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Abstract—A configuration management database (CMDB)
can be considered to be a large graph representing the IT
infrastructure entities and their inter-relationships. Mining
such graphs is challenging because they are large, complex,
and multi-attributed, and have many repeated labels. These
characteristics pose challenges for graph mining algorithms,
due to the increased cost of subgraph isomorphism (for support
counting), and graph isomorphism (for eliminating duplicate
patterns). The notion of pattern frequency or support is
also more challenging in a single graph, since it has to be
defined in terms of the number of its (potentially, exponentially
many) embeddings. We present CMDB-Miner, a novel two-step
method for mining infrastructure patterns from CMDB graphs.
It first samples the set of maximal frequent patterns, and
then clusters them to extract the representative infrastructure
patterns. We demonstrate the effectiveness of CMDB-Miner on
real-world CMDB graphs.

Keywords-single graph mining; frequent subgraphs; config-
uration management databases

I. INTRODUCTION

A configuration management database (CMDB) is used to
manage and query the IT infrastructure of an organization.

It stores information about the so-called configuration items

(CIs) – servers, software, running processes, storage sys-
tems, printers, routers, etc. As such it can be considered to be

a single large multi-attributed graph, where the nodes repre-

sent the various CIs and the edges represent the connections
between the CIs (e.g., the processes on a particular server,

along with starting and ending times). Fig. 1 shows a snippet

from a real-world CMDB graph, displaying only type labels.
A CMDB provides a wealth of information about the largely

undocumented IT practices of a large organization, and thus

mining the CDMB graph for frequent subgraph patterns can
reveal the de facto infrastructure patterns. Once mined, these

patterns can be used to either set the default IT policies, or
refine them if found unsatisfactory. Thus, the discovery of

infrastructure patterns is an important real-world application

of subgraph mining in IT domain.

Mining a CMDB graph comes with several challenges.

The CMDB graph is a massive, multi-attributed, and com-

plex graph. There are various types and sub-types of CIs,
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Figure 1. Snippet from a CMDB graph

which may be hierarchically related. CIs further have various

associated attributes and metadata elements. There are a

lot of repetitive labels, namely, the CIs and their various
attributes. For example, there can be hundreds and thousands

of running processes of the same type, running on (and

thus connected to) a single server. The vast majority of
frequent graph mining algorithms assume that the database

consists of many different graphs, so that the support or

frequency can be computed by counting how many graphs
in the database contain a given pattern. The containment

is defined in terms of subgraph isomorphism, i.e., the

node mapping, also called an embedding, corresponding to
isomorphism between a pattern and some subgraph of the

database graph. As long as there exists an embedding of the
pattern in a database graph, the support can be incremented

by one. On the other hand, the support of a pattern in a

single graph usually involves finding all possible pattern
embeddings (or node/edge disjoint embeddings), which can

potentially be exponential in the size and order of the graph.

Furthermore, the subgraph isomorphism problem is rendered
more expensive due to the repetitive CIs. Simply mining

the frequent subgraph patterns from the CMDB graph is

not enough to discover the infrastructure patterns. As is
well known in frequent pattern mining, there can be a huge

number of mined patterns, with many of them being small

variations of one another, what is required is to summarize
the patterns and to select only the most representative ones

as the infrastructure patterns.



In this paper, we propose an effective approach to mine
representative patterns from a large multi-attributed graph,

with special focus on discovering infrastructure patterns

from CMDB graphs. Our approach consists of two main
steps: i) Mining a sample of the maximal frequent subgraphs

from a single large database graph. ii) Clustering the mined
patterns via spectral graph clustering, and extracting the

representative infrastructure patterns. There are several novel

contributions in this paper:

• We propose a new approach for mining/sampling max-

imal subgraph patterns from a single database graph. In

particular, we propose a new network-flow based defi-
nition of graph support which is an upper-bound on the

number of edge-disjoint embeddings, and which allows

us to prune patterns the moment they become infre-
quent. We further propose a fast filter-based approach

for eliminating isomorphic (i.e., duplicate) patterns.

• We propose a new diffusion-based graph similarity
method to compute the pair-wise similarities between

two labeled graphs. The method takes into account both

the structure and labels of the graphs. Given the pair-
wise similarity matrix, we use spectral graph clustering

to extract groups of related patterns. We then select the
representative patterns via a coverage-based approach.

We evaluate our approach on several real-world CMDB

graphs with millions of nodes and edges, and we demon-
strate that our method, called CMDB-Miner, can find mean-

ingful IT infrastructure patterns. Even though our focus is

on CMDB graphs, our approach is generic, and can be
applied in many other real-world applications with similar

characteristics, namely single large graph database, multiple

attributes on the nodes and many repeated labels.

II. BACKGROUND

A. Preliminary Concepts

Let Σ denote a given set of labels. A labeled graph is
a triple G = (V,E, L), where V is the set of vertices or

nodes, E ⊆ V ×V is the set of (unordered) edges, and L is

the labeling function for both nodes and edges, so that L(v)
is the label of a node v, and L(e) = L(a, b) is the label of

an edge e = (a, b). The order of the graph is the number of

nodes |V |, and the size of the graph is the number of edges
|E|.
We say that G′ = (V ′, E′, L′) is a subgraph of G =

(V,E, L), denoted G′ ⊆ G, if there exists a 1-1 mapping π :
V ′ → V , such that (vi, vj) ∈ E′ implies (π(vi), π(vj)) ∈ E.

Further, π must preserve vertex and edge labels, i.e., L′(vi)
= L(π(vi)) for all vi ∈ V ′, and L′(vi, vj) = L(π(vi), π(vj))
for all edges (vi, vj) ∈ E′. The mapping π is called a

subgraph isomorphism from G′ to G. If G′ ⊆ G we also
say that G contains G′. If G′ ⊆ G and G ⊆ G′, we say that

G and G′ are isomorphic.

Let G = (V,E, L) be a single large database graph, and

let P = (V ′, E′, L′) be a candidate pattern, whose support
we want to compute. Let π be a subgraph isomorphism

from P to G. The sequence π(v1), π(v2), . . . , π(vn) over all
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Figure 2. (a) A database graph. (b) A pattern graph. (c) All embeddings
of P . (d) and (e): edge and node disjoint embeddings of P .

vi ∈ V ′ is called an embedding of G′ in G. For an edge ei =
(ai, bi) ∈ E′, define π(ei) = π(ai, bi) = (π(ai), π(bi)) ∈
E. The sequence π(E′) = π(e1), π(e2), . . . , π(em) over

all edges ei ∈ E′ is called an edge mapping of P in
G. For example, given the database graph G in Fig. 2(a),

and the candidate pattern P in Fig. 2(b), the subgraph

isomorphism π3 from P to G specified by the mapping
p0 → g0, p1 → g9, p2 → g7, p3 → g11, corre-

sponds to the embedding 0, 9, 7, 11, and the edge mapping

(0, 9), (9, 7), (7, 11), (11, 9). Since π uniquely specifies the
embedding and edge mapping, we use these terms inter-

changeably.

There are several ways to compute the number of occur-

rences, called the support, of P in G. The most straightfor-
ward definition is to define the support of P as the number

of possible embeddings of P in G, denoted supa(P ).
Figure 2(c) shows all the possible embeddings of P in G.
There are ten embeddings of P in G for this example, thus

supa(P ) = 10. Unfortunately, there can be exponentially

many embeddings of a pattern in the database graph. For
example, if G = P = Kn, where Kn is the complete

graph on n nodes, with all node and edge labels being the



same, then there are n! distinct embeddings of P in G.
Unfortunately, due to the label multiplicities in the CMDB

graphs, this is a real problem in this application. To avoid

the combinatorial blowup, support can also be defined as the
maximum number of node or edge disjoint embeddings of

P in G, denoted supn(P ) and supe(P ), respectively. Let
Π be the set of all possible embeddings of P in G. We

say that two embeddings π, π′ ∈ Π are node disjoint, if

π(vi) 6= π′(vj) for all nodes vi, vj ∈ V ′. We say that π
and π′ are edge disjoint if (π(vi), π(vj)) 6= (π′(va), π

′(vb))
for all edges (vi, vj), (va, vb) ∈ E′. Figures 2(d) and 2(e)

show examples of a maximum set of edge and node disjoint
embeddings, respectively. These sets are not unique; for ex-

ample, the embedding set {π0, π3, π9} is also edge-disjoint.

However, the edge-disjoint support of P is supe(P ) = 3,
and the node disjoint support is supn(P ) = 2. Finding the

maximum number of edge (or node) disjoint embeddings is

equivalent to finding the maximum independent set (MIS)
in an embeddings graph, where each embedding is a node,

and there exists an edge between two embeddings if they

share an edge (or node). Unfortunately, the MIS problem
is known to be NP-hard, and thus both the edge and node

disjoint embeddings are expensive to compute. One of the
novel contributions of this paper is that we approximate the

edge-disjoint support via a network-flow based approach.

We prefer edge-disjointness, since node-disjointness is more
constrained (every node-disjoint embedding is also an edge-

disjoint embedding, but not vice-versa).

B. Related Work

Many different methods have been developed for frequent

subgraph mining [1]–[5]. Recently, methods that sample
and summarize subgraph patterns have gained more trac-

tion [6]–[10]. However, these methods assume that the

database contains many different graphs, and cannot be
directly applied when the database is just a single large

graph. This is because they define pattern support to be the

number of graphs in the database that contain the pattern.
As long as a single embedding is found, the support can

be incremented by one, and as such these methods do

not have to deal with the problem of enumerating all the
embeddings, or computing the maximum number of edge

(or node) disjoint embeddings. Also, pattern support, as
defined for a database of many graphs, is anti-monotonic,

i.e., a supergraph cannot have support more than any of its

subgraphs. This property allows for fast pruning of candidate
patterns during pattern search, since we can prune a pattern

(and all of its extensions), when its support falls below a user

specified minimum support threshold, minsup. However,
the number of embeddings is clearly not anti-monotonic.

For example, let minsup = 3, and let the database graph

comprise a node labeled A, connected to two nodes labeled
B, and further, let each of the B nodes be connected to

three nodes labeled C. In this database graph, the edge A–B
has two embeddings (below minsup), but the pattern A–B–
C has six embeddings (above minsup). The lack of anti-

monotonicity is clearly a problem for support computation.

Support in a single graph: Several recent approaches have
been proposed to tackle the challenges in mining a single

graph. Kuramochi and Karypis [11] proposed a support

counting measure that is anti-monotonic. They proposed
three different formulations for mining a single graph.

The first is based on an exact maximum independent set
(MIS) of the overlap graph, which gives the exact set of

edge disjoint embeddings. The other two approaches are

based on approximate MIS, which provide a subset and
superset of the edge disjoint embeddings. However, they

require enumerating all the embeddings and then discarding

the ones that overlap. Since the total number of possible
embeddings is exponential, it makes these methods incapable

of finding bigger patterns. Further, instead of the MIS, we

propose a network-flow based approach. Fidler and Borgelt
[12] gives a formal proof that maximum independent set

based support counting is anti-monotonic. We also prove

that our flow-based upper-bound on the number of edge
disjoint embeddings leads to an anti-monotonic pruning

criteria. Bringmann and Nijssen [13] proposed an image-

based support of a pattern, defined as the minimum number
of mappings from a vertex in the pattern to a vertex in

the graph. Our flow-based approach yields a tighter upper
bound compared to the image-based support. Li et al. [14]

proposes a method to compute edge disjoint support to find

frequent dense subgraphs in a single graph. This method is
not suitable for CMDB graphs, since infrastructure patterns

are not very dense. Besemann and Denton [15] tackles

graphs in which nodes have multiple attributes. The edge
disjoint support is computed by constructing a bipartite

graph with the original node set (V ) and a node for every

attribute (U ). Edge disjointness is imposed on V , allowing
for overlap in the bipartite edges that connect a vertex in

V to one of its attributes in U . Recent theoretical work

has focused on proving necessary and sufficient conditions
for anti-monotonicity of edge overlap based graph support

measures [16], and in other generalizations such as homo-
morphisms and isomorphisms, for labeled and unlabeled,

directed and undirected graphs [17].

III. CMDB-MINER: MINING CMDB GRAPHS

CMDB-Miner has three main steps. Given the particular

characteristics of CMDB graphs, first we pre-process them

to extract the relevant attributes for each configuration item,
and summarize the graph. Second, we perform random walks

in the pattern space to extract a sample of the maximal

frequent patterns. In the third step, we cluster the maximal
patterns (since many of them may be similar) and extract a

set of representative patterns from each cluster. The latter

constitute the infrastructure patterns presented to the IT
practitioners to help manage and set the IT configuration

policies throughout the organization. The details of each step
are given below.

A. Graph Pre-processing

CMDB graphs have many different types of composite

items, and each CI may have many possible attributes (with



various values). Furthermore, there are many degree one
nodes, called leaf nodes in CMDB graph. Before mining

these graphs, we preprocess them in two ways to aid in

interpretation and mining. First, we prune attributes based on
their entropy, and second, we summarize the multiplicities

among the leaf nodes.

Entropy-based Attribute Pruning: Based on the distribu-
tion of values for each attribute, we observed that across

the various instances of the same CI type, some of the

attributes either have a single value, or they have all distinct
values. Let pv = mv

m be the probability of observing value

v for an attribute a of a given CI type, where m is the
total number of occurrences of attribute a, and mv is the

number of times a has value v. The entropy of a is defined

as E(a) = −
∑

v pv log pv. We prune the uninformative
attributes, namely those that have very low or very high

entropy, by discarding the tails of the entropy distribution

(e.g., discarding attributes within the bottom 5% and top
5% of entropy). This results in a significant reduction in the

number of attributes.

Summarizing Leaf Nodes: A peculiarity of CMDB
graphs is that a vast majority of nodes are leaf nodes,

defined as those with degree one. Further, an internal

node, defined as a node with degree more than one,
can be connected to many of the same types of leaf

nodes, a characteristic we call node multiplicity. Some of

the CI types like process, ip_address, etc., have a wide
range of multiplicities. CMDB-Miner employs leaf level

summarization, which reduces the size of the CMDB
graphs significantly, and aids interpretation of the mined

infrastructure patterns. For each leaf node u with CI type t,
we define its same label siblings as: Sib(u, t) = {x|L(x) =
t, x is a leaf node, x and u have common neighbor}.
For every CI type t, we define its multiplicities as:

Mult(t) = {m|∃u, u is a leaf, L(u) = t, |Sib(u, t)| = m}.
In other words, the multiplicities of CI type t, is the

multiset comprising the number of its occurrences at the

leaf level with common internal neighbors. We discretize
the multiplicities Mult(t) using equi-width binning. For

each internal node connected to leaf nodes, we then attach

a new label of the form x −→ [l, u]y, which is interpreted
as internal node x having between l and u occurrences of

CI type y as a leaf. Fig. 1 shows an example of such a

label, namely, issftpservice −→ [0, 2] issftpservice, meaning
that issftpservice is connected to up to two other leaf nodes

with CI type issftpservice.

B. Sampling Maximal Patterns

The goal of this step is to extract a sample of maximal

frequent subgraphs from a large, sparse CMDB graph. We
do this via random walks in the pattern space, starting from

the empty graph, and extending the current candidate pattern

by a random edge. After each extension we ensure that the
pattern is frequent, according to our new network-flow based

approach (described below). Thus random pattern extension

and support computation form the two sub-steps for each
candidate.

Random Walks in Pattern Space: CMDB-Miner takes as

input a parameter k, specifying the number of walks to per-

form. Each random walk begins with the empty graph, and
extends the patterns via random edge extensions. If a random

extension yields a frequent pattern, based on the flow-

based support described below, it is accepted. Otherwise, the
extension is rejected, and we try another random extension.

If none of the possible extensions yield a frequent pattern,

we are guaranteed that the current pattern is maximal, and
we add it to the set of maximal patterns M . It is important

to note that, unlike other graph mining approaches that
check for isomorphism during pattern growth (to eliminate

duplicates), CMDB-Miner does not check for isomorphism

until all the k walks finish. This way we pay the price for
isomorphism only for patterns that are maximal, and not at

each extension. This strategy confers significant efficiency.

Within a given walk, we assume that the edges (and

nodes) in P are numbered in the order in which they are
added to generate P , starting from an empty graph. Edge

ordering automatically leads to node ordering as well. For

example, Fig. 2(a) shows a database graph G, and Fig. 2(b)
shows a candidate pattern graph P . e1 = (p0, p1) is the

first, e2 = (p1, p2) is the second, and e3 = (p2, p3) is the
third edge to be added to P . All of these are examples of

forward edges, i.e., an edge that introduces at least one new

node to P . The nodes are ordered from p0 to p3. Due to
node ordering, a forward edge is implicitly directed from

a lower to a higher numbered node. The last edge to be

added to complete P is e4 = (p3, p1), and is an example
of a backward edge, defined to be an edge between existing

nodes. A backward edge is implicitly directed from a higher

to lower numbered node. This direction information is used
in our flow-based support detailed next.

Network-Flow Based Pattern Support: Recall that a flow

network G = (V,E) is a directed graph with two distin-

guished vertices – source s and sink t. Every ordered edge
(u, v) ∈ E has a capacity c(u, v) ≥ 0. A flow in this

network is a function f : E → R that satisfies the following

properties: i) capacity constraint: f(u, v) ≤ c(u, v), and
ii) flow conservation:

∑

u∈V f(u, v) −
∑

u∈V f(v, u) = 0,
for all v ∈ V \ {s, t}. The value of a flow is defined as
|f | =

∑

v∈V f(s, v), and maximum flow is a flow with the

maximum value. It is known that if all the edge capacities

c(u, v) are integers, then there exists a maximum flow with
only integer flows on the edges. A path from node u to

v in a flow network G = (V,E) is a sequence of distinct

vertices (v1, v2, . . . , vk) such that u = v1, (vi, vi+1) ∈ E
for all 1 ≤ i ≤ k − 1, and vk = v. The length of this path

is k − 1. A path from s to t is also called a s-t path.

We now describe the construction of a flow network in

which the maximum flow corresponds to an upper bound
on the edge disjoint support of the pattern. The main idea

is that any embedding of a pattern can be viewed as a path



from s to t in the flow network, and edge disjointness can
be imposed by using unit capacities on the edges.

Consider a pattern P = (V ′, E′, L′), and a database graph
G = (V,E, L). Let E′ = {e1, e2, . . . , em} be an ordering

of the edges in P (e.g., the order in which pattern P was

obtained). Recall that each edge is oriented, i.e., it is a
forward or backward edge. Let Πi denote the set of all

embeddings in G for a single edge ei ∈ E′. For example,
Fig. 3(a) shows the embeddings for each oriented edge in

P . The flow network F = (VF , EF ) is constructed from the

set of embeddings by setting VF to be the set of distinct
nodes over all the edge embeddings Πi, and by adding the

directed edge (aj , bj), with capacity c(aj , bj) = 1, for each
embedding aj , bj ∈ Πi, with 1 ≤ j ≤ |Πi| and 1 ≤ i ≤ m.
Further, we add an edge (s, u) for each distinct u such that

(u, v) ∈ Π1, with capacity c(s, u) = nu, where nu is the

number of time node u appears in Π1. Finally, we add an
edge (v, t) for each distinct v such that (u, v) ∈ Πm, with

capacity c(v, t) = nv , where nv is the number of times v
appears in Πm. Fig. 3(b) shows the flow network obtained
from the embeddings of each edge in P . For instance, since

0, 1 ∈ Π1, we add the edge (0, 1) in F with capacity 1.
Likewise, since 2, 1 ∈ Π4 we add the edge (2, 1) in F with
capacity 1. The same is done for all embeddings in Πj ,

for 1 ≤ j ≤ 4. There are three distinct start nodes in Π1,
namely {0, 5, 8}, thus we add three edges from the source:

(s, 0) with capacity 2, (s, 5) with capacity 1, and (s, 8) with
capacity 1. Finally, there are two distinct end nodes in Π4,
namely {1, 9}, thus we add two edges to the sink: (1, t) with
capacity 3, and (9, t) with capacity 1.

Definition. The flow-based support of a pattern P , denoted

supf(P ), is defined as the maximum flow in the flow network

for P .

There are several efficient implementations of maximum
flow. We use Dinic’s algorithm [18] which is based on block-

ing flows. In special cases where all the edges have a unit

capacity it has complexityO(min(V 2/3, E1/2)·E). Fig. 3(b)
shows that the maximum flow value is 3, thus supf (P ) = 3.
Fig. 3(c) shows the three disjoint edge mappings for P ,
corresponding to the three disjoint embeddings in Fig. 2(d).

We now prove that the flow-based support of P is
an upper-bound on the edge disjoint support. Let G =
(V,E, L), and P = (V ′, E′, L′) with |V ′| = n and

|E′| = m. We make the following observations:

• LEMMA 1: If π is an embedding of P in G, then there

exists a corresponding s-t path in the flow network F .

This follows immediately from the facts that: i) P is
connected, ii) for each edge ei = (ai, bi) ∈ E′, there is

an edge in the flow network corresponding to the edge

mapping for ei, namely π(ei) = (π(ai), π(bi)) ∈ Πi,
iii) there exists an edge from s to each start node in

Π1 (for edge e1 ∈ P ), and from each end node in Πm

(for em ∈ P ) to t. Note that the path length can be less
than m + 2. It is m + 2 when all edges in P lie on

some path from s to t.

A–B B–C C–D D–B

e1(p0, p1) e2(p1, p2) e3(p2, p3) e4(p3, p1)
Π1 Π2 Π3 Π4

0, 1 1, 3 3, 2 2, 1
0, 9 1, 7 3, 4 4, 1
5, 1 9, 7 7, 6 6, 1
8, 9 9, 10 7, 11 11, 9

10, 11
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Figure 3. Flow Network and Maximum Flow: (a) Edge embeddings
for P . (b) Flow network for P . Boxes show capacity and flow on each
edge. Maximum flow has value 3. (c) A possible set of three edge disjoint
embeddings corresponding to the maximum flow of 3.

• LEMMA 2: If π1, and π2 are two edge disjoint embed-
dings of P in G, then the s− t corresponding paths are
disjoint, ignoring the out-edges of s and in-edges of t
(which may be shared).

• LEMMA 3: If Π = {π1, π2, . . . , πk} is a set of edge-

disjoint embeddings of P in G, then the maximum flow
is at least k. Let nu embeddings have the same start

vertex u, and let nv embeddings have the same end

vertex v. From Lemma 2, we know that ignoring s
and t, there are k disjoint paths in the flow network

k, corresponding to each of the k embeddings in Π. If
f(e) = 1 for all edges e on these paths, and if f(s, u) =
nu and f(v, t) = nv , then we can see that the resulting

flow has value at least k.

Theorem 1. The maximum flow in the flow network F for

pattern P is an upper bound on the number of edge disjoint

embeddings of P in G.

Proof: In Lemma 3, if Π is the set of all possible edge-
disjoint embeddings of P , with |Π| = k, then the maximum

flow in F is at least k, and supf(P ) ≥ k = supe(P ). Let Q



be an extension of pattern P , i.e., P ⊆ Q. Since every edge
disjoint embedding of Q is also an edge disjoint embedding

of P it immediately implies that supe(Q) ≤ supe(P ) ≤
supf(P ).
The fact that supf (P ) is an upper-bound on the edge

disjoint support allows us to prune any extension (an im-
mediate supergraph) of pattern P if supf(P ) < minsup.
This follow immediately from the theorem above, since

supf(P ) < minsup =⇒ supe(Q) < minsup, and thus
we can guarantee that no extension of P can be frequent

according to edge disjoint support.

It is worth noting that the edge-disjoint support of P is
equal to the maximum number of edge disjoint s−t paths of
length m+2 in the flow network. However, [19] proved that

finding the maximum disjoint paths with constraints on the
length is NP-Complete. For this reason our formulation does

not place any restrictions on the length of the paths, and thus

we obtain an upper-bound on the edge-disjoint support. It
is important to note that Dinic’s algorithm finds the shortest

s − t paths that are saturated. Thus the flow-based support

is close to the actual support if the shortest s− t path length
in the flow network is close to the number of edges in the

candidate pattern. While it may not be a beneficial strategy
for general (dense) patterns, our formulation is very effective

for CMDB graphs, which are sparse, and thus the mined

patterns are also sparse. For such patterns the flow-based
support is generally close to the edge disjoint support.

Pruning Isomorphic Patterns: Given a minimum support

threshold minsup, and given k, the number of random
walks, CMDB-Miner performs k random walks in the pat-

tern space, to yield a set M of exactly k maximal frequent

subgraphs, using flow-based support. However, since the
walks are random, they may yield isomorphic maximal

patterns. Such isomorphic patterns have to be discarded be-

fore the infrastructure pattern extraction step. Unfortunately,
while graph isomorphism is in NP, it is not known whether

it is NP-complete or is in P [20].

Instead of checking for isomorphism between every pair
of maximal patterns inM , we use a sequence of polynomial-

time filters to create equivalence classes of possibly iso-
morphic patterns. Thus, the worst-case exponential time

algorithm for graph isomorphism method has to be applied

to only pairs of graphs within the same equivalence class.
Initially M comprises a single equivalence class. We then

apply the following filters:

• NODE MULTISET: Given a pattern P = (V ′, E′, L′),
define ρV (P ) = {L(vi) : vi ∈ V } to be the multiset of

node labels in P . It is easy to see that two patterns P
and P ′ cannot be isomorphic if ρV (P ) 6= ρV (P

′). In
this case P and P ′ are put into different equivalence

classes, and never have to be checked for isomorphism.
• EDGE MULTISET: Given pattern P = (V ′, E′, L′), for

each edge ei = (ai, bi) ∈ E′, define a composite edge

label to be the triple L(ei) = (L′(ai), L
′(bi), L

′(ei)),
with ai < bi. Define the filter ρE(P ) = {L(ei) : ei ∈
E′} to be the multiset of composite edge labels for

P . Two patterns P and P ′ cannot be isomorphic if
ρE(P ) 6= ρE(P

′).
• LAPLACIAN SPECTRUM: Let A be the adjacency ma-

trix for pattern P , i.e., A(vi, vj) = 1 if (vi, vj) ∈ E′,
and A(vi, vj) = 0, otherwise. Let D be the diag-

onal degree matrix for P , defined as D(vi, vi) =
∑

vj
A(vi, vj), and D(vi, vj) = 0 for all vi 6= vj . De-

fine the normalized Laplacian matrix of P as follows:
N = D−1/2 · (D − A) · D1/2. N is a n × n positive

semi-definite matrix, and thus N has n (not necessarily
distinct) real, positive eigen-values: λ1 ≥ λ2 ≥ · · · ≥
λn ≥ 0. Define the Laplacian spectrum of P as the

multiset ρS(P ) = {λi : 1 ≤ i ≤ n}. It is known
that two isomorphic patterns are iso-spectral, i.e., they

have the same Laplacian spectrum [20]. Thus, P and

P ′ cannot be isomorphic if ρS(P ) 6= ρS(P
′)

After applying the above filters, the set M is partitioned

into smaller equivalence classes of possibly isomorphic
graphs. For each pair of graphs in the same class, we perform

full isomorphism checking using the VF2 [21] algorithm.

The output of this step is the final set M of non-isomorphic
maximal frequent patterns in G. Note that at this stage we

can find the actual edge disjoint support of all the maximal

patterns by using the maximal independent set approach
proposed in [11].

IV. INFRASTRUCTURE PATTERN EXTRACTION

Given a set of non-isomorphic maximal patterns M ,

CMDB-Miner clusters them into groups of similar patterns,
and then selects a representative set of infrastructure patterns

from each cluster. There are three main steps: i) defining
pair-wise similarities between patterns, ii) graph clustering,

iii) infrastructure pattern extraction.
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Figure 4. Sample Maximal Patterns

A. Pattern Similarity

Before clustering the maximal patterns, we have to de-

fine a similarity measure between patterns, that takes into

account both the structure and label information. Graph
edit distance based methods [22] are a popular approach

to compute the similarity, however, the vast majority of

these methods focus mainly on the structure. For example,
a purely structure based method would consider P3 and P4

in Fig. 4 to be highly similar. Methods that consider labels

include [23], [24]. We propose a novel pattern similarity
approach based on diffusion kernels [25], which works

well for CMDB graphs. As such the clustering method is



independent of the similarity measure, and thus any of the
attributed graph similarity measures can also be used.

We define similarity between two patterns P =
(VP , EP , LP ) and Q = (VQ, EQ, LQ), as

Sim(P,Q) = Jaccard(P,Q)×Diffusion(P,Q) (1)

Here Jaccard(P,Q) =
|LP∩LQ|
|LP∪LQ| is the Jaccard coeffi-

cient between the label sets for P and Q. The more
the labels in common, the higher the Jaccard similarity.

Diffusion(P,Q) is the diffusion kernel based similarity

between P and Q that considers both the structure and the
label information, as described below.

Following a procedure similar to that in [26], given
P and Q, we first create an augmented weighted graph

R = (VR, ER,WR). Here VR = VP ∪ VQ ∪
{

l|∃v ∈
VP , LP (v) = l

}

∪
{

l|∃v ∈ VQ, LQ(v) = l
}

, i.e., R contains

both structural nodes (those in P and Q) and attribute nodes

(labels for nodes in P and Q). ER = EP ∪ EQ ∪ {(v, l) :
v ∈ VP , LP (v) = l}∪{(v, l) : v ∈ VQ, LQ(v) = l}. In other

words, ER contains both the structural edges (the original

edges between vertices in both P and Q), as well as the
attribute edges (between a node in P and Q, and its label).

Finally, WR : ER → R is a function that assigns a weight to

each edge. The weights on structural edges are set to 1, i.e.,
W (u, v) = 1.0 for all (u, v) ∈ EP ∪ EQ. The weights on

attribute edges are set as follows: W (v, l) = 1
nl
, where nl is

the number of neighbors of node l in R. In the augmented

graph, two structural vertices that have the same label l, are
both neighbors of the attribute node l. To avoid inflating

the similarity purely due to labels (which has already been

accounted for by Jaccard(P,Q)), we assign the fractional
weight on attribute edges. Fig. 5(a) shows the augmented

weighted graph for P2 and P3 from Fig. 4.

To compute Diffusion(P,Q) for each pair of pat-

terns, we use the diffusion kernel approach [25] over their
augmented graph. A diffusion kernel mimics the physical

process of diffusion where heat, gases, etc., originating

from a point diffuse with time. On graphs, it is the local
similarity that diffuses via continuous time random walks

(i.e., with an infinite number of infinitesimally small steps).

Given the augmented graph R = (VR, ER,WR), the matrix
WR is taken to be the weighted adjacency matrix of R.

Further, define the diagonal degree matrix as D(vi, vi) =
∑

vj
WR(vi, vj), and D(vi, vj) = 0 when i 6= j. The

Laplacian matrix of R is then defined as: N = D − WR.
Finally, the diffusion kernel matrix is defined as K = eβL =
∞
∑

k=0

βk

k!
Lk, where β is a real-valued diffusion parameter, and

eβL is the matrix exponential (with L0 = I and 0! = 1).
Since L is positive semi-definite, it has |VR| = n real
and positive eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.
Let ui be the eigenvector corresponding to eigenvalue λi.

Then the diffusion kernel can easily be computed as the
spectral sum [25]: K =

∑n
i=1 uie

βλiuT
i . The eigenvalues

and eigenvectors of K can be computed in O(n3) time,
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(a) Augmented Weighted Graph

ց P0 P1 P2 P3 P4

P0 0.47 0.10 0.26 0.25 0.0

P1 0.10 0.40 0.06 0.09 0.0

P2 0.26 0.06 0.40 0.33 0.0

P3 0.25 0.09 0.33 0.37 0.0

P4 0.0 0.0 0.33 0.0 0.47
(b) Similarity Matrix

Figure 5. Augmented Graph and Pattern Similarity: (a) shows the
augmented weighted graph for P2 and P3 in Fig. 4. Structural edges are
solid, whereas attribute edges are shown dashed. (b) shows the pair-wise
similarity matrix between all five patterns in Fig. 4.

where n = |VR|.
The kernel matrix entry K(vi, vj) gives the diffusion-

based similarity between any two vertices in the augmented

graphR for patterns P andQ. In particular, we are interested

in those entries K(u, v) where u ∈ VP and v ∈ VQ. We
define the diffusion similarity between P and Q as follows:

If LP ∩ LQ = 0, then we set Diffusion(P,Q) = 0,
otherwise

Diffusion(P,Q) = min
l∈LP∩LQ







max
u∈VP ,v∈VQ

(u,l),(v,l)∈ER

{

K(u, v)
}







In other words, the diffusion similarity between P and Q
is defined as the least label similarity over all labels l, such
that the label similarity is the maximum kernel similarity

over pairs of nodes u, v that share a given label l. Fig. 5(b)
shows the pairwise similarities between all the patterns in

Fig. 4, based on Eq. (1), that combines both the Jaccard()
and Diffusion() values.

B. Clustering

We employ graph clustering to cluster the set of maxi-

mal patterns M . In particular, given the similarity matrix
S(i, j) = Sim(Pi, Pj) between any two patterns ∈ M ,

we can think of S as the weighted adjacency matrix of a

similarity graph, where each maximal pattern is a node, and
any two maximal patterns are linked with weight S(i, j).
Clustering of the patterns is then equivalent to clustering the



nodes in the similarity graph. While many algorithms have
been proposed for graph clustering [27], we use the Markov

clustering (MCL) [28] approach as opposed to spectral

methods [29], since MCL does not require the number of
clusters as input.

Let D be the diagonal degree matrix corresponding to

the weighted similarity matrix S. Let N = D−1S be the

normalized adjacency matrix for the similarity graph. The
matrix N is a row-stochastic or Markov matrix that specifies

the probability of jumping from node Pi to any other node

Pj . N is thus that transition matrix for a Markov random
walk on the similarity graph. As such, the k-th power of

N , namely Nk, specifies the probability of transitioning
from Pi to Pj in a walk of k steps. MCL [28] takes

successive powers of N to expand the influence of a node.

However, it damps the extent of a nodes’ influence, by an
inflation step, whose goal is to enhance higher and diminish

lower transition probabilities. Given transition matrix N ,

define the inflation operator Υ, given as follows: Υ(N, r) =
{

N(i,j)r∑
n
a=1

N(i,a)r

}n

i,j=1
. In essence, Υ takes each element of

N to the r-th power, and then re-normalizes the rows to
make the matrix row-stochastic.

Given the initial N matrix, and an inflation parameter

r, MCL is an iterative matrix algorithm consisting of two

main steps: i) expansion: N = N2, followed by ii) infla-
tion: N = Υ(N, r). The method converges to a doubly

idempotent matrix, and the strongly connected components

in the corresponding induced graph yield the final node
clusters [28]. The only parameter in MCL is the inflation

value r that controls the granularity. Higher values lead to

more, smaller clusters, whereas smaller values lead to fewer,
larger clusters. MCL runs in O(tn3) time, where |M | = n,
and t is the number of iterations until convergence.

C. Infrastructure Pattern Extraction

Given a set of clusters Ci, 1 ≤ i ≤ k obtained via the

MCL approach, the final step in CMDB-Miner is to ex-
tract the so-called infrastructure patterns, i.e., representative

members from each cluster. Given a similarity threshold θ,
from each cluster Ci we aim to extract as subset of the
patterns Ri ⊆ Ci, such that for each Pj ∈ Ci, there exists

a pattern P ∈ Ri with Sim(Pj , P ) ≥ θ. The task is to
find a minimal set of representative patterns for each cluster.

However, this problem is equivalent to smallest set cover,

an NP-Complete problem, which nevertheless has a greedy
Θ(logn) approximation algorithm [30]. The greedy heuristic

iteratively chooses the pattern that covers or represents the

largest number of remaining elements in a cluster, until all
the cluster members are covered.

V. EXPERIMENTAL EVALUATION

In this section we evaluate CMDB-Miner on real-world

CMDB graphs for two multi-national corporations, company

A and B (names not revealed due to non-disclosure issues),
from HP’s Universal Configuration Management Database

(UCMDB). We also conduct experiments to validate some of

the design choices in the implementation of CMDB-Miner.
All experiments were performed on a machine with 2.67GHz

Intel i7 processor with 4GB of memory running Ubuntu

Linux version 10.04.

Table I
CMDB GRAPHS A,B: BEFORE AND AFTER PREPROCESSING

A B

Property Before After Before After

|V | 443192 11363 455012 57525

|E| 480143 20978 523415 149229

Avg. Deg. 2.16 3.68 2.3 5.16

Table II
BIGGEST PATTERN EXTRACTED

Database # Vertices # Edges

A 24 41

B 54 55

A. Preprocessing

The raw CMDB graph of company A contains 443,192
vertices and 480,143 edges. Company B also contains a

similar number of nodes and edges, and is shown in Table I.

We discard uninformative attributes for each composite item,
by discarding both high and low entropy attributes. This

results in a significant reduction in the number of attributes,

as shown in Figure 6 for some of the common CI types
in the CMDB graph of company A (similar results are

obtained for B too). More than 75% of the attributes are
pruned in this stage. Further, collapsing leaf nodes reduces

the total number of vertices to 11,363. Table I shows the

graph order and size, as well as average degree, both before
and after preprocessing. As pointed out earlier, these two

preprocessing steps also aid in better interpretation of the

final infrastructure patterns.
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Figure 6. Attribute Pruning

B. Sampling Maximal Patterns

Fig. 7(a) shows the time for sampling maximal patterns

versus number of random walks, for two different (absolute)

values of minimum support for company A. We can see that
as expected time is linear in the number of walks. Fig. 7(b)

shows the number of distinct or non-isomorphic maximal
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Figure 7. Maximal and Non-Isomorphic Patterns for Company A: (a)
sampling time and (b) number of distinct maximal patterns, versus number
of random walks.
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Figure 8. (a) shows time to extract clusters, and (b) shows the number
of clusters and representative infrastructure patterns, for different values of
inflation parameter.

Table III
ISOMORPHISM CHECKING FILTERS (TIME IN SEC)

Walks Non-Isomorphic Filtering VF2

100 89 0.17 2.05

500 361 5.26 82.07

700 464 3.14 47.57

1000 671 10.96 148.66

patterns versus number of random walks. We can see that

for minsup = 125 the fraction of distinct maximal patterns

decreases with the number of walks, indicating convergence
to the “true” set of maximal patterns. The convergence has

not yet been reached for minsup = 110 within 2500 walks.

These curves suggest an automated method to stop sampling,
namely, when the fraction of distinct patterns versus number

of walks falls below some threshold. Similar results were

obtained for company B (not shown here due to space
constraints), though Table II shows the order/size of the

largest maximal pattern for both A and B.

Table III shows the time to detect the number of distinct

maximal patterns. We compare the time taken by our filter
based approach versus the cost of running the VF2 algorithm

on each pair of patterns in M . It is clear that the sequence

of filters is very effective in reducing the running time by
over an order of magnitude.

C. Infrastructure Pattern Extraction

For company A, Fig. 8 shows the clustering time, and

the number of clusters and representative patterns versus the

given number of walks, for different values of the inflation
parameter r = 2, 4, 6. We used θ = 0.9 (threshold for

a pattern to represent another pattern), and β = 2 (the
diffusion kernel parameter). Clustering time is negligible

compared to the time to sample the set of maximal patterns.

The number of clusters increases with increase in the infla-
tion parameter, as expected. Also, in most cases the number

of representative patterns remains the same. This is due to

the characteristics of CMDB graphs, where each CI type is
connected to only a limited number of other CI types. Thus,

most of the maximal patterns either contain very similar or

very different node labels. As the similarity measure is based
on the attributes, these patterns tend to remain in the same

cluster or different clusters, respectively. The small number

of representative patterns shows the effectiveness of CMDB-
Miner in summarizing large and sparse CMDB graphs into

a small set of infrastructure patterns.

D. Example Infrastructure Patterns

Fig. 9 shows three mined maximal patterns. which are a

partial view of a general construct that is known in CMDB,
and is defined as a standard Topological Query – Node =

nt, sqlserver = running_software. Fig. 10 shows another
infrastructure pattern mined by CMDB-Miner. This pattern

is a representative for several other patterns in a cluster. In

order to choose a representative for each cluster we currently
choose a member of the cluster that maximizes the overall

similarity to other members of the cluster. Alternatively, we

can consider trimmed similarity (to say only the closest 80%
of the members), or we could aim for a description of a

family of graphs that describes a large majority of the cluster.

Exploring these options is part of future work.

nt

iis

iiswebservice

windows_service

ip_subnet

ip_address

iiswebsite

webvirtualhost

Figure 10. Infrastructure Pattern

VI. CONCLUSIONS

We have demonstrated that CMDB-Miner is an effective

algorithm for mining real-world CMDB graphs. It makes use
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Figure 9. Mined Maximal Patterns

of the characteristics of such graphs (e.g., label multiplici-

ties, sparsity) to speed up the mining process. It performs

random walks without having to check for isomorphism,
which is only performed on the final set of maximal patterns

via a filter-based approach. Further, we proposed a new
flow-based upper-bound on the edge-disjoint support that

allows for effective pattern pruning, and which avoids the

exponential blowup in the number of possible embeddings
that plague many previous methods. To extract the infras-

tructure patterns we proposed a new diffusion kernel based

similarity that takes into account both the structure and label
information. We show that CMDB-Miner is able to extract

meaningful infrastructure patterns. In terms of future work,

we plan to parallelize the approach for better scalability,
and to extend the approach to mining graphs with multiple

attributes on the nodes and edges. We would also like to

mine approximate patterns, with possibly mismatched nodes
and edges.
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