
Understanding Filesystem Performance for Data Mining Applications

Bouchra Bouqata, Christopher D. Carothers, Boleslaw K. Szymanski, and Mohammed J. Zaki�
bouqab,chrisc,szymansk,zaki � @cs.rpi.edu

Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, U.S.A.

Abstract
Motivated by the importance of I/O performance in data min-
ing efficiency, we focus this paper on analyzing data min-
ing performance across different file systems. In our study,
we consider three of the most popular filesystems available
under the Linux distribution. These include: Ext2[3] (non-
journaled), Ext3[16] (journaled), and Reiser[12] (journaled).
We conclude that full data and metadata journaling (Ext3)
appears to dramatically slow down the performance of a data
mining engine. For I/O intensive cases, data mining execution
time was double when run over Ext3 as compared to Reiser.
We found that the write speed of Ext3 was 35 times slower
than Reiser, and file address references display only a short-
range dependence in data mining, indicating high degree of
locality in data references.

Keywords
Performance Mining, File Systems (Reiser, Ext2, Ext3), Data
Mining, Association Rules, Frequent Itemsets, Journaling

1 Introduction

The work presented in this paper is conducted under the Perf-
Miner project at RPI which aims at developing the PerfMiner
engine for performance mining of large-scale data-intensive
next generation distributed object applications, such as a sim-
ulation of the entire World Wide Web or modeling of pro-
tein folding. We will not address a detailed description of the
Perfminer engine in here because it is out of the scope of this
paper.

The ultimate goal of PerfMiner is the robust performance
of complex distributed object systems which enables them
to adapt to and optimize for a dynamic critical path as well
a dynamic run-time environment when executed on today’s
high-power “grid” computing platforms. PerfMiner will de-
tect opportunities for both the critical path optimization and
the beneficial application of speculative execution using data
mining on a persistent, run-time generated database.

Data mining places heavy demands on both computational
and I/O resources. Typically the search for patterns and mod-
els is over very high dimensional spaces (with hundreds to
thousands of attributes per object), that may have temporal

and spatial attributes along with the regular observed attributes
in a given application, and over very large databases (with
millions to billions of objects).

Motivated by the importance of I/O performance in data
mining efficiency, which will affect directly the Perfminer
performance, we focus in this paper on analyzing data mining
performance across different file systems. While there have
been a number of filesystem performance studies conducted,
such as [5, 13, 10, 11, 7, 12], we would like to understand
how data integrity techniques, such as vvjournaling, affect
data mining performance. To the best of our knowledge, no
study has examined this aspect before.

In our study, we consider three of the most popular filesys-
tems available under the Linux distribution. These include:
Ext2[3] (non-journaled), Ext3[16] (journaled), and Reiser[12]
(journaled). Other filesystems, such XFS[6] and JFS[4] where
omitted since those filesystems are not yet considered to be
part of base, stable Linux 2.4.X distribution and required an
external kernel patch to make operational.

We chose the VIPER algorithm (Vertical Itemset Parti-
tioning for Efficient Rule-extraction) [14] for association min-
ing, because of its intensive I/O operations and memory usage
which will enable us to evaluate well the performance of the
different filesystems. Moreover, VIPER exhibits both read
and write rather than read only access.

The reminder of this paper is organized as follows. An
overview of the three filesystems is presented in Section 2.
Viper[14], the data mining engine used in this study is dis-
cussed in Section 3, followed by the performance results in
Section 4 and conclusions in Section 5.

2 Filesystems

Linux filesystems can be categorized into the following classes.
First, there are device based filesystems which typically store
data on hard disks. Example filesystems in this category in-
clude Ext2 [3], Ext3 [16], JFS [4], Reiser [12], and XFS [6].
Resting on top of these device file systems are network based
filesystems that allow machines not having physical access
at the device layer to provide seamless access to a filesystem
across a local-area network. Example filesystems in this class
include NFS [9], Coda[8] and Samba[15]. Finally, Linux sup-
ports special filesystems such as /proc, which is an read-only

filesystem that provides user-level access to system informa-
tion and statics.

A journaling file system extends the capabilities of de-
vice based filesystems by ensuring data integrity at the device
layer. This is accomplished by immediately storing updates to
a files’ metadata (and data depending on the filesystem used)
to a serial log on disk before the original disk blocks are up-
dated. When the system crashes, the recovery code analyzes
the log and attempts to clean up inconsistent files by replaying
the log file. In this paper, our performance study will center
on three different filesystems: Ext2, Ext3 and Reiser, each of
which has different capabilities and performance properties.
These filesystems where chosen in this experimental study
because of their popularity, stability and wide availability.

2.1 Ext2

Ext2 is a block based file system, which speeds up the exe-
cution of I/O operations by keeping metadata and data tem-
porally allocated in RAM. Inconsistency of the whole system
may be caused by a system crash if all modified data are not
written to disk. To recover, a file system check (i.e., fsck) is
performed which scans the entire storage device. This device
could be 100s of gigabytes to even terabytes in size, making
a scan of such a storage system extremely time consuming.
By providing journaling capability, this costly operation can
be avoided for most system crashes.

2.2 Ext3

Ext3 is Ext2 file system enhanced with journaling capabili-
ties. Ext3 shares all structures with Ext2 file system, and adds
transactions capabilities to Ext2. Ext3 adds two independent
modes on top of the writeback mode present in Ext2: a trans-
action and a logging mode. These modes can be described as
follows:

� Writeback mode: In writeback mode, Ext3 doesn’t do
any form of data journaling at all (unlike XFS, JFS, and
Reiser, which do journaling). Despite the fact it could
corrupt recently modified file, this mode should give,
in general, the best Ext3 performance.

� Ordered mode: Ext3 by default journals metadata only,
but it logically groups metadata and data blocks into a
single unit called a transaction. When it’s time to write
the new metadata out to disk, the associated data blocks
are written first. In general, this mode performs slightly
slower than writeback but significantly faster than jour-
nal mode.

� Journal mode: it provides full data and metadata jour-
naling. All new data is written to the journal first, and
then to its final location. In the event of a crash, the
journal can be replayed, bringing both data and meta-
data into a consistent state.

Clearly, journal mode provides the highest degree of reli-
ability. Here, not only filesystem structural data or metadata,

but also file content stored in RAM, is logged to the jour-
nal. However, even with data journaling loss of content is
still possible.

In Linux, journaling support is provided by the journaling
block device layer (JBD). The JBD is not Ext3 specific. It was
designed to add journaling capabilities to a block device. The
Ext3 filesystem code informs the JBD of modifications that
it performed (called a transaction). The journal handles the
transactions start and stop, and in case of crash, the journal
can replay the transactions to put the partition on a consistent
state faster.

Because Ext3 reuses the data structure and filesystem lay-
out of Ext2, Ext3 is backwards compatible. This interop-
erability is provided by reserving a special place within the
Ext2 file structure for the journal log. From the point of view
of Ext2, the journal log appears as any other file. Addition-
ally, it is possible to have multiple file systems sharing the
same journal. The journal file’s job is to record the new con-
tents of file system metadata blocks while the file system is in
the process of committing transactions.

2.3 Reiser

In contrast with other filesystems, Reiser has been designed
completely from scratch and reports high-performanceon small
files. It employs the use of fast balanced trees (B+ trees) (one
per filesystem) to organize file system structures such as file
state data or directories (directory item). Reiser also eases
artificial restrictions on filesystem layouts by dynamically al-
locating filesystem structures as needed rather than creating
a fixed set at filesystem creation. This helps the filesystem to
be more flexible to the various storage requirements that may
be thrown at it, while at the same time allowing for some
additional space-efficiency. Reiser, unlike Ext2, doesn’t al-
locate storage space in fixed 1kB or 4kB blocks. Instead, it
can allocate the space of the exactly needed size. In order to
increase performance, Reiser is able to store files inside the
B+ tree leaf nodes themselves, rather than storing the data
somewhere else on the disk and pointing to it. Thanks to that
the small file performance is dramatically increased because
the file data and the statistics-data information are stored right
next to each other and can normally be read with a single disk
I/O operation. In addition, Reiser is able to pack the tails to-
gether, saving a lot of space. In fact, a Reiser with tail packing
enabled (the default) can store 6 per cent more data than the
equivalent Ext2 filesystem. However, this technique would
increase external fragmentation, since the file data is now fur-
ther from the file tail. For this reason, Reiser tail packing can
be turned off, allowing the administrator to choose between
good speed and space efficiency, or opt for even more speed
at the cost of some storage capacity.

3 Data Mining Engine: VIPER

Association rule discovery is one of the most important data
mining tasks; it aims at uncovering all frequent patterns among

transactions composed of data attributes or items. Results are
presented in the form of rules between different sets of items,
along with metrics like the joint and conditional probabilities
of the antecedent and consequent, to judge a rule’s impor-
tance.

The problem of mining association rules was introduced
in [1]. Let

��� ���������
	
	�	��� � be a set of items, and let � �
���������
	
	�	���� � be a set of transaction identifiers or tids. The
input database is a binary relation ��� ��� � . If an item �
occurs in a transaction � , we write it as ��� � ������� . A set ����

is called an itemset. The support of an itemset � , denoted ����� , is the number of transactions in which it occurs as a
subset. An itemset is frequent if its support ���!�#" minsup,
where minsup is a user-specified minimum support threshold.

An association rule is an expression $ %&('*) , where $
and) are itemsets; it measures the dependence of) on $.
The support of the rule is �+$�,) � (i.e., the joint probability
of a transaction containing both $ and)), and the confidence- � �.$/,) ��0 �+$1� (i.e., the conditional probability that a
transaction contains) , given that it contains $). A rule is fre-
quent if the itemset $/,) is frequent. A rule is confident if- " � �32546�87 , where where minconf is a user-specified mini-
mum threshold. The problem of mining association rules is to
find all rules that satisfy the minimum support and minimum
confidence thresholds. Applications include cross-marketing,
attached mailing, catalog design, loss-leader analysis.

The computationally challenging step in mining such rules
is to find the frequent itemsets, since rules can be easily gen-
erated from them [2]. There have been several efficient algo-
rithms proposed for frequent itemset mining, differing mainly
in their search strategy and database layout[1, 2, 14, 17]. In
a horizontal layout [1, 2], the database is organized as a set
of rows, with each row representing a transaction in terms of
the items that are present in the transaction. In a vertical lay-
out [14, 17], each item is associated with a column of values
representing the transactions in which it is present. The lat-
ter format appears to be a natural choice for the association-
rule mining’s objective – discovering correlated items – in
addition to contributing to fast and simple support counting
(reduction of the effective size, compact storage, better sup-
port for databases, and asynchronous computation of frequent
itemsets).

3.1 VIPER Algorithm

For our performance evaluation, we use the VIPER algorithm
(Vertical Itemset Partitioning for Efficient Rule-extraction)
[14] for association mining. VIPER is especially designed for
very large datasets, since it performs its own memory buffer
management. It writes out patterns and data to disk when
memory is exhausted, and reads in the information later as
required. Thus, VIPER is a good representative of a large-
scale data mining algorithm. It stores data in compressed bit-
vectors and integrates a number of novel optimizations for ef-
ficient bit-vector generation, intersection, counting and stor-
age. VIPER provides good performance for large databases

since it scales up linearly with database size.

VIPER uses a vertical bit-vector format for representing
an item’s occurrence in the tuples of the database. A bit
at position � is set to 1 if the item occurs in transaction � .
The bit-vector is stored in a compressed form, taking ad-
vantage of the sparseness that is typically exhibited in large
databases in which, typically, an item occurs in some fraction
of transactions, so that most of the entries in the bit-vector are
0’s. Consider a database with the following six transactions
over the items space

� $ �) ��91��:;�=< � : >@? � $) :A<B� >DC �) 9E<A� >GF � $) :H<B� >DI � $) 9E<B� >GJ � $) 9E:A<B� >DK �) 9E: . The bit-vector for $ is
��LM�N�N�OL

, for
9

it is
LM��LM�N�N�

, and
so on. Support of longer itemsets can be found by bit-wise
AND operations on their subsets’ bit-vectors. For example,
to compute the support of the set $ 9 we AND the bit-vectors
of $ and

9
to get

LNLNLM�N�OL
. To compute support of $ 9E: we

perform AND operations on the bit-vectors of its subsets, $ 9
and $: , and so on.

In general, to compute the support of an itemset of length� , VIPER performs AND operations on the bit-vectors of any
of its ��0 � length subsets that cover all its items. For instance,
assume we know the frequent itemsets of size 2 along with
their bit-vectors. To compute the support of $ 9E:A< , we can
intersect the vectors of $ 9 ,

9E:
, and

:H<
. Another possi-

bility is to intersect the vectors of $ 91� $:�� $ < , or even just
$ 91��:A< , and so on. These are all examples of covering sub-
sets of $ 9E:H< (among several others). VIPER chooses the
covering subsets in decreasing order of their supports.

VIPER is a multi-pass algorithm, wherein data (in the
form of compressed bit-vectors) is read from and written to
the disk in each pass. In the first pass, the frequent single
items are found by scanning the original horizontal format
database, and vertical bit-vectors are created for each item
and stored on disk in a common file. In the second pass the
horizontal dataset is scanned for a second time and all fre-
quent sets of size 2 are identified by direct counting. From
pass 3 onward, VIPER uses bit-vector ANDing for support
counting.

In each pass the bit-vectors to be read from disk and writ-
ten to disk are identified and the corresponding read/write
operations are performed, depending on the amount of main-
memory available. For memory management, VIPER keeps a
page in memory for the bit-vector of each itemset of interest.
That is, a page is maintained for each itemset to be read and
each itemset to be written. The bit-vectors of � -length item-
sets are read from disk and are intersected to find the support
of all covered itemsets of length up to

� � . Thus VIPER counts
all candidates of size P , with �RQSPUT � � in a single pass and
determines which of these are really frequent. When the page
buffer for an itemset being counted fills up the page is writ-
ten out to a common file. All the pages associated with each
individual bit-vector are chained together using a linked list
of pointers. The frequency computation progresses until all
frequent sets (of all possible lengths) have been found.

There are several note-worthy points of VIPER which
may impact its performance on different filesystems:

� Support counting in VIPER involves simultaneous count-
ing of several levels of candidates in a single pass via
intersections of bit-vectors. In pass � , VIPER counts
candidates of size � to

� � & �
, thus it counts itemsets

of size 1 in pass � � �
, sizes

� � �
in pass � � �

, sizes
� �������M���

in pass � � �
and so on.

� While the candidates of size � are determined from the
frequent itemsets in pass � & �

, candidates of length
	

are determined by taking all pairwise combinations
of candidates of sizes from � to

� � & � . Thus, the set
of potential candidates in VIPER is a superset of the
candidates that would be generated if always frequent
sets were used to generate new candidates. The size of
the new candidate set cannot be determined in advance,
and it may happen that at a lower minsup threshold one
would generate fewer candidates than at a higher min-
sup value. This impacts the amount of buffer space
used for active itemsets.

� VIPER writes intermediate results to disk, which may
appear as an overhead. However, it can improve its
performance since bit-vectors keep on shrinking as the
passes increase, significantly speeding up the subse-
quent mining passes. Also, bit-vectors from previous
passes that are no longer relevant to the remainder of
the mining process are deleted, resulting in space re-
duction.

4 Performance Study

We have conducted an evaluation study of the performance of
a data mining algorithm on several file systems. In particular,
we compared the performance of VIPER [14] on three Linux
file systems, namely Ext2, Ext3 and Reiser.

4.1 Experiment Setup

Our experiments were conducted on a dual processor 400
MHz Pentium-II system with 512 MB of RAM and 4, 9 gi-
gabyte Western Digital, 7200 RPM, SCSI-II hard disks. The
operating system was Linux, version 2.4.17 configured with
the Ext2, Ext3 and Reiser filesystems. One of the four hard
disks was used for the base operating system and swap space.
The other three disks were given single partitions and a dif-
ferent filesystem. /dev/sdc1 was given Reiser, /dev/sdd1 was
given Ext3 and /dev/sde1 was given Ext2. Thus, the underly-
ing hardware was identical for each disk as well as directory
structure on each disk was the same. So, the only difference
among the three is the filesystem structure, thus making a true
“apples-to-apples” comparison possible.

Our experiments cover a range of data mining workloads.
Four different data sets were generated using the technique
described in [2] with increasing sizes. This technique at-
tempts to mimic the customer purchase behavior seen in re-
tailing environments. The parameters used in the generator
and their default values are described in Table 1.

Different minimum support thresholds were used for ev-
ery data set as shown:

� T20I8 (T=20 and I=8): 0.002, 0.0025, 0.003, 0.004,
0.005, 0.0055, 0.006, 0.0065, 0.007, 0.0075

� T30I8 (T=30 and I=10): 0.002, 0.0025, 0.003, 0.004,
0.005, 0.0055, 0.006, 0.0065, 0.007, 0.0075

� T40I10 (T=40 and I=10): 0.004, 0.005, 0.0055, 0.006,
0.0065, 0.007, 0.0075, 0.0085, 0.0095, 0.01.

We note that the VIPER algorithm manages its own inter-
nal buffers and thus it writes or reads consistent buffers at 256
byte strides. This size was experimentally determined to pro-
vide the best overall performance. Thus, the filesystems are
being accessed for medium size write and read operations.

4.2 Viper Performance

In this first series of experiments, we compare the perfor-
mance of the VIPER data mining engine running on the dif-
ferent filesystems for each of the data sets. The performance
results for the T20I8 data set is shown in Figure 1. The ex-
ecution time in seconds is shown as a function of support,
which ranges between 0.0020 to 0.0075. We observe that
for the smaller levels of support, VIPER running over Ext3
takes considerably longer than VIPER running over Reiser
and Ext2. In the 0.0020 support case, VIPER takes almost
twice as long to execute when run over Ext3 as it does when
run over either Ext2 or Reiser. We attribute this performance
difference to additional journaling overheads incurred by Ext3
for providing full data integrity and not just journaling the
filesystem metadata, as Reiser does. Additionally, we believe
Reiser is able to compete with Ext2 despite its journaling
overhead because of its compact filesystem structure.

However, as the support level increases, the performance
gap narrows because of the actions taken by the data min-
ing engine. Typically, when support is high, the data min-
ing engine has less work to do, since the search is effectively
broader. That is to say, smaller support is the amount to “find
a needle in a haystack”. With a reduction in the amount
of searching, the amount of disk I/O performed is reduced
which results in the data mining engine shifting from being
I/O-bound to being more compute-bound. Thus, the overall
execution times of VIPER running over all three filesystem is
substantially reduced and converge to similar values.

The exception to this case is when the level of support al-
lows the VIPER algorithm to make a large jump in the itemset
search space. Recall, that the algorithm will jump from � to

� �
frequent itemsets. If a level of support is such that the search
can be pruned early, the algorithm will do so. This results in a
situation where for small increments in support, the run-time
performance will vary by a substantial amount.

We observe similar phenomena for both the T30I10 and
T40I10 data sets, as shown in Figures 2 and 3 respectively.
First, we observe a more pronounced performance difference.
For the T30I10 data set, the execution time is almost 2.5 time
longer for Ext3 than for either Ext2 and Reiser in the 0.0040

Parameter Symbol Parameter Meaning Default Value

N # of Items 1000
T Mean transaction length 10
L # of frequent itemsets 2000
I Mean frequent itemset length 4
D # of transactions 100K

Table 1: Parameters used in data mining workload generations.

0

200

400

600

800

1000

1200

1400

0.0020.00250.0030.00350.0040.00450.0050.00550.0060.00650.0070.0075

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Support

ext2fs
ext3fs

reiserfs

Figure 1: VIPER performance of T20I8 data set under Ext2, Ext3 and Reiser.

support case. Similarly, in the 0.0040 support case, the ex-
ecution time is 2 times longer for Ext3 than either Ext2 and
Reiser for the T40I10 data set. Additionally, the same “zig-
zag” execution time is observed as support is increased fol-
lowed by steep decrease in execution time for high supports.
With the decrease in execution time, the performance gap be-
tween Ext3 and Reiser/Ext2 narrows.

As previously indicated, we attribute the overall perfor-
mance difference between Ext3 and Reiser to the level of
journaling provided. In the next series of experiments, we
take a closer look at the I/O behavior of VIPER running un-
der Ext3 and Reiser.

4.3 I/O Performance: Ext3 versus Reiser

In this series of experiments, we trace all read and write
operations for the T30I10 data set with a support level of
0.0040 for both Ext3 and Reiser. Each trace contain approx-
imately 600,000 read operations and 1,100,000 write opera-
tions. Thus, there are above twice as many writes as reads for
this data set and level of support combination.

For each I/O operation, we capture (i) the wall clock time

when the operation occurred, (ii) the file address being ref-
erenced, and (iii) the duration of the operation. The timing
information is captured using the rdtscmachine instruction
which records the internal processor cycle counter. The time
returned from this operation represents the number of ma-
chine cycles that the system has been running since it was last
booted. Because of the clock rate, the accuracy of this timer
is
� 0 � L�L���LNLNLM�=L�LNL seconds plus the memory access time.

In Figure 4, the write overhead measured in clock cycles
for each write operation is shown as a function of wall clock
time (this is the direction in which time flows) and file ad-
dress for VIPER running Ext3 and Reiser respectively. We
observe here that the write operation overhead for Ext3 is
much greater and displays much higher degree of variance
than Reiser, as shown by the large range of write times in
y-axis.

Looking at the data more closely, the mean time to write is
538,861 clock cycles for Ext3 versus 15,379 for Reiser. Thus,
the data mining engine will spend 35 times the amount of
time performing write operations when Ext3 is running when
compared to Reiser. Additionally, the standard deviation is
10,525,592 clock cycles for Ext3 versus 251,142 for Reiser.

500

1000

1500

2000

2500

3000

0.0020.00250.0030.00350.0040.00450.0050.00550.0060.00650.0070.0075

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Support

ext2fs
ext3fs

reiserfs

Figure 2: VIPER performance of T30I10 data set under Ext2, Ext3 and Reiser.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.011

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Support

ext2fs
ext3fs

reiserfs

Figure 3: VIPER performance of T40I10 data set under Ext2, Ext3 and Reiser.

So, clearly, the data journaling overhead is exacting its toll on
Ext3 performance.

Now, as one would expect, journaling should not perturb
read performance. Figure 5 shows the read overheads in clock
cycles for each read operation as a function of wall clock time
and file address for VIPER running Ext3 and Reiser respec-
tively. We observe little difference in average read perfor-
mance. The mean number cycles to perform a read is 2867

for Ext3 and 2930 for Reiser.

However, we do see a higher degree of variance displayed
by Reiser. The standard deviation for Reiser is 36,026 cy-
cles as compared to only 1,350 cycles for Ext3. We attribute
this phenomenon to the structural differences between the two
filesystems. In particular, recall that Reiser employs a B+-
tree to arrange filesystem objects. While this structure pro-
vides fast access to small files, for larger files, the read op-

Figure 4: VIPER write overheads measured in CPU clock cycles on Ext3 (top) and Reiser (bottom) as a function of wall clock
time and file address.

Figure 5: VIPER read overheads measured in CPU clock cycles on Ext (top) and Reiser (bottom) as a function of wall clock
time and file address.

eration cost appears to vary depending on the address within
the file being accessed. This overhead could come from ei-
ther accessing metadata for block placement on disk or the
arrangement of blocks on the disk. Making the picture more
complex is how each filesystem utilizes the Journal Block De-
vice (JBD) and other cache data structures. At this time, the
primary source of the differences is unclear and further inves-
tigation is required.

Additionally, we observe from the reference traces that
access to the file appears to have some underlying structure.
We suspect that disk references are relatively memory-less
because of the pruning done at each level of the data mining
search algorithm. To determine this performance characteris-
tic, we need to check for the long-range dependences in the
address traces which is a work in progress.

5 Conclusion

In this paper, we have evaluated the performance of a data
mining algorithm, VIPER, under three different file systems:
Ext2, Ext3 and Reiser. VIPER represents a class of data min-
ing engines that are used for mining large datasets.

The following conclusions can be drawn from this perfor-
mance study.

� Full data and metadata journaling (Ext3) appears to
dramatically slow down the performance of a data min-
ing engine. For I/O intensive cases, VIPER’s execu-
tion time under Ext3 was double of time needed for the
same data execution under Reiser.

� Ext3 achieved write speed 35 times slower than the
write speed of Reiser.

It should be noted that the gap between the execution
times under these two file systems may grow with the size of
processed data sets because larger the sets more I/O bound the
data mining engine becomes. Moreover, the results presented
in the paper were collected on relatively dated processor tech-
nology (Pentium II, 400 MHz). On more recent systems, the
processor/disk speed performance gap is much greater than
in Pentium II. Thus, the impact of filesystem performance on
data mining execution times will be even more pronounced
for the most recent processors than it was reported here.

In short, we conclude that full-journaling filesystem sig-
nificantly slows-down the performance of VIPER and should
be avoided. An interesting question, that we plan to explore
in the future, is how does Ext3 with ordered mode (metadata-
only journaling) impacts the data mining performance. We
hypothesize that Ext3 will perform significantly faster in this
mode than with full journaling.

An interesting topic of future research is an investigation
of statistical properties of addresses in memory traces. We
hypothesize that addresses of data mined by the data min-
ing engine are in long-term dependence. If this hypothesis is
demonstrated true, then some related questions are of interest.
For example, is the degree of long-range dependence varying

for different data sets mined? Can long-range dependence be
exploited to improve data mining performance?

Another useful direction of future work is to study the
level of support provided by current filesystems and the needs
of data mining algorithms. For example, are there filesystem
features that are required by data mining but currently not
available? If so, how they can be provided? Finally, our study
can be expanded to investigate how memory mapping impacts
filesystems performance in data mining applications.

6 Acknowledgments

This work was supported by NSF EIA-0103708 as part of the
Next Generation Software Program.

References
[1] R. Agrawal, T. Imielinski, and A.Swamy. Mining as-

socation rules between sets of items in large databases.
Proc, of ACM SIGMOD Intl. Conf. on Management of
Data, May 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. Proc. of 20th Intl. Conf. Very Large
Databases (VLDB)., September 1994.

[3] M. Beck, H. Bohme, M. Dziadzka, U. Kunitz, R. Mag-
nus, and D. Verworner. Linux kernel internals. addison-
wesley. 1998.

[4] S. Best. Jfs home page. http://www-124.
ibm.com/developerworks/oss/jfs/index.
html.

[5] R. Bryant, R. Forester, and J. Hawkes. Filesystem
performance and scalabitlity in linux 2.4.17. Proc.
Advanced Computing Systems Association (USENIX),
FREENIX Track Technical Program, 2002.

[6] J. Mostek et. al. Porting the sgitm xfs file system to
linux. June 2000.

[7] R. Galli. Journal file systems in linux. Upgrade, 2(6),
December 2001. http://www.upgrade-cepis.
org/issues/2001/6/upgrade-vII-6.html.

[8] J. J. Kistler and M. Satyanarayanan. Disconnected op-
eration in the coda file system. ACM Transactions on
ComputerSystems, 10(1):3–25, February 1992.

[9] B. Nowicki. Nfs: Network file system protocol spec-
ification. Internet Engineering Task Force. RFC-1094,
March 1989.

[10] N. Petreley. Reiserfs or ext3: Which journaling
filesystem is right for you? November, 2001. http:
//www.linuxworld.com/site-stories/
2001/1120.filesystem.html.

[11] D. E. Powell. ext3 or reiserfs? hans reiser says
red hat’s move is understandable. 2002. http:
//www.linuxplanet.com/linuxplanet/
reports/3726/1/.

[12] H. Reiser. Reiserfs v.3 whitepaper. September, 2002.
http://www.namesys.com.

[13] D. Robbins. Filesystem update: Advanced filesystem
implementor’s guide, part 11. June, 2002. http:
//www-106.ibm.com/developerworks/
linux/library/l-fs11.html.

[14] P. Shenoy, J. R. Haristsa, S. Sudarshan, G. Bhalotia,
M. Bawa, and D. Shah. Turbo-charging vertical mining
of large databases. Proc. of ACM SIGMOD Int. Conf.
on Management of Data, pages 22–33, May 2000.

[15] J. Stasko. Using student-built algorithm animationsas
learning aids. Twenty-eighth SIGCSE Technical Symp.
on Computer Science Education, pages 25–29, February
1997.

[16] S. Tweedie. Journaling the linux ext2fs filesys-
tem. pages 25–29, 1998. citeseer.nj.nec.com/
288237.html.

[17] M. J. Zaki. Scalable algorithms for association mining.
IEEE Transactions on Knowledge and Data Engineer-
ing, 12(3):372-390, May-June 2000.

