SCHISM: A New Approach for Interesting Subspace Mining *

Karlton Sequeira and Mohammed Zaki Department of Computer Science, Rensselaer Polytechnic Institute, Troy, New York 12180

Abstract

High-dimensional data pose challenges to traditional clustering algorithms due to their inherent sparsity and data tend to cluster in different and possibly overlapping subspaces of the entire feature space. Finding such subspaces is called subspace mining. We present SCHISM, a new algorithm for mining interesting subspaces, using the notions of support and Chernoff-Hoeffding bounds. We use a vertical representation of the dataset, and use a depth-first search with backtracking to find maximal interesting subspaces. We test our algorithm on a number of highdimensional synthetic and real datasets to test its effectiveness.

1 Introduction

Clustering is an unsupervised learning process, in which a multidimensional space is partitioned into disjoint regions, such that all points within any such region/cluster are similar to each other, but dissimilar with respect to points in other clusters. If the clustering is done using all available features, it is called a *full-dimensional* clustering. Many such algorithms like BIRCH, DBSCAN, CURE [14] have been proposed for this task. While they show acceptable performance on lower dimensional datasets, a large number of dimensions poses problems [15]. One of the main reasons is that data is generally very sparse in high dimensional datasets. Also, most of the full dimensional algorithms use distance metrics, which treat every dimension with equal importance. For high dimensional spaces, it has been argued that under certain reasonable assumptions on the data distribution, the ratio of the distances of the nearest and farthest neighbors to a given target is almost 1 for a variety of distance functions and data distributions [7]. In such a scenario, many full dimensional clustering algorithms have little meaning, as the pairwise distances between the points in distinct clusters need not provide an acceptable contrast.

Solutions proposed include, designing new distance metrics [1] and dimension reduction [12]. Dimension reduction techniques, such as the Karhunen-Loeve transformation (KLT) or singular value decomposition (SVD), project the dataset from the original d to a k dimensional space, where $k \ll d$, and each new dimension is a linear combination of the original dimensions; after this clustering is done using only the k dimensions. Such a strategy may be inappropriate since clusters in the transformed feature space may be hard to interpret. Also, data is only clustered in a single k-dimensional space. [4, 20] cite examples in which KLT does not reduce the dimensionality without trading off considerable information, as the dataset contains subsets of points which lie in different and sometimes overlapping lower dimensional subspaces. Another method of dimension reduction is feature selection, in which some of the dimensions are selected heuristically without transformation [8]. This removes the problem of interpretability, but still only a fixed subspace is used for clustering. These challenges have caused the focus of much recent work in clustering to shift towards finding the interesting subspaces within a high-dimensional space[4, 20, 10, 19, 17, 2, 3, 9]. Other challenges encountered in subspace mining are that subspaces may share dimensions as well as objects, etc. The subspace mining problem has wide applications, especially with datasets having ordinal/nominal values, e.g., datasets found in bioinformatics, intrusion detection, etc.

In this paper, we tackle the problem of finding statistically 'interesting' subspaces in a high dimensional dataset using an algorithm called SCHISM (Support and Chernoff-Hoeffding bound-based Interesting Subspace Miner). We use the Chernoff-Hoeffding bound to prune the search for interesting subspaces, as a nonlinear function of the number of dimensions in which the subspace is constrained. We use a vertical representation of the dataset and capitalize on various advances made in itemset mining. We use a depthfirst search with backtracking to find maximal interesting subspaces. We finally test our algorithm on a wide array of high-dimensional datasets.

2 Related Work

Subspace clustering methods may be classified into two main categories: density-based and projected clustering.

Density-based Clustering Agrawal et al. [4], proposed CLIQUE, which discretizes the domain of each of the d dimensions into a user-specified number, ξ , of equal-width intervals. They use *support* (the fraction of points that lie in a subspace) to denote the density of a subspace; only those subspaces above a minimum density threshold are mined. Using a bottom-up Apriori-like [5] approach, higher-dimensional 'dense' maximal, hyper-rectangular subspaces are mined. To prune their search at a faster rate, they use the minimum-description length (MDL) principle as a heuristic, thereby making it an approximate search. They then merge 'dense' subspaces sharing common faces, and use covering algorithms to mine the minimal descriptions of the subspaces.

Instead of support, Cheng [10], proposed using entropy as a measure of subspace interestingness. Subspaces satisfying an entropy threshold are mined. Nagesh et al. in MAFIA[19], partition each dimension into variable width intervals, based on the distribution of points. An interval is considered 'dense' if the number of points in it exceeds the threshold $(\alpha an)/D_i$, where n is the number of points in the dataset and α is a user-specified parameter, called the *cluster dominance factor*. Here, $(an)/D_i$ corresponds to the number of points expected to lie inside the interval of width

^{*}This work was supported by NSF Grant EIA-0103708 under the KD-D program, NSF CAREER Award IIS-0092978, and DOE Early Career PI Award DE-FG02-02ER25538.

a in the *i*-th dimension, which has range D_i . Using adaptive width intervals minimizes rigidity of clusters obtained by CLIQUE.

Kailing et al [18] suggest using a sample of the points in the dataset. They generate dense subspaces enclosing each point of the sample if it is a *core object*, i.e., if it has more than *MinPts*, a user-specified threshold, points within a threshold radius ϵ . The subspaces are then assigned a quality rating, which takes into account the number of dimensions in which the subspace is constrained and this rating is used to prune lower quality subspaces. By providing a rating, it is only possible for the user to determine the relative interestingness of a subspace w.r.t. another subspace. It is not easy for the user to know the absolute interestingness of the subspace.

Projected Clustering Aggarwal [2, 3] uses projective clustering to partition the dataset into clusters occurring in possibly different subsets of dimensions in a high dimensional dataset. PROCLUS [2] seeks to find axis-aligned subspaces by partitioning the set of points and then uses a hill-climbing technique to refine the partitions. ORCLUS [3], finds arbitrarily oriented clusters by using ideas related to singular value decomposition. Both the algorithms require the number of clusters and the expected number of dimensions for each cluster to be input.

In DOC [20], Procopiuc et al. devise a Monte Carlo algorithm for finding projective clusters. They propose a mathematical formulation for the notion of optimal projective cluster based on the density of the points in the subspaces. In LDR [9], Chakrabarti et al. search for local correlations in the data and perform dimensionality reduction on the locally correlated clusters of data individually.

3 Interestingness Measure

Let $A = \{A_1, A_2, \ldots, A_d\}$ be the set of dimensions. Each dimension A_i has a totally ordered and bounded domain. Then, $S = A_1 \times A_2 \times \ldots \times A_d$ is the high-dimensional space. The input DB, is a set of n points, $DB = \{p_i | i \in [1, n], p_i \in S\}\}$. We partition S into non-overlapping rectangular units, obtained by partitioning each dimension into ξ intervals of equal width.

Definition 1: A subspace is an axis-aligned hyperrectangle, $[l_1, h_1] \times [l_2, h_2] \times \ldots \times [l_d, h_d]$, where $l_i = (aD_i)/\xi$, and $h_i = (bD_i)/\xi$, a, b are positive integers, and $a < b \le \xi$

If $h_i - l_i = D_i$, the subspace is unconstrained in dimension *i* whose range is given as D_i . A *m*-subspace is a subspace constrained in *m* dimensions, denoted as S_m .

Let X_p be the random variable(RV) denoting the number of points in S_p . If the probability of finding n_p points in S_p , is bounded by a reasonably low, user-specified threshold probability τ , S_p is considered to be interesting ¹, i.e., $Pr(X_p \ge n_p) \le \tau$ implies that S_p is an interesting subspace. Accordingly, we have

Definition 2: A subspace is **interesting** if the number of points it contains is statistically significantly higher than that expected under the assumption that all dimensions are independent and uniformly distributed.

It is obvious that a dataset that is scattered uniformly and independently, spanning the entire S, is of least interest from a clustering view-point, as the entropy is maximized. If a subspace deviates significantly from the uniform distribution, then it is potentially interesting ². If n_p points are found in S_p , CLIQUE considers S_p to be 'dense' if $n_p/n \ge s$, where s is the user-specified support threshold. MAFIA considers the subspace 'dense' if $n_p/n \ge (\alpha a)/D_i$ where α is the cluster dominance factor.

In general, all density-based subspace finding algorithms, use a threshold function $thresh : Z^+ \to \Re$ where Z^+ is the set of positive integers, and denotes the number of constrained dimensions in a *candidate* subspace. The value of $thresh \in \Re$ corresponds to the density threshold that must be exceeded for the candidate subspace to be called 'dense'. For example, support based pruning in CLIQUE, $thresh_{CLIQUE}(p) = s, \forall p \in [1, d]$, i.e., no matter what the number of constrained dimensions of a subspace, the pruning threshold is a constant. The *thresh* function can intuitively be either constant (as in CLIQUE) or monotonically increasing or monotonically decreasing.

Lemma 1 (Effect of monotonicity on *thresh*):

If any subspace $S_{p+1} \subset S$ is interesting, then every psubspace S_p , which encloses S_{p+1} and is unconstrained in one of the (p+1) constrained dimensions of S_{p+1} , is always interesting if $thresh(p+1) \geq thresh(p), 1 \leq p \leq d-1$, for density function thresh.

Proof: If S_{p+1} is interesting, $\frac{n_{p+1}}{n} \ge thresh(p+1)$. But, $n_p \ge n_{p+1}$ because $S_{p+1} \subset S_p$. Thus, $\frac{n_p}{n} \ge \frac{n_{p+1}}{n_n} \ge thresh(p+1)$. If, $thresh(p+1) \ge thresh(p)$, then $\frac{n_p}{n} \ge thresh(p)$ and monotonicity is guaranteed.

Lemma 2 For p=1...d, let thresh be monotonically non-decreasing and let thresh₂(p) = thresh(r), where ris the number of dimensions constrained in S_r , a maximally interesting subspace under thresh. If $S_r \subseteq S_p$, then S_p is also interesting under thresh₂.

also interesting under thresh₂. **Proof:** Since S_r is interesting, then $\frac{n_r}{n} \ge thresh(r)$. Also, as $S_r \subseteq S_p, 1 \le p \le r-1, n_p \ge n_r$. Hence, $\frac{n_p}{n} \ge \frac{n_r}{n} \ge thresh(r) = thresh_2(p)$. Thus, S_p is also interesting under $thresh_2$.

A consequence of the above lemmas is that it in order to find all the maximal interesting subspaces found by $thresh_2$, one must set thresh(1) to a very low value so that it converges to $thresh_2$. This causes generation of a number of candidate subspaces which do not yield maximal interesting subspaces but add to computation time. Hence, it makes little sense to have a monotonically increasing threshold function. The thresh function must be either constant or monotonically decreasing. However, it has been observed, that in order to find small subspaces, the constant support threshold function has to be set very low, which makes subspace mining very slow. Hence, we propose a non-linear monotonically decreasing threshold function, which does not guarantee mining all interesting subspaces,³ but does mine in a more reasonable time. The intuition behind why this might work, is that as p increases, the subspace becomes constrained in more and more dimensions, making its volume smaller and smaller. Hence the threshold too, must decrease for the enclosed (S_{p+1}) and enclosing (S_p) subspaces to have comparable interestingness.

¹Typically τ is set to $O(\frac{1}{n}) \ll 0.05$, which is statistically significant

²See Eq. 3 and following comment

³For monotonically decreasing thresh, the Apriori principle may not be applicable. Consider, $\frac{n_p}{n} = \frac{n_{p+1}}{n} = thresh(p+1)$. If thresh(p+1) < thresh(p), then $\frac{n_p}{n} < thresh(p)$ and S_p is not interesting although S_{p+1} is.

3.1 **Chernoff-Hoeffding bound**

We use the Chernoff-Hoeffding bound [11, 16] to bound the tail of the distribution of X_p and measure the level of interestingness. If Y_i , $i = 1 \dots n$, are independently distributed RV, with $0 \le Y_i \le 1$ and $Var[Y_i] < \infty$, then for $Y = \sum_{i=1}^n Y_i$, t > 0,

$$Pr[Y \ge E[Y] + nt] \le e^{-2nt^2} \tag{1}$$

where $E[Y] = \sum_{i=1}^{n} E[Y_i]$ by linearity of expectation. Given a *p*-subspace S_p , let Y_i correspond to the RV that the *i*th point in DB, when projected onto the set of p constrained dimensions of S_p , lies within S_p . Then $Y = X_p$. Using Eq. (1) and for some real $t_p > 0$, S_p is interesting if,

$$Pr[X_p \ge n_p] \le e^{-2nt_p^2} \le \tau \tag{2}$$

where $E[X_p] + nt_p = n_p$, which implies that $t_p = \frac{n_p}{n} - \frac{E[X_p]}{n}$. Substituting t_p in the right hand term of (2), we have $e^{-2n\left(\frac{n_p}{n} - \frac{E[X_p]}{n}\right)^2} \leq \tau$ which on simplification gives,

$$\frac{n_p}{n} \ge \frac{E[X_p]}{n} + \sqrt{\frac{1}{2n}ln(\frac{1}{\tau})} \tag{3}$$

Thus, for a *p*-subspace to be interesting, (3) must hold. (3) makes no assumption, other than independence, about the comparative distribution and hence can be extended to find subspaces interesting w.r.t. distributions, other than that having uniformly distributed dimensions.

Note that the interestingness measure, thresh(p) = $\frac{E[X_p]}{n} + \sqrt{\frac{1}{2n}ln(\frac{1}{\tau})}$ is a non-linear monotonically decreasing function in the number of dimensions p, in which S_p is constrained. Also, note that thresh is analogous to the support and density threshold measures used to prune search in the CLIQUE [4] and MAFIA [19] algorithms respectively. In comparison with CLIQUE, the term $\sqrt{\frac{1}{2n}ln(\frac{1}{\tau})}$ corresponds to minimum density s set by the user. The inter-estingness threshold probability (τ) seems intuitively easier to set than s. The chief difference is the term $\frac{E[X_p]}{r}$, which makes pruning conscious of the volume of the subspace and hence conscious of the number of constrained dimensions of the subspace on which it is being carried out. Unlike earlier proposed interestingness measures [18], this one gives the user a sense of absolute interestingness.

If we assume that each dimension in the *d*-dimensional space is independent and uniformly distributed and discretized into ξ levels, then the probability that a point lies in a specific interval of any dimension is $\frac{1}{\xi}$. Hence, the probability that a point lies in a specific p-subspace (assuming it is constrained to a single interval in each of the p constrained dimensions) is $(\frac{1}{\xi})^p$. Thus, the probability of finding n_p points in any subspace S_p , is distributed as per the binomial distribution with mean $E(X_p) = n(\frac{1}{\xi})^p$. Thus, S_p is interesting if, $\frac{n_p}{n} \ge \frac{1}{\xi^p} + \sqrt{\frac{1}{2n}ln(\frac{1}{\tau})}.$

Note that for $p \geq \lceil \frac{log(n)}{log(\xi)} \rceil = v$, we have $\frac{n}{\xi^p} \leq 1$, and thus $\frac{1}{\xi^p} + \sqrt{\frac{1}{2n}ln(\frac{1}{\tau})} \approx \sqrt{\frac{1}{2n}ln(\frac{1}{\tau})}$. The threshold function thus converges to a constant when the number of constrained dimensions $p \geq v$; analogous to minimum threshold s in CLIQUE. To summarize,

$$thresh_{SCHISM}(d \ge p \ge v) = \sqrt{\frac{1}{2n}ln(\frac{1}{\tau})}$$

From Lemma 1, for $p \ge v$, S_{p+1} is interesting implies that S_p is interesting, as SCHISM is similar to CLIQUE and uses support-based pruning for a large part of the subspace mining process. Note that this constant $\sqrt{\frac{1}{2n}ln\left(\frac{1}{\tau}\right)}$ varies inversely as \sqrt{n} and hence $thresh_{SCHISM}$ converges to a higher threshold for smaller datasets, implying more pruning while yielding subspaces of equal interestingness.

While $thresh_{SCHISM}$ is constant for $p \ge v$, we can gain some improvements in empirical results by changing the rate of change in $thresh_{SCHISM}(p < v)$ to increase the likelihood of monotonic search. We do so by trading off some tightness of the bound by using a penalty term. If f(p)is the penalty term, such that $\forall p \in [1,d], f(p) \leq 1$, then $e^{-2nt_p^2} \leq e^{-2nf(p)t_p^2}$. Using this in 2, $Pr(X_p \geq n_p) \leq 1$ $e^{-2nf(p)t_p^2} \leq \tau$. After simplification,

$$thresh_{SCHISM}(0$$

The term u is used to upper bound $thresh_{SCHISM}(1)$, which is empirically too large for typical values of ξ . Typical values of f(p) are $\frac{p}{a}(a \ge v \implies f(p) \le 1), \frac{1}{(c-bp^2)}$. The last penalty term provides a parabolic as opposed to exponential drop in the threshold as p increases. Typically, u = 0.05. In summary, we have

$$thresh_{SCHISM}(p) = \begin{cases} \min\left\{u, \frac{1}{\xi^p} + \sqrt{\frac{1}{2nf(p)}ln\left(\frac{1}{\tau}\right)}\right\} & if \ p < u\\ \sqrt{\frac{1}{2n}ln\left(\frac{1}{\tau}\right)} & if \ p \ge u \end{cases}$$
(4)

SCHISM Algorithm

A number of the subspace mining algorithms [4, 10, 19] use a bottom-up, breadth-first search. In contrast, SCHISM, which is based on the GenMax algorithm that mines maximal itemsets [13], uses a depth-first search with backtracking to mine the maximal interesting subspaces. The main steps in SCHISM are shown in Figure 1; we first discretize the dataset and convert it to a vertical format. Then we mine the maximal interesting subspaces. Finally, we assign each point to its cluster, or label it as an outlier.

Discretization In SCHISM, we first discretize all points (figure 1, line 1). Given the original dataset DB, we divide each dimension into ξ bins, and give each interval a unique id (for example, the intervals in dimension d_0 are labeled from 0 to $\xi - 1$, those for d_1 are labeled from ξ to $2\xi - 1$, etc.). Consider the example dataset DB shown in Table 1

SCHISM (DB, s, ξ, τ) : //s is the minimum support threshold // ξ is the number of intervals per dimension // τ is the user-specified interestingness threshold 1. DDB =**Discretize** (DB, ξ) 2. VDB =**HorizontalToVertical**(DDB)3. MIS =**MineSubspaces** (VDB, s, ξ, τ) 4. **AssignPoints** (DB, MIS)

Figure 1. The SCHISM Algorithm

DB	d_1	d_2	d_{z}	3	d_4	d_5	d_6	d_7	d_8
p_1	755	689	30	6	482	838	657	743	3 980
p_2	818	166	49	4	302	378	439	633	3 805
p_3	418	159	49	9	260	139	921	- 980	5 780
\bar{p}_4	833	173	48	4	236	948	17	64	7 781
\hat{p}_5	264	960	46	5	985	70	209	782	2 309
p_6	991	972	11	8	986	72	209	804	4 341
p_7	921	963	91	0	976	71	220	818	317
p_8	686	965	62	3	993	68	202	800) 287
p_9	448	146	60	5	205	984	423	654	4 983
(a) Original DB									
Ι	DDB	d_1	d_2	d_3	d_4	d_5	d_6	d_7	d_8
	p_1	7	16	23	34	48	56	67	79
	\hat{p}_2	8	11	24	33	43	54	66	78
	\hat{p}_3	4	11	24	32	41	59	69	77
	p_4	8	11	24	32	49	50	66	77
	\hat{p}_5	2	19	24	39	40	52	67	73
	p_6	9	19	21	39	40	52	68	73
	p_7	9	19	29	39	40	52	68	73
	p_8	6	19	26	39	40	52	68	72
	p_9	4	11	26	32	49	54	66	79
(b) Discretized DB									

Table 1. Example DB: Real & Discretized

	d_1	d	2	d_3	d_4	d_5	d_6	d_7	d_8
I_1	-1	-	1	-1	478	-1	673	774	-1
I_2	-1	16	53 4	175	260	-1	-1	-1	786
$\overline{I_3}$	-1	94	19	-1	985	72	204	806	5 317
			(a)) Orig	inal S	ubspac	ces		
		d_1	d_2	d_3	d_4	d_5	d_6	d_7	d_8
-	I_1	-1	-1	-1	34	-1	56	67	-1
	I_2	-1	11	24	32	-1	-1	-1	77
	I_3	-1	19	-1	39	40	52	68	73
			(b)]	Discr	etized	Subsp	aces		

Table 2. Seed Subspaces: Real & Discretized

(a), generated by our synthetic data generator (see section 5.1), with $n = 9, \xi = 10$ and d = 8. The seed subspaces used to generate DB are shown in Table 2 (a). Here -1 implies that the subspaces are unconstrained in that dimension. Thus, p_1 is generated from subspace I_1 , points p_2, p_3, p_4 are generated from I_2 , points p_5, p_6, p_7, p_8 are generated from I_3 and p_9 is an outlier. Table 1 (b) shows the discretized dataset DDB obtained from DB; the corresponding discretized subspaces are shown in Table 2 (b).

Data Transformation The next step in SCHISM (figure 1, line 2) is to convert the dataset into a vertical tidset format [13], which records for each subspace (initially a single interval), the list of points that belong to it. Using a vertical format dataset gives us a number of advantages. Firstly, better memory utilization results from having only the relevant subspaces in memory at a time, as opposed to the horizontal format in which the entire dataset is scanned. Secondly, computing support of subspaces to be merged via tidset intersections is very fast. Figure 3 (for p = 1) shows

the tidsets for the initial 'interesting' intervals. For example, for interval 11, its tidset is given as $t(11) = \{2, 3, 4, 9\}$.

```
MineSubspaces (VDB, \xi, \tau):
1. Find IS_1 and IS_2 //sort IS_1 as optimization
2. MIS-backtrack(\phi, IS_1, MIS, 0, \xi, \tau)
3. return MIS
MIS-backtrack(S_p, C_p, MIS, l, \xi, \tau)
       \begin{aligned} \forall S_x \in C_p \\ S_{p+1} &= S_p \cup S_x \\ P_{p+1} &= \{S_y \in C_p \mid S_y > S_x\} \end{aligned} 
4.
5.
6.
         If MergeSubspaces(MIS, (S_{p+1} \cup P_{p+1})) return
C_{p+1} = IS-candidate(S_{p+1}, P_{p+1}, l, \xi, \tau)
7.
8.
          \begin{array}{l} \text{If } C_{p+1} & \text{is empty} \\ \text{If } S_{p+1} & \text{is empty} \\ \text{If } S_{p+1} & \text{has enclosed no subspace in } MIS, \\ MIS &= MIS \cup S_{p+1} \\ \text{else } \textbf{MIS-backtrack}(S_{p+1}, C_{p+1}, MIS, p+1, \xi, \tau) \end{array} 
9.
10.
11.
12.
MergeSubspaces(MIS, Z_{p+1})
13. If \min_{S_f \in MIS} Sim(Z_{p+1}, S_f) > \rho \times \min(f, |Z_{p+1}|)
            MIS = MIS - S_f
14.
15.
            MIS = MIS \cup (S_f \cup (Z_{p+1}))
            return true
16.
17.
       return false
IS-candidate(S_{p+1}, P_{p+1}, l, \xi, \tau)
18.
       C_{p+1} = \phi
\forall S_y \in P_{p+1}
19.
           t(S'_y) = t(S_{p+1}) \cap t(S_y)
20.
            If \frac{|t(S'_y)|}{n} \ge thresh(|S'_y|)C_{p+1} = C_{p+1} \cup S_y
21.
22.
23.
       return C_{p+1}
```

Figure 2. Mining Interesting Subspaces

Mining Interesting Subspaces In SCHISM, interesting subspaces are mined (figure 1, line 3), using a depth-first search with backtracking, allowing us to prune a considerable portion of the search space. The pseudo-code for MineSubspaces is shown in Figure 2. The method first finds all interesting subspaces in one (IS_1) and two dimensions (IS_2) . We next call the recursive MIS-backtrack procedure to mine the set of maximal interesting subspaces (MIS).

MIS-backtrack accepts as input, a single p-subspace S_p , and a set C_p of candidate p-subspaces that can be used to constrain (or extend) S_p in an interval of another dimension. Each $S_x \in C_p$ results in a potential new p + 1-subspace $S_{p+1} = S_p \cup S_x$ (line 5), for which we have to calculate the new candidate set C_{p+1} (line 8). We do this by using a possible set P_{p+1} (line 6) of potential candidate subspaces, which are all the unprocessed subspaces in $S_y > S_x$ in C_p . If C_{p+1} is empty (line 9), then S_{p+1} is potentially maximal; it will be added to MIS if there is no maximal subspace that encompasses it (lines 10-11). If C_{p+1} is nonempty, then we recursively call MIS-backtrack.

The call to IS-Candidate (line 8) constructs the new candidate set C_{p+1} for S_{p+1} for the next level. The basic idea is to intersect tidset of S_{p+1} with every possible subspace in P_{p+1} (line 20). We keep only those subspace extensions that pass the *thresh*() function (lines 21-22).

Typically, a depth-first search with backtracking produces a number of subspaces, which may overlap considerably, leading to redundant subspaces. To avoid this behavior, we prune the search tree by using MergeSubspaces

(line 7). If the subspace $Z_{p+1} = S_{p+1} \cup P_{p+1}$, resulting from constraining S_{p+1} with all its remaining possible intervals in P_{p+1} , is significantly similar (typically, we set the merging threshold $\rho = 0.8$) to some known $S_f \in MIS$ (line 13), we replace S_f with a typically more constrained subspace (lines 14-15), $S_f \cup Z_{p+1}$. As $\rho < 1$, we may merge subspaces, which are constrained to adjacent intervals in a few dimensions, thus compensating for uniform width intervals in each dimension. The Sim function (line 13) used to calculate the similarity of two subspaces A and B is given as $Sim(A,B) = \sum_{i=1}^{d} JaccardSimilarity(A_i, B_i)$, where A_i, B_i are the sets of interesting intervals spanned by A, Bin the *i*-th dimension and JaccardSimilarity(X,Y) = $\frac{|X \cap Y|}{|X \cup Y|}$. For example for point $p_1 \in DDB$ and seed subspace I_2 (discretized) (see Tables 1 and 2), $Sim(p_1, I_2) =$ 2, as they are identically constrained in the second (11) and third (24) dimensions.

Figure 3. Lattice of running example

Example Let's consider how SCHISM works on our example dataset DB. Let u = 0.25, $\tau = 4/n = 0.44$. Then, $IS_1 = \{11, 19, 24, 32, 39, 40, 52, 68, 73\}$. Likewise we compute IS_2 . The initial call to MIS-backtrack is with $S_p = \emptyset$, and $C_p = IS_1$, which results in a recursive call of MIS-backtrack for each interval, with a new candidate set C_{p+1} . For example, the candidate-set for 11 is given by $C_1 = \{24, 32, 39, 40, 52, 68, 73\}$, thus in the next level, we will try to extend 11 with $24, 32, \cdots, 73$, and so on, recursively. For our running example, when $S_{p+1} = 11$, $S_y = 24$, then $S'_y = \{11, 24\}$. Also $t(S_{p+1}) = \{2, 3, 4, 9\}$, and $t(S_y) = \{2, 3, 4, 5\}$, which gives $t(S'_y) = \{2, 3, 4\}$ (see Figure 3). As p = 1, we use the interestingness measure for pruning the search (line 21), i.e., the second case in Equation 4. With $thresh_{SCHISM}(1) = 0.21$, $n_1/n = 3/9 = 0.33 > 0.22$; thus S'_y is interesting, and we add 24 to the candidate set. Proceeding in this manner, we get the lattice shown in Fig.3. The rectangles shaded in gray are the elements of MIS.

Assigning Points to Clusters Let A correspond to the dsubspace surrounding a point p_i , and let B correspond to a mined p-subspace. Let Y and y be the random variable denoting the number and the true number, respectively, of

AssignPoints (DB, MIS) :					
1.	$\forall i \in [1, n] //$ for each point in DB				
2.	If $\min_{i} Sim(x_i, MIS_i) > ThresholdSim$				
3.	$x_i \rightarrow MIS_{argmin_iSim(x_i,MIS_i)}$				
4.	else x_i is an outlier				

Figure 4. Assign Points

dimensions in which subspaces A and B are identically constrained. Under the default uniform distribution, each dimension is independent of the other and Y is a binomial random variable with mean $E[Y] = b/\xi$, where b = E[|B|]is the expected number of dimensions in which B is constrained. Using Chernoff-Hoeffding bounds again, under a uniform distribution, if $Pr[Y \ge y] \le exp(-2bt^2) \le \tau$ for reasonably small user-specified threshold τ , it implies that the similarity between A and B is unusually high and the point in A is with high probability generated from the subspace B. Now, $exp(-2bt^2) \le \tau$ implies that $t \ge \sqrt{1 \ln (1)}$. Substituting time $E[Y] = b/\xi$

$$\sqrt{\frac{1}{2b}ln\left(\frac{1}{\tau}\right)}$$
. Substituting t in $y = E[Y] + bt = \frac{b}{\xi} + bt$, we get $ThresholdSim = \frac{b}{\xi} + \sqrt{\frac{b}{2}ln\left(\frac{1}{\tau}\right)}$. We set $b = d/2$.

Fig. 1, line 4 of SCHISM assigns each point to the most similar maximal interesting subspace (lines 2-3), or else labels it as an outlier (line 4). Figure 4 shows these steps. Additionally, we have to examine if the similarity is statistically significant by using *ThresholdSim* computed above.

5 Experiments

We perform tests on a range of synthetic highdimensional datasets using our data generator and a couple of real datasets. We evaluate SCHISM based on two metrics: i) speed: the time taken to find the interesting subspaces in the dataset, and ii) accuracy: measured in terms of entropy and coverage. For a clustering C, entropy is defined as $E(C) = -\sum_{C_j} (\frac{n_j}{n} \sum_i p_{ij} \log(p_{ij}))$, where $p_{ij} = \frac{n_{ij}}{n}$, C_j is the *j*th cluster in C, n_j is the number of points in C_j , and n_{ij} is the number of points of C_j that actually belong to subspace *i*. The lower the E(C), the better the clustering. Coverage is the fraction of points in DB which are accurately labeled as not being outliers. Ideally this is 1.

5.1 Synthetic Data Sets

We generate synthetic datasets using our own data generator which employs techniques similar to those mentioned in [2, 3, 20]. We embed k multivariate Gaussian clusters in a dataset of n points and d dimensions. Each dimension of a seed center is constrained to a single interval, with probability c; integer values are chosen in [0, 1000]. By not setting all dimensions of a seed center, we produce subspaces. If a center is set in any dimension, then the next center to be generated has the same dimension constrained with probability o. This ensures that the subspaces have different volumes and they can overlap in some dimensions. If the points are normally distributed about their cluster centers, the standard deviation for each dimension, for each cluster, is distributed uniformly in the range [10,30]. Let x be the fraction of the points generated as outliers and let the fraction of points generated for the *i*-th subspace be α_i , such that $x + \sum_{i=1}^k \alpha_i = 1$. In order that the number of points in the subspaces differ, we use a parameter $\kappa = \frac{\max_i \alpha_i}{\min_i \alpha_i}$ i.e., the ratio of the α_i s of the subspace with the most points to the subspace with the least points. An outlier has each dimension chosen uniformly in [0,1000]. The points for each subspace are independently and normally distributed about its center and the coordinates for dimensions in which the center is unbounded are chosen uniformly in [0,1000]. Thus, the subspaces generated in the dataset are oriented parallel to the axes. For all experiments, unless otherwise mentioned, we set as parameters to our data generator, k = 5, n = 1000, d = 50, c =0.5, o = 0.5, $\kappa = 4.0$, x = 0.05. Also, we set support threshold u = 0.05, $\tau = 1/n$, $\xi = 10$ as the parameters to SCHISM. Also, we use $f(p) = \frac{p}{d}$.

Experiments were carried out on a Sun Sparc 650 MHz machine running on a Solaris O/S with 256 MB RAM. Since we have the seed subspaces we can easily evaluate the accuracy of SCHISM. We first mine the subspaces and partition the points in the space, so that they either belong to some interesting subspace or they are classified as outliers. Each of the following graphs, unless otherwise mentioned, shows the variation in performance, as a measure of two evaluation metrics: execution time and coverage (shown on y-axis), as a parameter of either SCHISM or the synthetic dataset is varied (shown on x-axis). *The entropy for all these experiments is below 0.004 and hence not shown*. This implies that SCHISM mines very pure clusters from our synthetic datasets. Ideally, the running time curve should be flat or linear and the coverage curve should be flat at 1.0.

5.1.1 Effect of varying dataset parameters

Effect of dataset size and dimensionality In Fig. 5, it is evident that as the dataset size increases, the coverage remains constant, while the running time grows linearly.

Note that in Fig. 6, as the dimensionality of the dataset increases, the coverage remains more or less constant, but the running time seems to grow exponentially initially, and then grows linearly from dimensions 200-300. In the worst case, this algorithm has exponential complexity in the number of dimensions, but in practice as shown here, the DFS algorithm coupled with the varying threshold function, significantly prunes the search space.

Effect of subspace size and dimensionality In Fig. 7, we observe the variation in coverage and running time, as the ratio $\kappa = \frac{\max_i \alpha_i}{\min_i \alpha_i}$ increases from 2 to 12. We observe that as the ratio increases, the coverage dips marginally and the running time remains constant. The coverage decreases because the subspaces which contain a smaller number of points have, on average, as large a volume as those containing a larger number of points, leading to a lower density. A smaller fraction of their enclosing subspaces are likely to be identified as 'interesting' and hence only a small fraction of their points are detected as non-outliers, as compared to when the ratio is not so large.

In Fig. 8, we observe the variation in coverage and running time, as the probability of constraining a dimension in a subspace c, increases from 0.3 to 0.9. We observe that as c increases, the running time remains constant but larger fractions of the dataset are constrained to smaller volumes, making them more 'interesting' and hence coverage improves somewhat.

Effect of subspace overlap Subspaces may overlap in terms of the dimensions in which they are constrained or in terms of the specific intervals they are constrained to. Accordingly, we have two experiments. In the first, we test

the effect on performance due to increased overlap between constrained dimensions of subspaces generated consecutively. By increasing o from 0.1 to 0.9, we increase the like-lihood of different subspaces being constrained to the same intervals of the same dimensions. In Fig. 9, we observe that running time stays constant but coverage decreases as o increases. This occurs because it becomes more likely that points belong to multiple 'interesting' subspaces simultaneously and hence only one is discovered, which may not completely cover the other.

In the second experiment, if $C_{i,j}$ is the *j*th co-ordinate of the center of the *i*th subspace, then if we constrain the *j*th co-ordinate of the (i + 1)th center as well, we set it so $C_{i+1,j} \in \{C_{i,j} - 2\sigma_{i,j}, C_{i,j} + 2\sigma_{i,j}\}$, where $\sigma_{i,j}$ is the standard deviation in the *j*th dimension of the points corresponding to the *i*th subspace. From Fig. 10, we observe that SCHISM does not perform too well in this test and fails to find some of the clusters as the dimensionality rises, again because a point may now belong to multiple subspaces.

Performance on datasets with less dense subspaces In this experiment we run SCHISM on Gaussian and hyperrectangular datasets. We decrease the density of the Gaussian datasets by increasing the standard deviation of each constrained dimension in each subspace. For hyperrectangular subspaces, each constrained dimension is constrained to an interval of width, chosen uniformly in [0.5w,1.5w]. Thus, the density is decreased by increasing w; the volume of the subspace and keeping the number of points assigned to it is the same.

From Fig. 11 and Fig. 12, it is clear that as density decreases, SCHISM's performance deteriorates. This is because a smaller percentage of the subspace's points tend to fall into the same interval as that of the subspace center, as the volume increases. In such a case, decreasing the number of intervals in the dimension (ξ) might help or we must search for less 'interesting' subspaces, i.e., decrease τ .

Effect of number of clusters k Note from Fig. 13, that the running time remains constant as the number of embedded subspaces (k) increases, while coverage worsens after k = 8 as some clusters become very small and hence not 'interesting'.

5.1.2 Effects of varying algorithm parameters

Effect of τ In Fig. 14, we decrease the user specified interestingness threshold τ from 10^{-12} to $10^{-.25}$, and observe its effect on the coverage and running time. Note that the coverage increases rapidly, implying that τ is the main parameter which determines how much of the search space is mined and hence running time drops rapidly too. Our experiments on the effect of u on SCHISM performance (which are not shown due to lack of space), indicate that τ has a more precise control on pruning than u.

Effect of ξ From Fig. 15, we observe that, varying the number of intervals into which each dimension is discretized (ξ), has a small effect on SCHISM's performance for a considerable range of values for ξ . This is because the term ξ is incorporated into $thresh_{SCHISM}$. Outside this range however ($\xi > 15$), performance is severely degraded as the interval size becomes so small that very few contain enough points to be considered 'interesting'.

Effect of thresh() **function on performance** Here we compare the performance of the thresh() function given

Figure 17. Confusion Matrix for PenDigits Data Set

in Eq. 4, with that of CLIQUE on the synthetic datasets. From Fig. 16, we observe that as the density of the hyperrectangular clusters dips due to increase in the width of its constrained dimensions, the running time of CLIQUE⁴ increases rapidly over that of SCHISM. Also, CLIQUE tends to split clusters into smaller ones. Its performance closely mirrors that of SCHISM for datasets having well-defined distinct clusters. However, when clusters overlap in a number of dimensions, the coverage and entropy suffers.

5.2 Real Data Sets

We apply SCHISM to two well researched datasets from different domains. The PenDigits dataset ⁵ [6] contains 7,494 16-dimensional vectors. 30 different writers wrote approximately 250 digits, sampled randomly from the digit set [0,9] on a pressure-sensitive tablet. Each vector corresponds to the (x, y) coordinates of 8 points, spatially sampled from each of these handwritten digits. Note that the embedded subspaces, i.e., the digits 0-9, overlap considerably in the 16-dimensional space. SCHISM outputs 128 subspaces in 4 seconds, of which the 17 clusters with the highest entropies are shown in the confusion matrix in Figure 17. It achieves a coverage of 69% and an entropy of $0.365 (u = .01, \tau = 0.018)$. CLIQUE achieves a coverage of 60.7% and an entropy of 0.49 in approximately 4 seconds too. As in DOC, ORCLUS, we provide a confusion matrix (Figure 17), which is interpreted as follows: cell (i, j) of the matrix denotes the number of points having true class i, which were clustered by SCHISM into subspace *j*. Ideally, each row and each column have only a single non-zero entry implying E(C)=0. Note that samples of the digits $\{3,9\}$ are both assigned by SCHISM to clusters C_7, C_8, C_9 due to their similarity in structure. The clusters not shown typically have all their samples from the same digit class.

The other dataset is the gene expression data for the yeast cell cycle⁶, obtained for 2884 genes (rows) at 17 (columns) points in time. We obtained a number of clusters of which a few were highly populated and the others relatively empty. Ideally, clustering gene expression data should produce clusters of genes which are similar in function. However, almost all the genes have multiple functions and hence genes cannot be labeled by a single class. The highly populated clusters we mined using SCHISM, contained groups of genes which are known to have strong similarity in terms of function, e.g., out of 5 genes in our dataset known (see www.yeastgenome.org) to be involved in ribonuclease MRP activity, 4 (POP4,POP5,POP8,SNM1) are assigned to the same cluster, 4 genes (SEC7,AGE1,SFT1,COG6) out of 6 involved in intra-Golgi transport, are assigned to the same cluster, etc. ($\xi = 5, \tau = 0.018$). While SCHISM finds 59 such groups of genes which are clustered together in larger clusters, CLIQUE finds only 33, both doing so in approximately 8.5 seconds.

While, we attempted to compare our algorithm performance with that of SUBCLU [17], we found default parameter setting for SUBCLU to be unsatisfactory and manual setting to be extremely hard, as it took an unreasonably long time (on the order of a number of hours) to produce output for our synthetic and real datasets. The clusters produced generally split the embedded clusters into distinct clusters.

Conclusions 6

We define a new interestingness measure which provides absolute guarantees to the user about the interestingness of the subspaces reported, as per our definition of interesting. We use the interestingness measure itself to prune our search, as opposed to traditional methods[21], which determine interestingness of patterns after the search is completed, making the process faster. We use an algorithm which requires parameters which are relatively easy to set intuitively. These contributions can also be applied to the problem of finding interesting itemsets. The code for SCHISM is available at www.cs.rpi.edu/ sequek/schism

References

- [1] C. Aggarwal. Towards systematic design of distance func-
- C. Aggarwal. Towards systematic design of distance func-tions for data mining applications. In *SIGKDD Conf*, 2003.
 C. Aggarwal, C. Procopiuc, J. Wolf, P. Yu, and J. Park. A framework for finding projected clusters in high dimensional spaces. In *SIGMOD Conf*, 1999.
 C. Aggarwal and P. Yu. Finding generalized projected clus-tion is kick dimensional spaces. In *SIGMOD Conf*, 2000.
- ters in high-dimensional spaces. In *SIGMOD Conf*, 2000. [4] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan.
- Automatic subspace clustering of high dimensional data for data mining applications. In *SIGMOD Conf*, 1998. [5] R. Agrawal, T. Imielinski, and A. Swami. Mining associa-
- tion rules between sets ofi tems in large databases. In SIG-MOD Conf, 1993.[6] F. Alimoglu and E. Alpaydin. Methods of combining mul-
- tiple classifiers based on different representations for penbased handwriting recognition. In Turkish AI and Neural Networks Symp, 1996. [7] K. Beyer, J. Goldstein, R. Ramakrishnan, U. Shaft. When is
- [7] K. Beyer, J. Obistelli, K. Kaliakishila, O. Shaft, Witch is nearest neighbors meaningful? *ICDT Conf*, 1999.
 [8] M. Brusco and J. Cradit. A variable selection heuristic for k-means clustering. *Psychometrika*, 66:249–270, 2001.
 [9] K. Chakrabarti and S. Mehrotra. Local dimensionality re-duction. A new engraged to indepine high dimensionality.
- duction: A new approach to indexing high dimensional
- [10] C. Cheng, A. Fu, Y. Zhang. Entropy-based subspace clustering for mining numerical data. In *SIGKDD Conf*, 1999.
 [11] H. Chernoff. A measure of asymptotic efficiency for tests
- of a hypothesis based on the sum of observations. Annals of Math. Statistics, 23:493–509, 1952. [12] C. Ding, X. He, H. Zha, and H. Simon. Adaptive dimension
- reduction for clustering high-dimensional data. In ICDM [13] K. Gouda and M. Zaki. Efficiently mining maximal frequent
- itemsets. In *ICDM Conf*, 2001. [14] J. Han and M. Kamber. *Data Mining: Concepts and Tech*-
- *niques.* Morgan Kaufmann, San Francisco, CA, 2001.
 [15] A. Hinneburg and D. Keim. Optimal grid-clustering: Towards breaking the curse of dimensionality in high-
- dimensional clustering. In *VLDB Conf*, 1999. [16] W. Hoeffding. Probability inequalities for sums of bounded random variables. J. American Statistical Association, 58:13–30, 1963. [17] K. Kailing, H. Kriegel, and P. Kroger. Density-connected
- subspace clustering for high-dimensional data. In SIAM Data Mining Conf, 2004. [18] K. Kailing, H. Kriegel, P. Kroger, and S. Wanka. Ranking
- interesting subspaces for clustering high-dimensional data. In *European PKDD Conf*, 2003.
 [19] H. Nagesh, S. Goil, and A. Choudhary. Adaptive grids for
- clustering massive data sets. In SIAM Data Mining Conf, 2001. [20] C. Procopiuc, M. Jones, P. Agarwal, and T. Murali. A monte-
- carlo algorithm for fast projective clustering. In SIGMOD *Conf*, 2002. [21] P. Tan, V. Kumar, and J. Srivastava. Selecting the right in-
- terestingness measure for association patterns. In SIGKDD Conf, 2002.

⁴Our implementation of CLIQUE involves simply replacing $thresh_{SCHISM}$ with $thresh_{CLIQUE}$ in our implementation to test the signifi cance of our threshold function

⁵See ftp://ftp.ics.uci.edu/pub/machine-learning-databases/pendigits ⁶See http://arep.med.harvard.edu/biclustering/yeast.matrix