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Abstract

We present a novel algorithm called CLICKS, that finds
clusters in categorical datasets based on a search for k-
partite maximal cliques. Unlike previous methods, CLICKS
mines subspace clusters. It uses a selective vertical method
to guarantee complete search. CLICKS outperforms previ-
ous approaches by over an order of magnitude and scales
better than any of the existing method for high-dimensional
datasets. We demonstrate this improvement in an excerpt
from our comprehensive performance studies.

1 Introduction
Clustering of numeric data has been widely studied, but

categorical data has received relatively less attention. The
main challenges are: i) the lack of natural order on the in-
dividual domains, which renders traditional similarity mea-
sures ineffective, ii) the high dimensionality of typical cat-
egorical datasets, and iii) the fact that full-space clustering
is insufficient as subspace clusters often dominate in real-
world data.

In this paper, we present CLICKS 1, a novel algorithm for
mining categorical (subspace) clusters. The main contribu-
tions are: i) A novel formalization of categorical datasets
as k-partite graphs, where clusters correspond to k-partite
cliques after post-processing. ii) A selective vertical expan-
sion approach to guarantee a complete search; overlapping
cliques are merged to report more meaningful clusters. iii)
CLICKS outperforms existing approaches by over an order
of magnitude. It can mine subspace clusters and scales ex-
tremely well for high dimensions.

2 The CLICKS Algorithm
Let A1, . . . , An be a set of categorical attributes and

D1, . . . , Dn a set of domains, where Di = {vi1 , . . . , vim
}

is the domain for attribute Ai, and Di ∩ Dj = ∅ for i 6= j.
A dataset is given as D ⊆ D1 × . . . × Dn.

Let Sj ⊆ Dij
be a subset of values for attribute Aij

.
A k-subspace (with k ≤ n) is defined as the cross-product
S = S1 × . . . × Sk. Each Sj is called a projection of S on
attribute Aij

. Given any collection S of subspaces, M ∈ S
is a maximal subspace iff there does not exist M ′ ∈ S,
such that M ⊂ M ′. The support σ(S) of S is the count
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1CLICKS stands for the bold letters in Subspace CLusterIng of
Categorical data via maximal K-partite cliques.

of all records r in D where the j-th attribute value r.Aj ∈
Sij

for j ∈ {1, . . . , k}. S is called frequent if σ(S) ≥

σmin, for some user-defined threshold σmin. Under attribute
independence, the expected support of S in D is given as
E[σ(S)] = |D| ·

∏k

j=1

|Sj |
|Dij

| .

For α ∈ R
+ we define a density indicator function

δα(S) = 1 iff σ(S) ≥ α · E[σ(S)], otherwise δα(S) = 0.
S is called a dense subspace iff δα(S) = 1, that is, if
its expected support exceeds its actual support by a user-
defined factor α. Si and Sj , are called strongly connected
iff ∀va ∈ Si and ∀vb ∈ Sj , the 2-subspace {va} × {vb}
is dense. S = S1 × . . . × Sk is called a strongly con-
nected subspace iff Si is strongly connected to Sj for all
1 ≤ i < j ≤ k.

Definition 2.1 (Categorical Cluster) Let D be a categori-
cal dataset and α > R

+. The k-subspace C = (C1 × . . .×
Ck) is a (subspace) cluster over attributes Ai1 , . . . , Aik

iff
it is a maximal, dense, and strongly connected subspace in
D.

CLICKS models D as graph where the vertices (attribute
values) form k disjoint sets (one per attribute); edges ex-
ist between vertices in different partitions, indicating dense
relationships. CLICKS then maps the categorical clustering
problem to the problem of enumerating maximal k-partite
cliques in the k-partite graph.

Definition 2.2 (k-Partite Graph and Clique) Let D be a
categorical dataset over A1, . . . , An and V =

⋃n

i=1
Di.

The undirected graph ΓD = (V,E) where (vi, vj) ∈
E ⇐⇒ δα({vi} × {vj}) = 1 is called k-partite graph
of D. C ⊆ V is a k-partite clique in ΓD iff every vertex pair
vi ∈ C ∩ Di and vj ∈ C ∩ Dj with i 6= j is connected by
an edge in ΓD. If there is no C ′ ⊃ C s.t. C ′ is a k-partite
clique in ΓD, C is called a maximal k-partite clique. C is
dense if δα(C) = 1 in D.

Lemma 2.3 Given a categorical dataset D and a k-
subspace C = C1 × . . . × Ck with Cj ⊆ Dij

over at-
tributes Ai1 , . . . , Aik

. C is a k-cluster in D if and only if C
is a maximal, dense k-partite clique in ΓD.

Given a dataset D and a user-specified threshold α ∈
R

+, we are interested in mining all full-space and subspace
clusters in D. CLICKS uses a three-step approach to this
end: In the pre-processing step we create the k-partite graph
from the input database D, and rank the attribute values v
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Figure 1. Performance Comparison: CLICKS, CACTUS, ROCK

by their connectivity |η(v)| for efficiency reasons; η(v) is
given as the set of neighbors and the remaining values of
the same attribute. In the clique detection step, we enu-
merate maximal k-partite cliques in the graph ΓD. Our ap-
proach is based on a backtracking search that at each step
tries to expand the current clique to ensure maximality; it
adds only those vertices to a clique that are in the connec-
tivity set η(C) of the clique (i.e., those that are connected to
all previous vertices in C). In the post-processing phase we
verify the density property for the detected cliques. A max-
imal clique may fail the density test, whereas one of its sub-
cliques may be dense. To guarantee completeness, CLICKS
allows an optional selective vertical expansion approach to
explore the sub-cliques induced by a non-dense maximal
clique. Further, we optionally merge similar clusters to par-
tially relax the strict cluster notion. For more details of our
approach, please see [4].

3 Experimental Study
We present a study of CLICKS versus CACTUS [1], and

ROCK [3] (we also tested against STIRR [2]). Testing was
done on an Intel Xeon 2.8GHz with 6 GB RAM running
Linux. We generated synthetic datasets on 3-50 attributes
and with 100 values per attribute. Starting from a uniformly
distributed base dataset we embedded two clusters, located
on attribute values [0, 9] and [10, 19] for every attribute.
Each cluster was created by adding an additional 5% of the
original number of records in this subspace region.

We found that CLICKS outperforms ROCK by over an
order of magnitude (Fig. 1(a)). The original CACTUS im-
plementation does not perform the extension step to extract
the final clusters. When we extended CACTUS to report the
final clusters, we found that it is three times slower than the
baseline version (Fig. 1(b)).

We varied the dataset size from one to five million tuples
(Fig. 1(c), 10 attributes). Both methods scale linearly but
CLICKS outperforms CACTUS (with no extension) by an
average of 20%. On a dataset with one million records and
100 attribute values per dimension, CLICKS outperforms
CACTUS by a factor 2 - 3, when varying the number of at-
tributes from 10 to 50 (Fig. 1(d)). Given that the extension
step slows CACTUS down by over a factor of 3, CLICKS
can be over an order of magnitude faster than CACTUS.
Our full study [4] also shows that the clustering quality is
better than in previous methods.
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