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Abstract

We study the polynomial-time semi-rankable sets (P-sr), the ranking analog of the
P-selective sets. We prove that P-sr is a strict subset of the P-selective sets, and indeed
that the two classes differ with respect to closure under complementation, closure under
union with P sets, closure under join with P sets, and closure under P-isomorphism.
While P/poly is equal to the closure of P-selective sets under polynomial-time Turing
reductions, we build a tally set that is not polynomial-time reducible to any P-sr set. We
also show that though P-sr falls between the P-rankable and the weakly-P-rankable sets
in its inclusiveness, it equals neither of these classes.
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1 Introduction

In the late 1970s, Selman [Sel79] defined the semi-feasible (i.e., P-selective) sets, which are
the polynomial-time analog of the Jockush’s [Joc68] semi-recursive sets. Recently, there has been
an intense renewal of interest in the P-selective sets and variants of the P-selective sets (see the
survey [DHHT94]). Among the variants of the P-selective sets that have recently been studied are
the membership comparable sets defined by Ogihara [Ogi94b], the nondeterministically selective
sets [HNOSb,HHO*93], and the probabilistically selective sets defined by Wang [Wan].

However, all the variants that have been studied have been generalizations of the P-selective
sets. This is somewhat curious as—given that the key problem with the P-selective sets is they can
be quite complex—it might seem most natural to refine the P-selective sets and see whether the
refinement retains the complexity of the P-selective sets. In this paper we do that. In particular,
we look at the “polynomial-time semi-rankable sets” (P-sr), a class that is the ranking analog of the
P-selective sets and is a refinement of the P-selective sets. Informally, a set A is polynomial-time
semi-rankable if there is a polynomial-time two-argument function f that, whenever at least one of its
inputs, say z, isin A, outputs that input and its rank within 4, i.e., ||{z |z € A and z <iepicographical
z}]|. That is, just as a P-selective set is one that (under a certain promise condition) has certain
available information regarding membership in the set, a P-sr set is one that (under the same promise

condition) has certain available information regarding rank in the set.

It follows easily from the definitions that P-sr is a superset of the polynomial-time rankable
sets of Goldberg and Sipser [GS91], and is a subset of the polynomial-time weakly rankable sets
of Hemaspaandra and Rudich [HR90]. We prove that both these inclusions are strict. Tt follows
immediately that all sets in P are polynomial-time semi-rankable if and only if P = P#P. Further,
we prove that P-sr is a proper refinement of the P-selective sets. Nonetheless, we also prove that

the polynomial-time semi-rankable sets remain extremely complex.

Though not closed under union or join [HJ], the P-selective sets are clearly closed under union
(equivalently, intersection) with P sets, under join with P sets, and under complementation. Also,
the P-selective sets are closed under P-isomorphism and, in fact, they are closed under positive
Turing reductions [BTvEB93]. In contrast, we show that P-sr is not closed under union with P sets,
under join with P sets, under complementation, or under P-isomorphism. We also prove that P-sr
is closed under intersection with P sets if and only if P = P#F. Also, we construct a tally set that
is not polynomial-time Turing reducible to any P-sr set, while it is known that P/poly is equal to
the closure of the class of P-selective sets under polynomial-time Turing reductions. Thus, P-sr and
the P-selective sets not only differ, but even differ on very minimal natural closure properties. On
the other hand, though they are a subset of the P-selective sets, we argue that P-sr seem just as
hard in terms of the extended lowness hierarchy as the P-selective sets: both these classes are in
the EL; level of the extended low hierarchy and there are oracles relative to which they are not in
ﬁz. We also observe that the nearly near-testable sets [HH91] also lack closure under intersection
(equivalently union) with P sets unless P = P#¥ (equivalently, P = NP = PH = P#¥ = ppFH),



2 Definitions

We let our alphabet, ¥, be {0,1}. For any set A and any string «, || denotes the length of
and AS? denotes those strings in A that come before z in the standard lexicographical order. For
any set A and any integer n, A=" denotes the strings in A of length exactly n, and AS" denotes the
strings in A of length no greater than n. Let N2! denote {1, 2, 3, ---}. Let TALLY = {A | A C 0*}.

We state three definitions from the literature. Informally, P-selectivity captures the notion of sets
for which there is a polynomial-time algorithm telling which of any two given elements is “logically
no less likely to be in the set.” The Goldberg-Sipser notion of polynomial-time rankability captures
those sets that are sufficiently simple that there is a polynomial-time algorithm that can determine
(for elements in the set) the number of elements in the set up to that point. There have been many
papers studying the issue of which sets can be ranked [GS91,HR90,BGS91,Huy90].

Definition 2.1

1. [GS91] For any set B and any string =, define rankp(z) = ||[BS%||. A set A is P-rankable
if there is a polynomial-time computable function f such that (a) (V& € A) [f(x) = ranka(z)]
and (b) (Yo € A)[f(z) = “not in A”]. We also use P-rankable to denote the class of sets that

are P-rankable.

2. [HR90] A set A is weakly-P-rankable if there is a polynomial-time computable function f
such that (Vo € A)[f(x) = ranka(z)]. We also use weakly-P-rankable to denote the class of
sets that are weakly-P-rankable.

Note that for ¢ A, the definition of weakly-P-rankable sets puts no constraint on the behavior of

f on x other than that it must run in polynomial time.

Definition 2.2 [Sel79,Sel82] A set A is P-selective if there is a (total, single-valued) polynomial-
time computable function f such that, for every x and y, it holds that

1. f(z,y) =2 or f(z,y) =y, and

2. {z,y} NV A#£0 = [(z € Aand f(z,y) =) or (y € A and f(z,y) = y)].

We also use P-selective to denote the class of sets that are P-selective.

The above definition is more verbose than needed, so as to bring out the analogy with the P-sr
sets.

We define the following refinement of P-selectivity. This refinement requires the production not
just of a member of the set (under a certain hypothesis), but also (under the same hypothesis) the

accompanying rank information giving the location within the set of the member.

Definition 2.3 A set A is polynomial-time semi-rankable if there is a (total, single-valued) function

f such that, for every x and y,

1. (3n) [f(z,y) = (&, n) or f(z,y) = (y,n)], and



2. {z,yb A 2 0 = [z € Aand f(z,y) = {(z,ranka(z))) or (y € Aand f(z,y) =
(y,ranka(y)))].

In such a case, we say that f is a semi-ranking function for A. We use P-sr to denote the class of

sets that are polynomial-time semi-rankable.

The following result is immediate.
Proposition 2.4 P-sr = P-selective N weakly-P-rankable.

Though we adopt Definition 2.3 throughout this paper, we note that the definition is relatively
robust. For example, if one deletes the definition’s condition 1 the class of languages defined remains
unchanged, and if one deletes condition 1 and changes the hypothesis of condition 2 to “{z,y} (| A #
) and = # 3" the class of languages defined also remains unchanged.

It follows immediately from the definitions that P-rankable C P-sr C weakly-P-rankable and
P-sr C P-selective. From this and the result that all P sets are P-rankable if and only if all P sets
are weakly-P-rankable if and only if P = P#F ([HR90], see also [GS91]), we have the following.

Proposition 2.5 All P sets are polynomial-time semi-rankable if and only if P = P#P.

Ko proved that all P-selective sets have small circuits (i.e., P-selective C P/poly). Tt is not hard
to see that all P-sr sets have small ranking circuits (i.e., P-sr C P/poly-rankable, where the P/poly
is in fact representing the function class FP/poly in the same way the P in P-selective represents
the function class FP).

Note that if f' is a semi-ranking function for A, then f(z,y) =4c¢ f'(min(z,y), maz(z,y)) is
a semi-ranking function for A having the property that for every z and y, f(z,y) = f(y,»). We
assume that all semi-ranking functions discussed henceforward are already in this “oblivious to the
ordering of their arguments” form.

We review the definitions of the low and extended low hierarchies to which we will refer in the
last part of the paper. Following Ko and Schoning [KS85], for all £ > 0 we define Ly to be the class
of sets L in NP such that EZ’L =X, and fk is the class of sets I such that AZ’L = AF. Thus the
sets in the low hierarchy are those sets in NP that provide no additional power to some level of the
polynomial hierarchy, when given as an oracle. To help classify sets that are not in NP, the extended
low hierarchy was defined by Balcdzar, Book, and Schoning [BBS86] as follows: For all k > 1, ELg
is the class of sets L such that EZ’L - EZ’_L?SAT, where A® B = {0x|x € A} U {lz|z € B}.
Similarly, one can define intermediate levels, as suggested by Schoning in [Sch86]. Let ﬁk denote
the class of sets such that AZ’L C AZ’_L?SAT. The relativized versions with respect to oracle A of

ELg and ﬁk are obtained by replacing SAT by some standard complete set for NP4,

3 Separations

The polynomial-time semi-rankable sets are a proper refinement of the P-selective sets, as shown

by the following result.



Theorem 3.1 P-sr ¢ P-selective.

Proof: Note that P-sr C P-selective, since we can obtain a P-selector function from a P-sr function
by simply ignoring the rank information. We will show that there exists a set that is P-selective
but not P-sr. Define pu(1) = 2, and p(i+ 1) = 22 for each i > 1. Let {fi};cn>: be a standard
enumeration of all polynomial-time 2-ary transducers, and let this enumeration have the property
that each transducer is repeated infinitely often. Let sA = {sz|z € A}, and let the join (sometimes
referred to in the literature as disjoint union or marked union) operator be defined by A® B = 04U
1B. We will construct, in stages, aset A = ;5 A;, and we will argue that A®1* € P-selective—P-sr.

We will construct A so that it satisfies the following conditions:
1. A€ E, where E = ., DTIME[2°"], and

2. AC H, where H = {0#*(1) 0#(2) r3) 1,

STAGE 0: Let Ay = 0.

STAGE i, i € N2': Run f;(1*#0+! 180+ for at most 2 Vn()+1) steps. (The root is to ensure
that the small overhead of simulating a machine causes us no problems.) If it has not finished
within this time, then set A; = A;_; and go to the next stage. If it finishes running within this
time, then let (w,n) denote its output. If w # 1#(+L then f; is not a P-sr function for A;_; ¢ 1*,
since clearly 1O+ e A, & 1*; set A; = A;_1 and go to the next stage. If w = 1“(i)+1, then let
q = ranka,_ a1+ (w). Notice that there are exactly a1 = p(7) strings in (A;—1 & 1*) N 1X* that are
lexicographically smaller than w, and by brute force we can compute as = ||Ai_13“(i_1)||, which
is the number of strings in (A;_1 @ 1*) N 0X* that are lexicographically smaller than w. Thus,
q = ai + as + 1 is computable in time polynomial in |w|. Now, if n # ¢, then clearly f; is not
a P-sr function for A;_1 & 1*. Let A; = A;_1 and go to the next stage. Otherwise, n = q. Let
A=A U {Ou(i)}. By our construction, the rank of w will now be ¢ + 1, which makes the output
of f; wrong; go to the next stage.

Note that the time cutoff for f; in stage ¢ ensures that A € E, and since each transducer is
repeated infinitely often in the enumeration, running out of time is not a problem, as for all but a
finite number of occurrences of each transducer we will not run out of time. By our construction
above, A @ 1* ¢ P-sr, since each potential P-sr transducer is eventually eliminated (and the
diagonalizations against A; & 1* hold against A @ 1* by construction).

However, A @ 1* € P-selective via the following P-selector function:

x ife,yeg He 1~
z ifzell*
h(z,y) = Yy ifzg11* and y € 11~
x ife=ye0H
min(z,y) ife,y€0H,z# y,min(z,y) € 04
max(x,y) ife,y€0H, z# y, min(z,y) & 04



11yl

, we can in this case

Note that since, if # # y and »,y € 0H, maxz(|z|,|y|) > g2
decide by brute force whether min(z,y) € 0A. Thus, h(z,y) is computable in time polynomial
in maz(|al, ly). |

Though Theorem 3.1 shows that P-sr differs from the class of P-selective sets, one can well ask
if they differ in natural ways. Later, we will show that they differ even with respect to some quite
minimal closure properties.

The fact (Theorem 3.1) that the polynomial-time semi-rankable sets properly refine the P-

selective sets notwithstanding, P-sr contains quite complex sets.
Theorem 3.2 Let f be any (total) recursive function. Then P-st € DTIME[O(f(n))].

Proof: We will show that there exists a set B, such that B € P-sr, but B ¢ DTIME[O(f(n))]. Tt

is well-known that for any given recursive function f, it holds that
(3g) (Yh = O(f)) (3no € NZ1):

1. g is strictly monotonically increasing,
2. g is a (total) recursive function, and
3. (Yn > no)[h(n) < g(n)].
In particular, let M be a machine computing recursive function f. We may define ¢g(0) =

gmaz(1,runtime s (0)) and, inductively, for 7 > 0, g(i + 1) — 9(i+1) maz(g(0), -, g(i), runtimens (i+1))  Note
that this ¢ has the property that {i#0/ | g(i) < j} € P Define p(1) = 2 and, for i > 1, define

inductively p(i41) = g(u(i)). Let H = {01 042 0#3)  }. Note that H € P. Our construction
will ensure that B C H.
Let a(s) = [|{z|z € B and # <iepicographical 5}||, .., @(s) is the number of elements of B that

are lexicographically strictly less than s.

Let {]\Z}ieNzl be a standard enumeration of all deterministic Turing machines. As before, we
desire every machine to appear infinitely often in our enumeration; so define a new enumeration
{Mi}ienzr by Myjry = ]\/4\]', where (-, -) is any easily computable and easily invertible bijection
between N2! x N2! and N2!'. We construct B = |J,5, Bi, in stages, such that (Vﬁ(n) =
O(f(n)))[B ¢ DTIME[h(n)]].

STAGE 0: Let By = ().
STAGE i, i € N2': Run M; on input = = 0%(). If M; accepts it within g(|z|) steps, then let
B; = B;i_1, else let B; = B;_; U {0#()},

B € P-sr, via the semi-ranking function:

(,1) or (y,1) if {z,y} N H =1
(r, 14 a(x)) itereHyegH
ta,y) = (v, 1+ a(y)) itye Hx¢ H
(x, 14+ a(z)) fr=yeH
(min(x,y), 1 + a(min(z,y))) ifx,ye€ H x#y min(z,y) €B
(max(z,y), 1 + a(maz(z,y))) ife,ye H x#ymin(z,y) ¢ B



Note that for all z,y € H, if < y then |y| > g(]z]). So for each h = O(f(n)) and for each
machine M; ) in our enumeration such that Mg; xy has runtime bounded by h, for all but a finite
number of M(; 1y, Moy, M sy, -+ we diagonalize successfully (and thus implicitly diagonalize
against M; ry). Note that £ is computable in time polynomial in maz(|z|, |y|), and that {(x,y) is

also a P-sr function for B. I

Note that the B of the proof of Theorem 3.2 was a tally set. Thus, in the statement of Theorem 3.2
one can make the stronger claim P-sr N TALLY € DTIME[O(f(n))].

Theorem 3.2 gives one type of P-sr set that can be kept out of P. Another example, somewhat
analogous to the role left cuts play for the P-selective sets, would be “widely spaced and easy”
left cuts. By this we mean sets containing only elements at appropriately widely spaced lengths
(as in the proof of Theorem 3.2), and with the set at each of these lengths being the left cut (at
that length) of a real number (the same at each length), and with the complexity of the number
being such that at each nonempty length, one can brute-force compute the cut point at the previous

nonempty length.
If P-sr C P-rankable then P-sr C P, as all P-rankable sets are in P. But this would contradict

Theorem 3.2. So, since P-rankable C P-sr as already observed, we have the following corollary.

Corollary 3.3 P-rankable Z P-sr.

Similarly, the inclusion P-sr C weakly-P-rankable is also strict.

Theorem 3.4 P-sr 7 weakly-P-rankable.

Proof: Note that P-sr C weakly-P-rankable, since we can construct a weakly-P-rankable function
from a P-sr function f for a given set by returning the rank output by f(z,z). We will show that
there exists a set B such that B € weakly-P-rankable, but B ¢ P-sr. Consider any set B such that
(Vn > D[||B="|| = 1]. Then B € weakly-P-rankable via the function, (V&) [h(z) = |z|], since if
x € B, then rankp(z) = |z|.

Let {fi};en»: be a standard enumeration of all polynomial-time 2-ary functions. We will now
construct, in stages, a particular set B = |J,5, Bs, satisfying the above property:
STAGE 0: B = 0. B
STAGE i, i € N2': Suppose f;(0%710%) = (w,n). If w = 0%~ then let B, = B;_; U
{1%=10%"} making the output of f; wrong, since w & B;. If w = 0% then let B; = B;_; U
{0%=1 12"} making the output of f; wrong, since w € B;. Otherwise, i.e., if w # 0%~! and w # 0%,
let B; = B;_1 U{0%~1 0%}; the output of f; is clearly wrong in this case.

Since at each stage ¢, ¢ > 0, we add to B exactly one string at length 2 — 1 and 2¢, B has the
desired one-per-length property, and clearly B & P-sr, as each potential P-sr function fails at some

stage. I



4 P-sr vs. P-selective: Structural Comparison

Theorem 3.1 shows that the P-sr sets and the P-selective sets are different classes. Yet, one
may wonder whether they differ on natural properties. In fact, they differ sharply regarding closure
properties. Though Hemaspaandra and Jiang [HJ] have noted that the P-selective sets are not
closed under union (equivalently, due to closure under complementation, intersection) or join, the P-
selective sets clearly are closed under complementation, and under union (equivalently, intersection)
with P sets. In contrast, P-sr is not closed under union with P sets, under join with P sets, or under

complementation.

Theorem 4.1 P-sr 1s not closed under union with P sets, under join with P sets, or under

complementation.

Proof: Let B and H be the sets B and H from the proof of Theorem 3.2 for the case where the f
of that theorem is some time-constructible function that majorizes all polynomials, e.g., f(n) = 2”.
Recall that B € P-sr and that H € P. Recall that sA =4er {sz|x € A}, and that the join operation
is defined as F'& (G =g¢r 0F U 1G. Suppose B® H is in P-sr. Let k() denote some polynomial-time
semi-ranking function for B@ H. Then to determine in polynomial time whether an arbitrary string
z is in B, we can do the following. If # € H then # € B. If # € H, run k(Ox, 10|x|). If the output
is Oz along with a rank, then z € B. If the output is 10/*l along with a rank, then due to the
construction of B it is easy to determine via brute force exactly how many strings are in B & H up
to 101l excluding 0z. Thus, # is in B exactly if this number is one less than the rank k returned.
It is not too hard to see (considering the strong relationship between the properties of B and the
properties of 0B) that the above also establishes that P-sr is not closed under union with P sets.
Similarly, if the complement of B were in P-sr, B clearly is in P, via using the semi-ranker for B on
the two strings lexicographically following any given element of H in whose membership in B one

1s interested. I
Theorem 4.2 P-sr is not closed under P-isomorphism.

Proof: Let b be the function defined inductively by 6(0) = 0 and b(i + 1) = 22" Tt follows easily
from the proof of the main theorem in [GHS91] that there is an infinite set H C {0%(®) 02(1) 0¥}
such that H is in DTIME[2"] but no infinite subset of H is in DTIME[22"]. Let L be defined by
L=H |J {1°0+)-10%0) ¢ H}. Using arguments similar to the ones in Theorem 3.2, it is easy to
see that L is P-sr. Consider next the following bijection h : ¥* — 3*:

it z = 0% for some i

L=
h(z) =< z++, ifz=1°0-1 for some i
x, otherwise,
where —— and x4+ denote the predecessor and respectively the successor of & in the lexicographical

order. Let L' = h(L). Clearly, L and L’ are P-isomorphic via the function h and we show that
L’ is not P-sr. Suppose that L’ is P-sr via the function f and let » be the function defined by



f(x,2) = (x,7(x)). We start with the following observation: for all j > 1, rankz(1°0V)=1) = j — 1.
Next, if 0°¢) @ I, then 0°U) @ [ and 1°U+)=1 ¢ L. Thus, if 0°0) € L, then rankz:(0°¢)) = j—1 and
0°U+h) ¢ I/, We can now conclude that, if 0°0) ¢ H then 0°U+1) € H if and only if (02U +1)) = j41.
Therefore, the set H' = {0°U+1) ¢ H|0°U) ¢ H} is an infinite subset of H which is decidable in
polynomial time. This contradicts the choice of H and, thus, the assumption that L’ is P-sr is
false. I
In light of Theorem 4.2, Proposition 2.4, and the obvious closure under P-isomorphism of the

P-selective sets, we immediately have the following.
Corollary 4.3 The weakly-P-rankable sets are not closed under P-isomorphism.

Corollary 4.3 contrasts with the result of Goldsmith and Homer [GH95] that the strongly-P-rankable
sets are closed under P-isomorphism if and only if P = P#P. (Similarly, and thus also in contrast
to Corollary 4.3, the P-rankable sets are closed under P-isomorphism if and only if P = P#F )

It follows immediately from Theorem 4.2 that the P-sr and P-selective differ in another natural
way (in addition to having different Boolean closure properties and in addition to differing regarding
closure under P-isomorphism). In particular, though Buhrman, Torenvliet, and van Emde Boas have
shown that the P-selective sets are closed under positive Turing reductions [BTvEB93], Theorem 4.2
shows that the P-sr sets are not closed under positive reductions, or indeed even under many-one
reductions or honest many-one reductions.

It is somewhat surprising that deciding the closure of P-sr under intersection with P sets is a

much more difficult problem.
Theorem 4.4 P-sr is closed under intersection with P sets if and only if P = P#P,

Proof: If P # P#¥ then by Proposition 2.5, there is a set B in P which is not polynomial-time
semi-rankable. Then ¥* is in P-sr but ¥* N B is not.

Suppose now that P = P#P. So P = NP = coNP. Let A be a set in P-sr via the function
f and B aset in P. Clearlyy, A N B is P-selective. By Proposition 2.4, we have only to show
that A N B can be weakly ranked in polynomial time. Let r(x) be defined by f(z,2) = (z,r(x))
and s(z,y) be defined by f(z,y) = (s(z,y),n) for some natural n (i.e., we have taken the ranking
and the selector functions of A separately). Let C' = {(z,y) € ¥* x X* |y € Band y < z and
r(y) < r(z) and (Vz < z) [r(2) = r(y) = s(z,y) = y]}. Observe that C' is a coNP set and thus,
by our assumption, is in P. Let g(z) = [|{y | (x,y) € C}||. Clearly, g is computable by a #P
computation with access to C' and so, again by our assumption, g is computable in polynomial time,
as if P = P#F then FP = FP#Y. Now, observe that if z € A N B then g(x) = ranks o p(x). This
holds asifx € A N B then {y | (z,y) e Ct={y|y<zandye A N B}. |

Theorem 4.1 and Theorem 4.4 show that P-sr lacks even certain very minimal closure properties.
Do other already-defined classes also lack such minimal closure properties, or is P-sr unique in this
regard? In this regard, we make the following two observations. The first one contrasts interestingly
with Theorem 4.4 in light of the fact that P-sr = P-selective N weakly-P-rankable.

Observation 4.5 The class weakly-P-rankable is not closed under intersection with P sets.



Proof: Build A in stages.

STAGE i, i € N2': Let m;_; = ||A;_1 N (X* — 07)]| and let f; be the ith polynomial-time
transducer. If f;(110%) # m;_; + 1, then add 000" and 110% to A. If f;(110°) = m;_; + 1, then add
010" and 1107 to A. Then A is weakly rankable, but A N (X* — 0%) is not. |

We claim that NNT, the class of sets having polynomial-time “implicit membership tests,”
also lacks such minimal closure properties under reasonable complexity-theoretic assumptions.
NNT [HH91] is the class of all sets A such that A has a polynomial-time computable function
f that on each input x states (correctly) either that z € A, or that # & A, or that exactly one of »
and the lexicographical predecessor of = is in A, or that not exactly one of  and the lexicographical

predecessor of x is in A.

Observation 4.6 P = NP = PH = P#P if and only if NNT is closed under intersection
(equivalently, union) with P sets if and only if NNT is closed under join with P sets.

Proof: First, since NNT is in P#P | the fact that P = P#F implies the other two conditions is
immediate. If NNT is closed under intersection with P sets—indeed, under intersection with the
very simple set (0 4+ 1)*0—then clearly P = NNT. By combining two results of [HH91] (namely,
the characterization of $OptP—which is now known (see the discussion in [HO94]) to be equivalent
to the serializability class [CF91,0gi94a] SFy—in terms of NNT, and the observation regarding the
consequences of NNT = @OptP) it follows that P = PPYH. The same argument holds for closure
under disjoint union with P sets—indeed with the trivial set {. |
We return to P-sr sets and display another property in which they differ from the class of
P-selective sets. Selman [Sel82] has shown that P/poly, the class of sets recognized by polynomial-size
circuits, coincides with the closure of the P-selective sets under polynomial-time Turing reductions.
Our next result shows that there are even tally sets (which are, of course, in P/poly) that are not

polynomial-time Turing reducible to any P-sr set.
Theorem 4.7 There is a tally set that is not polynomial-time Turing reducible to any P-sr set.

Proof: We use the following property of the P-selective sets (see [HHO95]). Let f be a P-selector
function, i.e. a function with the property that for every x,y in ¥*, f(x,y) € {#,y}. Then for every
finite set @ there exists a partition @ = Q1 U ... U Qm, @; N Q; = 0 for i # j, such that for
every P-selective set X having f as its P-selector, it holds that there exists 1 < ¢ < m such that
XN Q=Qir1 U ... U Qp (the union is empty in case t = m). Furthermore, if Q C <" then
the partition can be found in time polynomial in (n + ||@Q|]).

We construct our tally set 7" in stages. We use a 1-1 pairing function (-, -, -, -} : N* — N that takes
only values that are powers of two. The odd stages are used to perform a common diagonalization
that forces T' not to be in DTIME[2%"]. Consider now the stage n =< i,j,h,l >. As will be
clear from the construction, at this moment, there are no strings of length n or longer in 7" or its
complement. At this stage the focus is on the P-sr sets having as their P-selector the function f;
and as their P-ranker the function g; (tacitly, we are using Proposition 2.4), and on the polynomial-

time Turing machine M} that performs the reducibility from the P-sr sets (we are using standard



enumerations of p-selectors, p-rankers, and polynomial-time oracle machines). Let Q = y<@nt1)!
and let @ = @1 U ... U @, be the partition induced by f; on Q. For each number ¢, 1 <t < m,
let the ¢-cut be the set Qt = Q41 U ... U Qn. Wesay that the size of the cut is m —¢. A {-cut
Q: is called legal if it has the following properties:

(i) {g;(%)|x € Q:} is an initial segment of the set of natural numbers, and
(ii) g; is strictly monotone increasing on Q..

Observe that Q,, is a (trivial) legal cut and that, if X is a P-sr set with p-selector f; and p-ranker
gj, then X N @ is a legal cut. Since ||Q]| = 22n+1)'+1 _ 1 can be as large as 2027tD+1 _
and there can be as many legal cuts. It is not possible to diagonalize against that many possibilities
but, fortunately, diagonalizing only against the “smallest” 2”7 many cuts is enough. Namely, let
ty <1y < ... < 1s be all the numbers in the interval {1,... m} such that Qt, is a legal cut. Let
r =max{l,s — 2" + 1}. For each ¢ with r < ¢ <'s, let v, be the characteristic sequence

Qty 1nn Qg nn Qty non
Yg = (M, (0™), M}, (0 +1)a~~~aMh (02 +1))~

There are at most s — r + 1 < 2" such sequences. Therefore there is a (2n + 1)-long bit string ~
such that v # v, for all ¢ in {r ..., s}. By inserting strings in T or in its complement, we make
the characteristic sequence of T on inputs 07,07 %! ... 02"t be equal to 7. In this way, we have
diagonalized against all the reductions performed by M}, to P-sr sets X having the p-selector f; and
the p-ranker g; and having the property that for some appropriate n, X N ¥+ ig g legal cut
Qt = Qiy1 U ... U Qp of size at most 2. What about the other P-sr sets? Well, as we show
below, they are in DTIME[QZIOgO(l) "] and T cannot be polynomial-time Turing reducible to any of
them since 7' is not in DTIME[QZH]. Indeed, let X be such “another” P-sr set with p-selector f;
and p-ranker g; and suppose that we could not diagonalize against reduciblities performed by the
machine My, from X. This means that for all n that are of the form (i, j, h, %), X N »SE+D)" g a
Q; with size larger than 2”. So, Q; has more than 2" elements. Therefore, in order to see whether
z € X, let n be the smallest number of the form (i, j, h, *) that is strictly larger than |z|. For an
adequate pairing function, this number is bounded by 2¢9°1#l for some constant ¢ (which depends
upon ¢, j, and k). We compute the partition of ¥+ into, say, Q1 U ... U Q; then we find
the legal cuts Qtl, ce Qts and we see whether z € Qtr, where r = max{1,s— 2"+ 1}. Observe that
z € X if and only if z € Q;

An important subclass of P-selective 1s the class of sets that are standard left cuts. Recall that
for ¢ a finite or infinite binary string, the standard left cut of ¢ is the set L(t) = {z € 7|z <4 ¢},
where <4 is the dictionary ordering (if ¢ is infinite, then # < t if and only @ < ¢/, where ¢’ is the
prefix of t of length |z|). All the P-selective sets that have been built in the literature are either
P-selective or <P equivalent to a standard left set and, in fact, showing that there is a P-selective
set that is not <P equivalent to a standard left set is as hard as showing P # PP [HNOSa]. In

contrast, we observe that standard left cuts that are weakly-rankable are in P.

since Qtr is guaranteed to contain the first 27 strings in X. |

r?

Proposition 4.8 If L is a standard left cut, then L is weakly-P-rankable if and only if L is strongly-
P-rankable.
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Proof: We only have to show that if L is a standard left cut that is weakly-P-rankable then L is
in P. This is clearly so if L is finite. Otherwise L is the standard left cut of an infinite binary string
t # 0¥. Let r be the function that weakly ranks L. Observe that the following relations are valid
for every x € X*:

(i) 10" € L < x1 € L, for every n > 1,

(ii) if # is not the empty word, 21 € L < ((x € L) and (r(200) — r(20) = 2)),
(iii) 1€ L & #(00) — #(0) = 2, and

(i)

Now it is clear that by tracking back through the prefixes of  and using appropriately one of the

0elL.

relations (i)-(iv), we can determine in polynomial time whether # € L. |
Although the classes P-sr and P-selective differ with respect to some simple operations, their
lowness properties are similar. Ko and Schoning [IKS85] proved that all sets in P-selective N NP are
in the Ly level of the low hierarchy, and Amir, Beigel, and Gasarch [ABG90] proved that all sets in
P-selective are in the ELs level of the extended low hlerarchy Allender and Hemaspaandra [AH92)
have built oracles relative to which P-selective N NP is not in Lz and P-selective is not in EL2 In the
absence of oracles, such a result is currently beyond reach, because it was shown by E. Hemaspaandra,
Naik, Ogihara, and Selman [HNOSa] that if P = PP, then every P-selective set is <X equivalent
to a tally set and thus is in ﬁz [BB86]. We show that P-sr has the same properties as P-selective
with respect to the extended low hierarchy: clearly, P-sr is in EL; and P-st N NP is in Ly (because
polynomial-time semi-rankable sets are P-selective) and as we show below there is an oracle relative
to which P-sr is not in ﬁz. The problem of finding a similar relativized lower bound on the location

of P-sr in the low hierarchy is open.
Theorem 4.9 There 1s an oracle A relative to which P-sr is not in ﬁz.

Proof: Let {N;};cn>: be an enumeration of all polynomial-time oracle nondeterministic machines
such that for any oracle A, for all ¢, and for all n the machine N/ runs for at most n® + i steps on

all inputs of length n. Then for each oracle A, the set K(A) = {(i,x, 11°I't?) | NA accepts z} is
NPA-complete. We build an oracle A such that the following two statements are fulfilled:

(1) L(A) ={= | (Vy) [ly| = |z| and Ozy € A]} is PA-sr,
(2) B(A) ={0"| (3w € ¥")[ x € L]} is not in PK(A),

Since B € NPL(4) C pPNPEE nd B ¢ pE() = pLA)SK(A)pA (the last equality follows from
L(A) € PE(A) and A € PE(4)) ] we have that L(A) is not in ﬁzA

Statement (1) will be met in the following way. Let p(¢) be the sequence defined by p(0) =1
and p(i4 1) = 2#0) for i > 0, and let J = {u(i) | i > 0}. The oracle A is constructed in such a
way as to guarantee that: (i) if # € L(A) then |x| € J, (ii) for each u(é) € J, there is at most one
string of length p(¢) in L(A), and (iii) if # € L(A) then for all strings y with |y| = |#| and y # #,
Wz, y) € Aand 1{y,z) € A . Since, clearly, L(A) belongs to DTIME* [27], standard arguments show
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that L(A) is PA-sr. A is constructed in stages. At each moment in the construction, we consider
only those extensions of the oracle built so far that preserve the above conditions (i), (ii), and (iii)
for the initial segment of L that has been (implicitely) built up to that moment. Such extensions
are called legal extensions. We denote by n; the length up to which the membership of strings in A
has been established by the end of stage j. Let {P;};cn>: be an enumeration of all polynomial-time
oracle deterministic machines such that for all oracles O, for all j, and for all n, the machine N

runs for at most n/ + j steps on all inputs of length n.
STAGE 0: A=10,ny=0.

STAGE j, j € N2': Choose n € J sufficiently large so that n > n;_; and (n? + j)? < 2".
Reserve all strings having length between n;_; +1 and n—1 for A, the complement of A. Note that

this is a legal extension.

Next, P]»K(A) is simulated on input 0”. Let w; be the first query to the oracle set. If w; is not of
the form (i, z, 11°1"t%) then answer NO and continue the simulation. Suppose that w; = (i, z, 11°I"+%)
for some  and i. Observe that |z|' 44 < n? + j. If there is a legal extension S of A such that N
accepts x, then choose one accepting path of N; on x with oracle S and let @ be the set of strings
queried along this path. Reserve all strings in Q NS for A , and reserve for A all strings in Q N S.
At most |z|' +i < nd + j strings are reserved in this way for either A or A. Now, w; € K(A) and
the simulation can be continued with the YES answer. If there is no such legal extension S of A do
not reserve any strings for A or A, answer NO to the query and continue the simulation. Note that
whatever legal extension of A will be taken in the future, the answer NO remains correct. Proceed
in the same way with all queries in the simulation. Since there are at most n/ + j queries and each
query reserves at most n’ + j strings for A or A, the whole simulation reserves at this stage less than
(n? + j)? < 27 strings for A or A. Note that if for some pair z,y with |z| = |y|, Ozy is reserved for
A, or 1{z,y) is reserved for A and = # y, or 1{y, z) is reserved for A and x # y, then z is forced to

belong to L(A). A string x of length n could be forced to belong to L(A) only if Ozy is reserved for
A for all y of length n and this is not possible because at most (n; + j)? < 2" strings are reserved
for A. Consequently, no string z is forced to belong to L(A) and at most (n/ + j)? strings may be

forced to belong to L(A). There are two cases to analyze next.

Case 1. The simulation of P]»K(A) accepts 0™. Since no string « is forced to belong to L(A), there
is a legal extension of A such that L(A) contains no string of length n. Take such an extension that
reserves to A or A all strings of length less than or equal to (n? + j)2, let n; = (n? + j)2, and go to
the next stage. Since O" ¢ B(A), it is guaranteed that B(A) # L(P]K(A)).

Case 2. The simulation of P]»K(A) rejects 0™. Since less than 2" strings of length n are forced
to belong to L(A) by the simulation, there exists an # of length n that is not forced to be in L(A).
Extend A legally so that © € L(A) and the membership in A of all strings of length less than or
equal to (n/ + j)? is decided by this extension, take n; = (nf + j)?, and go to the next stage. Now,

0" € B(A) and, thus, again, B(A) # L(P]»K(A)).

12



Clearly, this construction satisfies statement (2). |
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