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Abstract—A configuration management database (CMDB)
can be considered to be a large graph representing the IT
infrastructure entities and their inter-relationships. Mining
such graphs is challenging because they are large, complex,
and multi-attributed, and have many repeated labels. These
characteristics pose challenges for graph mining algorithms,
due to the increased cost of subgraph isomorphism (for support
counting), and graph isomorphism (for eliminating duplicate
patterns). The notion of pattern frequency or support is
also more challenging in a single graph, since it has to be
defined in terms of the number of its (potentially, exponentially
many) embeddings. We present CMDB-Miner, a novel two-step
method for mining infrastructure patterns from CMDB graphs.
It first samples the set of maximal frequent patterns, and
then clusters them to extract the representative infrastructure
patterns. We demonstrate the effectiveness of CMDB-Miner on
real-world CMDB graphs.

Keywords-single graph mining; frequent subgraphs; config-
uration management databases

I. INTRODUCTION

A configuration management database (CMDB) is used to
manage and query the IT infrastructure of an organization.
It stores information about the so-called configuration items
(CIs) — servers, software, running processes, storage sys-
tems, printers, routers, etc. As such it can be considered to be
a single large multi-attributed graph, where the nodes repre-
sent the various ClIs and the edges represent the connections
between the ClIs (e.g., the processes on a particular server,
along with starting and ending times). Fig. 1 shows a snippet
from a real-world CMDB graph, displaying only type labels.
A CMDB provides a wealth of information about the largely
undocumented IT practices of a large organization, and thus
mining the CDMB graph for frequent subgraph patterns can
reveal the de facto infrastructure patterns. Once mined, these
patterns can be used to either set the default IT policies, or
refine them if found unsatisfactory. Thus, the discovery of
infrastructure patterns is an important real-world application
of subgraph mining in IT domain.

Mining a CMDB graph comes with several challenges.
The CMDB graph is a massive, multi-attributed, and com-
plex graph. There are various types and sub-types of ClIs,
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Figure 1. Snippet from a CMDB graph

which may be hierarchically related. CIs further have various
associated attributes and metadata elements. There are a
lot of repetitive labels, namely, the CIs and their various
attributes. For example, there can be hundreds and thousands
of running processes of the same type, running on (and
thus connected to) a single server. The vast majority of
frequent graph mining algorithms assume that the database
consists of many different graphs, so that the support or
frequency can be computed by counting how many graphs
in the database contain a given pattern. The containment
is defined in terms of subgraph isomorphism, i.e., the
node mapping, also called an embedding, corresponding to
isomorphism between a pattern and some subgraph of the
database graph. As long as there exists an embedding of the
pattern in a database graph, the support can be incremented
by one. On the other hand, the support of a pattern in a
single graph usually involves finding all possible pattern
embeddings (or node/edge disjoint embeddings), which can
potentially be exponential in the size and order of the graph.
Furthermore, the subgraph isomorphism problem is rendered
more expensive due to the repetitive CIs. Simply mining
the frequent subgraph patterns from the CMDB graph is
not enough to discover the infrastructure patterns. As is
well known in frequent pattern mining, there can be a huge
number of mined patterns, with many of them being small
variations of one another, what is required is to summarize
the patterns and to select only the most representative ones
as the infrastructure patterns.



In this paper, we propose an effective approach to mine
representative patterns from a large multi-attributed graph,
with special focus on discovering infrastructure patterns
from CMDB graphs. Our approach consists of two main
steps: 1) Mining a sample of the maximal frequent subgraphs
from a single large database graph. ii) Clustering the mined
patterns via spectral graph clustering, and extracting the
representative infrastructure patterns. There are several novel
contributions in this paper:

o We propose a new approach for mining/sampling max-
imal subgraph patterns from a single database graph. In
particular, we propose a new network-flow based defi-
nition of graph support which is an upper-bound on the
number of edge-disjoint embeddings, and which allows
us to prune patterns the moment they become infre-
quent. We further propose a fast filter-based approach
for eliminating isomorphic (i.e., duplicate) patterns.

o We propose a new diffusion-based graph similarity
method to compute the pair-wise similarities between
two labeled graphs. The method takes into account both
the structure and labels of the graphs. Given the pair-
wise similarity matrix, we use spectral graph clustering
to extract groups of related patterns. We then select the
representative patterns via a coverage-based approach.

We evaluate our approach on several real-world CMDB
graphs with millions of nodes and edges, and we demon-
strate that our method, called CMDB-Miner, can find mean-
ingful IT infrastructure patterns. Even though our focus is
on CMDB graphs, our approach is generic, and can be
applied in many other real-world applications with similar
characteristics, namely single large graph database, multiple
attributes on the nodes and many repeated labels.

II. BACKGROUND
A. Preliminary Concepts

Let ¥ denote a given set of labels. A labeled graph is
a triple G = (V, E, L), where V is the set of vertices or
nodes, £ C V x V is the set of (unordered) edges, and L is
the labeling function for both nodes and edges, so that L(v)
is the label of a node v, and L(e) = L(a,b) is the label of
an edge e = (a,b). The order of the graph is the number of
nodes |V, and the size of the graph is the number of edges

We say that G’ = (V',E’, L) is a subgraph of G =
(V,E, L), denoted G’ C G, if there exists a 1-1 mapping 7 :
V' — V, such that (v;,v;) € E' implies (7(v;), 7(v;)) € E.
Further, 7 must preserve vertex and edge labels, i.e., L'(v;)
= L(m(v;)) forall v; € V', and L' (v;, v;) = L(m(v;), 7(v5))
for all edges (v;,v;) € E’. The mapping 7 is called a
subgraph isomorphism from G’ to G. If G’ C G we also
say that G contains G'. If G’ C G and G C G’, we say that
G and G’ are isomorphic.

Let G = (V, E, L) be a single large database graph, and
let P = (V' E' L) be a candidate pattern, whose support
we want to compute. Let m be a subgraph isomorphism
from P to G. The sequence 7(v1), w(vz2), ..., m(v,) over all
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Figure 2. (a) A database graph. (b) A pattern graph. (c) All embeddings
of P. (d) and (e): edge and node disjoint embeddings of P.

v; € V' is called an embedding of G’ in G. For an edge e; =
(ai,bi) € El, define w(ei) = w(ai,bi) = (w(ai),w(bi)) €
E. The sequence w(E') = w(e1),m(ez2),...,m(en) over
all edges e; € FE’ is called an edge mapping of P in
G. For example, given the database graph G in Fig. 2(a),
and the candidate pattern P in Fig. 2(b), the subgraph
isomorphism 73 from P to G specified by the mapping
po — go» Pr — g9, P2 — g7, pP3 — (gi1, corre-
sponds to the embedding 0,9, 7,11, and the edge mapping
0,9),(9,7),(7,11),(11,9). Since 7 uniquely specifies the
embedding and edge mapping, we use these terms inter-
changeably.

There are several ways to compute the number of occur-
rences, called the support, of P in G. The most straightfor-
ward definition is to define the support of P as the number
of possible embeddings of P in G, denoted sup,(P).
Figure 2(c) shows all the possible embeddings of P in G.
There are ten embeddings of P in G for this example, thus
supa(P) = 10. Unfortunately, there can be exponentially
many embeddings of a pattern in the database graph. For
example, if G = P = K,, where K, is the complete
graph on n nodes, with all node and edge labels being the



same, then there are n! distinct embeddings of P in G.
Unfortunately, due to the label multiplicities in the CMDB
graphs, this is a real problem in this application. To avoid
the combinatorial blowup, support can also be defined as the
maximum number of node or edge disjoint embeddings of
P in G, denoted sup,(P) and sup.(P), respectively. Let
IT be the set of all possible embeddings of P in G. We
say that two embeddings =, 7’ € II are node disjoint, if
w(v;) # 7'(v;) for all nodes v;,v; € V'. We say that 7
and 7’ are edge disjoint if (w(v;), 7(v;)) # (7' (ve), 7' (vp))
for all edges (vi,v;), (vq,vs) € E’. Figures 2(d) and 2(e)
show examples of a maximum set of edge and node disjoint
embeddings, respectively. These sets are not unique; for ex-
ample, the embedding set {m, 73, 9} is also edge-disjoint.
However, the edge-disjoint support of P is sup.(P) = 3,
and the node disjoint support is sup,(P) = 2. Finding the
maximum number of edge (or node) disjoint embeddings is
equivalent to finding the maximum independent set (MIS)
in an embeddings graph, where each embedding is a node,
and there exists an edge between two embeddings if they
share an edge (or node). Unfortunately, the MIS problem
is known to be NP-hard, and thus both the edge and node
disjoint embeddings are expensive to compute. One of the
novel contributions of this paper is that we approximate the
edge-disjoint support via a network-flow based approach.
We prefer edge-disjointness, since node-disjointness is more
constrained (every node-disjoint embedding is also an edge-
disjoint embedding, but not vice-versa).

B. Related Work

Many different methods have been developed for frequent
subgraph mining [1]-[5]. Recently, methods that sample
and summarize subgraph patterns have gained more trac-
tion [6]-[10]. However, these methods assume that the
database contains many different graphs, and cannot be
directly applied when the database is just a single large
graph. This is because they define pattern support to be the
number of graphs in the database that contain the pattern.
As long as a single embedding is found, the support can
be incremented by one, and as such these methods do
not have to deal with the problem of enumerating all the
embeddings, or computing the maximum number of edge
(or node) disjoint embeddings. Also, pattern support, as
defined for a database of many graphs, is anti-monotonic,
i.e., a supergraph cannot have support more than any of its
subgraphs. This property allows for fast pruning of candidate
patterns during pattern search, since we can prune a pattern
(and all of its extensions), when its support falls below a user
specified minimum support threshold, minsup. However,
the number of embeddings is clearly not anti-monotonic.
For example, let minsup = 3, and let the database graph
comprise a node labeled A, connected to two nodes labeled
B, and further, let each of the B nodes be connected to
three nodes labeled C. In this database graph, the edge A-B
has two embeddings (below minsup), but the pattern A—B—
C has six embeddings (above minsup). The lack of anti-
monotonicity is clearly a problem for support computation.

Support in a single graph: Several recent approaches have
been proposed to tackle the challenges in mining a single
graph. Kuramochi and Karypis [11] proposed a support
counting measure that is anti-monotonic. They proposed
three different formulations for mining a single graph.
The first is based on an exact maximum independent set
(MIS) of the overlap graph, which gives the exact set of
edge disjoint embeddings. The other two approaches are
based on approximate MIS, which provide a subset and
superset of the edge disjoint embeddings. However, they
require enumerating all the embeddings and then discarding
the ones that overlap. Since the total number of possible
embeddings is exponential, it makes these methods incapable
of finding bigger patterns. Further, instead of the MIS, we
propose a network-flow based approach. Fidler and Borgelt
[12] gives a formal proof that maximum independent set
based support counting is anti-monotonic. We also prove
that our flow-based upper-bound on the number of edge
disjoint embeddings leads to an anti-monotonic pruning
criteria. Bringmann and Nijssen [13] proposed an image-
based support of a pattern, defined as the minimum number
of mappings from a vertex in the pattern to a vertex in
the graph. Our flow-based approach yields a tighter upper
bound compared to the image-based support. Li et al. [14]
proposes a method to compute edge disjoint support to find
frequent dense subgraphs in a single graph. This method is
not suitable for CMDB graphs, since infrastructure patterns
are not very dense. Besemann and Denton [15] tackles
graphs in which nodes have multiple attributes. The edge
disjoint support is computed by constructing a bipartite
graph with the original node set (V') and a node for every
attribute (U). Edge disjointness is imposed on V, allowing
for overlap in the bipartite edges that connect a vertex in
V' to one of its attributes in U. Recent theoretical work
has focused on proving necessary and sufficient conditions
for anti-monotonicity of edge overlap based graph support
measures [16], and in other generalizations such as homo-
morphisms and isomorphisms, for labeled and unlabeled,
directed and undirected graphs [17].

III. CMDB-MINER: MINING CMDB GRAPHS

CMDB-Miner has three main steps. Given the particular
characteristics of CMDB graphs, first we pre-process them
to extract the relevant attributes for each configuration item,
and summarize the graph. Second, we perform random walks
in the pattern space to extract a sample of the maximal
frequent patterns. In the third step, we cluster the maximal
patterns (since many of them may be similar) and extract a
set of representative patterns from each cluster. The latter
constitute the infrastructure patterns presented to the IT
practitioners to help manage and set the IT configuration
policies throughout the organization. The details of each step
are given below.

A. Graph Pre-processing

CMDB graphs have many different types of composite
items, and each CI may have many possible attributes (with



various values). Furthermore, there are many degree one
nodes, called leaf nodes in CMDB graph. Before mining
these graphs, we preprocess them in two ways to aid in
interpretation and mining. First, we prune attributes based on
their entropy, and second, we summarize the multiplicities
among the leaf nodes.

Entropy-based Attribute Pruning: Based on the distribu-
tion of values for each attribute, we observed that across
the various instances of the same CI type, some of the
attributes either have a single value, or they have all distinct
values. Let p, = 7+ be the probability of observing value
v for an attribute a of a given CI type, where m is the
total number of occurrences of attribute a, and m, is the
number of times a has value v. The entropy of a is defined
as F(a) = —) pvlogp,. We prune the uninformative
attributes, namely those that have very low or very high
entropy, by discarding the tails of the entropy distribution
(e.g., discarding attributes within the bottom 5% and top
5% of entropy). This results in a significant reduction in the
number of attributes.

Summarizing Leaf Nodes: A peculiarity of CMDB
graphs is that a vast majority of nodes are leaf nodes,
defined as those with degree one. Further, an infernal
node, defined as a node with degree more than one,
can be connected to many of the same types of leaf
nodes, a characteristic we call node multiplicity. Some of
the CI types like process, ip_address, etc., have a wide
range of multiplicities. CMDB-Miner employs leaf level
summarization, which reduces the size of the CMDB
graphs significantly, and aids interpretation of the mined
infrastructure patterns. For each leaf node u with CI type ¢,
we define its same label siblings as: Sib(u,t) = {z|L(x) =
t,x is a leaf node, x and u have common neighbor}.

For every CI type ¢, we define its multiplicities as:
Mult(t) = {m|3u, u is a leaf, L(u) = t,|Sib(u, t)| = m}.
In other words, the multiplicities of CI type ¢, is the
multiset comprising the number of its occurrences at the
leaf level with common internal neighbors. We discretize
the multiplicities Mwlt(t) using equi-width binning. For
each internal node connected to leaf nodes, we then attach
a new label of the form = — [I, u]y, which is interpreted
as internal node x having between [ and u occurrences of
CI type y as a leaf. Fig. 1 shows an example of such a
label, namely, issftpservice — [0, 2] issfipservice, meaning
that issftpservice is connected to up to two other leaf nodes
with CI type issfipservice.

B. Sampling Maximal Patterns

The goal of this step is to extract a sample of maximal
frequent subgraphs from a large, sparse CMDB graph. We
do this via random walks in the pattern space, starting from
the empty graph, and extending the current candidate pattern
by a random edge. After each extension we ensure that the
pattern is frequent, according to our new network-flow based
approach (described below). Thus random pattern extension

and support computation form the two sub-steps for each
candidate.

Random Walks in Pattern Space: CMDB-Miner takes as
input a parameter k, specifying the number of walks to per-
form. Each random walk begins with the empty graph, and
extends the patterns via random edge extensions. If a random
extension yields a frequent pattern, based on the flow-
based support described below, it is accepted. Otherwise, the
extension is rejected, and we try another random extension.
If none of the possible extensions yield a frequent pattern,
we are guaranteed that the current pattern is maximal, and
we add it to the set of maximal patterns M. It is important
to note that, unlike other graph mining approaches that
check for isomorphism during pattern growth (to eliminate
duplicates), CMDB-Miner does not check for isomorphism
until all the k& walks finish. This way we pay the price for
isomorphism only for patterns that are maximal, and not at
each extension. This strategy confers significant efficiency.

Within a given walk, we assume that the edges (and
nodes) in P are numbered in the order in which they are
added to generate P, starting from an empty graph. Edge
ordering automatically leads to node ordering as well. For
example, Fig. 2(a) shows a database graph G, and Fig. 2(b)
shows a candidate pattern graph P. e; = (po,p1) is the
first, e = (p1,p2) is the second, and e3 = (p2,p3) is the
third edge to be added to P. All of these are examples of
forward edges, i.e., an edge that introduces at least one new
node to P. The nodes are ordered from pgy to ps. Due to
node ordering, a forward edge is implicitly directed from
a lower to a higher numbered node. The last edge to be
added to complete P is e4 = (ps,p1), and is an example
of a backward edge, defined to be an edge between existing
nodes. A backward edge is implicitly directed from a higher
to lower numbered node. This direction information is used
in our flow-based support detailed next.

Network-Flow Based Pattern Support: Recall that a flow
network G = (V, E) is a directed graph with two distin-
guished vertices — source s and sink ¢. Every ordered edge
(u,v) € E has a capacity c(u,v) > 0. A flow in this
network is a function f : £ — R that satisfies the following
properties: i) capacity constraint: f(u,v) < c¢(u,v), and
ii) flow conservation: ) f(u,v) = >, oy f(v,u) =0,
for all v € V' \ {s,t}. The value of a flow is defined as
Ifl = > ey f(s,v), and maximum flow is a flow with the
maximum value. It is known that if all the edge capacities
c(u,v) are integers, then there exists a maximum flow with
only integer flows on the edges. A path from node u to
v in a flow network G = (V, E) is a sequence of distinct
vertices (v1,vs,...,vx) such that u = vy, (v;,vi41) € F
forall 1 <i <k —1, and vg = v. The length of this path
is k — 1. A path from s to ¢ is also called a s-t path.

We now describe the construction of a flow network in
which the maximum flow corresponds to an upper bound
on the edge disjoint support of the pattern. The main idea
is that any embedding of a pattern can be viewed as a path



from s to ¢ in the flow network, and edge disjointness can
be imposed by using unit capacities on the edges.

Consider a pattern P = (V/, E’, L"), and a database graph
G = (V,E,L). Let E' = {e1,ea,...,¢en} be an ordering
of the edges in P (e.g., the order in which pattern P was
obtained). Recall that each edge is oriented, i.e., it is a
forward or backward edge. Let II; denote the set of all
embeddings in G for a single edge e; € E’. For example,
Fig. 3(a) shows the embeddings for each oriented edge in
P. The flow network F' = (Vp, EF) is constructed from the
set of embeddings by setting Vr to be the set of distinct
nodes over all the edge embeddings II;, and by adding the
directed edge (a;,b;), with capacity c(a;,b;) = 1, for each
embedding a;,b; € II;, with 1 < j < |II;] and 1 < i < m.
Further, we add an edge (s,u) for each distinct u such that
(u,v) € Iy, with capacity ¢(s,u) = n,, where n, is the
number of time node w appears in II;. Finally, we add an
edge (v,t) for each distinct v such that (u,v) € II,,, with
capacity c¢(v,t) = n,, where n, is the number of times v
appears in 1L,,,. Fig. 3(b) shows the flow network obtained
from the embeddings of each edge in P. For instance, since
0,1 € II;, we add the edge (0,1) in F with capacity 1.
Likewise, since 2,1 € II4 we add the edge (2, 1) in F' with
capacity 1. The same is done for all embeddings in II;,
for 1 < j < 4. There are three distinct start nodes in Ily,
namely {0, 5,8}, thus we add three edges from the source:
(s,0) with capacity 2, (s, 5) with capacity 1, and (s, 8) with
capacity 1. Finally, there are two distinct end nodes in Il4,
namely {1, 9}, thus we add two edges to the sink: (1,¢) with
capacity 3, and (9,t) with capacity 1.

Definition. The flow-based support of a pattern P, denoted
sup(P), is defined as the maximum flow in the flow network
for P.

There are several efficient implementations of maximum
flow. We use Dinic’s algorithm [18] which is based on block-
ing flows. In special cases where all the edges have a unit
capacity it has complexity O(min(V?/3, E'/?).E). Fig. 3(b)
shows that the maximum flow value is 3, thus sup;(P) = 3.
Fig. 3(c) shows the three disjoint edge mappings for P,
corresponding to the three disjoint embeddings in Fig. 2(d).

We now prove that the flow-based support of P is
an upper-bound on the edge disjoint support. Let G =
(V,E,L), and P = (V/,E',L') with |V/| = n and
|E’'| = m. We make the following observations:

e LEMMA 1: If 7 is an embedding of P in G, then there
exists a corresponding s-t path in the flow network F'.
This follows immediately from the facts that: i) P is
connected, ii) for each edge e; = (a;, b;) € E’, there is
an edge in the flow network corresponding to the edge
mapping for e;, namely 7(e;) = (n(a;), 7(b;)) € IL,,
iii) there exists an edge from s to each start node in
II; (for edge e; € P), and from each end node in II,,
(for e,, € P) to t. Note that the path length can be less
than m + 2. It is m + 2 when all edges in P lie on
some path from s to ¢.

A-B B-C C-D D-B
e1(po,p1) | ea(p1,p2) | es(p2,p3) | ea(ps,p1)
11, II, 113 114
0,1 1,3 3,2 2,1
0,9 1,7 3,4 4,1
5,1 9,7 7,6 6,1
8,9 9,10 7,11 11,9

10,11

(a) Edge Embeddings

(b) Flow Network for P

A-B, B-C, C-D, D-B
(po,pl), (p1,p2), (pz,p3), (p3,p1)
(5,1), (1,7), (7,6), (6,1)
(0,1), (1,3), (3,4), (4,1)

(0,9), (9,10), (10,11), (11,9)
(c) Disjoint Edge Mappings

Figure 3. Flow Network and Maximum Flow: (a) Edge embeddings
for P. (b) Flow network for P. Boxes show capacity and flow on each
edge. Maximum flow has value 3. (c) A possible set of three edge disjoint
embeddings corresponding to the maximum flow of 3.

o LEMMA 2: If 71, and 79 are two edge disjoint embed-
dings of P in G, then the s —t corresponding paths are
disjoint, ignoring the out-edges of s and in-edges of ¢
(which may be shared).

e LEMMA 3: If IT = {my,ma,..., ™} is a set of edge-
disjoint embeddings of P in G, then the maximum flow
is at least k. Let n, embeddings have the same start
vertex u, and let n, embeddings have the same end
vertex v. From Lemma 2, we know that ignoring s
and t, there are k disjoint paths in the flow network
k, corresponding to each of the k£ embeddings in II. If
f(e) = 1 for all edges e on these paths, and if f(s,u) =
n,, and f(v,t) = n,, then we can see that the resulting
flow has value at least k.

Theorem 1. The maximum flow in the flow network F for
pattern P is an upper bound on the number of edge disjoint
embeddings of P in G.

Proof: In Lemma 3, if II is the set of all possible edge-
disjoint embeddings of P, with |TI| = k, then the maximum
flow in F'is at least k, and sups(P) > k = sup.(P). Let Q



be an extension of pattern P, i.e., P C (). Since every edge
disjoint embedding of () is also an edge disjoint embedding
of P it immediately implies that sup.(Q) < sup.(P) <
sup¢(P). [ |

The fact that sup;(P) is an upper-bound on the edge
disjoint support allows us to prune any extension (an im-
mediate supergraph) of pattern P if sups(P) < minsup.
This follow immediately from the theorem above, since
supf(P) < minsup = sup.(Q) < minsup, and thus
we can guarantee that no extension of P can be frequent
according to edge disjoint support.

It is worth noting that the edge-disjoint support of P is
equal to the maximum number of edge disjoint s —¢ paths of
length m+-2 in the flow network. However, [19] proved that
finding the maximum disjoint paths with constraints on the
length is NP-Complete. For this reason our formulation does
not place any restrictions on the length of the paths, and thus
we obtain an upper-bound on the edge-disjoint support. It
is important to note that Dinic’s algorithm finds the shortest
s — t paths that are saturated. Thus the flow-based support
is close to the actual support if the shortest s —¢ path length
in the flow network is close to the number of edges in the
candidate pattern. While it may not be a beneficial strategy
for general (dense) patterns, our formulation is very effective
for CMDB graphs, which are sparse, and thus the mined
patterns are also sparse. For such patterns the flow-based
support is generally close to the edge disjoint support.

Pruning Isomorphic Patterns: Given a minimum support
threshold minsup, and given k, the number of random
walks, CMDB-Miner performs k£ random walks in the pat-
tern space, to yield a set M of exactly k£ maximal frequent
subgraphs, using flow-based support. However, since the
walks are random, they may yield isomorphic maximal
patterns. Such isomorphic patterns have to be discarded be-
fore the infrastructure pattern extraction step. Unfortunately,
while graph isomorphism is in NP, it is not known whether
it is NP-complete or is in P [20].

Instead of checking for isomorphism between every pair
of maximal patterns in M, we use a sequence of polynomial-
time filters to create equivalence classes of possibly iso-
morphic patterns. Thus, the worst-case exponential time
algorithm for graph isomorphism method has to be applied
to only pairs of graphs within the same equivalence class.
Initially M comprises a single equivalence class. We then
apply the following filters:

o NODE MULTISET: Given a pattern P = (V', E', L’),
define py (P) = {L(v;) : v; € V'} to be the multiset of
node labels in P. It is easy to see that two patterns P
and P’ cannot be isomorphic if py (P) # py(P’). In
this case P and P’ are put into different equivalence
classes, and never have to be checked for isomorphism.

o EDGE MULTISET: Given pattern P = (V' E’, L’), for
each edge e; = (a;,b;) € F’, define a composite edge
label to be the triple L(e;) = (L'(a;), L'(b;), L' (e:)),
with a; < b;. Define the filter pg(P) = {L(e;) : e; €
E’} to be the multiset of composite edge labels for

P. Two patterns P and P’ cannot be isomorphic if
pp(P) # pp(P).

o LAPLACIAN SPECTRUM: Let A be the adjacency ma-
trix for pattern P, i.e., A(v;,v;) = 1 if (v;,v,) € E',
and A(v;,v;) = 0, otherwise. Let D be the diag-
onal degree matrix for P, defined as D(v;,v;) =
Z,U, A(Ui,’l}j), and D(’Ui,Uj) =0 for all Vi 75 Vj. De-
fine the normalized Laplacian matrix of P as follows:
N =D"2.(D—A)-DY2 N is an x n positive
semi-definite matrix, and thus NV has n (not necessarily
distinct) real, positive eigen-values: Ay > Ag > --- >
An > 0. Define the Laplacian spectrum of P as the
multiset ps(P) = {\; : 1 < i < n}. It is known
that two isomorphic patterns are iso-spectral, i.e., they
have the same Laplacian spectrum [20]. Thus, P and
P’ cannot be isomorphic if ps(P) # ps(P’)

After applying the above filters, the set M is partitioned
into smaller equivalence classes of possibly isomorphic
graphs. For each pair of graphs in the same class, we perform
full isomorphism checking using the VF2 [21] algorithm.
The output of this step is the final set M of non-isomorphic
maximal frequent patterns in G. Note that at this stage we
can find the actual edge disjoint support of all the maximal
patterns by using the maximal independent set approach
proposed in [11].

IV. INFRASTRUCTURE PATTERN EXTRACTION

Given a set of non-isomorphic maximal patterns M,
CMDB-Miner clusters them into groups of similar patterns,
and then selects a representative set of infrastructure patterns
from each cluster. There are three main steps: i) defining
pair-wise similarities between patterns, ii) graph clustering,
iii) infrastructure pattern extraction.
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Figure 4. Sample Maximal Patterns

A. Pattern Similarity

Before clustering the maximal patterns, we have to de-
fine a similarity measure between patterns, that takes into
account both the structure and label information. Graph
edit distance based methods [22] are a popular approach
to compute the similarity, however, the vast majority of
these methods focus mainly on the structure. For example,
a purely structure based method would consider P; and P,
in Fig. 4 to be highly similar. Methods that consider labels
include [23], [24]. We propose a novel pattern similarity
approach based on diffusion kernels [25], which works
well for CMDB graphs. As such the clustering method is



independent of the similarity measure, and thus any of the
attributed graph similarity measures can also be used.

We define similarity between two patterns P =
(Vp, Ep,Lp) and Q = (Vo, Eq, Lg), as

Sim(P, Q) = Jaccard(P, Q) x Diffusion(P,Q) (1)
|[LpNLg|

Here Jaccard(P,Q) ‘TroLo] 18 the Jaccard coeffi-
cient between the label sets for P and (). The more
the labels in common, the higher the Jaccard similarity.
Diffusion(P,Q) is the diffusion kernel based similarity
between P and () that considers both the structure and the
label information, as described below.

Following a procedure similar to that in [26], given
P and @, we first create an augmented weighted graph
R = (VR,ER,WR) Here Vg = Vp U VQ @] {llﬂ’l} S
Vp,Lp(v —Z}U{ZEUEVQ,LQ( _l},i.e.,Rcontains
both structural nodes (those in P and @) and attribute nodes
(labels for nodes in P and Q). Er = Ep U Eg U {(v,1) :
v e Vp,Lp(v) =1}U{(v,1): v € Vg, Lo(v) =l}. In other
words, Er contains both the structural edges (the original
edges between vertices in both P and ()), as well as the
attribute edges (between a node in P and @), and its label).
Finally, Wg : Er — R is a function that assigns a weight to
each edge. The weights on structural edges are set to 1, i.e.,
W (u,v) = 1.0 for all (u,v) € Ep U Eq. The weights on
attribute edges are set as follows: W (v,1) = --, where n; is
the number of neighbors of node [ in R. In the augmented
graph, two structural vertices that have the same label [, are
both neighbors of the attribute node [. To avoid inflating
the similarity purely due to labels (which has already been
accounted for by Jaccard(P,Q)), we assign the fractional
weight on attribute edges. Fig. 5(a) shows the augmented
weighted graph for P» and Ps; from Fig. 4.

To compute Diffusion(P,Q) for each pair of pat-
terns, we use the diffusion kernel approach [25] over their
augmented graph. A diffusion kernel mimics the physical
process of diffusion where heat, gases, etc., originating
from a point diffuse with time. On graphs, it is the local
similarity that diffuses via continuous time random walks
(i.e., with an infinite number of infinitesimally small steps).
Given the augmented graph R = (Vg, Eg, Wg), the matrix
Wr is taken to be the weighted adjacency matrix of R.
Further, define the diagonal degree matrix as D(v;,v;) =
> . Wr(vi,v;), and D(v;,v;) = 0 when i # j. The
Laplacian matrix of R is then defined as: N = D — Whg.
Finally, the diffusion kernel matrix is defined as K = e =

Z —L’C where [ is a real-valued diffusion parameter, and

eﬁL is the matrix exponential (with L® = I and 0! = 1).
Since L is positive semi-definite, it has |Vg| = n real
and positive eigenvalues A\; > Ay > --- > A, > 0.
Let u; be the eigenvector corresponding to eigenvalue \;.
Then the diffusion kernel can easily be computed as the
spectral sum [25]: K = 31" u;eP*ul. The eigenvalues
and eigenvectors of K can be computed in O(n?) time,
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(a) Augmented Weighted Graph

N P | A P, | P3| P
Py | 047 | 0.10 | 0.26 | 0.25 | 0.0
P | 0.10 | 0.40 | 0.06 | 0.09 | 0.0
Py | 0.26 | 0.06 | 0.40 | 0.33 | 0.0
P3| 025|009 |033]037| 00

Py 00 | 00 | 033 00 | 047
b) Similarity Matrix

Figure 5. Augmented Graph and Pattern Similarity: (a) shows the

augmented weighted graph for P> and Ps in Fig. 4. Structural edges are

solid, whereas attribute edges are shown dashed. (b) shows the pair-wise

similarity matrix between all five patterns in Fig. 4.
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where n = |Vg|.

The kernel matrix entry K (v;,v;) gives the diffusion-
based similarity between any two vertices in the augmented
graph R for patterns P and (). In particular, we are interested
in those entries K (u,v) where u € Vp and v € V. We
define the diffusion similarity between P and @ as follows:
If Lp N Lo = 0, then we set Diffusion(P,Q) =
otherwise

Diffusion(P,Q)= min

e o, max  {K(u,v)}

ueVp,veVg

(uw,0),(v,)EER

In other words, the diffusion similarity between P and Q)
is defined as the least label similarity over all labels [, such
that the label similarity is the maximum kernel similarity
over pairs of nodes u, v that share a given label [. Fig. 5(b)
shows the pairwise similarities between all the patterns in
Fig. 4, based on Eq. (1), that combines both the Jaccard()
and Diffusion() values.

B. Clustering

We employ graph clustering to cluster the set of maxi-
mal patterns M. In particular, given the similarity matrix
S(i,j) = Sim(P;, P;) between any two patterns € M,
we can think of S as the weighted adjacency matrix of a
similarity graph, where each maximal pattern is a node, and
any two maximal patterns are linked with weight S(i, j).
Clustering of the patterns is then equivalent to clustering the



nodes in the similarity graph. While many algorithms have
been proposed for graph clustering [27], we use the Markov
clustering (MCL) [28] approach as opposed to spectral
methods [29], since MCL does not require the number of
clusters as input.

Let D be the diagonal degree matrix corresponding to
the weighted similarity matrix S. Let N = D~'S be the
normalized adjacency matrix for the similarity graph. The
matrix [V is a row-stochastic or Markov matrix that specifies
the probability of jumping from node P; to any other node
P;. N is thus that transition matrix for a Markov random
walk on the similarity graph. As such, the k-th power of
N, namely N*, specifies the probability of transitioning
from P; to P; in a walk of kK steps. MCL [28] takes
successive powers of N to expand the influence of a node.
However, it damps the extent of a nodes’ influence, by an
inflation step, whose goal is to enhance higher and diminish
lower transition probabilities. Given transition matrix N,
define the inﬂatign operator T, given as follows: T(N,r) =
{%} - In essence, T takes each element of

a=1

N to the r-th power, and then re-normalizes the rows to
make the matrix row-stochastic.

Given the initial N matrix, and an inflation parameter
r, MCL is an iterative matrix algorithm consisting of two
main steps: i) expansion: N = N2, followed by ii) infla-
tion: N = Y(N,r). The method converges to a doubly
idempotent matrix, and the strongly connected components
in the corresponding induced graph yield the final node
clusters [28]. The only parameter in MCL is the inflation
value r that controls the granularity. Higher values lead to
more, smaller clusters, whereas smaller values lead to fewer,
larger clusters. MCL runs in O(tn?) time, where |[M| = n,
and ¢ is the number of iterations until convergence.

C. Infrastructure Pattern Extraction

Given a set of clusters C;, 1 < i < k obtained via the
MCL approach, the final step in CMDB-Miner is to ex-
tract the so-called infrastructure patterns, i.e., representative
members from each cluster. Given a similarity threshold 6,
from each cluster C; we aim to extract as subset of the
patterns R; C Cj, such that for each P; € C;, there exists
a pattern P € R; with Sim(P;, P) > 6. The task is to
find a minimal set of representative patterns for each cluster.
However, this problem is equivalent to smallest set cover,
an NP-Complete problem, which nevertheless has a greedy
O(logn) approximation algorithm [30]. The greedy heuristic
iteratively chooses the pattern that covers or represents the
largest number of remaining elements in a cluster, until all
the cluster members are covered.

V. EXPERIMENTAL EVALUATION

In this section we evaluate CMDB-Miner on real-world
CMDB graphs for two multi-national corporations, company
A and B (names not revealed due to non-disclosure issues),
from HP’s Universal Configuration Management Database
(UCMDB). We also conduct experiments to validate some of

the design choices in the implementation of CMDB-Miner.
All experiments were performed on a machine with 2.67GHz
Intel i7 processor with 4GB of memory running Ubuntu
Linux version 10.04.

Table T
CMDB GRAPHS A,B: BEFORE AND AFTER PREPROCESSING
A B
Property Before After | Before After
V| 443192 11363 | 455012 57525
|E| 480143 20978 | 523415 149229
Avg. Deg. | 2.16 368 | 2.3 5.16
Table II
BIGGEST PATTERN EXTRACTED
Database # Vertices # Edges
A 24 41
B 54 55

A. Preprocessing

The raw CMDB graph of company A contains 443,192
vertices and 480,143 edges. Company B also contains a
similar number of nodes and edges, and is shown in Table 1.
We discard uninformative attributes for each composite item,
by discarding both high and low entropy attributes. This
results in a significant reduction in the number of attributes,
as shown in Figure 6 for some of the common CI types
in the CMDB graph of company A (similar results are
obtained for B too). More than 75% of the attributes are
pruned in this stage. Further, collapsing leaf nodes reduces
the total number of vertices to 11,363. Table I shows the
graph order and size, as well as average degree, both before
and after preprocessing. As pointed out earlier, these two
preprocessing steps also aid in better interpretation of the
final infrastructure patterns.
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Figure 6. Attribute Pruning

B. Sampling Maximal Patterns

Fig. 7(a) shows the time for sampling maximal patterns
versus number of random walks, for two different (absolute)
values of minimum support for company A. We can see that
as expected time is linear in the number of walks. Fig. 7(b)
shows the number of distinct or non-isomorphic maximal
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Figure 7. Maximal and Non-Isomorphic Patterns for Company A: (a)
sampling time and (b) number of distinct maximal patterns, versus number
of random walks.
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Figure 8. (a) shows time to extract clusters, and (b) shows the number
of clusters and representative infrastructure patterns, for different values of
inflation parameter.

Table TII
ISOMORPHISM CHECKING FILTERS (TIME IN SEC)
Walks Non-Isomorphic Filtering VE2
100 89 0.17 2.05
500 361 5.26 82.07
700 464 3.14  47.57
1000 671 10.96 148.66

patterns versus number of random walks. We can see that
for minsup = 125 the fraction of distinct maximal patterns
decreases with the number of walks, indicating convergence
to the “true” set of maximal patterns. The convergence has
not yet been reached for minsup = 110 within 2500 walks.
These curves suggest an automated method to stop sampling,
namely, when the fraction of distinct patterns versus number
of walks falls below some threshold. Similar results were
obtained for company B (not shown here due to space
constraints), though Table II shows the order/size of the
largest maximal pattern for both A and B.

Table III shows the time to detect the number of distinct

maximal patterns. We compare the time taken by our filter
based approach versus the cost of running the VF2 algorithm
on each pair of patterns in M. It is clear that the sequence
of filters is very effective in reducing the running time by
over an order of magnitude.

C. Infrastructure Pattern Extraction

For company A, Fig. 8 shows the clustering time, and
the number of clusters and representative patterns versus the
given number of walks, for different values of the inflation
parameter r = 2,4,6. We used § = 0.9 (threshold for
a pattern to represent another pattern), and 3 = 2 (the
diffusion kernel parameter). Clustering time is negligible
compared to the time to sample the set of maximal patterns.
The number of clusters increases with increase in the infla-
tion parameter, as expected. Also, in most cases the number
of representative patterns remains the same. This is due to
the characteristics of CMDB graphs, where each CI type is
connected to only a limited number of other CI types. Thus,
most of the maximal patterns either contain very similar or
very different node labels. As the similarity measure is based
on the attributes, these patterns tend to remain in the same
cluster or different clusters, respectively. The small number
of representative patterns shows the effectiveness of CMDB-
Miner in summarizing large and sparse CMDB graphs into
a small set of infrastructure patterns.

D. Example Infrastructure Patterns

Fig. 9 shows three mined maximal patterns. which are a
partial view of a general construct that is known in CMDB,
and is defined as a standard Topological Query — Node =
nt, sqlserver = running_software. Fig. 10 shows another
infrastructure pattern mined by CMDB-Miner. This pattern
is a representative for several other patterns in a cluster. In
order to choose a representative for each cluster we currently
choose a member of the cluster that maximizes the overall
similarity to other members of the cluster. Alternatively, we
can consider trimmed similarity (to say only the closest 80%
of the members), or we could aim for a description of a
family of graphs that describes a large majority of the cluster.
Exploring these options is part of future work.

windows_service @

webvirtualhost

Figure 10. Infrastructure Pattern

VI. CONCLUSIONS

We have demonstrated that CMDB-Miner is an effective
algorithm for mining real-world CMDB graphs. It makes use
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of the characteristics of such graphs (e.g., label multiplici-

ties,

sparsity) to speed up the mining process. It performs

random walks without having to check for isomorphism,
which is only performed on the final set of maximal patterns
via a filter-based approach. Further, we proposed a new
flow-based upper-bound on the edge-disjoint support that
allows for effective pattern pruning, and which avoids the
exponential blowup in the number of possible embeddings
that plague many previous methods. To extract the infras-
tructure patterns we proposed a new diffusion kernel based
similarity that takes into account both the structure and label
information. We show that CMDB-Miner is able to extract
meaningful infrastructure patterns. In terms of future work,
we plan to parallelize the approach for better scalability,
and to extend the approach to mining graphs with multiple
attributes on the nodes and edges. We would also like to
mine approximate patterns, with possibly mismatched nodes
and edges.
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