itemsets are not deter-
mined yet. As the dependencies between the partial solu-
tions and the combine sets usually change after each iter-
ation of the algorithm, the efficiency of this heuristic can
goes down as the search evolves. Guided by � , ZIGZAG

can continuously order the elements in the combine sets
generated in subsequent levels of the search space, since
it has free access to estimates of the support of itemsets
that can be generated in the search, potentially capturing
as early as possible some changes on the dependencies be-
tween the partial solution and its respective combine set.
This allows ZIGZAG to get a better ordering of elements
to produce smaller branches.

3.2 Updating the Support of Frequent Sub-
sets

To avoid scanning the entire database for support com-
putation of all subsets, again ZIGZAG makes use of both

maximal and incremental approaches, traversing the fre-
quent itemset lattice in a top-down fashion as follows. It
breaks each maximal frequent �-itemset into � subsets of
size ��	��. If the frequent subset generated is an emerged
itemset, its support has to be computed over �. Other-
wise, if the subset generated is a retained itemset, its sup-
port is computed just over 
� and 
�, by summing its
already known support count in � to its support count in

�, and subtracting its support in 
�. The incremental
approach makes this top-down enumeration very efficient
since we have the support counts in � of a possibly large
number of subsets generated (i.e., all the retained item-
sets), avoiding performing expensive operations over� to
determine them. This process iterates generating smaller
subsets until there are no more subsets to be checked.

In contrast to other incremental approaches [9, 2, 3, 4]
which generally monitor changes in the database to detect
the best moment to update the entire set of itemsets, we
choose instead to perform selective updates, that is, the
support of every single itemset is completely updated just
when we cannot perform a good estimate of it anymore.
We distinguish three types of itemsets, regarding its actual
support:

Invariant: The support of the itemset does not change
significantly as we add new transactions (i.e., it varies
within a predefined threshold). This itemset indi-
cates a stable pattern and its support does not need
to be updated.

Predictable: It is possible to estimate the support of the
itemset within a tolerance. Several approximation
tools may be employed, from a traditional linear
estimation to sophisticated time-series analysis al-
gorithms.

Unpredictable: It is not possible, given a set of approx-
imation tools, to obtain a good estimate of the sup-
port of the itemset.

The algorithm works in two phases. The first phase
samples the tidlists associated with �-itemsets whose union
results in the itemset we want to estimate the support. The
second phase analyzes the sampling in order to determine
whether it is necessary to count the actual support of the
itemset. Each of these phases is described in the follow-
ing.

Support Sampling 	 The starting point of the support
sampling are the tidlists associated with �-itemsets, which
are always up-to-date. Given two tidlists � and � associ-
ated with the itemsets � and �, we define that Æ � � � �

and Æ � � � � . Formally, our sampling is based on
estimating the upper bound on the merge of two tidlists.



Support Estimation based on Linear Trend Detection
	 One of the most widespread trend detection tech-
nique is linear regression, which finds which itemsets fol-
low a linear trend, i.e., which of them fit reasonably a
function to a straight line. The model used by the lin-
ear regression is expressed as the function � � � � ��,
where � is the �-intercept and � is the slope of the line
that represents the linear relationship between � and �.
In our scenario the � variable represents the number of
transactions while the � variable represents the estimated
support. The method of least squares determines the val-
ues of � and � that minimize the sum of the squares of the
errors. To verify how good is the model generated by the
linear regression, we must estimate the goodness-of-fit.
The goodness-of-fit �� represents the proportion of vari-
ation in the dependent variable that has been explained or
accounted for by the regression line. This �� indicator
ranges in value from 0 to 1 and reveals how closely the
estimated �-values correlate to its actual �-values. When
the �� value is above a given threshold, the itemset is
classified as predictable, and its support can be simply
predicted using the linear regression model, rather than
computed with expensive database scans. We refer to this
as the WAVE algorithm [11].

4 Parallel Technique for Incremen-
tal and Interactive Mining

Incrementally mining frequent itemsets can still be a very
costly computation process. Hence, there is a practical
need to develop parallel incremental algorithms for this
task. In this section we describe a parallel technique for
incremental and interactive mining of frequent itemsets.
Our parallel technique was designed for shared-memory
multi-processors, that is, processors communicate through
shared variables.

The technique is based on adaptive tidlist interval dis-
tribution. In this approach, each candidate has its tidlist
divided into � partitions, where � is the number of pro-
cessors. Therefore, each processor counts the support of
the candidate against its own tidlist interval. Results from
each processor are joined to obtain the resultant tidlist,
which is stored in a shared structure in memory. This pro-
cess is adaptive since the tidlist interval may vary from
candidate to candidate. Figure 1 depicts the process of
support counting for a candidate itemset. The tidlist � is
partitioned among four processors ��, ��, �� and ��.
Each processor performs the intersection of its partition
with the tidlist �. The results ��, ��, �� and �� are
joined to form the resultant tidlist �.

This approach does not reduce pruning effectiveness
neither estimation quality, since the reordering of the com-

A� B�

P1�

P4�

P3�

P2�

C�

R1�

R4�

R3�

R2�

Figure 1: Parallel Support Counting. The tidlist intersec-
tion is made in parallel and the result of each processor is
joined to obtain the resultant tidlist.

bine set is not affected and the tids of the resultant tidlist
will still be chronologically ordered.

5 Evaluation

In this section we evaluate our algorithm and compare it to
other approaches. A real database from an actual applica-
tion were used as input in the experiments. WCup comes
from click stream data from the official site of the 1998
World Soccer Cup. WCup was extracted from a 62-day
log, comprising 2,128,932 transactions over 4,768 unique
items with an average transaction length of 8.5.

5.1 Incremental Mining

The basic parameter of our evaluation is the block size,
that is, the number of transactions added to the database
which triggers a complete update. Thus, for each min-
imum support employed, we performed multiple execu-
tions of the algorithm, where each execution employs a
different block size. Further, we employed two metrics in
our evaluation:

Candidates Processed and Retained Itemsets: The total
number of candidates processed and the number of
retained itemsets in a given mining operation.

Execution Time: The elapsed time for mining the fre-
quent itemsets in �. We compare the result with a
non-incremental algorithm, ECLAT, to demonstrate
the advantages of our algorithms for mining evolv-
ing databases.

The experiments were run on an IBM - NetFinity 750MHz
processor with 512MB main memory.



From Figure 2 we can observe that the number of re-
tained itemsets is always very close to the number of fre-
quent itemsets. It means that a large number of operations
were made just over 
�, reducing I/O requirements and
improving the performance. The percentage of retained
itemsets is larger for smaller block sizes, as expected. An-
alyzing Figure 3 we observe the advantages of incremen-
tal mining. When the evolving database reaches a certain
size, ZIGZAG outperforms ECLAT by more than an or-
der of magnitude. Most importantly, ZIGZAG can mine
the database in a nearly constant time. The gains in per-
formance are larger for smaller minimum supports and
smaller block sizes.

5.2 Interactive Mining

Our evaluation is based on two parameters:

Approximation Tolerance	��: the maximum approxi-
mation error acceptable.

Block Size: the number of new transactions added to the
database which triggers a complete update.

Thus, for each minimum support employed, we per-
formed multiple executions of the algorithm, where each
execution employs a different combination of� � and block
size. Further, we employed two metrics in our evaluation:

Accuracy: This metric quantifies how good the approx-
imated model is. It is the linear correlation of two
ordered sets of itemsets. The ranking criteria is the
support, that is, two ordered sets are totally corre-
lated if they are of the same length, and the same
itemset appears in corresponding positions in both
sets.

Work: This metric quantifies the amount of work per-
formed. We measure work as the elapsed time for
mining the database. The work is the ratio between
the time spent by WAVE and ZIGZAG algorithms.

We evaluate the accuracy and also the gains in accu-
racy provided by WAVE. We employed different mini-
mum supports, block sizes, and ��. Figure 4 depicts the
accuracy achieved by WAVE in the WCup database. From
this figure we can observe that, as expected, the accuracy
increases with the�� used, and the accuracy increase with
the block size used. Further, the accuracy decreases with
the minimum support. We also verified how WAVE treats
the trade-off between accuracy and work. From Figure 5
we can observe that WAVE performs less work for smaller
values of minimum support. From Figure 6 we can ob-
serve that WAVE provides larger gains in accuracy for
smaller values of minimum support. The opposite trend
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Figure 3: Total Elapsed Time for Mining Frequent Item-
sets.

is observed when we evaluate the accuracy by varying
the block size, that is, larger gains are achieved by larger
blocks. Finally, the gain increases with the �� value.

5.3 Parallel and Incremental Mining

Now the aspect we want to study is the merit of paral-
lelism in incremental mining. Our evaluation is based
on the number of processors used in the mining opera-
tion. Thus, for each minimum support employed, we per-
formed executions of the algorithm, where each execution
employs a different number of processors. Further, the ba-
sic metric employed in our evaluation is the speedup, that
is, the relative performance of our parallel algorithm and
ZIGZAG, its serial version. The experiments were run on
a 4-processor IBM. Each processor run 200MHz and has
256 MB main memory.

Figure 7 shows the percentage of the total execution
time that is spent on the support counting task. As we can
see, it is clearly the dominant task, spending always more
than 90% of the total execution time. Figure 8 shows the
relative response times. It can be seen that the speedup of
our parallel algorithm is closer to the ideal speedup when
we reduce the minimum support threshold. This is mainly
because for smaller supports the tidlists are larger, and the
parallel task becomes more significant.

6 Conclusions and Future Work

In this paper we presented techniques for efficiently min-
ing frequent itemsets in evolving databases. Our tech-
niques are incremental, interactive and parallel. The in-
cremental approach makes use of the MFI to perform the
incremental mining operations. The interactive approach
makes use of selective updates to avoid updating the en-
tire model of frequent itemsets. The parallel approach
is based on the adaptive tidlist interval distribution tech-
nique, which continuously assigns partitions of the tidlist
among the different processors. These techniques com-
bined are able to mine from evolving data stored in ware-
houses to streaming data. We intend to continue this work
evaluating the parallel algorithm in a distributed environ-
ment.
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Figure 4: Accuracy of the Model generated by WAVE.
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Figure 6: Accuracy Gains provided by WAVE.
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