Efficiently Mining Maximal Frequent ltemsets

Karam Goudaand Mohammed J. Zaki
fComputer Science & Communication Engg. Dept., Kyushu Usitg Japan
tComputer Science Dept., Rensselaer Polytechnic InstitlBé
Email: kgouda@csce.kyushu-u.ac.jp, zaki@cs.rpi.edu

Abstract systematic and realistic set of experiments showing under

We present GenMax, a backtrack search based aIgoritthhiCh conditions a method is likely to perform well and un-

- & ; : der what conditions it does not perform well. We conclude
for mining maximal frequent itemsets. GenMax uses a num- . o -
ber of optimizations to prune the search space. It uses that while Mafia is the best method for miningsaperset

- : - of all maximal patterns, GenMax is the current best method
a novel technique callegrogressive focusingp perform : ’ .)
maximality checking, andiffset propagatiorio perform for enumerating thexactset of maximal patterns. We fur

fast frequency computation. Systematic experimental com-ghee"rvte):)sstehr\e/ebteg?t tefﬁ(f)?nl]sagctgpe of data, where MaxMiner
parison with previous work indicates that different method P :

have varying strengths and weaknesses based on datas€ Preliminaries and Related Work
characteristics. We found GenMax to be a highly efficient

method to mine the exact set of maximal patterns. The problem of mining maximal frequent patterns can
be formally stated as follows: L& = {iy,ia,...,%in} be
1 Introduction a set ofm distinct items. LetD denote a database of trans-

actions, where each transaction has a unique identifijr (

Mining frequent itemsets is a fundamental and essentialand contains a set of items. The set of all tids is denoted
problem in many data mining applications such as the dis-7 = {t1,t2,...,t,}. AsetX C T is also called artem-
covery of association rules, strong rules, correlationdtim set An itemset withk items is called &-itemset. The
dimensional patterns, and many other important discoverysett(X) C 7, consisting of all the transaction tids which
tasks. The problem is formulated as follows: Given a large contain X as a subset, is called thésetof X. For con-
data base of set of items transactions, find all frequentitem venience we write an items¢td, C, W} as ACW, and its
sets, where a frequent itemset is one that occurs in at least #idset{1, 3,4, 5} ast(X) = 1345.
user-specified percentage of the data base.

Many of the proposed itemset mining algorithms are a ‘no
variant of Apriori [2], which employs a bottom-up, breadth-
first search that enumerates every single frequent itemset.
In many applications (especially in dense data) with long

Maximal itemsets | Maximal itemsets
Min_Sup=3 trans |Min_Sup = 2 trans

Itemset
Size

Frequent itemsets
Min_Sup = 3 trans

Frequent itemsets

ttems Min_Sup = 2 trans

ACTW |A,C,D,T,W ACDTW 1

CDW |AC, AT, AW, AC, AD, AT, AW,)
ACTW CD, CT, CW, CD, CT, CW, DT,

1
2
3
4 |ACDW
5
6

frequent patterns enumerating all possibte — 2 subsets oW, TW DW, TW

of am length pattern+: can easily be 30 or 40 or longer) corw |ACT ACW, |ACD. ACT, ACW,

h 3 N ATW,CTW, ADW, ATW, CDT, 3 cow coT
is computationally unfeasible. Thus, there has been recent o |cow, COW, CTW

interest in miningnaximalfrequent patterns in these "hard”
dense databases. Another recent promising direction is to ACTW ACDW,ACTW | 4 | ACTW ACDW, ACTW
mine only closed sets [9,11]; a set is closed if it has no Ei 1 Mining E |
superset with the same frequency. Nevertheless, for some igure 1. Mining Frequent ltemsets
of the dense datasets we consider in this paper, even the set Thesupportof an itemsetX, denotedr(X), is the num-
of all closed patterns would grow to be too large. The only ber of transactions in which that itemset occurs as a subset.
recourse is to mine the maximal patterns in such domains. Thuso(X) = [t(X)]. An itemset isfrequentif its support

In this paper we introdugBenMax a new algorithm that is more than or equal to some threshoilchimum support
utilizes a backtracking search for efficiently enumeratiig ~ (min.sup value, i.e., ifo(X) > minsup We denote by,
maximal patterns. GenMax uses a number of optimizationsthe set of frequent-itemsets, and b¥| the set of all fre-
to quickly prune away a large portion of the subset searchquent itemsets. A frequent itemset is calledximalif it
space. It uses a novefogressive focusingechnique to IS not a subset of any other frequent itemset. The set of all
eliminate non-maximal itemsets, and uskifiset propaga- ~ maximal frequent itemsets is denoted\is| . Given a user
tion for fast frequency checking. specifiedmin_supvalue our goal is to efficiently enumerate

We conduct an extensive experimental characterizationall patterns irMFI .

of GenMax against state-of-the-art maximal pattern min- gyample 1 Consider our example database in Figure 1. There
ing methods like MaxMiner [3] and Mafia [4]. We found gre fivepdifferentitemsZ = {A,C, D, T, W} and six transactions
that the three methods have varying performance depends — {1,2,3,4,5,6}. The figure also shows the frequent and
ing on the database characteristics (mainly the distobuti maximalk-itemsets at two differemin_supvalues — 3 (50%) and
of the maximal frequent patterns by length). We present a2 (30%) respectively.

Backtracking Search GenMax uses backtracking search was studied, but it does not guarantee every maximal pat-
to enumerate th&IFl. We first describe the backtracking tern will be returned. The Pincer-Search [7] algorithm uses
paradigm in the context of enumerating all frequent pat- horizontal data format. It not only constructs the candidat
terns. We will subsequently modify this procedure to enu- in a bottom-up manner like Apriori, but also starts a top-
merate theViFI . down search at the same time, maintaining a candidate set

Backtracking algorithms are useful for many combina- of maximal patterns. This can help in reducing the number
torial problems where the solution can be represented asof database scans, by eliminating non-maximal sets early.
a setl = {ip,i1,...}, where eachi; is chosen from a fi- The maximal candidate set is a superset of the maximal pat-
nite possible setP;. Initially I is empty; it is extended terns, and in general, the overhead of maintaining it can be
one item at a time, as the search space is traversed. Theery high. In contrast GenMax maintains only the current
length of I is the same as the depth of the corresponding known maximal patterns for pruning.

node in the search tree. Given a partial solution of leigth

I, = {ip,41,...,41-1}, the possible values for the next item
7; comes from a subset; C P, called thecombine set

If y € P, — Cy, then nodes in the subtree with root node
I; = {io, i1, ..., 41—1, y} will not be considered by the back-

MaxMiner [3] is another algorithm for finding the max-
imal elements. It uses efficient pruning techniques to
quickly narrow the search. MaxMiner employs a breadth-
first traversal of the search space; it reduces database scan
ning by employing a lookahead pruning strategy, i.e., if a

tracking algorithm. Since such subtrees have been prunedode with all its extensions can determined to be frequent,
away from the original search space, the determination ofthere is no need to further process that node. It also em-

C; is also callegpruning

/I Invoke as Fl-backtrack(F1, 0)

Fl-backtrack(I, C;, 1)

for eachx € C;
Iy = T U {z} //also addl; 1, to FI
Py ={y:y € Crandy > z}
Ci41 = Fl-combine (i41, Pr41)
Fl-backtrackl;+1, Ci+1,1 + 1)

grwNE

/l CanlI;;, combine with other items i, ?
Fl-combine(;+1, Pr+1)

1. C=0

2. foreachy € P4

3. if 1,41 U {y} is frequent
4. C=CU{y}

5. return C

Figure 2. Backtrack Algorithm for Mining FI

Consider the backtracking algorithm for mining all fre-
guent patterns, shown in Figure 2. The main loop tries ex-
tendingl; with every itemz in the current combine séf;.

The first step is to computé;, which is simplyl; ex-
tended withx. The second step is to extract the new possi-
ble set of extensiond;,1, which consists only of itemg

in C; that follow z. The third step is to create a new com-
bine set for the next pass, consisting of valid extensioms. A
extension is valid if the resulting itemset is frequent. The
combine set(;, 1, thus consists of those items in the possi-
ble set that produce a frequent itemset when used to exten
I;+1. Any item notin the combine set refers to a pruned sub-
tree. The final step is to recursively call the backtrack rou-

ploys item (re)ordering heuristic to increase the effastiv
ness of superset-frequency pruning. Since MaxMiner uses
the original horizontal database format, it can perform the
same number of passes over a database as Apriori does.

DepthProject [1] finds long itemsets using a depth first
search of a lexicographic tree of itemsets, and uses a
counting method based on transaction projections along its
branches. This projection is equivalent to a horizontal ver
sion of the tidsets at a given node in the search tree. Depth-
Project also uses the look-ahead pruning method with item
reordering. It returns a superset of th&1 and would re-
quire post-pruning to eliminate non-maximal patterns. FP-
growth [6] uses the novel frequent pattern tree (FP-tree)
structure, which is a compressed representation of all the
transactions in the database. It uses a recursive divide-an
conquer and database projection approach to mine long pat-
terns. Nevertheless, since it enumerates all frequergrpatt
it is impractical when pattern length is long.

Mafia [4] is the most recent method for mining tiik-| .
Mafia uses three pruning strategies to remove non-maximal
sets. The first is the look-ahead pruning first used in
MaxMiner. The second is to check if a new set is subsumed
by an existing maximal set. The last technique checks if
t(X) C ¢(Y). If so X is considered together with Y for
extension. Mafia uses vertical bit-vector data format, and
compression and projection of bitmaps to improve perfor-

gnance. Mafia mines a superset of &1, and requires

a post-pruning step to eliminate non-maximal patterns. In
contrast GenMax integrates pruning with mining and re-

tine for each extension. As presented, the backtrack methodurns the exadvFl .

performs a depth-first traversal of the search space.
Example 2 Consider the full subset search space shown in Fig-

3 GenMax for efficient MFI Mining

ure 3. The backtrack search space can be considerably smalle There are two main ingredients to develop an efficient

than the full space. For example, we start wigh= () andCy =
Fy={A,C,D, T,W}. Atlevel 1, each item i, is added td,
in turn. For exampleA is added to obtail, = {A}. The possi-
ble set forA, P, = {C, D, T, W} consists of all items that follow
A in Cy. However, from Figure 1, we find that onC', AT, and
AW are frequent (anin_sup=3), givingC, = {C, T, W}. Thus
the subtree corresponding to the notlB has been pruned.

Related Work Methods for finding the maximal elements
include All-MFS [5], which works by iteratively attempt-

ing to extend a working pattern until failure. A random-
ized version of the algorithm that uses vertical bit-vestor

MFI algorithm. The first is the set of techniques used to
remove entire branches of the search space, and the second
is the representation used to perform fast frequency compu-
tations. We will describe below how GenMax extends the
basic backtracking routine fdétl, and then the progressive
focusing and diffset propagation techniques it uses fdr fas
maximality and frequency checking.

The basicMFI enumeration code used in GenMax is a
straightforward extension dfl-backtrack. The main ad-
dition is the superset checking to eliminate non-maximal
itemsets, as shown in Figure 4. In addition to the main steps

Level
{HA,C.D, T,W}

T

A{C, T, W} Cc{D,T,W} D{TW} T{W} w 1

AC{T,W} \QT,W} AT{W} AW CD{T,W} cTiwr cw W} DW Tw 2
- |

Acoitwg | AcTiw: acw |Ang Remw | aTw CM Cow) cTw Dyw 3

ACD‘WEBMV AdTw EDQV "

ACRTW 5

Figure 3. Subset/Backtrack Search Tree (min.sup= 3): Circles indicate maximal sets and the infrequent sets hese b
crossed out. Due to the downward closure property of sugpert all subsets of a frequent itemset must be frequestjrdguent
itemsets form aorder (shown with the bold line), such that all frequent itemsitsbove the border, while all infrequent itemsets
lie below it. SinceMFI determine the border, it is straightforward to obtkinn a single database scanMfI is known.

/I Invocation: MFI-backtrackl, F, 0) ADTW.C) ow.c)
MFI-backtrack(I;, C;, 1) @ oo (b) T
1. foreachzx € C; ;
2. Lipn=1TU {m} AD(T.W.C} ATIW,C) ,;G/(c)\ “Aac DTIW,C} pwic} bc
3. P ={y:y € Crandy > x} . l - j
4% if I;+1 U P41 has a superset iMFI M ‘. N jA v
5.* return //all subsequent branches pruned! ADTQWE) ADW(C) ADC ATW(C} ATC AWC DTWC} DT DWC
6. Cz+1 = Fl-combine (l+17 Pl+1)

7.* if Ci+1 is empty ™o ©

8.* if 7,1 has no superset iMFI rove e oy e

9.* MFI=MFI U ;44 o

10. elseMFl-backtrack(; 1, Cii1, I+ 1) ™ ¥

Figure 4. Backtrack Algorithm for Mining

MFI (* indicates a new line not in FI-backtrack) Figure 5. Backtracking Trees of Example 2

.) i down the search space. The first heuristic is to reorder the
in FI enumeration, the new code adds a step (line 4) aftercompine set in increasing order of support. This is likely
the construction of the possible set to check.if; U P44 to produce small combine sets in the next level, since the
is subsumed by an existing maximal set. If so, the currentjtems with lower frequency are less likely to produce fre-
and all subsequent items @} can be pruned away. After guentitemsets at the next ievel. This heuristic was firsti use

creating the new combine set, if it is empty alach isnota jn MaxMiner, and has been used in other methods since
subset of any maximal pattern, it is added toké . If the then [1, 4, 11].

combine set is non-empty a recursive call is made to check | addition to sorting the initial combine set at level 0

further extensions. _ _ _ in increasing order of support, GenMax uses another novel
Superset Checking Techniques: Checking to see if the reordering heuristic based on a simple lemma

given itemset/;;; combined with the possible sé{; is

subsumed by another maximal set was also proposed inLemmal LetIF(z) = {y : y € Fy,zy is not frequent,
Mafia [4] under the name HUTMFI. Further pruning is pos- denote the set of infrequent 2-itemsets that contain an item
sible if one can determine based just on support of the com-z € Fi, and letM (x) be the longest maximal pattern con-
bine setsiff;; ; U P, 1 will be guaranteed to be frequent. In tainingz. Then|M (z)| < |F1| — |IF(z)|.

this case also one can avoid processing any more branches.) o

This method was first introduced in MaxMiner [3], and was ~ ASSumingF: has been computed, reorderi6g in de-
also used in Mafia under the name FHUT. creasing order of F'(z) (with x € Cj) ensures that the
Reordering the Combine Set:Two general principles for smallest combine sets will be processed at the initial lev-
efficient searching using backtracking are that: 1) Itisenor €IS Of the tree, which result in smaller backtracking search
efficient to make the next choice of a subtree (branch) to €S GenMax thus initially sorts the items in decreasing
explore to be the one whose combine set has the fewesP'der of/F'(x) and inincreasing order of support.

items. This usually results in good performance, since it o L

minimizes the number of frequency computations in FI- EX@mple 3 For our database in Figure 1 within.sup = 2,
combine. 2) If we are able to remove a node as early as! F'(¢) is the same of all items € F\, and the sorted order (on

: . . support) isA, D, T, W, C. Figure 5 shows the backtracking search
possible from the backtracking Search tree we effectively tregg fo)r maximal itemsets%ontaining prefix iteAmndD.gUn-
prune many branches from consideration.

) -) der the search tree fot, Figure 5 (a), we try to extend the partial
Reordering the elements in the current combine set tosolution AD by adding to it itemI" from its combine set. We
achieve the two goals is a very effective means of cutting try another itemV after itemsetA DT turns out to be infrequent,

and so on. Since GenMax uses itemsets which are found earlier !/ Invocation: LMFI-backtrackf, F1, 0, 0)
the search to prune the combine sets of later branches fiaffer /I LM F1I, is an output parameter

ing the maximal sel DW C, GenMax skipsADC'. After finding LMFI-backtrack(1, Ci, LM F'11, 1)
ATW C all the remaining nodes with prefix are pruned, and so for eachz € C

on. The pruned branches are shown with dashed arrows, fimgjca lipy = 1U {x}

that a large part of the search tree is pruned away IJfDlIH :U{%I Yy Eaglaasnudp%rzegi }iDMFI
I+1 1+1 !

1
2
3
4.
Theorem 1 (Correctness) MFI-backtrack returns all and g' return //subsequent branches pruned!
7
8
9

* —
only the maximal frequent itemsets in the given database.) LMFly =0

Ci4+1 = Fl-combine (i41, Pi4+1)
if Cy41 is empty

3.1 Optimizing GenMax if 1,411 has no superset ihM F'I;

10. LMFI, = LMFL U I
Superset Checking Optimization %* elseIL/IZ\\A4FITﬁ+1kt: {]\kJ(€ ngFIz L:A}"EIM} I+ 1)
The main efficiency of GenMax stems from the fact : -Dackrackl;+1, Ciy1, 141,
that it eliminates branches that are subsumed by an already 13j* LMF_IL - LMFIL, U_LMFIZH _
mined maximal pattern. Were it not for this pruning, Gen- ~ Figure 6. Mining MFI with Progressive Focus-
Max would essentially default to a depth-first exploratién o ing (*indicates a new line not in MFI-backtrack)

the search tree. Before creating the combine set for the next
pass, in line 4 in Figure 4, GenMax checkljf; U P11
is contained within a previously found maximal set. If yes, = The O(/s log s) time bounds reported in [8] for dy-
then the entire subtree rooted/at; and including the el- namic subset testing do not assume anything about the se-
ements of the possible set are pruned. If no, then a newguence of operations performed. In contrast, we have full
extension is required. Another superset check is required aknowledge of how GenMax generates maximal sets; we
line 8, whenl;; has no frequent extension, i.e., when the use this observation to substantially speed up the subset
combine set’;, 1 is empty. Even though.; isaleafnode checking process. The main idea is to progressively nar-
with no extensions it may be subsumed by some maximalrow down the maximal itemsets of interest as recursive calls
set, and this case is not caught by the check in line 4 aboveare made. In other words, we construct for each invocation
The major challenge in the design of GenMax is how to of MFI-backtrack a list olocal maximal frequent itemsets
perform this subset checking in the current set of maximal LM F'I;. This list contains the maximal sets that can po-
patterns in an efficient manner. If we were to naively imple- tentially be supersets of candidates that are to be gederate
ment and perform this search two times on an ever expand{from the itemset/;. The only such maximal sets are those
ing set of maximal patterridF| , and during each recursive that contain all items in/;. This way, instead of check-
call of backtracking, we would be spending a prohibitive ing if ;11 U P41 is contained in the full curreiiFl , we
amount of time just performing subset checks. Each searchcheck only inL M FI; — the local set of relevant maximal
would takeO(]MFI|) time in the worst case, wheldFI itemsets. This technique, that we gatbgressive focusing
is the current, growing set of maximal patterns. Note that is extremely powerful in narrowing the search to only the
some of the best algorithms for dynamic subset testing runmost relevant maximal itemsets, making superset checking
in amortized timeD(+/s log s) per operation in a sequence practical on dense datasets.
of s operations [8] (for us = O(MFI)). In dense do- Figure 6 shows the pseudo-code for GenMax that incor-
main we have thousands to millions of maximal frequent porates this optimization (the code for the first two opti-
itemsets, and the number of subset checking operations pemizations is not show to avoid clutter). Before each in-
formed would be at least that much. Can we do better? vocation of LMFI-backtrack a newL M F'I;,, is created,
The answer is, yes! Firstly, we observe that the two sub- consisting of those maximal sets in the currédt F'I; that
set checks (one on line 4 and the other on line 8) can becontain the itemx (see line 10). Any new maximal itemsets
easily reduced to only one check. Singe; U P, is a su- from a recursive call are incorporated in the curtenf F'I;
perset off;, 1, in our implementation we do superset check at line 12.
only for I, U P,41. While testing this set, we store the

maximum position, say, at which an item in;;; U P4 Frequency Testing Optimization

is not found in a maximal se/ € MFI. In other words, So far GenMax, as described, is independent of the data
all items beforey are subsumed by some maximal set. For format used. The techniques can be integrated into any of
the superset test faf 1, we check if|[;;1| < p. If yes, the existing methods for mining maximal patterns. We now
I;+1 is non-maximal. If no, we add it thFI . present some data format specific optimizations for fast fre

The second observation is that performing supersetquency computations.

checking during each recursive call can be redundant. For GenMax uses a vertical database format, where we have
example, suppose that the cardinality of the possible setavailable for each item its tidset, the set of all transaxctio
P41 is m. Then potentially, MFI-backtrack makes re- tids where it occurs. The vertical representation has the fo
dundant subset checks, if the curr®ffl has not changed lowing major advantages over the horizontal layout: Rjrstl
during thesem consecutive calls. To avoid such redun- computing the support of itemsets is simpler and faster with
dancy, a simple checgtatus flag is used. If the flag is false, the vertical layout since it involves only the intersection
no superset check is performed. Before each recursive calbf tidsets (or compressed bit-vectors if the vertical forma
the flag is false; it becomes true whenevgr ; is empty, is stored as bitmaps [4]). Secondly, with the vertical lay-
which indicates that we have reached a leaf, and have toout, there is an automatic “reduction” of the database be-
backtrack. fore each scan in that only those itemsets that are relevant

to the following scan of the mining process are accessed
from disk. Thirdly, the vertical format is more versatile in
supporting various search strategies, including brefidth-
depth-first or some other hybrid search.

/I CanI;;, combine with other items i6;?

/I CanI;;1 combine with other items i6;?
Fl-diffset-combine(I;+1, Pi+1)
=10
for eachy € P41
y =y
if level == Othen d(y') = t(I1+1) — t(y)
elsed(y’) = d(y) — d(li41)

Fl-tidset-combine(; 41, Pi+1) if o(y') > minsup

ONorWNE

1. C=90 i /
:2)). foreachy € P41 returnCa Cuiy’}
x Yy =y . A .
4% t.(y/) - {(T141) N E(y) Figure 8. FI-combine: Diffset Propagation
2' 'f(lf(j g 5 Em,r}LSUp of computing the tidset of as shown in line 4 in Figure 7.
7 retumn C Y Thatisd(y’) = t(x) — t(y). The support of/ is now given

aso(y') = o(x) — |d(y’)|. At subsequent levels, we have
available the diffsets for each element in the combinelifst.
this casel(y’) = d(y) — d(x), but the support is still given

AN _ / H -
Let’s consider how the FI-combine (see Figure 2) routine ?osrac(grr)\p;n?rl(g)the|g((3%n)klin|2%?ert§ ﬁssip]gv(\;?ﬁtsheetspseudo code
works, where the frequency of an extension is tested. Each '

Figure 7. Fl-combine Using Tidset Intersec-
tions (* indicates a new line not in Fl-combine)

item z in C; actually represents the itemsktu {z} and GenMax:

stores the associated tidset for the itenfset {<}. For the 1. ComputeF; andF,

initial invocation, sincdl; is empty, the tidset for each item 3. Compute F(z) for each itemw € F

x in Cy is identical to the tidset,(x), of itemz. Before line 4. SortF (decreasing iff F(z), increasing inv(z))
3 is called in FI-combine, we intersect the tidset of the ele- 5 NFT = ¢ ’

ment/;, (i.e.,t(1;U{z})) with the tidset of elemeny i.e., 6. LMFI-backtrack{, F;, MFI, 0) //use diffsets
t(I; U {y})). If the cardinality of the resulting intersection 7. return MFI

is above minimum support, the extension wijtls frequent, Figure 9. The GenMax Algorithm
andy’ the new intersection result, is added to the combine __ o
set for the next level. Figure 7 shows the pseudo-code forFinal GenMax Algorithm The complete GenMax algo-

FI-tidset-combine using this tidset intersection baseat su fithm is shown in Figure 9, which ties in all the optimiza-
port counting. tions mentioned above. GenMax assumes that the input

In Charm [11] we first introduced two new properties of dataset is in the vertical tidset format. First GenMax com-

itemset-tidset pairs which can be used to further incremset Putes the set of frequent items and the frequent 2-itemsets,

performance. Consider the itemsandy in C;. If during ~ Using a vertical-to-horizontal recovery method [10]. This
intersection in line 4 in Figure 7, we discover that) — or information is used to reorder the items in the initial com-

equivalentlyt(I,,1) — is a subset of or equal tdy), then bine list to minimize the search tree size that is generated.
we do not addy’ to the combine set, since in this cage, GenMax uses the progressive focusing technique of LMFI-
always occurs along witly. Instead of adding’ to the backtrack, combined with diffset propagation of Fi-dittse
combine set, we add it ;. This optimization was also combine to produce the exact set of all maximal frequent
used in Mafia [4] under the name PEP. itemsetsMFI .
Diffsets Propagation Despite the many advantages of the ;
vertical format, when the tidset cardinality gets very &arg 4 Experimental Results
(e.g., for very frequent items) the intersection time start Past work has demonstrated that DepthProject [1] is
to become inordinately large. Furthermore, the size of in- faster than MaxMiner [3], and the latest paper shows that
termediate tidsets generated for frequent patterns can als Mafia [4] consistently beats DepthProject. In out experi-
become very large to fit into main memory. GenMax uses a mental study below, we retain MaxMiner for baseline com-
new format called diffsets [10] for fast frequency testing. parison. At the same time, MaxMiner shows good perfor-
The main idea of diffsets is to avoid storing the entire mance on some datasets, which were not used in previous
tidset of each element in the combine set. Instead we keepstudies. We use Mafia as the current state-of-the-art method
track of only the differences between the tidset of itemset and show how GenMax compares against it.

I; and the tidset of an elementin the combine set (which
actually denoted; U {x}). These differences in tids are
stored in what we call thdiffset which is a difference of

All our experiments were performed on a 400MHz Pen-
tium PC with 256MB of memory, running RedHat Linux
6.0. For comparison we used the original source or ob-

two tidsets at the root level or a difference of two diffsdts a ject code for MaxMiner [3] and MAFIA [4], provided to
later levels. Furthermore, these differences are propdgat us by their authors. Timings in the figures are based on total
all the way from a node to its children starting from the root. wall-clock time, and include all preprocessing costs (such
In an extensive study [10], we showed that diffsets are very as horizontal-to-vertical conversion in GenMax and Mafia).
short compared to their tidsets counterparts, and areyhighl The times reported also include the program output. We

effective in improving the running time of vertical methods
We describe next how they are used in GenMax, with the
help of an example. At level 0, we have available the tidsets
for each item inF;. When we invoke Fl-combine at this
level, we compute the diffset gf, denoted ad(y’) instead

believe our setup reflects realistic testing conditionofas
posed to some previous studies which report only the CPU
time or may not include output cost).

Benchmark Datasets: We chose several real and syn-
thetic datasets for testing the performance of the the al-

Database I | AL R MPL the y-axis is in log-scale, this appears linear) faithfditi
chess 76 | 37 319 | 23 (20(?) lowing the growth ofMFI with lowering minimum sup-
connhect 138 ‘212 %7’152547 Zglézégég port, as shown in the top center and right figures. MafiaPP
?uurf]s[ﬁom 7117 | 50 | 49,046 43(('2.5%)") shows super-exponential growth_ and spffers from an ap-
pumsb 7117 | 74 | 49,046 | 27 (40%) proximatelyO(|MFI|?) overhead in pruning non-maximal
T1014D100K | 1000 | 10 | 100,000| 13 (0.01%) sets and thus becomes impractical wiMifl becomes too
T40110D100K | 1000 | 40 | 100,000| 25 (0.1%) large, i.e., at low supports.
On pumsb, we find that GenMax is the fastest, having a

Figure 10. Database Characteristics: I denotes slight edge over Mafia. It is about 2 times faster than Mafi-
the number of itemsAL the average length of a record, aPP. We observed that the post-pruning routine in MafiaPP
[the number of records, an P the maximum pattern works well till aroundO(10*) maximal itemsets. Since at
length at the givemin.sup 60% minsup we had around that many sets, the overhead

of post-processing was not significant. With lower support
the post-pruning cost becomes significant, so much so that
gorithms, shown in Table 10. The real datasets have beerwe could not run MafiaPP beyond 50% minimum support.
used previously in the evaluation of maximal patterns [1, 3, MaxMiner is significantly slower on pumsb; a factor of 10
4]. Typically, these real datasets are very dense, i.ey, the times slower then both GenMax and Mafia.
produce many long frequent itemsets even for high val- Type | results substantiate the claim that GenMax is an
ues of support. The table shows the length of the longesthighly efficient method to mine the exadFl . It is as fast
maximal pattern (at the lowest minimum support used in as Mafia on pumsb and within a factor of 2 on chess. Mafia,
our experiments) for the different datasets. For exam-on the other hand is very effective in mining a superset of
ple on pumsb*, the longest pattern was of length 43 (any the MFI . Post-pruning, in general, is not a good idea, and
method that mines all frequent patterns will be impracti- GenMax beats MafiaPP with a wide margin (over 100 times
cal for such long patterns). We also chose two synthetic better in some cases, e.g., chess at 20%). On Type | data
datasets, which have been used as benchmarks for testinglaxMiner is noncompetitive.
methods that mine all frequent patterns. Previous maxi-
mal set mining algorithms have not been tested on theseType Il Datasets: Connect and Pumsb*

datasets, which are sparser compared to the real sets. All" Type || datasets, as shown in Figure 12 are characterized
these datasets _are pUb|IC|y available from IBM Almaden by a left-skewed distribution of the maximal frequent pat-
(www.almaden.ibm.com/cs/quest/demos.html). terns, i.e., there is a relatively gradual increase withaash
While conducting experiments comparing the 3 different drop in the number of maximal patterns. The mean pattern
algorithms, we observed that the performance can vary sig-ength is also longer than in Type | datasets; it is around 16
nificantly depending on the dataset characteristics. We wer or 17. TheMFI cardinality is also drastically smaller than

able to classify our benchmark datasets into four classesF| cardinality; by a factor ol 0* or more (in contrast, for
based on the distribution of the maximal frequent patterns. Type | data, the reduction was onlg?).

The main performance trend for both Type Il datasets

Type | Datasets: Chess and Pumsb is that Mafia is the best till the support is very low, at

Figure 11 shows the performance of the three algorithmswhich point there is a cross-over and GenMax outperforms
on chess and pumsb. These Type | datasets are characteMafia. MafiaPP continues to be favorable for higher sup-
ized by a symmetric distribution of the maximal frequent ports, but once again beyond a point post-pruning costs star
patterns (leftmost graph). Looking at the mean of the curve, to dominate. MafiaPP could not be run beyond the plotted
we can observe that for these datasets most of the maximapoints. MaxMiner remains noncompetitive (about 10 times
patterns are relatively short (average length 11 for cheds a slower). The initial start-up time for Mafia for creating the
10 for pumsb). TheMFI cardinality figures on top center bit-vectors is responsible for the high offset at 50% suppor
and right, show that for the support values shown Ntid on pumsb*. GenMax appears to exhibit a more graceful
is 2 orders of magnitude smaller than all frequent itemsets. increase in running time than Mafia.

Compare the total execution time for the different algo-
rithms on these datasets (center and rightmost graphs). W&8ype Il Datasets: T10l4 and T40I10
use two different variants of Mafia. The first one, labeled As depicted in Figure 13, Type lll datasets — the two
Mafia, does not return the exact maximal frequent set, rathersynthetic ones — are characterized by an exponentially de-
it returns a superset of all maximal patterns. The secondcaying distribution of the maximal frequent patterns. Ex-
variant, labeled MafiaPP, uses an option to eliminate non-cept for a few maximal sets of size one, the vast majority of
maximal sets in a post-processing (PP) step. Both GenMaxmaximal patterns are of length two! After that the number

and MaxMiner return the exa®FI . of longer patterns drops exponentially. The mean pattern
On chess we find that Mafia (without PP) is the fastest length is very short compared to Type | or Type Il datasets;
if one is willing to live with a superset of theIFI . Mafia it is around 4-6.MFI cardinality is not much smaller than

is about 10 times faster than MaxMiner. However, notice the cardinality of all frequent patterns. The difference is
how the running time of MafiaPP grows if one tries to find only a factor of 10 compared to a factor of 100 for Type |

the exactMFI in a post-pruning step. GenMax, though and a factor of 10,000 for Type II.

slower than Mafia is significantly faster than MafiaPP and = Comparing the running times we observe that MaxMiner
is about 5 times better than MaxMiner. All methods, except is the best method for this type of data. The breadth-first
MafiaPP, show an exponential growth in running time (since or level-wise search strategy used in MaxMiner is ideal for

maximal itemset distribution chess pumsb

7000 : 5 ‘ :
—a— 10000 — 100000 ; ; : . .
6000 pﬁ",ﬁgﬁgggﬁfg o] MaxMiner —8— MaxMiner —8—
MafiaPP - y) MafiaPP -
5000 5 1000 | GenMax o A 5 10000 1 GenMax o
o o Mafia ——2 @ Mafia —2
g 4000 o 00t ¢ L 1000} P
& 3000 £ £
g ST F o100t
2000 g T g
$] g '9
1000 = 1c s 10 ¢
. B
0r ©000 01 EE L L 1]
0 5 10 15 20 25 70 65 60 55 50 45 40 35 30 25 20 100 90 80 70 60 50 40
Length Minimum Support (%) Minimum Support (%)
Figure 11. Type | Datasets (chess and pumsb)
maximal itemset distribution connect pumsb*
4000 —_——————————
—a— 10000 — 10000 — 2
3500 t ¢ ;3,?]2%2}(722% o 1 MaxMiner —8— MaxMiner —8—
3000 '] MafiaPP —-m-— - MafiaPP -
© 1000 | GenMax -0 1 T 1000l GenMax o]
20| 3 Mafia & Wl & Matia = /
g 2000 | P A v
S 1500 E 100} 0 £ 100
g = F
T 1000 — —
g g
502’ e 10t S 10 T .
000 b 1 owRe L
0 5 10 15 20 25 30 35 40 100 90 80 70 60 50 40 30 20 10 0 50 45 40 35 30 25 20 15 10 5 0
Length Minimum Support (%) Minimum Support (%)
Figure 12. Type Il Datasets (connect and pumsb*)
maximal itemset distribution T1014D100K T40110D100K
35000 —_——
—a— 10000 —— 10000 —
30000 | Tlé%%%gifg o | MaxMiner —8— MaxMiner —8—
MafiaPP —&-— A MafiaPP —m—
L S 1000 - GenMax ---o | I GenMax -~ A
o 25000 8 Mafia -4 M & 1000 | Mafia -2 ol
2 20000 ° °
2 E 100 E
g 15000 f = =
I | 3 T 100
10000 | S 0l © |
5000 |
0t B 8-60-6-0-69-64 1 S — 10 e
0O 2 4 6 8 10 12 14 16 18 0.16 0.14 0.12 0.1 0.08 0.06 0.040.02 0 2 18161412 1 08 06 04 0.2
Length Minimum Support (%) Minimum Support (%)
Figure 13. Type Ill Datasets (T10 and T40)
maximal itemset distribution mushroom
30000 : ‘ : :
mushroom(0.1%) —a— 100 . :
25000 | mushroom(0.075%) —o-— 0 | 0000
3 . -
- 20000 o 10t
g o
$ 15000 £
E 10000 ; q MaxMiner —&—
I g 1 MafiaPP - 1
a » GenMax o
5000 | ¥ GenMax’ e
Mafia ---&--
0t 1 01 : :
0 5 10 15 20 25 10 1 0.1 0.01
Length Minimum Support (%)

Figure 14. Type IV Dataset (mushroom)

very bushy search trees, and when the average maximal pato get their frequency. On the other hand vertical meth-
tern length is small. Horizontal methods are better equdppe ods spend much time in performing intersections on long
to cope with the quadratic blowup in the number of fre- item tidsets or bit-vectors. GenMax gets around this prob-
guent 2-itemsets since one can use array based countintem by using the horizontal format for computing frequent

2-itemsets (denoted), but it still has to spend time per-
forming O(| F»|) pairwise tidset intersections.

Mafia on the other hand perforra¥| 1 |?) intersections,

methods, MaxMiner is the best for mining Type Il distri-
butions. On the remaining types, Mafia is the best method
if one is satisfied with a superset of the-I . For very low

whereF, is the set of frequent items. The overhead cost is supports on Type Il data, Mafia loses its edge. Post-pruning
enough to render Mafia noncompetitive on Type Ill data. On Non-maximal patterns typically has high overhead. It works

T10 Mafia can be 20 or more times slower than MaxMiner. only for high support values, and MafiaPP cannot be run be-
GenMax exhibits relatively good performance, and it is yond a certain minimum support value. GenMax integrates
about 10 times better than Mafia and 2 to 3 times worse pruning of non-maximal itemsets in the process of mining

than MaxMiner. On T40, the gap between GenMax/Mafia using the novel progressive focusing technique, along with
and MaxMiner is smaller since there are longer maximal other optimizations for superset checking; GenMax is the

patterns. MaxMiner is 2 times better than GenMax and 5
times better than Mafia. Since tiMFI cardinality is not

best method for mining the exalet-I .
Our work opens up some important avenues of future

too large MafiaPP has almost the time as Mafia for high work. The IBM synthetic dataset generator appears to be

supports. Once again MafiaPP could not be run for lower
support values. It is clear that, in general, post-pruning i
not a good idea; the overhead is too much to cope with.

Type IV Dataset: Mushroom
Mushroom exhibits a very uniqu®iFl distribution.
PlottingMFI cardinality by length, we observe in Figure 14

too restrictive. It produces Type INIFI distributions. We
plan to develop a new generator that the users can use to
produce various kinds d¥IFI distributions. This will help
provide a common testbed against which new algorithms
can be benchmarked. Knowing the conditions under which
a method works well or does not work well is an impor-
tant step in developing new solutions. In contrast to pre-

that the number of maximal patterns remains small until vious studies we were able to isolate these conditions for

length 19. Then there is a sudden explosion of maximal pat-
terns at length 20, followed by another sharp drop at length

the different algorithms. For example, we were able to im-
prove the performance of GenMax’ to match MaxMiner on

21. The vast majority of maximal itemsets are of length 20. mushroom dataset. Another obvious avenue of improving
The average transaction length for mushroom is 23 (see TaGenMax and Mafia is to efficiently handle Type Ill data. It
ble 10), thus a maximal pattern spans almost a full transac-S€ems possible to combine the strengths of the three meth-

tion. The totalMFI cardinality is about 1000 times smaller
than all frequent itemsets.

On Type IV data, Mafia performs the best. MafiaPP and
MaxMiner are comparable at lower supports. This data
is the worst for GenMax, which is 2 times slower than
MaxMiner and 4 times slower than Mafia. In Type IV
data, a smaller itemset is part of many maximal itemsets
(of length 20 in case of mushroom); this renders our pro-
gressive focusing technique less effective. To perform-max
imality checking one has to test against a large set of maxi-
mal itemsets; we found that GenMax spends half its time in
maximality checking. Recognizing this helped us improve
the progressive focusing using an optimized intersection-

based method (as opposed to the original list based ap-

proach). This variant, labeled GenMax’, was able to cut
down the execution time by half. GenMax’ runs in the same
time as MaxMiner and MafiaPP.

5 Conclusions

This is one of the first papers to comprehensively com-
pare recent maximal pattern mining algorithms under realis
tic assumptions. Our timings are based on wall-clock time,
we included all pre-processing costs, and also cost of out-
putting all the maximal itemsets (written to a file). We were
able to distinguish four different types bfFI distributions
in our benchmark testbed. We believe these distributions
to be fairly representative of what one might see in prac-

tice, since they span both real and synthetic datasets. Typeyg]

| is a normalMFI distribution with not too long maximal
patterns, Type Il is a left-skewed distributions, with leng
maximal patterns, Type Il is an exponential decay distri-
bution, with extremely short maximal patterns, and finally
Type IV is an extreme left-skewed distribution, with very
large average maximal pattern length.

We noted that different algorithms perform well under
different distributions. We conclude that among the curren

ods into a single hybrid algorithm that uses the horizontal
format when required and uses bit-vectors/diffsets or per-
haps bit-vectors of diffsets in other cases or in combimatio
We plan to investigate this in the future.

Acknowledgments We would like to thank Roberto Bayardo for
providing us the MaxMiner algorithm and Johannes Gehrke for
the MAFIA algorithm.

References

[1] R. Agrawal, C. Aggarwal, and V. Prasad. Depth First Gener
ation of Long Patterns. IACM SIGKDD Conf.Aug. 2000.

[2] R. Agrawal, et al. Fast discovery of association rules. |

Advances in Knowledge Discovery and Data MiniAg\Al

Press, 1996. o o
R. J. Bayardo. Efficiently mining long patterns from

databases. IACM SIGMOD Conf.June 1998.
D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: a maximal

frequent itemset algorithm for transactional databases.

Intl. Conf. on Data EngineeringApr. 2001,))

D. Gunopulos, H. Mannila, and' S. Saluja. Discovering all

the most specific sentences by randomized algorithms. In

Intl. Conf. on Database Thegryan. 1997.)

[6] J. Han, J. Pei, and Y. Yin. Mining frequent patterns witho
candidate generation. KCM SIGMOD Conf.May 2000..

[7] D.-l. Linand Z. M. Kedem. Pincer-search: A new algorithm

for discovering the maximum frequent set.lhtl. Conf. Ex-

tending Database Technologylar. 1998.)]

D. Yellin. An algorithm for dynamic subset and interseot

testin%.TheoreticaI Computer Scienc29:397-406, 1994.

M. J. Zaki. Generating non-redundant association rulas

ACM SIGKDD Conf.Aug. 2000. o))

M. J. Zaki and K. Gouda. Fast vertical mining using Déffs.

TR 01-1, CS Dept., RPI, Mar. 2001. o)

M. J. Zaki and C.-J. Hsiao. ©€ARM: An efficient algorithm

for closed association rule mining. TR 99-10, CS Dept., RPI,

Oct. 1999.

(3]

(4]
|

(5]

[l
[10]
11]

