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Abstract

In this paper, we introduce the concept ofα-orthogonal
patterns to mine a representative set of graph patterns. In-
tuitively, two graph patterns areα-orthogonal if their sim-
ilarity is bounded above byα. Eachα-orthogonal pattern
is also a representative for those patterns that are at leastβ
similar to it. Given user definedα, β ∈ [0, 1], the goal is to
mine anα-orthogonal,β-representative set that minimizes
the set of unrepresented patterns.

We presentORIGAMI, an effective algorithm for mining
the set of representative orthogonal patterns.ORIGAMI first
uses a randomized algorithm to randomly traverse the pat-
tern space, seeking previously unexplored regions, to return
a set of maximal patterns.ORIGAMI then extracts anα-
orthogonal,β-representative set from the mined maximal
patterns. We show the effectiveness of our algorithm on a
number of real and synthetic datasets. In particular, we
show that our method is able to extract high quality pat-
terns even in cases where existing enumerative graph min-
ing methods fail to do so.

1 Introduction

Increasingly, today’s massive data is in the form of com-
plex graphs or networks. Examples include the physi-
cal Internet, the world wide web, social networks (includ-
ing blogs, chat rooms, phone networks, and networking
web-sites), biological networks (including protein interac-
tions networks and bio-chemical compounds). Mining such
databases for graph patterns has attracted a lot of interestin
recent years.

Typical graph mining methods follow the combinatorial
pattern enumeration paradigm, and aim to extractall fre-
quent subgraphs, perhaps subject to some constraints. In
many real-world applications arising in bioinformatics and
social network analysis, the complete enumeration of all
patterns is practically infeasible, due to the combinatorial
explosion in the number of mined subgraph patterns. For
example, on a set of six proteins taken from the HOM-
STRAD database of homologous protein structures (see

dataset PS in Section 5), a typical enumerative graph min-
ing method (we used gSpan [14]) did not finish running in
even 2 days. These six graphs contain common motifs of
size over 50-60 residues, thus any method that tries to enu-
merate all subgraphs is simply unable to mine this dataset.
In fact, mining only the closed or even the maximal patterns
in such domains can be untenable.

Aborting the mining process prematurely does not help
either, as there is no guarantee that the resulting set of pat-
terns is representative in any sense. Typically, one can ex-
pect that the patterns cover only a small region of the out-
put search space (e.g., a breadth-first search approach will
have seen patterns only up to some level, and a depth-first
method may have seen patterns covering branches up to
some point). For example, we ran a depth-first graph min-
ing algorithm [5] on a protein-interaction dataset consisting
of three graphs (see dataset PI in Section 5), each graph
having 2154 nodes, and on average 81607 edges, with total
database size 3MB. The mining process was aborted after
a day of running, at which point it had generated a 7GB
output file containing over 8 million subgraphs. The largest
mined graph had only 22 edges; there were 57 such sub-
graphs, but these had a similarity of over 95% (differing in
only a few edges), indicating that only a small fraction of
the possible output space had been seen.

Note also that in many real-world cases, enumerating all
frequent patterns is not necessarily the primary objective.
Rather, mined patterns are likely to be used as inputs for
a subsequent analysis/modeling step, and as such, a rela-
tively small representative set of patterns may suffice. For
example, mining frequent motifs in protein structures sets
the stage to solve problems like structural alignment, ho-
mology detection, etc. Recurring patterns in a social net-
work can be used for link prediction, de-duplication, hidden
group identification, etc. Frequent patterns obtained from
network log data can be used to build classification model
that can predict network intrusion and other anomalous be-
havior. None of these applications requires the entire set of
frequent patterns. Note also, that the lack of interpretability
and the curse of dimensionality due to a large set of redun-
dant patterns can cause problems for subsequent steps like
clustering and classification. Many successful applications
of pattern mining for solving real-life problems thus require



the result-set to be asummary, rather than acomplete setof
the frequent pattern space.

In this paper, our goal is to address all of the above limi-
tations that prevent graph mining to be applied in real-world
problems. Instead of enumerating all graph patterns, we
aim to mine a relatively small set of representative patterns
that share little similarity with each other. More specifi-
cally, given user-defined parametersα, β ∈ [0, 1], our goal
is to find an optimalα-orthogonalβ-representative set of
patterns. Two patterns are said to beα-orthogonal if their
similarity is at mostα, and a pattern is said to be aβ-
representative for another pattern if their similarity is at
leastβ. Instead of enumerating the entire set of subgraph
patterns, we employ a randomized (but principled) search
over the partial order of subgraph patterns, to obtain a rep-
resentative sample of the possible output space (of maxi-
mal patterns). The aim is to cover, or traverse, different
unexplored parts of the partial order yielding potentially
representative patterns. In a second step, a locally optimal
orthogonal representative pattern set is extracted from the
output sample. The main contributions of our paper are as
follows:

• We propose a new paradigm for mining a summary
representation of the set of frequent graphs. Unlike
previous techniques, that focus on the distance in the
transaction space to obtain representatives, our ap-
proach captures representatives by considering the dis-
tances in the pattern space.

• We introduce a randomized approach for mining max-
imal subgraph patterns. The method is designed to
cover the partial order of subgraphs, so that orthogo-
nal maximal patterns are obtained quickly.

• We formulate theα-orthogonalβ-representative set
finding as an optimization problem. We show that the
optimization problem is NP-Hard and we thus propose
a local optimization solution that is efficient and prac-
tically feasible.

Our algorithm that finds the α-orthogonal β-
representative set is calledORIGAMI (which stands
for Orthogonal RepresentatIve GrAph MI ning). We
demonstrate the effectiveness ofORIGAMI on a variety of
synthetic and real dataset, and show that it is able to mine
good quality orthogonal representative sets, especially
for datasets where traditional enumerative methods fail
completely.

2 Related Work

Many recent methods have been proposed for graph min-
ing; these include [4, 8, 9, 14, 6, 10]. The focus of these
methods is to mine all frequent subgraph patterns, rather
than finding orthogonal or representative patterns. There is
also an increasing interest in using the mined graph patterns
for indexing [16].

There are several works guided towards finding a subset
of frequent patterns that are most informative, compressed,
discriminative and non-redundant [1, 13, 12, 3]. However,
all these previous works handle itemset patterns only. In the
graph domain, we did not find any work on compressed fre-
quent patterns, except, works on closed frequent graphs [15]
and maximal frequent graphs [11, 7]. Even though these
two approaches generate a smaller set of patterns, the num-
ber of patterns in both cases can still be very large. More-
over, many patterns in the resulting sets can be very similar,
hence, they may not be appropriate as a summary or repre-
sentative pattern set.

We present a set of frequent graphs that are representa-
tive of the entire frequent graph partial order. Each element
in representative set is more thanα distant from the oth-
ers. Moreover, since graphs represent the most general type
of patterns, a solution to this problem in the graph setting
automatically covers the other pattern types like itemsets,
sequences and trees.

3 Problem Formulation

Graphs and Subgraphs:A graphG = (V,E), consists of
a set of verticesV = {v1, v2, . . . , vn}, and a set of edges
E = {(vi, vj) : vi, vj ∈ V }. Let LV andLE be the set of
vertex and edge labels, respectively, and letV : V → LV

andE : E → LE be the labeling functions that assign labels
to each vertex and edge. Thesizeof a graphG, denoted|G|
is the cardinality of the edge set (i.e.,|G| = |E|). A graph
of size k is also called ak-graph. A graph isconnected
if each vertex in the graph can be reached from any other
vertex. All graphs we consider are undirected, connected
and labeled.

A graphG1 = (V1, E1) is asubgraphof another graph
G2 = (V2, E2), denotedG1 ⊆ G2, if there exists a 1-
1 mappingf : V1 → V2, such that(vi, vj) ∈ E1 im-
plies (f(vi), f(vj)) ∈ E2. Further,f preserves vertex la-
bels, i.e.,V(v) = V(f(v))), and preserves edge labels, i.e.,
E(v1, v2) = E(f(v1), f(v2)). f is also called asubgraph
isomorphismfrom G1 to G2. If G1 ⊆ G2, we also say that
G2 is a super-graph ofG1. Note also that two graphsG1 and
G2 areisomorphic iffG1 ⊆ G2 andG2 ⊆ G1. LetD be a
set of graphs, then we writeG ⊆ D if ∀Di ∈ D, G ⊆ Di. G
is said to be amaximal common subgraphof D iff G ⊆ D,
and 6 ∃H ⊇ G, such thatH ⊆ D.

Graph Support: LetD be a database (a set) of graphs, and
let each graphDi ∈ D have a unique graph identifier. De-
note byt(G) = {i : G ⊆ Di ∈ D}, thegraph identifier
set (gidset), which consists of all graphs inD that contain a
subgraph isomorphic toG. Thesupportof a graphG in D is
then given asπ(G,D) = |t(G)|, andG is calledfrequentif
π(G,D) ≥ πmin, whereπmin is a user-specified minimum
support (minsup) threshold. A frequent graph isclosedif it
has no frequent super-graph with the same support. A fre-
quent graph ismaximal if it has no frequent super-graph.



Denote byF , C,M the set of all frequent, all closed fre-
quent, and all maximal frequent subgraphs, respectively. By
definition,F ⊇ C ⊇ M. The set of all maximal frequent
subgraphsM is also known as thepositive border. Note
that the set of all (frequent) subgraphs forms a partial or-
der with respect to the subgraph relationship, and associated
with each graph in the partial order is its gidset.

Orthogonal and Representative Graphs: Define sim :
F × F → [0, 1] to be a symmetric binary function that
returns thesimilarity between two graphs. For example, the
similarity based on the maximum common subgraph [2] is
given as:sim(Ga, Gb) = |Gc|

max(|Ga|,|Gb|)
, whereGc is the

maximum common subgraph ofGa andGb.
Given any collection of graphsG, and given a similarity

thresholdα ∈ [0, 1], we say that a subset of graphsR ⊆ G
is α-orthogonal 1 with respect toG iff for any Ga, Gb ∈ R,
sim(Ga, Gb) ≤ α and for anyGi ∈ G \ R there exists a
Gj ∈ R, sim(Gi, Gj) > α.

Given a collection of graphsG, anα-orthogonal setR ⊆
G, and given a similarity thresholdβ ∈ [0, 1], we say that
R representsa graphG ∈ G, provided there exists some
Ga ∈ R, such thatsim(Ga, G) ≥ β. LetΥ(R,G) = {G ∈
G : ∃Ga ∈ R, sim(G,Ga) ≥ β}, then we say thatR is a
β-representativeset forΥ(R,G).

Finally, givenG, and itsα-orthogonal,β-representative
set R, define theresidue setof R to be the set of un-
represented patterns inG, given as ∆(R,G) = G \
{R ∪ Υ(R,G)}. The residue of R is defined to be
the cardinality of its residue set,|∆(R,G)|. Define
the average residue similarityas follows: ars(R,G) =P

Gb∈∆(R,G) maxGa∈R{sim(Ga,Gb)}

|∆(R,G)| .

Lemma 1 α < ars(R,G) < β.
PROOF: For anyGa ∈ ∆(R,G), we havesim(Ga, Gb) <
β for all Gb ∈ R. Furthermore, by definition, for anyGb ∈
G \ R,∃Ga ∈ R, such thatsim(Ga, Gb) > α. Thus the
numerator is always in the range(α, β).

Problem Definition: In this paper we are interested in find-
ing theα-orthogonal,β-representative set for the set of all
maximal frequent subgraphs, i.e., whenG = M. In gen-
eral, one can find orthogonal representative sets for any col-
lection of patternsG. Since the maximal patterns provide a
synopsis of the frequent patterns, and since they are gener-
ally a lot fewer than the sets of all frequent and closed fre-
quent patterns, it seems reasonable to try to find a orthog-
onal representative set among those. However, since even
mining all the maximal graphs can be infeasible in many
real-world domains, we try to find orthogonal representa-
tive sets for a subset of the maximal patternŝM ⊆ M.

Given a graph databaseD, user-defined similarity thresh-
oldsα, β ∈ [0, 1], and a minimum support thresholdπmin,

1This is inspired by linear algebra, where two vectors are said to be
orthogonal if their similarity (dot product) is 0. We extend this notion to
say that two graphs areα-orthogonal if their similarity is at mostα. When
α = 0, it gives the usual sense of orthogonality.

the problem of miningα-orthogonalβ-representative graph
patterns can now be formulated as follows:

1. Mine a (diverse) sample of maximal frequent patterns
M̂ ⊆ M.

2. Mine an α-orthogonalβ-representative setR, that
minimizes the residue|∆(R,M̂)|.

Note that an alternative objective can be to maximize
ars(R,M̂). In this paper we focus on minimizing the
residue (|∆(R,M̂)|).

A solution to the above problem provides a small set of
maximal frequent graph patterns that are non-redundant or
orthogonal (for theα constraint) and also representative (for
theβ constraint). Depending on the value ofβ, the follow-
ing two cases make interesting variants of the problem:

case I (β ≤ α): By definition ofα-orthogonal set, for any
Gi ∈ M̂ \ R, there existsGj ∈ R, such that
sim(Gi, Gj) > α ≥ β. This implies that each
Gi ∈ M̂ \ R is represented by someGj ∈ R. Im-
mediately haveΥ(R,M̂) = M̂ \ R, which in turn
implies that∆(R,M̂) = ∅. Thus, whenβ ≤ α the
residue of anyα-orthogonal setR is 0, implying that
everyα-orthogonal set is optimal w.r.t the residue.

case II (β > α): This is the general case, for which theα-
orthogonal setR, may not be aβ-representative for
some maximal frequent graphs in̂M. In other words
whenβ > α, the residue|∆(R,M̂)| ≥ 0; thus an
optimal solution is a set of orthogonal patterns that
minimizes the residue. A special case ofβ > α oc-
curs whenβ = 1. In this case each element in the
α-orthogonal represents only itself, and the residue is
|∆(R,M̂)| = |M̂ \ R|.

As an example, assume that we are given the pair-wise
similarities between a set of graphŝM, as shown in Fig-
ure 1. Ifα = 0.2, then there are two possibleα-orthogonal
sets, namelyR1 = {M1,M3} andR2 = {M2,M4,M5}
as illustrated in Figure 1(b). Ifβ ≤ α, both of these will
be optimal in terms of the residue. However, ifβ = 0.6,
thenΥ(R1,M̂) = {M2,M5}, which gives|∆(R1,M̂)| =
|{M4}| = 1. This is illustrated in Figure 1(b), which
shows thatM4 remains unrepresented byR1. For R2,
Υ(R2,M̂) = {M1,M3}, yielding |∆(R2,M̂)| = |∅| =
0. Thus in this caseR2 is the optimalα-orthogonalβ-
representative set.

The intuition behind our definition ofα-orthogonalβ-
representative set should now be clear. The orthogonality
constraint ensures that the resulting set of frequent patterns
has controlled redundancy. For a givenα, several sets of
(maximal) patterns qualify as feasibleα-orthogonal sets.
Besides redundancy control, we also want to achieve repre-
sentativeness, i.e., for every maximal frequent patterns not



M1 M2 M3 M4 M5

M1 1.0 0.3 0.18 0.4 0.7
M2 - 1.0 0.7 0 0.1
M3 - - 1.0 0.4 0.5
M4 - - - 1.0 0.15
M5 - - - - 1.0

(a) Similarity Matrix

M1

M3

M5

M2

M4

(b) Similarity Graph

Figure 1. Similarity Matrix & Graph: In the
graph, sim ≤ α = 0.2 is denoted by bold
edges, and sim ≥ β = 0.6 by dotted edges.

reported, we want it to have a representative similar to it
(based on theβ threshold). Some patterns may still remain
unrepresented, which make up the residue set. For a given
α andβ, the size of the residue set becomes an objective
function to minimize when choosing the orthogonal repre-
sentative sets.

4 The ORIGAMI Approach

ORIGAMI(D, πmin, α, β):
1. EM = Edge-Map (D)
2. F1 = Find-Frequent-Edges (D, πmin)
3. M̂ = ∅
4. while stoppingcondition() 6= true

5. M = Random-Maximal-Graph(D,F1, EM, πmin)
6. M̂ = M̂ ∪ M
7. R = Orthogonal-Representative-Sets (M̂, α, β)

Figure 2. ORIGAMI Algorithm

ORIGAMI has two distinct steps to mine the orthogonal
representative patterns. The first step finds a subset of fre-
quent maximal patternŝM. The second step refineŝM to
obtain an orthogonal representative set. The pseudo-code
for ORIGAMI is shown in Figure 2. The algorithm accepts
a graph databaseD, a minimum support valueπmin, and
values for the parametersα andβ. ORIGAMI first computes
two global data structure that are used to generate maximal
frequent patterns (lines 1-2). The edge-map (EM) stores for
each vertex labellva

a pair (lvb
, le), if (va, vb) is an edge

with edge labelle in some graph inD. F1 stores the set
of all frequent1-graphs (i.e., single edges).ORIGAMI then

computes an approximation or sample of the set of maxi-
mal patternŝM, by generating random maximal graphs un-
til the stopping condition is met (lines 4-6). The stopping
condition mainly ensures that the partial order of frequent
graph patterns has been sufficiently explored. OnceM̂ is
obtained,ORIGAMI computes one or severalα-orthogonal
β-representative sets (line 7). Details of the various steps
appear below.

4.1 Mining Random Maximal Graphs

The first step inORIGAMI finds a samplêM of the set of
all maximal frequent graphsM. Our goal is to find a sample
that itself has as diverse a collection of maximal patterns as
possible. In other words we want to avoid generating maxi-
mal patterns that are very similar to other maximal patterns
already found. This necessitates a deviation from traditional
enumerative pattern mining approaches.

Enumerative graph mining methods either explore the
pattern space in a breadth-first (level-wise) or depth-first
manner. The approaches work by extending an existing
graphS of size k by adding one more edge to obtain a
(k + 1)-graphS′. The drawback of the breadth-first ex-
ploration of the pattern space is that longer patterns may
never be reached, due to the combinatorial explosion in the
number of subgraphs. On the other hand, depth-first explo-
ration can produce some large maximal patterns, however
it is likely to explore only a limited portion of the positive
border, and most of the maximal pattern it enumerates will
be very similar.

Figure 3. Frequent graph partial order

Random Walks over Chains: ORIGAMI adopts a ran-
dom walk approach to enumerate a diverse set of maximal
patterns from the positive border. Each run of Random-
Maximal-Graph (Figure 2, line 5) outputs one random max-
imal patternM by starting at the empty pattern and succes-
sively adding a random edge during each extension, until no
extensions are possible. Each run of the method thuswalks
a random chainin the partial order (recall that achain in
a partial order is a path composed of subgraph to immedi-
ate supergraph edges). Figure 3 gives an illustration of this
process. Each intermediate pattern is denoted by a star, and



there exists an edge between two graphsGa ⊆ Gb in the
partial order if|Ga| = |Gb| − 1. The set of all maximal
patterns or the positive border is denoted by the bold curve.
Each random walk starts at the empty pattern∅, and follows
a random chain until it hits the positive border. Different
runs of Random-Maximal-Graph produce an approximate
set of maximal patternŝM.

Ideally the random chain walks would cover different
regions of the partial order, and would produce dissimilar
maximal patterns. However, in practice, this may not be the
case, since duplicate patterns can be encountered in the fol-
lowing ways: (i) multiple iterations following overlapping
chains, or (ii) multiple iterations following different chains,
both leading to the same maximal pattern.

Let’s consider a maximal frequent graphM of sizen.
Let e1e2 · · · en be a sequence of random edge extensions,
corresponding to a random chain walk, leading from the
empty graph to the maximal graphM . Corresponding to
the edge sequence is a series of intermediate graphs on the
walk: ∅ = S0 → S1 → S2 · · · → Sn = M , whereSi is
the intermediate obtained by extendingSi−1 with ei. The
probability of a particular edge-sequence leading from∅ to
M is given as:

P [(e1e2 · · · en)] = P (e1)

n∏

i=2

P (ei|e1 · · · ei−1) (1)

In general, any permutation,π, of an edge sequence, i.e.,
(π(e1) π(e2) · · ·π(en)) can also generate the same graph,
M ; however, alln! permutations may not be valid, since
we require all intermediate graphs to be connected. For ex-
ample, for ak-edge star graph, the number of valid edge-
sequences isk!, but for a lineark-edge graph (a sequence),
the number of valid edge-sequences is2k−1.

Denote byES(M) the set of all valid edge-sequences
for a graphM . The probability that a graphM is generated
in a random walk is proportional to:

∑

(e1e2···en)∈ES(M)

P [(e1e2 · · · en)] (2)

The probability of obtaining a specific pattern depends
on the number of chains or edge sequences leading to that
pattern and the size of the pattern. As we can see from
Equation 1, if a graph grows larger, the probability of an
edge sequence gets smaller, though a larger graph typically
has more chains leading to it. So, our approach, in general,
favors a maximal pattern of smaller size over a maximal pat-
tern of larger size. We circumvent this problem by aborting
a walk that is likely to generate duplicates or very similar
patterns.

Termination Condition: The iterative loop (Figure 2, line
4) that generates the maximal graphs terminates when an
appropriate stopping condition is satisfied. The simplest
case is to stop after a given number of walksk. We also
implemented a dynamic termination condition, based on an

estimate of thecollision or hit rate of the patterns. Intu-
itively the collision rate keeps track of the number of dupli-
cate patterns seen within the same or across different ran-
dom walks. As each chain is traversed,ORIGAMI maintains
in a bounded-size hash-table, the signature of the interme-
diate patterns. As each intermediate or maximal pattern is
seen, its signature is added to the hash-table and the colli-
sion rate is updated. If the collision rate exceeds a threshold
ǫ, this information can be used in two different ways: i)
Within a given random walk, we can abort further exten-
sions along the current path and force the method to back-
track and choose another path (randomly). ii) Across dif-
ferent walks it can trigger the terminating condition, since
a collision rate exceedingǫ implies that same parts of the
partial order are being re-visited. An advantage of this dy-
namic approach is that the user need not explicitly specify
k (thoughǫ is now the new parameter).

Random Maximal Graph Generation: As mentioned
above the Random-Maximal-Graph method performs a ran-
dom walk along a chain in the subgraph partial order. Start-
ing from the empty pattern it adds random edges to obtain
a succession of intermediate graphs leading to some max-
imal patternM ∈ M. To extend an intermediate pattern,
saySk ⊆ M , we first choose a random vertex, say with id
v, from where the extension will be attempted. Then, we
choose a random edgee(i, j) ∈ EM from the edge-map,
wherei andj are the vertex labels of edge,e; the edge can,
optionally, have an edge label. Note thati must be equal
to the label of vertexv for a proper extension. The edge
map data structure can provide all such edges efficiently. If
no suche is found, no extension is possible from the vertex
v andv is inserted in a list ofexpiredvertices. When all
vertices in an intermediate graphSk are expired, the loop
breaks and the patternSk = M is a maximal pattern. But,
if an edgee is found, we randomly choose the other end of
this edge. If that is already in the graphSk, this is called
a back-extension, otherwise, it is a forward extension. An
edge is added between this node, and the candidate pattern,
Sk+1 is built. Its support is then computed, and if the pattern
is infrequent, we insert the following map entry, (v → e) in
another data structure called thefailed-map, to ensure that
the edgee shall not be attempted at vertexv for extension of
Sk any more in a later iteration. Details of the actual support
counting via a vertical data representation are essentially the
same as the graph mining method in DMTL [5].

Figure 4 shows an example of the Random-Maximal-
Graph algorithm, while finding a random maximal graph
from a graph database of size 3 (Fig. 4 a-c) withπmin = 2.
The edge map (Fig. 4 d) records all the possible extensions
for a given vertex label, recording the labels of the vertices
on the other end of that edge. If the edges have labels, they
also become part of the possible other labels. For simplic-
ity, we ignore edge labels in this example. The edge map
also remembers the highest frequency of an edgewithin any
graph in the database, so that some candidates which are
not frequent shall never be attempted. For instance, con-



A

A B

C D D

(a) G1

A

A

C C D

(b) G2

A

B

C

(c) G3

EDGE MAP with Max. Frequency
Vertex Possible Other Label
label

A A(1), B(1), C(3), D(1)
B A(1), C(1), D(2)
C A(3), B(1)
D A(1), B(2)

(d)

A

A

C

(e)

Vid V label Failed list

1∗ A A, B, C, D
2 A B, C
3 C B

(f)

Figure 4. (a-c) A graph database with 3 graphs. (d)
The edge map data structure that shows possible ex-
tensions, with the maximal edge count. (e-f) A snap-
shot of the random extension process while mining with
π

min = 2. The failed-list table shows which edge exten-
sions have been attempted and which failed; * denotes
an expired vertex id.

sider the candidate frequent graph A—A—C, which is not
maximal (Fig. 4 e). But, the graph already has one A—A
edge, with vertex ids (vid) 1 and 2, respectively. Since the
maximum frequency of the A—A edge is 1, the edge exten-
sion A—A shall never be attempted from vid 1 or 2. The
failed list that we maintain along with every iteration of the
maximal graph generation process is also shown (Fig. 4 f).
Note that for vid 1, all possible labels for the other end are
in the failed list, i.e., they had been attempted and found to
produce infrequent graphs. So, vid 1 is marked as expired
(denoted by *). When all the vertices are expired the pro-
cess terminates and we obtain a maximal graph. For this
particular example, adding an edge A—D at vid 2, yields
the maximal graph with support 2 (in graphsG1 andG2).

4.2 Orthogonal Representative Sets

Given a set of maximal patternŝM, ORIGAMI extracts
anα-orthogonalβ-representative set from it.

Theorem 4.1 GivenM̂, let Γ(M̂) be the graph withV =

M̂ and E = {(Ma,Mb)|sim(Ma,Mb) ≤ α}. Then any
α-orthogonal setR is a maximal clique inΓ(M̂), and vice-
versa.

PROOF: If R is anα-orthogonal set, then for anyMa,Mb ∈

R, sim(Ma,Mb) ≤ α, and for anyMa ∈ M̂\R, there ex-
istsMb ∈ R, with sim(Ma,Mb) > α. This implies that the
α-orthogonal set must be maximal. SinceΓ(M̂) has edges
only for α-orthogonal graphs, it follows that every maximal
clique inΓ(M̂) is α-orthogonal set, and vice-versa.

As mentioned earlier, theα-orthogonality controls the
amount of redundancy allowed among the output patterns.
For a givenα, several maximal cliques can exist in the graph
Γ(M̂), each a feasible solution to the orthogonal set prob-
lem. Theβ-representative condition allows each element of
the orthogonal to represent similar graphs, and also allows
us to rank the maximal cliques in terms of their residue (or
average residue similarity).

There are several challenges in finding the optimalα-
orthogonalβ-representative set. At the outset it should be
noted that the orthogonal set is a representative set only for
the sampleM̂. If sufficient number of maximal patterns
were not sampled (for example, if the stopping condition
were too restrictive), then̂M may not approximate the set
of all maximal patternsM very well, and the quality of
M̂ would suffer. Another challenge is that, depending on
the size of the maximal set̂M, it may not be reasonable
to compute the full pair-wise similarity matrix between all
elements ofM̂, since it hasO(M̂2) time and space com-
plexity. That is, it may not be reasonable to compute the full
graphΓ(M̂). Even if Γ(M̂) were available, the challenge
is that finding the optimal maximal clique that minimizes
the residue is an NP-hard problem.

Theorem 4.2 Finding the optimalα-orthogonalβ-repre-
sentative that minimizes the residue is NP-hard.
PROOF:This is easy to show, since the general problem con-
tains an NP-hard sub-case. Forβ = 1, each element in the
α-orthogonal set represents only itself, giving the residue
for any R as |∆(R,M̂)| = M̂ \ R. Thus minimizing
the residue forβ = 1 corresponds to solving the maximum
clique problem, which is known to be NP-hard.

Given the hardness result, instead of enumerating the op-
timal maximal clique, we resort to approximate algorithms
to solve the problem efficiently. Since, the optimal solu-
tion is a maximal clique of the similarity graph, we adopt
maximal clique finding as a heuristic. Using this approach,
ORIGAMI finds a maximal clique without computing the full
similarity matrix. Given the set̂M it randomly selects one
elementM ∈ M̂, and adds it toR. The idea is to itera-
tively add one element from̂M \ R to the currentR set
until no more elements can be added, which would yield a
maximal clique. At any intermediate step, we compute the
similarities for allMb ∈ M̂ \ R to elementsMa ∈ R. If
there existsMb ∈ M̂ \ R, such thatsim(Ma,Mb) ≤ α
for all Ma ∈ R, we addMb to R. This process is repeated



until a maximal clique is obtained. The complexity of find-
ing a single clique isO(|M̂||R|), but in general we expect
|R| ≪ |M̂|, so that the time is closer toO(|M̂|). Finally, to
obtain multiple cliquesORIGAMI simply starts with differ-
ent initial maximal graphs. Finally the best clique is chosen
based on the residue size.

We also designed an approximate solution, which is bet-
ter than the above heuristic approach and also guarantees lo-
cal optimality. The neighborhood structure of the local opti-
mal formulation uses maximal clique in a meta-heuristic ap-
proach. The algorithm starts with a random maximal clique.
At each state transition, another maximal clique which is a
local neighbor of the current maximal clique, is chosen. If
the new state has a better solution, the new state is accepted
as the current state and the process continues. The pro-
cess terminates when all neighbors of the current state have
equal or higher residue size. Two maximal cliques of size
m andn (where,m ≥ n) are considered neighbors, if they
share exactlyn − 1 vertices. The state transition procedure
selectively removes one vertex from the maximal clique of
current state and then expands it to obtain another maximal
clique, which satisfies the neighborhood constraints.

(a) A similarity graph, solid lines
represent elements with similarity
≤ α, broken lines represent simi-
larity ≥ β

(b) Initial clique (1,2,3) with
residue=2

(c) A local neighbor clique (2,3,4)
with better residue=1

Figure 5. Local optimization example

Figure 5 shows an example state transition for the local-
optimal algorithm. In Figure 5(a) we show a toy similarity
graph, where the solid lines represent low similarity (≤ α)
and broken lines represent high similarity (≥ β) between
corresponding elements. Figure 5(b) shows an initial clique
(1, 2, 3) which has residue = 2 (since element 4 and 6 are not
covered). Figure 5(c) shows a neighboring clique (2, 3, 4),

having 2 common nodes (2 and 3), that has a better residue
value (residue = 1; since only element 1 is not covered).
Thus, the local optimal algorithm will accept the new clique
in Figure 5(c) and will continue. For this toy example, this
clique is also optimal. In the experimental section we show
the performance superiority of the local optimal method
over the random clique approach.

Different Similarity Measures: Computing similarity be-
tween graphs is one of the significant tasks in finding the
α-orthogonal graph set. Similarity can be measured by us-
ing features in the pattern space or in the transaction space
(the gidset) or a combination of both of the above. In the
case of pattern space, the most common way to compute
similarity is using the edit distance between two patterns.
Depending on the pattern complexity, the cost of edit dis-
tance computation varies. For complex patterns like graphs,
the computation is usually costly. On the other hand, the
similarity in the gidset space is very easy to compute. A
ratio of intersection-set and union-set can represent a simi-
larity. For two patternsGa andGb, it can be computed as:
sim(Ga, Gb) = |t(Ga)∩t(Gb)|

|t(Ga)∪t(Gb)|
. This is a very crude measure

for similarity since, two very different patterns can have a
very similar set of transactions. We did not use this measure
in our work. But, for simpler patterns, like itemsets, it plays
an important role in finding distances between patterns.

We used the graph similarity measure proposed by
Bunke et al. [2] that computes the similarity between two
patterns by finding the relative size of their common sub-
patterns. For the case of graphs, this is equivalent to
finding the relative size of the maximal common sub-
graph of two graphs. IfG1, G2 are two graphs andGmc

is the maximum common sub-graph between these two
graphs, then the following equation computes the similar-
ity: simmc(G1, G2) = |Gmc|

max(|G1|,|G2|)
.

For our purpose, we computed the similarity by using a
maximal graph mining algorithm [7], that takes two graphs
as input and mines for maximal graph patterns with 100%
support. The frequent maximal graph of maximum size is
used to compute the size of the maximal common subgraph
in the similarity equation.

However, computing the exact similarity by solving the
maximal common subgraph can be costly, and for theα-
orthogonal graph problem, most often, we can compute a
lower bound on the graph-distance by considering a graph
as a labeled edge-multiset. We define the edge-multiset
similarity as follows: LetG1, G2 be graphs, ands be the
similarity between them as computed usingsimmc. Let
EG1

andEG2
be the edge-multiset where each edge is de-

fined by an ordered triple of its vertex labels and edge label:
〈vl1, el, vl2〉. The edge multiset similarity is then given as:
simem(G1, G2) = |EG1∩EG2|

max(|EG1
|,|EG2

|) . Now, the following
lemma always holds.

Lemma 2 simem ≥ simmc.
PROOF:simem ≥ simmc, unless|Gmc| > |EG1

| ∩ |EG2
|.

But this is impossible, since all the edges inGmc are present



in both the setsEG1
andEG2

.

In computing similarity between two patterns, we first
compute thesimem. If simem is smaller thanα, according
to Lemma 2,simmc is also smaller thanα, and the corre-
sponding patterns satisfy theα-orthogonal constraints. Oth-
erwise, we computesimmc.

5 Experiments

5.1 Dataset Description

Chemical Compound Datasets (DTP and CM: The
chemical dataset is obtained from the DTP AIDS Antiviral
Screen test. The dataset can be retrieved from DTP web-
site 2. The dataset is classified into three subsets of com-
pounds: confirmed active (CA), confirmed moderately ac-
tive (CM) and confirmed inactive (CI). Each chemical com-
pound is modeled as a graph where atoms represent the la-
beled vertices and bonds represent the labeled edges of the
graph. There are3 bond types and61 vertex types. The full
DTP database has40942 graphs, with average graph size45
edges and43 vertices. The CM subset has 1084 graphs with
average 31 vertices and 34 edges.

Protein Structure Dataset (PS): Given a protein struc-
ture, we create a protein graph as follows. Each amino
acid residue is treated as a vertex (labeled by one of the 20
amino acids), and there exists an edge between two vertices
vi and vj if d(vi, vj) ≤ t, i.e., if the Euclidean distance
between theCα atom of the residues is at mostt (we use
t = 7Å). We created a database of100 proteins (10 struc-
tural families, with 10 proteins from each family), from the
HOMSTRAD (http://www-cryst.bioc.cam.ac.
uk/∼homstrad/) database of structurally-aligned ho-
mologous proteins. The protein graphs have on average 165
nodes and 734 edges. The goal is to discover the orthogonal
representative structural motifs for each protein family.

Protein Interaction Dataset (PI): Data on pairs of inter-
acting proteins was collected from three different sources.
This dataset contains only 3 large graphs, with an average
of 2154 vertices and 81,607 edges per graph3. Each interac-
tion graph is created using one source: the first graph has an
edge if the proteins involved are known to interact (via bi-
ological experiments), the second graph has an edge if the
proteins are part of a known pathway, and the third graph
has an edge if the proteins have correlated gene expression
values.

Synthetic Implanted Dataset (SI):We wrote a graph gen-
erator that accepts seed graphs and implants them in larger
graphs to create a databaseD. First, we restrict the seeds to
beα-orthogonal. The|S| α-orthogonal seeds can be gener-
ated randomly or they may be extracted from a real dataset.
We generate|D| graphs with the average graph size taken

2http://dtp.nci.nih.gov/docs/aids/aidsdata.html
3This dataset was provided by Prof. Igor Kuznetsov at SUNY, Albany

from a Poisson distribution with meanT . Seeds are se-
lected to be added to the current graphDi ∈ D uniformly
at random; as each seed is added we ensure that the graph
Di remains connected (by adding random edges). If the ad-
dition of a new seed toDi would exceed sizeT , instead
of adding the seed, we make up the differential by adding
edges/vertices randomly to existing nodes inDi. The vertex
and edge labels are chosen randomly fromLV (the vertex
labels) andLE (the edge labels), respectively.

5.2 Empirical Results

All experiments were run on a 2.75Ghz PowerPC G5
Machine with 4GB Memory and 400GB disk. Since
ORIGAMI is randomized, we perform several runs (typically
between 3 to 5). Each run generates an approximate maxi-
mal setM̂. We next extract several orthogonal representa-
tive sets (typically 10) using our primary algorithm that re-
ports the best clique found. All numbers reported in the ex-
periments below are the averages over the best results over
all the runs. Wherever possible we tried to run state-of-the-
art graph mining methods like gSpan [14], and DMTL [5]
(which mine all frequent subgraphs) and SPIN [7] (which
mines maximal graph patterns). The local optimization al-
gorithm was used only in the result that compares against
the random maximal clique algorithm.

5.2.1 Protein Interaction Mining

First we evaluate our random walks approach to mining
maximal patterns. As mentioned in the introduction, we
ran a depth-first graph mining algorithm from DMTL [5]
to mine the protein interaction dataset (PI), looking for fre-
quent graphs atπmin = 100% (3 out of 3). The method
was running for over a day before we terminated it. Dur-
ing this time it had generate a 7GB output (from an initial
3MB database), containing 8 million subgraphs. SPIN was
not able to run on this dataset; it terminated with a segment
fault. Utilizing the fact that each protein appears only once
in a given graph, we converted each graph into an itemset
of edges, and we were then able to mine the maximal edge-
sets. Atπmin = 100% this yields 90 maximal frequent
graphs.
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Figure 6. Random Walk Performance (PI)

Next, we ranORIGAMI on the original PI dataset. Fig-
ure 6 shows the number of unique maximal patterns found



versus the number of random walks. The figure shows
thatall 90 maximal patterns were found after 1400 random
walks, and it took under 300s running time! This illustrates
the effectiveness of our random walks maximal pattern min-
ing approach. In this particular example, it was able to re-
turn the exact set of maximal patters (i.e.,̂M = M).

5.2.2 Protein Structure Mining

π
min Time(s) | cM| |R| H( cM) H(R) maxH

7 154.4 1002 213 1.092 1.039 1.946
8 75.5 1003 180 1.154 1.128 2.079
9 64.9 1007 190 1.217 1.195 2.197
10 50.4 1009 184 1.274 1.243 2.303

Table 1. Protein Structure Mining

Table 1 shows the time taken to mine the protein struc-
ture dataset at different values of minimum support. It
also shows the number of maximal andα-orthogonal pat-
terns found (forα = 0.2). Also shown is the average
entropy of the patterns in̂M and inR. Note that for a
set of graphsG, the average entropy is given asH(G) =P

G∈G
H(G)

|G| , whereH(G) = −
∑

i pi ln pi, wherepi is the
fraction of occurrences ofG in protein family i. For ex-
ample, if πmin = 8, and the protein subgraph appears in
8 different HOMSTRAD families, then its entropy will be
−8 1

8 ln(1
8 ) = 2.079. The maximum possible entropy for a

pattern with support exactlyπmin is also shown. We can see
that in generalORIGAMI produces relatively good patterns
that have about half the entropy compared to the maximum
entropy. An example of a low entropy pattern in the Im-
munoglobulin family from HOMSTRAD is shown in Fig-
ure 7.

Figure 7. Low Entropy Motif (in Red)

5.2.3 Chemical Compound Mining

Next we mined the chemical compound datasets. Note that
neither gSpan nor SPIN were able to run on the full 40942
graph DTP dataset. On the other hand, we were able to
successfully runORIGAMI on DTP, using as the stopping
criteria forM̂, the number of unique maximal patterns gen-
erated. We next extracted orthogonal representative sets for
different values ofα andβ.
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Figure 8. Performance on DTP and CM

The results are shown in Figure 8. In (a)-(c) we plot
three curves, corresponding to increasing number of unique
maximal patterns found, i.e., for different|M̂| values. Fig-
ure 8(a) plots the effect ofα on the average residue, which is

defined as|∆(R, cM)|

| cM|
. As we can observe, asα increases the

average residue shrinks to under 10% indicating that theα-
orthogonalβ-representative set has left unrepresented less
than 10% of the mined maximal patternŝM. Figure 8(b)
plots the size of the orthogonal representative set (or maxi-
mal clique) for differentα. We see that, as expected, bigger
cliques are found for largerα. Figure 8(c) shows the effect
of β on average residue. Asβ increases, we find that aver-
age residue increases, since the more stringent (i.e., higher)
the representativeness threshold, the fewer the patterns that
are represented.

Whereas SPIN was not able to run on the full DTP



dataset, we were able to run it on the smaller 1084 CM
dataset at a minimum support ofπmin = 25/1084 = 2.3%.
At this support level it output 1227 maximal patterns in
about 181s. Thus for this smaller dataset we know the true
set of maximal patternsM. Figure 8(d) plots the average
residue with respect to the true maximal setM, and the time
for mining as a function of the size of̂M. The observed
trend is that as|M̂| increases, the average true residue also
decreases, since the orthogonal set is able to represent more
true maximal graphs.

Figure 8(e) shows a comparison of random maximal
clique method and the local optimization method for dif-
ferentα values using the CM dataset. In every case, the
residue of the local optimal method is 30% to 50% smaller
than that of the random maximal clique method.

5.2.4 Implanted Seed Mining

|D| T πmin |R| Seeds Found
20000 50 200 25 4/9
30000 50 200 26 5/9
40000 50 200 27 8/9
20000 50 400 23 4/9
20000 50 800 19 4/9
20000 20 200 25 4/9
20000 30 200 21 5/9
20000 40 200 25 6/9
20000 60 200 24 7/9

Table 2. Results on Implanted Seeds
The goal of this experiment is to recover implanted

seeds. We generated a set of seeds from the full DTP dataset
as follows: Initially |M̂ | = 3550 maximal patterns were
generated from DTP usingORIGAMI. Next an orthogonal
setR is mined atα = 0.6, which yielded a maximal clique
of size|R| = 9. These 9 seed graphs, containing on average
6.4 edges and 7.4 nodes, were fed into the graph generator
to create varying datasets, as shown in Table 2.

Once the datasets were generated we mined them at dif-
ferent πmin values, and usedα = 0.8 to extract theα-
orthogonal sets. The first three rows show results for vary-
ing dataset size. As the dataset size increases the number of
seeds found increases, since the odds of the graphs contain-
ing the 9 implanted seeds increases. Rows 4 and 5 in the
table show results for varying the minimum support on a
dataset with 20000 transactions. The number of seeds cap-
tured does not change in this case. Rows 6-9 show the effect
of varying the average size (T ) of a graph inD. The results
confirm our intuition that as the average size increases, the
number of seeds in a graph increases, resulting in greater
number of seeds being captured.

6 Conclusions

In this paper we proposed a new paradigm for mining a
summary representation of the set of frequent graphs. This

is a very difficult problem to solve, as it consists of indi-
vidually hard problems: i) computing similarity between
graphs, ii) random sampling from the set of frequent max-
imal graphs, and iii) finding maximal cliques.ORIGAMI

employs effective techniques to tackle these challenges, as
demonstrated empirically on a variety of datasets. Unlike
previous techniques that focus on the distance in the trans-
action space to obtain representatives, our approach cap-
tures representatives by considering the distances in the pat-
tern space. We introduced a randomized approach for min-
ing maximal subgraph patterns. The method is designed
to cover the partial order of subgraphs, so that orthogonal
maximal patterns are obtained quickly. We formulated the
α-orthogonalβ-representative set finding as an optimiza-
tion problem. We show that the optimization problem is
NP-Hard and we thus propose a local optimization solu-
tion that is efficient and practically feasible. We demon-
strate thatORIGAMI is able to mine good quality orthogonal
representative sets, especially for datasets where traditional
enumerative methods fail completely.
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