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Abstract

This paper presents fast scalable decision-tree-based
classification algorithms targeting shared-memory systems.
The algorithms are based on the sequential SPRINT classi-
fier and span the gamut of data and task parallelism. The
data parallelism is based on attribute scheduling among
processors. This is extended with task pipelining and dy-
namic load balancing to yield more efficient schemes. The
task parallel approach uses dynamic subtree partitioning
among processors. These schemes are disk based and
achieve excellent speedup, making them ideally suited for
data mining in very large databases.

1 Introduction

An important task of data mining is to assign objects to
predefined categories or classes – a process calledClassi-
fication. The input to the classification system consists of
a set of example records, called atraining set, over several
fields orattributes. Attributes are eithercontinuous, com-
ing from an ordered domain, orcategorical, coming from
an unordered domain. One of the attributes, called theclas-
sifyingattribute, indicates theclassor label to which each
example belongs. The goal of classification is to induce
a model from the training set, that can be used to predict
the class of a new record. Classification has applications
in diverse fields such as retail target marketing, customer
retention, fraud detection and medical diagnosis [9].

While there has been a lot of research in classification
in the past, the focus had been on developing classification
models using training sets that could fit in memory. Re-
cent work has targeted the massive training sets usual in
data mining. Developing classification models using larger
training sets can enable the development of higher accuracy
models [4] [5] [6]. Examples of fast scalable classifica-
tion systems include SLIQ [8], and SPRINT [11], which
was disk-based. SPRINT was also parallelized on the IBM
SP2 [7] parallel distributed-memory machine.�Current affiliation: Computer Science Department, University of
Rochester, Rochester, NY 14627

This paper presents fast scalable decision-tree-based
classification algorithms targeting shared-memory systems,
the first such study. The algorithms are based on the se-
quential SPRINT classifier, and span the gamut of data and
task parallelism. The data parallelism is based on attribute
scheduling among processors. This is extended with task
pipelining and dynamic load balancing to yield more com-
plex schemes. The task parallel approach uses dynamic
subtree partitioning among processors. Our experiments
show that we obtain a speedup from 3.0 to 3.9 for the tree
growth phase, and from 2.2 to 3.7 for the total time, on a
4-processor SMP machine.

The rest of the paper is organized as follows. In Sec-
tion 2 we review the serial SPRINT algorithm, which forms
the backbone of the new SMP parallel algorithms. Section 3
describes our new SMP algorithms based on various data
and task parallelization schemes. In Section 4, we give ex-
perimental results, and we conclude in Section 5.

2 Serial SPRINT Algorithm

A decision tree is a structure that is either aleaf, indi-
cating a class, or adecision node, specifying some test on
one or more attributes, with one branch for each outcome
of the split test. A decision tree classifier is usually built
in two phases [3] [10]: a growth phase and a prune phase.
The growth phase takes the input training set, and recur-
sively partitions it so that each leaf is composed entirely or
predominantly of the same class. The tree pruning phase
generalizes the tree by removing statistical noise or varia-
tion to avoid over-fitting the training set. Usually less than
1% of the total time needed to build a classifier is spent in
the pruning phase [8]. We will therefore concentrate on the
computation and I/O intensive tree growth phase.

Attribute lists SPRINT builds the tree breadth-first and
uses a one-time pre-sorting technique to reduce the cost
of continuous attribute evaluation. For each attribute, it
initially creates a disk-basedattribute list consisting of an
attribute value, a class label, and a tuple identifier ortid.
Initial lists for continuous attributes are sorted by attribute
value when first created. The lists for categorical attributes
remain in unsorted order. As the tree is split into subtrees,
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the attribute lists are also split. By preserving the order of
records in the partitioned lists, they do not require resorting.
Figure 1 shows an example of the initial sorted attribute lists
associated with the root of the tree and also the resulting
partitioned lists for the two children.
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Figure 1. Splitting a node’s attribute lists.

2.1 Finding Split Points and Splitting the Data

There are two major issues that have critical performance
implications in the tree-growth phase: 1) How to find split
points that define node tests, and 2) Having chosen a split
point, how to partition the data. SPRINT uses thegini index
[3] as a measure of split quality. The gini index is computed
by scanning a node’s attribute lists, and computing the class
distributions on both sides of the split point. The attribute
with the minimum gini value and the associatedwinning
split point, is used to partition the data.

Figure 1 shows how the data is split once the winning
attribute (Age) is found. To split the attribute list for the
winning attribute (Age), we simply scan the list and apply
the split test (Age < 27:5). For splitting a “losing” attribute
(CarType) we constructs a bit or hash probe on thetids,
noting the child where a particular record belongs. A sim-
ple scan and application of split test on the probe is used to
split the other attributes.

Avoiding multiple attribute lists The attribute lists of each
attribute are stored in disk files. Since file creation and dele-
tion for each tree level is an expensive operation, SPRINT
actually uses only four physical files per attribute. It has
one attribute file for all left children, one file for all the right
children, and separate files for the current and next level.

To split a node we read the files from the current level,
and write to the left and right files for the next level. By pro-
cessing tree nodes in the order they appear in the attribute
lists, this approach also avoids any random seeks within
a file to find a node’s records — reading and writing re-
main sequential operations. This optimization is illustrated
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Figure 2. Avoiding multiple attribute files.

in Figure 2, and has important implications for the paral-
lelization strategies presented below.

3 Parallel Classification on SMP Systems
We now describe different algorithms for parallelizing

the compute- and data-intensive tree growth phase, on
shared-memory systems. Recall that SPRINT has three
main steps that are performed for each node at each level
of the tree: 1) Evaluate split points for each attribute (de-
noted as stepE); 2) Find the winning split-point, i.e., the
best among all the attributes, and then construct a bit probe
from the winning attribute (denoted as stepW); and 3) Split
all the attributes into two parts, one for each child, using the
bit probe (denoted as stepS). Our parallel schemes will be
described in terms of these steps. Our prototype implemen-
tation of these schemes uses POSIX standard pthreads.

There are two major ways of parallelizing classification
– thedata parallelapproach and thetask parallelapproach.
In data parallelism theP processors work on distinct at-
tributes, and synchronously construct the global decision
tree. It essentially exploits the intra-node parallelism, i.e.
that available within a decision tree node. The task parallel
approach exploits the inter-node parallelism, i.e. different
subtrees can be grown in parallel among the processors.

3.1 Attribute Data Parallelism

We now describe the Moving-Window-K algorithm
(MWK) based on attribute data parallelism. For pedagog-
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ical reasons, we will introduce two intermediate schemes
called BASIC and Fixed-Window-K (FWK), and then
evolve them to the more sophisticated MWK algorithm. All
schemes utilize dynamic attribute scheduling, since a static
scheduling scheme is not particularly suited for classifica-
tion due to non-uniform cost per attribute.

3.1.1 The BASIC Algorithm (BASIC)

In the BASIC approach, attributes are scheduled dynami-
cally by using an attribute counter and simple locking. A
processor acquires the lock, grabs an attribute, increments
the counter, and releases the lock. The tree is built in a
breadth-first manner so that once a processor has been as-
signed an attribute, it can evaluate the split points for that
attribute for all the leaves in the current level. This also en-
sures that there is no attribute file sharing. A single barrier
marks the end of the evaluation phase. Figure 3 illustrates
the evaluation phase of BASIC.
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Figure 3. The BASIC Algorithm

Once all the attributes of a leaf have been processed, each
processor will have what it considers to be the best split
for that leaf. We now need to find the minimum split value
from among each processor’s locally best split. We can then
proceed to scan the winning attribute’s records and form the
hash probe. Both these tasks are performed serially by a
pre-designated master processor. This step thus represents
a potential bottle-neck in this algorithm.

The attribute list splitting phase proceeds in the same
manner as the evaluation. A processor dynamically grabs
an attribute, scans its records, hashes on thetid for the child
node, and performs the split. Since the files for each at-
tribute are distinct there is no read/write conflict among the
different processors.

3.1.2 The Fixed-Window-K Algorithm (FWK)

The basic idea of the Fixed-Window-K (FWK) approach is
to overlap theW-phase with theE-phase of the next leaf at
the current level, thus realizingpipelining, and overcoming
the bottleneck of BASIC. The degree of overlap can be con-
trolled by a parameterK denoting the window of current

overlapped leaves. LetEi,Wi, andSi denote the evaluation,
winning hash construction, and partition steps for leafi at a
given level. Then forK = 2, we get the overlap ofW0 withE1. ForK = 3, we get an overlap ofW0 with fE1; E2g, and
an overlap ofW1 with E2. For a generalK, we get an over-
lap ofWi with fEi+1; � � � ; EK�1g, for all 1 � i � K � 1.
The attribute scheduling, split finding, and partitioning re-
main the same, however they are performed on a group ofK leaves at a time. Another difference is that FWK requires2K files per attribute instead of four so that the different
leaves in a group can be processed independently. Figure 4
illustrates this scheme forK = 2.
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Figure 4. The FWK Algorithm

It should be noted that the overlapping of work is
achieved at the cost of increased barrier synchronization,
one per eachK-block. We must therefore choose a suffi-
ciently large window size, so that it not only increases the
overlap, but also minimizes the number of barrier synchro-
nizations. Note, however, that larger window size implies
more temporary files, which incurs more file creation over-
head and tends to have less locality.

3.1.3 The Moving-Window-K Algorithm (MWK)

Figure 5 shows the MWK algorithm, which extends the
FWK algorithm by incorporating moving windows, and
thus reduces processor idle time due to barriers. Consider a
current leaf frontier –fL01; R01; L02; R02g. With a win-
dow size ofK = 2, not only is there parallelism available
for fixed blocksfL01; R01g andfL02; R02g, but also be-
tween the leaves of these two blocks,fR01; L02g. The
MWK algorithm makes use of this additional parallelism.
The scheme can be implemented by replacing the barrier
per block ofK leaves, with a wait on aconditional vari-
able. Before evaluating leafi, a check is made whether thei-th leaf of the previous block has been processed. If not, the
processor goes to sleep on the conditional variable. Other-
wise, it proceeds with the current leaf. The last processor to
finish the evaluation of leafi from the previous block con-
structs the bit probe, and then wakes all processors sleeping
on the conditional variable.
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Figure 5. The MWK Algorithm

It should be observed that the gain in available paral-
lelism is at the cost of increased lock synchronization per
leaf (however, there is no barrier anymore). A largerK
value would increase parallelism, and while the number
of synchronizations remain about the same, it will reduce
the average waiting time on the conditional variable. Like
FWK, this scheme requires2K files per attribute.

3.2 Subtree Task Parallel Algorithm (SUBTREE)

An illustration of the SUBTREE algorithm is provided
in Figure 6. To implement dynamic processor assignment
to different subtrees, we maintain a queue of currently idle
processors, called theFREEqueue. Initially this queue is
empty, and all processors are assigned to the root of the
decision tree, and belong to a single group. One processor
within the group is made the group master. The master is
responsible for partitioning the processor set.
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Figure 6. The SUBTREE Algorithm

At any given point in the algorithm, there may be mul-
tiple processor groups working on distinct subtrees. Each
group independently executes the following steps once the
BASIC algorithm has been applied to the current subtree
level. First, the new subtree leaf frontier is constructed. If
there are no children remaining, then each processor inserts
itself in theFREEqueue, ensuring mutually exclusive ac-
cess via locking. If there is more work to be done, then all

processors except the master go to sleep on a conditional
variable. The group master checks if there are any new ar-
rivals in theFREEqueue and grabs all free processors in
the queue. This forms the new processor set. There are
three possible cases at this juncture. If there is only one
leaf remaining, then all processors are assigned to that leaf.
If there is only processor remaining, then it forms a group
on its own and works on the current leaf frontier. Lastly,
if there are multiple leaves and processors, the group mas-
ter splits the processor set into two parts, and also splits
the leaves into two parts. The two newly formed processor
sets become the new groups, and work on the corresponding
leaf sets. Finally, the master wakes up the all the relevant
processors—those in the original group and those acquired
from theFREEqueue. Since there areP processors, there
can be at mostP groups, and since their attribute files must
be distinct, this scheme requires up to4P files per attribute.

4 Performance Evaluation

We use the tree build time as our performance metric for
evaluating the proposed algorithms, since it has been shown
that SLIQ/SPRINT achieves comparable or better classifi-
cation accuracy than other classifiers [8].

4.1 Experimental Setup

Experiments were performed on a 4 processor SMP ma-
chine, with a PowerPC-604 processor running at 112 MHz
with a 16 KB instruction cache, a 16 KB data cache, and
a 1 MB L2-Cache. We used different synthetic benchmark
datasets (proposed in [1]) shown in Table 1. Two classifica-
tion functions are used. Function F2 produces small trees,
while function F7 produces very large trees.

Dataset Corresponding Tree
Dataset Function No. No. Total No. Max
Notation Attributes Tuples Size Levels Leaves/Level

F2-A8-D1000K F2 8 1000K 61 MB 4 2
F2-A32-D250K F2 32 250K 57.3 MB 4 2
F2-A64-D125K F2 64 125K 56.6 MB 4 2
F7-A8-D1000K F7 8 1000K 61 MB 60 4662
F7-A32-D250K F7 32 250K 57.3 MB 59 802
F7-A64-D125K F7 64 125K 56.6 MB 55 384

Table 1. Dataset characteristics.

Our initial experiments confirmed that MWK was indeed
better than BASIC as expected, and that it performs as well
or better than FWK. Thus, we will only present the per-
formance of MWK and SUBTREE. We also found that the
time spent in the initial setup and sort phase can be signif-
icant (upto 38%) for the datasets with small trees (function
F2), whereas it is small (upto 8%) for complex datasets with
large trees (function F7).
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4.2 Parallel Performance

We consider four main parameters for performance com-
parison: 1) number of processors, 2) number of attributes,
3) number of example tuples, and 4) classification function
(Function 2 or Function 7).

Figure 7 shows the parallel performance and speedup of
the two algorithms as we vary the number of processors for
the two classification functions F2 and F7, and using the
dataset with eight attributes and one million records (A8-
D1000K). Figures 8 and 9 show similar results for datasets
A32-D250KandA64-D125K, respectively. Only the right-
most graphs uses the total time (including setup time and
sort time), while the other graphs are based only on build
time (excluding setup and sort phase).

Considering the build time only, the speedups for both
algorithms on 4 processors range from 2.97 to 3.32 for func-
tion F2 and from 3.25 to 3.86 for function F7. For function
F7, the speedups of total time for both algorithms on 4 pro-
cessors range from 3.12 to 3.67. The important observation
from these figures is that both algorithms perform quite well
for various datasets. Even the overall speedups are good for
complex datasets generated with function F7. As expected,
the overall speedups for simple datasets generated by func-
tion F2, in which build time is a smaller fraction of total
time, are relatively not as good (around 2.2 to 2.5 on 4 pro-
cessors). These speedups can be improved by parallelizing
the setup phase more aggressively.

MWK’s performance is mostly comparable or better than
SUBTREE. The difference ranges from 8% worse than
SUBTREE to 22% better than SUBTREE. Most of the
MWK times are within 10% better than SUBTREE. We see
two trends from these figures. First, the overall advantage of
MWK over SUBTREE is more visible for the simple func-
tion F2. The reason is that F2 generates very small trees
with 4 levels and a maximum of 2 leaves in any new leaf
frontier. Around 40% of the total time is spent in the root
node, where SUBTREE has only one process group. Thus
on this dataset SUBTREE is unable to fully exploit the inter-
node parallelism successfully. MWK is the winner because
it not only overlaps theE andW phases, but also manages
to reduce the load imbalance.

The figures also show that on F2, increasing the number
of attributes worsens the performance of SUBTREE. This
is because a free processor can join a new group only at the
end of a level. As each processor or group becomes free it
waits in the FREE queue to rejoin the computation. How-
ever, it will not be assimilated into the new group until one
of the existing group finishes working on all 64 attributes.
Clearly, the larger the number of attributes the larger the
wait, and this adversely impacts the performance of SUB-
TREE. On the other hand, MWK does not suffer from this
phenomenon. It has the opposite trend, more attributes lead
to a better attribute scheduling, which tends to minimize

imbalance.
Another observable trend is that having greater number

of processors tends to favor SUBTREE. In other words, the
advantage of MWK over SUBTREE tends to decrease as
the number of processors increases. This can be seen from
figures for both F2 and F7 by comparing the build times for
the two algorithms first with 2 processors, then with 4 pro-
cessors. This is because after aboutlogP levels of the tree
growth (whereP is the number of processors), the only syn-
chronization overhead for SUBTREE, before any processor
becomes free, is that each processor checks the FREE queue
once per level. On the other hand, for MWK, there will be
relatively more processor synchronization overhead, as the
number of processors increases, which includes acquiring
attributes, checking on conditional variables, and waiting
on barriers.

5 Conclusion

In this paper we presented fast scalable decision-tree-
based classification algorithms targeting shared-memory
systems. The algorithms span the spectrum of data and task
parallelism. Our experiments confirmed that these schemes
achieve good speedup, making them ideally suited for data
mining in very large databases.
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Figure 7. Parallel Performance: functions 2 and 7; 8 attribu tes; 1000K records.
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Figure 8. Parallel Performance: functions 2 and 7; 32 attrib utes; 250K records.
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Figure 9. Parallel Performance: functions 2 and 7; 64 attrib utes; 125K records.
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