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Abstract
High-dimensional data pose challenges to traditional cluster-

ing algorithms due to their inherent sparsity and data tend to clus-
ter in different and possibly overlapping subspaces of the entire
feature space. Finding such subspaces is called subspace min-
ing. We present SCHISM, a new algorithm for mining interesting
subspaces, using the notions of support and Chernoff-Hoeffding
bounds. We use a vertical representation of the dataset, and
use a depth-first search with backtracking to find maximal inter-
esting subspaces. We test our algorithm on a number of high-
dimensional synthetic and real datasets to test its effectiveness.

1 Introduction

Clustering is an unsupervised learning process, in which
a multidimensional space is partitioned into disjoint re-
gions, such that all points within any such region/cluster are
similar to each other, but dissimilar with respect to points
in other clusters. If the clustering is done using all available
features, it is called a full-dimensional clustering. Many
such algorithms like BIRCH, DBSCAN, CURE [14] have
been proposed for this task. While they show acceptable
performance on lower dimensional datasets, a large number
of dimensions poses problems [15]. One of the main rea-
sons is that data is generally very sparse in high dimensional
datasets. Also, most of the full dimensional algorithms use
distance metrics, which treat every dimension with equal
importance. For high dimensional spaces, it has been ar-
gued that under certain reasonable assumptions on the data
distribution, the ratio of the distances of the nearest and far-
thest neighbors to a given target is almost 1 for a variety
of distance functions and data distributions [7]. In such a
scenario, many full dimensional clustering algorithms have
little meaning, as the pairwise distances between the points
in distinct clusters need not provide an acceptable contrast.

Solutions proposed include, designing new distance met-
rics [1] and dimension reduction [12]. Dimension reduc-
tion techniques, such as the Karhunen-Loeve transforma-
tion (KLT) or singular value decomposition (SVD), project
the dataset from the original d to a k dimensional space,
where k ¿ d, and each new dimension is a linear com-
bination of the original dimensions; after this clustering is
done using only the k dimensions. Such a strategy may
be inappropriate since clusters in the transformed feature
space may be hard to interpret. Also, data is only clus-
tered in a single k-dimensional space. [4, 20] cite examples
in which KLT does not reduce the dimensionality without
trading off considerable information, as the dataset contains
subsets of points which lie in different and sometimes over-
lapping lower dimensional subspaces. Another method of
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dimension reduction is feature selection, in which some of
the dimensions are selected heuristically without transfor-
mation [8]. This removes the problem of interpretability,
but still only a fixed subspace is used for clustering. These
challenges have caused the focus of much recent work in
clustering to shift towards finding the interesting subspaces
within a high-dimensional space[4, 20, 10, 19, 17, 2, 3, 9].
Other challenges encountered in subspace mining are that
subspaces may share dimensions as well as objects, etc. The
subspace mining problem has wide applications, especially
with datasets having ordinal/nominal values, e.g., datasets
found in bioinformatics, intrusion detection, etc.

In this paper, we tackle the problem of finding statisti-
cally ‘interesting’ subspaces in a high dimensional dataset
using an algorithm called SCHISM (Support and Chernoff-
Hoeffding bound-based Interesting Subspace Miner). We
use the Chernoff-Hoeffding bound to prune the search for
interesting subspaces, as a nonlinear function of the num-
ber of dimensions in which the subspace is constrained. We
use a vertical representation of the dataset and capitalize on
various advances made in itemset mining. We use a depth-
first search with backtracking to find maximal interesting
subspaces. We finally test our algorithm on a wide array of
high-dimensional datasets.

2 Related Work

Subspace clustering methods may be classified into two
main categories: density-based and projected clustering.

Density-based Clustering Agrawal et al. [4], proposed
CLIQUE, which discretizes the domain of each of the
d dimensions into a user-specified number, ξ, of equal-
width intervals. They use support (the fraction of points
that lie in a subspace) to denote the density of a sub-
space; only those subspaces above a minimum density
threshold are mined. Using a bottom-up Apriori-like
[5] approach, higher-dimensional ‘dense’ maximal, hyper-
rectangular subspaces are mined. To prune their search at a
faster rate, they use the minimum-description length (MDL)
principle as a heuristic, thereby making it an approximate
search. They then merge ‘dense’ subspaces sharing com-
mon faces, and use covering algorithms to mine the minimal
descriptions of the subspaces.

Instead of support, Cheng [10], proposed using entropy
as a measure of subspace interestingness. Subspaces sat-
isfying an entropy threshold are mined. Nagesh et al. in
MAFIA[19], partition each dimension into variable width
intervals, based on the distribution of points. An interval is
considered ‘dense’ if the number of points in it exceeds the
threshold (αan)/Di, where n is the number of points in the
dataset and α is a user-specified parameter, called the clus-
ter dominance factor. Here, (an)/Di corresponds to the
number of points expected to lie inside the interval of width



a in the i-th dimension, which has range Di. Using adap-
tive width intervals minimizes rigidity of clusters obtained
by CLIQUE.

Kailing et al [18] suggest using a sample of the points in
the dataset. They generate dense subspaces enclosing each
point of the sample if it is a core object, i.e., if it has more
than MinPts, a user-specified threshold, points within a
threshold radius ε. The subspaces are then assigned a qual-
ity rating, which takes into account the number of dimen-
sions in which the subspace is constrained and this rating is
used to prune lower quality subspaces. By providing a rat-
ing, it is only possible for the user to determine the relative
interestingness of a subspace w.r.t. another subspace. It is
not easy for the user to know the absolute interestingness of
the subspace.

Projected Clustering Aggarwal [2, 3] uses projective
clustering to partition the dataset into clusters occurring in
possibly different subsets of dimensions in a high dimen-
sional dataset. PROCLUS [2] seeks to find axis-aligned
subspaces by partitioning the set of points and then uses
a hill-climbing technique to refine the partitions. ORCLUS
[3], finds arbitrarily oriented clusters by using ideas related
to singular value decomposition. Both the algorithms re-
quire the number of clusters and the expected number of
dimensions for each cluster to be input.

In DOC [20], Procopiuc et al. devise a Monte Carlo algo-
rithm for finding projective clusters. They propose a math-
ematical formulation for the notion of optimal projective
cluster based on the density of the points in the subspaces.
In LDR [9], Chakrabarti et al. search for local correlations
in the data and perform dimensionality reduction on the lo-
cally correlated clusters of data individually.

3 Interestingness Measure
Let A = {A1, A2, . . . , Ad} be the set of dimensions.

Each dimension Ai has a totally ordered and bounded do-
main. Then, S = A1 × A2 × . . . × Ad is the high-
dimensional space. The input DB, is a set of n points,
DB = {pi|i ∈ [1, n], pi ∈ S}}. We partition S into non-
overlapping rectangular units, obtained by partitioning each
dimension into ξ intervals of equal width.

Definition 1: A subspace is an axis-aligned hyper-
rectangle, [l1, h1] × [l2, h2] × . . . × [ld, hd], where li =
(aDi)/ξ, and hi = (bDi)/ξ, a, b are positive integers, and
a < b ≤ ξ

If hi − li = Di, the subspace is unconstrained in di-
mension i whose range is given as Di. A m-subspace is a
subspace constrained in m dimensions, denoted as Sm.

Let Xp be the random variable(RV) denoting the num-
ber of points in Sp. If the probability of finding np points in
Sp, is bounded by a reasonably low, user-specified thresh-
old probability τ , Sp is considered to be interesting 1, i.e.,
Pr(Xp ≥ np) ≤ τ implies that Sp is an interesting sub-
space. Accordingly, we have

Definition 2: A subspace is interesting if the number
of points it contains is statistically significantly higher than
that expected under the assumption that all dimensions are
independent and uniformly distributed.

It is obvious that a dataset that is scattered uniformly
and independently, spanning the entire S, is of least interest
from a clustering view-point, as the entropy is maximized.

1Typically τ is set to O( 1
n

) ¿ 0.05, which is statistically significant

If a subspace deviates significantly from the uniform dis-
tribution, then it is potentially interesting 2. If np points
are found in Sp, CLIQUE considers Sp to be ‘dense’ if
np/n ≥ s, where s is the user-specified support threshold.
MAFIA considers the subspace ‘dense’ if np/n ≥ (αa)/Di

where α is the cluster dominance factor.
In general, all density-based subspace finding algo-

rithms, use a threshold function thresh : Z+ → < where
Z+ is the set of positive integers, and denotes the number of
constrained dimensions in a candidate subspace. The value
of thresh ∈ < corresponds to the density threshold that
must be exceeded for the candidate subspace to be called
‘dense’. For example, support based pruning in CLIQUE,
threshCLIQUE(p) = s,∀p ∈ [1, d], i.e., no matter what
the number of constrained dimensions of a subspace, the
pruning threshold is a constant. The thresh function can
intuitively be either constant (as in CLIQUE) or monotoni-
cally increasing or monotonically decreasing.

Lemma 1 (Effect of monotonicity on thresh):
If any subspace Sp+1 ⊂ S is interesting, then every p-
subspace Sp, which encloses Sp+1 and is unconstrained in
one of the (p+1) constrained dimensions of Sp+1, is always
interesting if thresh(p + 1) ≥ thresh(p), 1 ≤ p ≤ d − 1,
for density function thresh.
Proof: If Sp+1 is interesting, np+1

n
≥ thresh(p + 1). But,

np ≥ np+1 because Sp+1 ⊂ Sp. Thus, np

n
≥ np+1

n
≥

thresh(p + 1). If, thresh(p + 1) ≥ thresh(p), then np

n
≥

thresh(p) and monotonicity is guaranteed.
Lemma 2 For p=1. . . d, let thresh be monotonically

non-decreasing and let thresh2(p) = thresh(r), where r
is the number of dimensions constrained in Sr, a maximally
interesting subspace under thresh. If Sr ⊆ Sp, then Sp is
also interesting under thresh2.
Proof: Since Sr is interesting, then nr

n
≥ thresh(r).

Also, as Sr ⊆ Sp, 1 ≤ p ≤ r − 1, np ≥ nr. Hence,
np

n
≥ nr

n
≥ thresh(r) = thresh2(p). Thus, Sp is also

interesting under thresh2.
A consequence of the above lemmas is that it in or-

der to find all the maximal interesting subspaces found by
thresh2, one must set thresh(1) to a very low value so that
it converges to thresh2. This causes generation of a number
of candidate subspaces which do not yield maximal interest-
ing subspaces but add to computation time. Hence, it makes
little sense to have a monotonically increasing threshold
function. The thresh function must be either constant or
monotonically decreasing. However, it has been observed,
that in order to find small subspaces, the constant support
threshold function has to be set very low,which makes sub-
space mining very slow. Hence, we propose a non-linear
monotonically decreasing threshold function, which does
not guarantee mining all interesting subspaces,3 but does
mine in a more reasonable time. The intuition behind why
this might work, is that as p increases, the subspace be-
comes constrained in more and more dimensions, making
its volume smaller and smaller. Hence the threshold too,
must decrease for the enclosed (Sp+1) and enclosing (Sp)
subspaces to have comparable interestingness.

2See Eq. 3 and following comment
3For monotonically decreasing thresh, the Apriori principle may

not be applicable. Consider,
np

n
=

np+1

n
= thresh(p + 1). If

thresh(p + 1) < thresh(p), then
np

n
< thresh(p) and Sp is not

interesting although Sp+1 is.



3.1 Chernoff-Hoeffding bound

We use the Chernoff-Hoeffding bound [11, 16] to bound
the tail of the distribution of Xp and measure the level of
interestingness. If Yi, i = 1 . . . n, are independently dis-
tributed RV, with 0 ≤ Yi ≤ 1 and V ar[Yi] < ∞, then for
Y =

∑n

i=1 Yi, t > 0,

Pr[Y ≥ E[Y ] + nt] ≤ e−2nt2 (1)

where E[Y ] =
∑n

i=1 E[Yi] by linearity of expectation.
Given a p-subspace Sp, let Yi correspond to the RV that

the ith point in DB, when projected onto the set of p con-
strained dimensions of Sp, lies within Sp. Then Y = Xp.
Using Eq. (1) and for some real tp > 0, Sp is interesting if,

Pr[Xp ≥ np] ≤ e−2nt2p ≤ τ (2)

where E[Xp]+ntp = np, which implies that tp =
np

n
−

E[Xp]
n

. Substituting tp in the right hand term of (2), we have

e
−2n

“

np
n

−
E[Xp]

n

”2

≤ τ which on simplification gives,

np

n
≥ E[Xp]

n
+

√

1

2n
ln(

1

τ
) (3)

Thus, for a p-subspace to be interesting, (3) must hold. (3)
makes no assumption, other than independence, about the
comparative distribution and hence can be extended to find
subspaces interesting w.r.t. distributions, other than that
having uniformly distributed dimensions.

Note that the interestingness measure, thresh(p) =
E[Xp]

n
+

√

1
2n

ln( 1
τ
) is a non-linear monotonically decreas-

ing function in the number of dimensions p, in which Sp is
constrained. Also, note that thresh is analogous to the sup-
port and density threshold measures used to prune search in
the CLIQUE [4] and MAFIA [19] algorithms respectively.

In comparison with CLIQUE, the term
√

1
2n

ln( 1
τ
) corre-

sponds to minimum density s set by the user. The inter-
estingness threshold probability (τ ) seems intuitively easier
to set than s. The chief difference is the term E[Xp]

n
, which

makes pruning conscious of the volume of the subspace and
hence conscious of the number of constrained dimensions
of the subspace on which it is being carried out. Unlike ear-
lier proposed interestingness measures [18], this one gives
the user a sense of absolute interestingness.

If we assume that each dimension in the d-dimensional
space is independent and uniformly distributed and dis-
cretized into ξ levels, then the probability that a point lies in
a specific interval of any dimension is 1

ξ
. Hence, the prob-

ability that a point lies in a specific p-subspace (assuming
it is constrained to a single interval in each of the p con-
strained dimensions) is ( 1

ξ
)p. Thus, the probability of find-

ing np points in any subspace Sp, is distributed as per the
binomial distribution with mean E(Xp) = n( 1

ξ
)p. Thus, Sp

is interesting if, np

n
≥ 1

ξp +
√

1
2n

ln( 1
τ
).

Note that for p ≥ d log(n)
log(ξ) e = v, we have n

ξp ≤ 1, and

thus 1
ξp +

√

1
2n

ln( 1
τ
) ≈

√

1
2n

ln( 1
τ
). The threshold func-

tion thus converges to a constant when the number of con-
strained dimensions p ≥ v; analogous to minimum thresh-
old s in CLIQUE. To summarize,

threshSCHISM (d ≥ p ≥ v) =

√

1

2n
ln(

1

τ
)

From Lemma 1, for p ≥ v, Sp+1 is interesting implies
that Sp is interesting, as SCHISM is similar to CLIQUE and
uses support-based pruning for a large part of the subspace

mining process. Note that this constant
√

1
2n

ln
(

1
τ

)

varies

inversely as
√

n and hence threshSCHISM converges to a
higher threshold for smaller datasets, implying more prun-
ing while yielding subspaces of equal interestingness.

While threshSCHISM is constant for p ≥ v, we can
gain some improvements in empirical results by changing
the rate of change in threshSCHISM (p < v) to increase
the likelihood of monotonic search. We do so by trading off
some tightness of the bound by using a penalty term. If f(p)
is the penalty term, such that ∀p ∈ [1, d], f(p) ≤ 1, then
e−2nt2p ≤ e−2nf(p)t2p . Using this in 2, Pr(Xp ≥ np) ≤
e−2nf(p)t2p ≤ τ . After simplification,

threshSCHISM (0 < p < v) = min

(

u,
1

ξp
+

s

1

2nf(p)
ln

„

1

τ

«

)

The term u is used to upper bound threshSCHISM (1),
which is empirically too large for typical values of ξ. Typ-
ical values of f(p) are p

a
(a ≥ v =⇒ f(p) ≤ 1), 1

(c−bp2) .
The last penalty term provides a parabolic as opposed to
exponential drop in the threshold as p increases. Typically,
u = 0.05. In summary, we have

threshSCHISM (p) =

8

<

:

min
n

u, 1
ξp +

q

1
2nf(p)

ln
`

1
τ

´

o

if p < v
q

1
2n

ln
`

1
τ

´

if p ≥ v

(4)

4 SCHISM Algorithm

A number of the subspace mining algorithms [4, 10, 19]
use a bottom-up, breadth-first search. In contrast, SCHISM,
which is based on the GenMax algorithm that mines maxi-
mal itemsets [13], uses a depth-first search with backtrack-
ing to mine the maximal interesting subspaces. The main
steps in SCHISM are shown in Figure 1; we first discretize
the dataset and convert it to a vertical format. Then we mine
the maximal interesting subspaces. Finally, we assign each
point to its cluster, or label it as an outlier.

Discretization In SCHISM, we first discretize all points
(figure 1, line 1). Given the original dataset DB, we divide
each dimension into ξ bins, and give each interval a unique
id (for example, the intervals in dimension d0 are labeled
from 0 to ξ − 1, those for d1 are labeled from ξ to 2ξ − 1,
etc.). Consider the example dataset DB shown in Table 1



SCHISM (DB, s, ξ, τ ):
//s is the minimum support threshold
//ξ is the number of intervals per dimension
//τ is the user-specified interestingness threshold
1. DDB = Discretize(DB, ξ)
2. V DB=HorizontalToVertical(DDB)
3. MIS = MineSubspaces(V DB, s, ξ, τ )
4. AssignPoints (DB,MIS)

Figure 1. The SCHISM Algorithm

DB d1 d2 d3 d4 d5 d6 d7 d8

p1 755 689 306 482 838 657 743 980
p2 818 166 494 302 378 439 633 805
p3 418 159 499 260 139 921 986 780
p4 833 173 484 236 948 17 647 781
p5 264 960 465 985 70 209 782 309
p6 991 972 118 986 72 209 804 341
p7 921 963 910 976 71 220 818 317
p8 686 965 623 993 68 202 800 287
p9 448 146 605 205 984 423 654 983

(a) Original DB
DDB d1 d2 d3 d4 d5 d6 d7 d8

p1 7 16 23 34 48 56 67 79
p2 8 11 24 33 43 54 66 78
p3 4 11 24 32 41 59 69 77
p4 8 11 24 32 49 50 66 77
p5 2 19 24 39 40 52 67 73
p6 9 19 21 39 40 52 68 73
p7 9 19 29 39 40 52 68 73
p8 6 19 26 39 40 52 68 72
p9 4 11 26 32 49 54 66 79

(b) Discretized DB

Table 1. Example DB: Real & Discretized

d1 d2 d3 d4 d5 d6 d7 d8

I1 -1 -1 -1 478 -1 673 774 -1
I2 -1 163 475 260 -1 -1 -1 786
I3 -1 949 -1 985 72 204 806 317

(a) Original Subspaces
d1 d2 d3 d4 d5 d6 d7 d8

I1 -1 -1 -1 34 -1 56 67 -1
I2 -1 11 24 32 -1 -1 -1 77
I3 -1 19 -1 39 40 52 68 73

(b) Discretized Subspaces

Table 2. Seed Subspaces: Real & Discretized

(a), generated by our synthetic data generator (see section
5.1), with n = 9, ξ = 10 and d = 8. The seed subspaces
used to generate DB are shown in Table 2 (a). Here −1 im-
plies that the subspaces are unconstrained in that dimension.
Thus, p1 is generated from subspace I1, points p2, p3, p4 are
generated from I2, points p5, p6, p7, p8 are generated from
I3 and p9 is an outlier. Table 1 (b) shows the discretized
dataset DDB obtained from DB; the corresponding dis-
cretized subspaces are shown in Table 2 (b).
Data Transformation The next step in SCHISM (fig-
ure 1, line 2) is to convert the dataset into a vertical tid-
set format [13], which records for each subspace (initially
a single interval), the list of points that belong to it. Using
a vertical format dataset gives us a number of advantages.
Firstly, better memory utilization results from having only
the relevant subspaces in memory at a time, as opposed to
the horizontal format in which the entire dataset is scanned.
Secondly, computing support of subspaces to be merged via
tidset intersections is very fast. Figure 3 (for p = 1) shows

the tidsets for the initial ‘interesting’ intervals. For example,
for interval 11, its tidset is given as t(11) = {2, 3, 4, 9}.

MineSubspaces (V DB, ξ, τ ):
1. Find IS1 and IS2 //sort IS1 as optimization
2. MIS-backtrack(φ, IS1, MIS, 0, ξ, τ )
3. return MIS

MIS-backtrack(Sp, Cp, MIS, l, ξ, τ )
4. ∀Sx ∈ Cp

5. Sp+1 = Sp ∪ Sx

6. Pp+1 = {Sy ∈ Cp |Sy > Sx}
7. If MergeSubspaces(MIS, (Sp+1 ∪ Pp+1)) return
8. Cp+1 = IS-candidate(Sp+1, Pp+1, l, ξ, τ )
9. If Cp+1 is empty
10. If Sp+1 has enclosed no subspace in MIS,
11. MIS = MIS ∪ Sp+1

12. else MIS-backtrack(Sp+1, Cp+1, MIS, p + 1, ξ, τ )

MergeSubspaces(MIS, Zp+1)
13. If minSf∈MIS Sim(Zp+1, Sf ) > ρ × min(f, |Zp+1|)
14. MIS = MIS − Sf

15. MIS = MIS ∪ (Sf ∪ (Zp+1)
16. return true
17. return false

IS-candidate(Sp+1, Pp+1, l, ξ, τ )
18. Cp+1 = φ
19. ∀Sy ∈ Pp+1

20. t(S′
y) = t(Sp+1) ∩ t(Sy)

21. If
|t(S′

y)|

n
≥ thresh(|S′

y|)
22. Cp+1 = Cp+1 ∪ Sy

23. return Cp+1

Figure 2. Mining Interesting Subspaces
Mining Interesting Subspaces In SCHISM, interesting
subspaces are mined (figure 1, line 3), using a depth-first
search with backtracking, allowing us to prune a consid-
erable portion of the search space. The pseudo-code for
MineSubspaces is shown in Figure 2. The method first
finds all interesting subspaces in one (IS1) and two dimen-
sions (IS2). We next call the recursive MIS-backtrack
procedure to mine the set of maximal interesting subspaces
(MIS).
MIS-backtrack accepts as input, a single p-subspace

Sp, and a set Cp of candidate p-subspaces that can be used
to constrain (or extend) Sp in an interval of another dimen-
sion. Each Sx ∈ Cp results in a potential new p + 1-
subspace Sp+1 = Sp ∪ Sx (line 5), for which we have to
calculate the new candidate set Cp+1 (line 8). We do this by
using a possible set Pp+1 (line 6) of potential candidate sub-
spaces, which are all the unprocessed subspaces in Sy > Sx

in Cp. If Cp+1 is empty (line 9), then Sp+1 is potentially
maximal; it will be added to MIS if there is no maximal
subspace that encompasses it (lines 10-11). If Cp+1 is non-
empty, then we recursively call MIS-backtrack.

The call to IS-Candidate (line 8) constructs the new
candidate set Cp+1 for Sp+1 for the next level. The ba-
sic idea is to intersect tidset of Sp+1 with every possible
subspace in Pp+1 (line 20). We keep only those subspace
extensions that pass the thresh() function (lines 21-22).

Typically, a depth-first search with backtracking pro-
duces a number of subspaces, which may overlap consider-
ably, leading to redundant subspaces. To avoid this behav-
ior, we prune the search tree by using MergeSubspaces



(line 7). If the subspace Zp+1 = Sp+1 ∪ Pp+1, resulting
from constraining Sp+1 with all its remaining possible in-
tervals in Pp+1, is significantly similar (typically, we set the
merging threshold ρ = 0.8) to some known Sf ∈ MIS
(line 13), we replace Sf with a typically more constrained
subspace (lines 14-15), Sf∪Zp+1. As ρ < 1, we may merge
subspaces, which are constrained to adjacent intervals in a
few dimensions, thus compensating for uniform width inter-
vals in each dimension. The Sim function (line 13) used to
calculate the similarity of two subspaces A and B is given as
Sim(A,B) =

∑d

i=1 JaccardSimilarity(Ai, Bi), where
Ai, Bi are the sets of interesting intervals spanned by A,B
in the i-th dimension and JaccardSimilarity(X,Y ) =
|X∩Y |
|X∪Y | . For example for point p1 ∈ DDB and seed sub-
space I2 (discretized) (see Tables 1 and 2), Sim(p1, I2) =
2, as they are identically constrained in the second (11) and
third (24) dimensions.
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Figure 3. Lattice of running example

Example Let’s consider how SCHISM works on our ex-
ample dataset DB. Let u = 0.25, τ = 4/n = 0.44.
Then, IS1 = {11, 19, 24, 32, 39, 40, 52, 68, 73}. Likewise
we compute IS2. The initial call to MIS-backtrack is
with Sp = ∅, and Cp = IS1, which results in a recursive
call of MIS-backtrack for each interval, with a new can-
didate set Cp+1. For example, the candidate-set for 11 is
given by C1 = {24, 32, 39, 40, 52, 68, 73}, thus in the next
level, we will try to extend 11 with 24, 32, · · · , 73, and so
on, recursively. For our running example, when Sp+1 = 11,
Sy = 24, then S′

y = {11, 24}. Also t(Sp+1) = {2, 3, 4, 9},
and t(Sy) = {2, 3, 4, 5}, which gives t(S ′

y) = {2, 3, 4}
(see Figure 3). As p = 1, we use the interestingness
measure for pruning the search (line 21), i.e., the second
case in Equation 4. With threshSCHISM (1) = 0.21,
n1/n = 3/9 = 0.33 > 0.22; thus S ′

y is interesting, and
we add 24 to the candidate set. Proceeding in this manner,
we get the lattice shown in Fig.3. The rectangles shaded in
gray are the elements of MIS.

Assigning Points to Clusters Let A correspond to the d-
subspace surrounding a point pi, and let B correspond to
a mined p-subspace. Let Y and y be the random variable
denoting the number and the true number, respectively, of

AssignPoints (DB,MIS):
1. ∀i ∈ [1, n] // for each point in DB
2. If minj Sim(xi,MISj) > ThresholdSim
3. xi → MISargminjSim(xi,MISj)

4. else xi is an outlier

Figure 4. Assign Points

dimensions in which subspaces A and B are identically
constrained. Under the default uniform distribution, each
dimension is independent of the other and Y is a binomial
random variable with mean E[Y ] = b/ξ, where b = E[|B|]
is the expected number of dimensions in which B is con-
strained. Using Chernoff-Hoeffding bounds again, under a
uniform distribution, if Pr[Y ≥ y] ≤ exp(−2bt2) ≤ τ
for reasonably small user-specified threshold τ , it implies
that the similarity between A and B is unusually high and
the point in A is with high probability generated from
the subspace B. Now, exp(−2bt2) ≤ τ implies that t ≥
√

1
2b

ln
(

1
τ

)

. Substituting t in y = E[Y ] + bt = b
ξ

+ bt, we

get ThresholdSim = b
ξ

+
√

b
2 ln

(

1
τ

)

. We set b = d/2.
Fig. 1, line 4 of SCHISM assigns each point to the most

similar maximal interesting subspace (lines 2-3), or else la-
bels it as an outlier (line 4). Figure 4 shows these steps.
Additionally, we have to examine if the similarity is statisti-
cally significant by using ThresholdSim computed above.

5 Experiments
We perform tests on a range of synthetic high-

dimensional datasets using our data generator and a cou-
ple of real datasets. We evaluate SCHISM based on two
metrics: i) speed: the time taken to find the interesting sub-
spaces in the dataset, and ii) accuracy: measured in terms of
entropy and coverage. For a clustering C, entropy is defined
as E(C) = −∑

Cj
(

nj

n

∑

i pij log(pij)), where pij =
nij

n
,

Cj is the jth cluster in C, nj is the number of points in Cj ,
and nij is the number of points of Cj that actually belong
to subspace i. The lower the E(C), the better the cluster-
ing. Coverage is the fraction of points in DB which are
accurately labeled as not being outliers. Ideally this is 1.

5.1 Synthetic Data Sets

We generate synthetic datasets using our own data gener-
ator which employs techniques similar to those mentioned
in [2, 3, 20]. We embed k multivariate Gaussian clusters in
a dataset of n points and d dimensions. Each dimension of a
seed center is constrained to a single interval, with probabil-
ity c; integer values are chosen in [0, 1000]. By not setting
all dimensions of a seed center, we produce subspaces. If
a center is set in any dimension, then the next center to be
generated has the same dimension constrained with prob-
ability o. This ensures that the subspaces have different
volumes and they can overlap in some dimensions. If the
points are normally distributed about their cluster centers,
the standard deviation for each dimension, for each clus-
ter, is distributed uniformly in the range [10,30]. Let x
be the fraction of the points generated as outliers and let
the fraction of points generated for the i-th subspace be
αi, such that x +

∑k

i=1 αi = 1. In order that the num-
ber of points in the subspaces differ, we use a parameter



κ = maxi αi

mini αi
i.e., the ratio of the αis of the subspace with

the most points to the subspace with the least points. An
outlier has each dimension chosen uniformly in [0,1000].
The points for each subspace are independently and nor-
mally distributed about its center and the coordinates for
dimensions in which the center is unbounded are chosen
uniformly in [0,1000]. Thus, the subspaces generated in
the dataset are oriented parallel to the axes. For all exper-
iments, unless otherwise mentioned, we set as parameters
to our data generator, k = 5, n = 1000, d = 50, c =
0.5, o = 0.5, κ = 4.0, x = 0.05. Also, we set support
threshold u = 0.05, τ = 1/n, ξ = 10 as the parameters to
SCHISM. Also, we use f(p) = p

d
.

Experiments were carried out on a Sun Sparc 650 MHz
machine running on a Solaris O/S with 256 MB RAM.
Since we have the seed subspaces we can easily evaluate
the accuracy of SCHISM. We first mine the subspaces and
partition the points in the space, so that they either belong to
some interesting subspace or they are classified as outliers.
Each of the following graphs, unless otherwise mentioned,
shows the variation in performance, as a measure of two
evaluation metrics: execution time and coverage (shown on
y-axis), as a parameter of either SCHISM or the synthetic
dataset is varied (shown on x-axis). The entropy for all these
experiments is below 0.004 and hence not shown. This im-
plies that SCHISM mines very pure clusters from our syn-
thetic datasets. Ideally, the running time curve should be
flat or linear and the coverage curve should be flat at 1.0.

5.1.1 Effect of varying dataset parameters
Effect of dataset size and dimensionality In Fig. 5, it
is evident that as the dataset size increases, the coverage
remains constant, while the running time grows linearly.

Note that in Fig. 6, as the dimensionality of the dataset
increases, the coverage remains more or less constant, but
the running time seems to grow exponentially initially, and
then grows linearly from dimensions 200-300. In the worst
case, this algorithm has exponential complexity in the num-
ber of dimensions, but in practice as shown here, the DFS
algorithm coupled with the varying threshold function, sig-
nificantly prunes the search space.

Effect of subspace size and dimensionality In Fig. 7,
we observe the variation in coverage and running time, as
the ratio κ = maxi αi

mini αi
increases from 2 to 12. We observe

that as the ratio increases, the coverage dips marginally and
the running time remains constant. The coverage decreases
because the subspaces which contain a smaller number of
points have, on average, as large a volume as those contain-
ing a larger number of points, leading to a lower density.
A smaller fraction of their enclosing subspaces are likely to
be identified as ‘interesting’ and hence only a small fraction
of their points are detected as non-outliers, as compared to
when the ratio is not so large.

In Fig. 8, we observe the variation in coverage and run-
ning time, as the probability of constraining a dimension
in a subspace c, increases from 0.3 to 0.9. We observe
that as c increases, the running time remains constant but
larger fractions of the dataset are constrained to smaller vol-
umes, making them more ‘interesting’ and hence coverage
improves somewhat.

Effect of subspace overlap Subspaces may overlap in
terms of the dimensions in which they are constrained or in
terms of the specific intervals they are constrained to. Ac-
cordingly, we have two experiments. In the first, we test

the effect on performance due to increased overlap between
constrained dimensions of subspaces generated consecu-
tively. By increasing o from 0.1 to 0.9, we increase the like-
lihood of different subspaces being constrained to the same
intervals of the same dimensions. In Fig. 9, we observe
that running time stays constant but coverage decreases as o
increases. This occurs because it becomes more likely that
points belong to multiple ‘interesting’ subspaces simulta-
neously and hence only one is discovered, which may not
completely cover the other.

In the second experiment, if Ci,j is the jth co-ordinate
of the center of the ith subspace, then if we constrain the
jth co-ordinate of the (i + 1)th center as well, we set it so
Ci+1,j ∈ {Ci,j − 2σi,j , Ci,j + 2σi,j}, where σi,j is the
standard deviation in the jth dimension of the points corre-
sponding to the ith subspace. From Fig. 10, we observe that
SCHISM does not perform too well in this test and fails to
find some of the clusters as the dimensionality rises, again
because a point may now belong to multiple subspaces.

Performance on datasets with less dense subspaces In
this experiment we run SCHISM on Gaussian and hyper-
rectangular datasets. We decrease the density of the
Gaussian datasets by increasing the standard deviation of
each constrained dimension in each subspace. For hyper-
rectangular subspaces, each constrained dimension is con-
strained to an interval of width, chosen uniformly in
[0.5w,1.5w]. Thus, the density is decreased by increasing
w; the volume of the subspace and keeping the number of
points assigned to it is the same.

From Fig. 11 and Fig. 12, it is clear that as density
decreases, SCHISM’s performance deteriorates. This is be-
cause a smaller percentage of the subspace’s points tend to
fall into the same interval as that of the subspace center, as
the volume increases. In such a case, decreasing the num-
ber of intervals in the dimension (ξ) might help or we must
search for less ‘interesting’ subspaces, i.e., decrease τ .

Effect of number of clusters k Note from Fig. 13, that
the running time remains constant as the number of embed-
ded subspaces (k) increases, while coverage worsens after
k = 8 as some clusters become very small and hence not
‘interesting’.

5.1.2 Effects of varying algorithm parameters
Effect of τ In Fig. 14, we decrease the user specified in-
terestingness threshold τ from 10−12 to 10−.25, and observe
its effect on the coverage and running time. Note that the
coverage increases rapidly, implying that τ is the main pa-
rameter which determines how much of the search space is
mined and hence running time drops rapidly too. Our exper-
iments on the effect of u on SCHISM performance (which
are not shown due to lack of space), indicate that τ has a
more precise control on pruning than u.

Effect of ξ From Fig. 15, we observe that, varying
the number of intervals into which each dimension is dis-
cretized (ξ), has a small effect on SCHISM’s performance
for a considerable range of values for ξ. This is because the
term ξ is incorporated into threshSCHISM . Outside this
range however (ξ > 15), performance is severely degraded
as the interval size becomes so small that very few contain
enough points to be considered ‘interesting’.

Effect of thresh() function on performance Here we
compare the performance of the thresh() function given
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ality
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Figure 8. Subspace Dimen-
sionality

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

S
co

re

P(same dimension in adjacent subspaces are constrained)=o

Coverage
Speed(minutes)
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Figure 10. 2σ Constraining
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Figure 11. Gaussian Sub-
space Density
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Figure 12. Hyper-rectangle
Subspace Density
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Figure 13. Num Clusters (k)

 0

 0.2

 0.4

 0.6

 0.8

 1

-12 -10 -8 -6 -4 -2  0

S
co

re

log10(Tau)

Coverage
Speed(minutes)

Figure 14. Interestingness
Threshold

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5  10  15  20  25  30

S
co

re

Number of intervals per division(Xi)

Coverage
Speed(minutes)
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Figure 16. thresh: CLIQUE
vs. SCHISM

Class C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17
‘0’ 0 0 0 15 0 0 0 0 1 0 0 0 0 0 0 0 0
‘1’ 0 272 0 0 0 0 0 4 9 6 39 24 0 0 3 1 0
‘2’ 0 2 0 0 2 1 0 0 11 142 284 56 0 0 7 0 0
‘3’ 0 7 0 0 0 0 53 43 405 0 0 0 0 0 0 52 0
‘4’ 0 0 38 0 0 1 0 3 6 0 0 0 80 82 0 0 0
‘5’ 322 0 0 0 0 0 6 11 78 0 0 0 0 0 0 2 0
‘6’ 1 0 11 109 0 78 4 1 9 3 0 0 9 31 0 0 0
‘7’ 1 74 0 0 24 13 0 0 1 0 0 1 0 0 16 0 94
‘8’ 22 0 0 0 36 14 1 0 2 0 0 5 0 0 24 0 8
‘9’ 0 11 3 0 0 0 24 15 160 0 1 0 3 2 0 33 0

Figure 17. Confusion Matrix for PenDigits Data Set



in Eq. 4, with that of CLIQUE on the synthetic datasets.
From Fig. 16, we observe that as the density of the hyper-
rectangular clusters dips due to increase in the width of its
constrained dimensions, the running time of CLIQUE 4 in-
creases rapidly over that of SCHISM. Also, CLIQUE tends
to split clusters into smaller ones. Its performance closely
mirrors that of SCHISM for datasets having well-defined
distinct clusters. However, when clusters overlap in a num-
ber of dimensions, the coverage and entropy suffers.

5.2 Real Data Sets

We apply SCHISM to two well researched datasets from
different domains. The PenDigits dataset 5 [6] contains
7,494 16-dimensional vectors. 30 different writers wrote
approximately 250 digits, sampled randomly from the digit
set [0,9] on a pressure-sensitive tablet. Each vector corre-
sponds to the (x, y) coordinates of 8 points, spatially sam-
pled from each of these handwritten digits. Note that the
embedded subspaces, i.e., the digits 0-9, overlap consider-
ably in the 16-dimensional space. SCHISM outputs 128
subspaces in 4 seconds, of which the 17 clusters with the
highest entropies are shown in the confusion matrix in Fig-
ure 17. It achieves a coverage of 69% and an entropy of
0.365 (u = .01, τ = 0.018). CLIQUE achieves a coverage
of 60.7% and an entropy of 0.49 in approximately 4 seconds
too. As in DOC, ORCLUS, we provide a confusion matrix
(Figure 17), which is interpreted as follows: cell (i, j) of
the matrix denotes the number of points having true class i,
which were clustered by SCHISM into subspace j. Ideally,
each row and each column have only a single non-zero en-
try implying E(C)=0. Note that samples of the digits {3, 9}
are both assigned by SCHISM to clusters C7, C8, C9 due to
their similarity in structure. The clusters not shown typi-
cally have all their samples from the same digit class.

The other dataset is the gene expression data for the yeast
cell cycle 6, obtained for 2884 genes (rows) at 17 (columns)
points in time. We obtained a number of clusters of which a
few were highly populated and the others relatively empty.
Ideally, clustering gene expression data should produce
clusters of genes which are similar in function. However, al-
most all the genes have multiple functions and hence genes
cannot be labeled by a single class. The highly popu-
lated clusters we mined using SCHISM, contained groups
of genes which are known to have strong similarity in terms
of function, e.g., out of 5 genes in our dataset known (see
www.yeastgenome.org) to be involved in ribonuclease MRP
activity, 4 (POP4,POP5,POP8,SNM1) are assigned to the
same cluster, 4 genes (SEC7,AGE1,SFT1,COG6) out of 6
involved in intra-Golgi transport, are assigned to the same
cluster, etc. (ξ = 5, τ = 0.018). While SCHISM finds 59
such groups of genes which are clustered together in larger
clusters, CLIQUE finds only 33, both doing so in approxi-
mately 8.5 seconds.

While, we attempted to compare our algorithm perfor-
mance with that of SUBCLU [17], we found default param-
eter setting for SUBCLU to be unsatisfactory and manual
setting to be extremely hard, as it took an unreasonably long
time (on the order of a number of hours) to produce output
for our synthetic and real datasets. The clusters produced
generally split the embedded clusters into distinct clusters.

4Our implementation of CLIQUE involves simply replacing
threshSCHISM with threshCLIQUE in our implementation to
test the significance of our threshold function

5See ftp://ftp.ics.uci.edu/pub/machine-learning-databases/pendigits
6See http://arep.med.harvard.edu/biclustering/yeast.matrix

6 Conclusions

We define a new interestingness measure which pro-
vides absolute guarantees to the user about the interest-
ingness of the subspaces reported, as per our definition of
interesting. We use the interestingness measure itself to
prune our search, as opposed to traditional methods[21],
which determine interestingness of patterns after the search
is completed, making the process faster. We use an algo-
rithm which requires parameters which are relatively easy
to set intuitively. These contributions can also be applied
to the problem of finding interesting itemsets. The code for
SCHISM is available at www.cs.rpi.edu/ sequek/schism
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