
Towards Generic Pattern Mining�

Mohammed J. Zaki��, Nagender Parimi, Nilanjana De, Feng Gao,
Benjarath Phoophakdee, Joe Urban, Vineet Chaoji,

Mohammad Al Hasan, and Saeed Salem

Computer Science Department,
Rensselaer Polytechnic Institute, Troy NY 12180

Abstract. Frequent Pattern Mining (FPM) is a very powerful paradigm
for mining informative and useful patterns in massive, complex datasets.
In this paper we propose the Data Mining Template Library, a collection
of generic containers and algorithms for FPM, as well as persistency and
database management classes. DMTL provides a systematic solution to
a whole class of common FPM tasks like itemset, sequence, tree and
graph mining. DMTL is extensible, scalable, and high-performance for
rapid response on massive datasets. Our experiments show that DMTL
is competitive with special purpose algorithms designed for a particular
pattern type, especially as database sizes increase.

1 Introduction

Frequent Pattern Mining (FPM) is a very powerful paradigm which encom-
passes an entire class of data mining tasks. The specific tasks encompassed
by FPM include the mining of increasingly complex and informative patterns,
in complex structured and unstructured relational datasets, such as: Itemsets
or co-occurrences [1] (transactional, unordered data), Sequences [2, 29] (tempo-
ral or positional data, as in text mining, bioinformatics), Tree patterns [30, 3]
(XML/semistructured data), and Graph patterns [12, 16, 26, 27] (complex rela-
tional data, bioinformatics). Figure 1 shows examples of these different types of
patterns; in a generic sense a pattern denotes links/relationships between sev-
eral objects of interest. The objects are denoted as nodes, and the links as edges.
Patterns can have multiple labels, denoting various attributes, on both the nodes
and edges.

The current practice in frequent pattern mining basically falls into the
paradigm of incremental algorithm improvement and solutions to very specific
problems. While there exist tools like MLC++ [15], which provides a collec-
tion of algorithms for classification, and Weka [25], which is a general purpose

� This work was supported by NSF Grant EIA-0103708 under the KD-D program,
NSF CAREER Award IIS-0092978, and DOE Early Career PI Award DE-FG02-
02ER25538.

�� We thank Paolo Palmerini and Jeevan Pathuri for their work on an early version of
DMTL.

B. Ganter and R. Godin (Eds.): ICFCA 2005, LNCS 3403, pp. 1–20, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 M.J. Zaki et al.

Java library of different data mining algorithms including itemset mining, these
systems do not have an unifying theme or framework, there is little database sup-
port, and scalability to massive datasets is questionable. Moreover, these tools
are not designed for handling complex pattern types like trees and graphs.

Our work seeks to address all of the above limitations. In this paper we de-
scribe Data Mining Template Library (DMTL), a generic collection of algorithms
and persistent data structures, which follow a generic programming paradigm[4].
DMTL provides a systematic solution for the whole class of pattern mining tasks
in massive, relational datasets. The main contributions of DMTL are as follows:

– Isolation of generic containers which hold various pattern types from the
actual mining algorithms which operate upon them. We define generic data
structures to handle various pattern types like itemsets, sequences, trees and
graphs, and outline the design and implementation of generic data mining
algorithms for FPM, such as depth-first and breadth-first search.

– Persistent data structures for supporting efficient pattern frequency compu-
tations using a tightly coupled database (DBMS) approach.

– Native support for both vertical and horizontal database formats for highly
efficient mining.

– Developing the motivation to look for unifying themes such as right-most
pattern extension and depth-first search in FPM algorithms. We believe this
shall facilitate the design of a single generic algorithm applicable across a
wide spectrum of patterns.

One of the main attractions of a generic paradigm is that the generic algo-
rithms for mining are guaranteed to work for any pattern type. Each pattern is
characterized by inherent properties that it satisfies, and the generic algorithm
exploits these properties to perform the mining task efficiently. We conduct sev-
eral experiments to show the scalability and efficiency of DMTL for different
pattern types like itemsets, sequences, trees and graphs. Our results indicate
that DMTL is competitive with the special purpose algorithms designed for a
particular pattern type, especially with increasing database sizes.

2 Preliminaries

The problem of mining frequent patterns can be stated as follows: Let N =
{x1, x2, . . . , xnv

} be a set of nv distinct nodes or vertices. A pair of nodes (xi, xj)
is called en edge. Let L = {l1, l2, . . . , lnl

}, be a set of nl distinct labels. Let Ln :
N → L, be a node labeling function that maps a node to its label Ln(xi) = li,
and let Le : N × N → L be an edge labeling function, that maps an edge to its
label Le(xi, xj) = lk.

It is intuitive to represent a pattern P as a graph (PV , PE), with labeled
vertex set PV ⊆ N and labeled edge set PE = {(xi, xj) | xi, xj ∈ PV }. The
number of nodes in a pattern P is called its size. A pattern of size k is called
a k-pattern, and the class of frequent k-patterns is referred to as Fk. In some
applications P is a symmetric relation, i.e., (xi, xj) ≡ (xj , xi) (undirected edges),

Towards Generic Pattern Mining 3

while in other applications P is anti-symmetric, i.e., (xi, xj) �≡ (xj , xi) (directed
edges). A path in P is a set of distinct nodes {xi0 , xi1 , xin

}, such that (xij
, xij+1)

in an edge in PE for all j = 0 · · ·n − 1. The number of edges gives the length
of the path. If xi and xj are connected by a path of length n we denote it as
xi <n xj . Thus the edge (xi, xj) can also be written as xi <0 xj .

Given two patterns P and Q, we say that P is a subpattern of Q (or Q is
a super-pattern of P), denoted P�Q if and only if there exists a 1-1 mapping
f from nodes in P to nodes in Q, such that for all xi, xj ∈ PV : i) Ln(xi) =
Ln(f(xi)), ii) Le(xi, xj) = Le(f(xi), f(xj)), and iii) (xi, xj) ∈ PV iff (if and
only if) (f(xi), f(xj)) ∈ QV . In some cases we are interested in embedded
subpatterns. P is an embedded subpattern of Q if: i) Ln(xi) = Ln(f(xi)), iii)
Le(xi, xj) = Le(f(xi), f(Xj)), and iii) (xi, xj) ∈ PE iff f(xi) <l f(xj) for some
l ≥ 0, i.e., f(xi) is connected to f(xj) on some path. If P�Q we say that P is
contained in Q or Q contains P .

A database D is just a collection (a multi-set) of patterns. A database pattern
is also called an object. Let O = {o1, o2, . . . , ono}, be a set of no distinct object
identifiers (oid). An object has a unique identifier, given by the function O(di) =
oj , where di ∈ D and oj ∈ O. The number of objects in D is given as |D|.

The absolute support of a pattern P in a database D is defined as the number
of objects in D that contain P , given as πa(P, D) = |{P�d | d ∈ D}|. The
(relative) support of P is given as π(P, D) = πa(P,D)

|D| . A pattern is frequent if its
support is more than some user-specified minimum threshold, i.e., if π(P, D) ≥
πmin. A frequent pattern is maximal if it is not a subpattern of any other frequent
pattern. A frequent pattern is closed if it has no super-pattern with the same
support. The frequent pattern mining problem is to enumerate all the patterns
that satisfy the user-specified πmin frequency requirement (and any other user-
specified conditions).

The main observation in FPM is that the sub-pattern relation � defines a
partial order on the set of patterns. If P�Q, we say that P is more general than
Q, or Q is more specific than P . The second observation used is that if Q is a
frequent pattern, then all sub-patterns P�Q are also frequent. More important
is the converse, i.e. if P is infrequent and P�Q then Q shall also be infrequent
(follows from the anti-monotonicity of frequency). The different FPM algorithms
differ in the manner in with they search the pattern space.

2.1 FPM Instances

Some common types of patterns include itemsets, sequences, trees, and graphs,
as shown in Figure 1. In fact, every pattern can be modeled as a graph; the
nodes (xi) are shown under each circle and the node labels (Ln(xi)) are shown
inside the circle, whereas edge labels have been omitted.

In an itemset [1] no two nodes have the same label. Let V = {x1, x2, · · ·xk} be
a node set such that Ln(xi) �= Ln(xj) for all xi, xj ∈ V , and Ln(xi) < Ln(xi+1)
for all 1 ≤ i ≤ k − 1. There are several possible formulation of the itemset
pattern: i) vertex-only: An itemset pattern P is just a of vertices, i.e., PV = V
and PE = ∅, this is shown in Figure 1, ii) linear: in another formulation the

4 M.J. Zaki et al.

TREE GRAPH

CB

A

A CA
1 2 3 4

B

SEQUENCE (A−−>AB−−>C)

A B C D
1

ITEMSET (ABCD)

CB

A

A
1

A
1

2

3

3 3

4

4
4

5

2

Fig. 1. FPM Instances

itemset is defined as PV = V , and PE = {(xi, xi+1)|xi, xi+1 ∈ PV }, iii) clique:
A third alternative is to represent itemset P as a clique, i.e., PV = V and
PE = {(xi, xj) | i < j and xi, xj ∈ PV }.

In sequence mining [2], a sequence is modeled as an ordered list of itemsets,
and thus the different nodes in a sequence can have the same label. We can
model a sequence pattern P as being made up of a sequence of n itemsets P i,
i = 1, · · ·n, using the linear formulation (as shown in Figure 1); note that using
the vertex-only formulation is problematic, since it results in a disconnected
pattern. Thus P has a vertex set made up of n disjoint subsets PV =

⋃n
i=1 P i

V .
The edge set PE contains all the edges within P i (consecutive and undirected),
and it also contains a directed edge for every pair of consecutive itemsets, i.e.,
from the last node of P i to the first node of P i+1.

In tree mining [30, 3], typically rooted, ordered and labeled trees are consid-
ered. Thus a tree pattern P consists of the vertex set PV = {r, x1, x2, · · ·}, where
r is a special node called root. A tree pattern must satisfy all tree properties,
namely i) the root has no parent, i.e., (xi, r) �∈ PE for any xi ∈ PV , ii) the edges
are directed, i.e., if (xi, xj) ∈ PE , then (xj , xi) �∈ PE), iii) a node has only one
parent, i.e., if (xi, xj) ∈ PE , then (xk, xj) �∈ PE for any xk �= xi, iv) the tree is
connected, i.e., for all xi ∈ PV , there exists a path from the root r to xi, and v)
tree has no cycles. Furthermore for ordered trees the order of a nodes’ children
matters. This means that there is an ordering of edges in PE , such that (xi, xj)
comes before (xi, xk) in PE only if xj is before xk in the ordering of xi’s children.
Embedded trees can be defined by following the definition of embedded patterns
introduced earlier.

Finally, by definition a pattern can model any general graph, as well as any
special constraints that might appear in graph mining [12, 16, 26], such as con-
nected graphs, or induced subgraphs. It is also possible to model other patterns

Towards Generic Pattern Mining 5

such as DAGs (directed acyclic graphs). DMTL currently supports pattern min-
ing of i) itemsets, ii) sequences, iii) embedded, rooted trees with ordered edges
and iv) induced, undirected graphs with no single loops or multiple edges. As we
shall soon see, the toolkit can be extended to incorporate mining of other user
defined patterns as well.

2.2 Database Format

In a typical FPM task, the database is in the horizontal format i.e. a set of trans-
actions, where each transaction is an object of the pattern type being mined [1].
Recently, vertical database formats have been proposed for mining itemsets, se-
quences and trees [28, 29, 30]. The vertical format is the more attractive alterna-
tive since it enables fast computation of supports by avoiding repeated database
accesses. It does so by associating an entity called Vertical Attribute Table, VAT
with each pattern. For an itemset, the VAT is the list of tids in which it is con-
tained; VATs for sequences and trees are more complex and are described later.
There currently does not exist a vertical scheme for graphs; the introduction
of a new and efficient VAT scheme for graphs is one of our main contributions.
DMTL introduces two modes of persistency: i) the collection of frequent patterns
itself may be too large to fit in main memory, and hence persistent containers
are provided to hold them, and ii) persistent storage and access to VATs. Both
these modes of persistency are entirely transparent to the user.

3 DMTL: Data Structures and Algorithms

The C++ Standard Template Library (STL) provides efficient, generic imple-
mentations of widely used algorithms and data structures, which tremendously
aid effective programming. Like STL, DMTL is a collection of generic data min-
ing algorithms and data structures. In addition, DMTL provides persistent data
and index structures for efficiently mining any type of pattern or model of inter-
est. The user can mine custom pattern types, by simply defining the new pattern
types, but the user need not implement a new algorithm - the generic DMTL
algorithms can be used to mine them. Since the mined models and patterns
are persistent and indexed, this means the mining can be done efficiently over
massive databases, and mined results can be retrieved later from the persistent
store.

Following the ideology of generic programming, DMTL provides a standard-
ized, general, and efficient implementation of frequent pattern mining tasks by
isolating the concept of data structures or containers, as they are called in generic
programming, from algorithms. DMTL provides container classes for represent-
ing different patterns (such as itemsets and sequences) and collection of pat-
terns, containers for database objects (horizontal and vertical), and containers
for temporary mining results. These container classes support persistency when
required.

Generic algorithms, on the other hand are independent of the container and
can be applied on any valid container. These include algorithms for performing

6 M.J. Zaki et al.

intersections of the vertical lists [28, 29, 30] for itemsets, sequences or other pat-
terns. Generic algorithms are also provided for mining itemsets, sequences and
trees [1, 20, 28, 29], as well as for finding the maximal or closed patterns [11, 31].
Finally DMTL provides support for the database management functionality,
pre-processing support for mapping data in different formats to DMTL’s native
formats, as well as for data transformation (such as discretization of continu-
ous values). It should be noted that some of the algorithms designed for the
C++ STL were inherently generic i.e. independent of the underlying datatype
or container (e.g. sort). However devising a generic algorithm for FPM was a
significant design challenge; we present it in Figure 3.

In this section we focus on the containers and algorithms for mining. In later
sections we discuss the database support in DMTL as well as support for pre-
processing and post-processing.

pvector plist partial−order

PatFamType

Pattern Family

Pattern Persistency Manager

Pattern Type

Itemset Sequence GraphTree

Fig. 2. DMTL Container Hierarchy

3.1 Containers

Figure 2 shows the different DMTL container classes for PMT (the Pattern
Mining Toolkit) and the relationship among them. At the lowest level are the
different kinds of pattern-types one might be interested in mining. A pattern is
a generic container instantiated for one of the pattern-types. There are several
pattern family types (such as pvector, plist, etc.) which together with a persis-
tency manager class make up different pattern family classes. More details on
each class appears below.

Towards Generic Pattern Mining 7

Pattern. In DMTL a pattern is a generic container, which can be instantiated as
an itemset, sequence, tree or a graph, specified as Pattern<class P> by means
of a template argument called Pattern-Type (P). A generic pattern is simply a
Pattern-Type whose frequency we need to determine in a larger collection or
database of patterns of the same type.

Pattern-Type. A pattern type is the specific pattern to be mined, e.g. itemset,
and in that sense is not a generic container. DMTL has the itemset, sequence,
tree and graph pattern-types defined internally; however the users are free to
define their own pattern types, so long as the user defined class provides imple-
mentations for the methods required by the generic containers and algorithms.
We shall later show how a new pattern type may be added to the library.

Pattern Family. In addition to the basic pattern classes, most pattern mining
algorithms operate on a collection of patterns. The pattern family is a generic
container PatternFamily <class PatFamType> to store groups of patterns,
specified by the template parameter PatFamType. PatFamType represents a per-
sistent class provided by DMTL, that provides seamless access to the members,
whether they be in memory or on disk.

Pattern Family Type. This class provides the required persistency in stor-
age and retrieval of patterns. DMTL provides several pattern family types to
store groups of patterns. Each such class is templatized on the pattern-type (P)
and a persistency manager class PM. An example is pvector <class P, class
PM>, a persistent vector class. It has the same semantics as a STL vector with
added memory management and persistency. Another class is plist<P,PM>. In-
stead of organizing the patterns in a linear structure like a vector or list, another
persistent family type DMTL class, partial-order <P,PM>, organizes the pat-
terns according to the sub-pattern/super-pattern relationship. While pvector and
partial-order provide the same interface, certain operations will be more efficient
in one class than the other. For example, inserts and deletions are cheaper for
plists, while the maximality and closed testing functions will be cheaper for
partial-orders, since the patterns are already organized according to sub/super-
pattern relation.

3.2 Persistency Manager for Patterns

An important aspect of DMTL is to provide a user-specified level of persistency
for all DMTL classes. To support large-scale data mining, DMTL provides au-
tomatic support for out-of-core computations, i.e., memory buffer management,
via the persistency manager class PM. The PatternFamilyType class uses the
persistency manager (PM) to support the buffer management for patterns. The
details of implementation are hidden from PatternFamily; all generic algorithms
continue to work regardless of whether the family is (partially) in memory or on
disk. The interface of a persistent container (like pvector) is similar to that of
a volatile container (like STL vector), hence encapsulating the implementation

8 M.J. Zaki et al.

behind the common interface. More details on the persistency manager will be
given later.

3.3 Generic Mining Algorithms

The pattern mining task can be viewed as a search over the pattern space looking
for those patterns that match the minimum support constraint. For instance
in itemset mining, the search space is the set of all possible subsets of items.
Within DMTL we attempt to provide a unifying framework for the wide range
of mining algorithms that exist today. Figure 3 shows the pseudo-code for the
generic mining algorithm, which was devised by combining the unifying aspects
of mining itemsets, sequences, trees and graphs [28, 29, 30, 26]. Note that mining
F2 (i.e., level-2) often creates performance and memory bottleneck in FPM tasks,
hence we employ a preemptive horizontal scan to accumulate estimated supports
of level-2 patterns (line 3). This is an optimization intended for level-2 only, and
we use the vertical approach thereon. The extend routine outlines the important
tasks for mining any pattern: i) systematic candidate generation (line 8), ii)
isomorphism checking (line 9) and iii) support counting which we accomplish
through the vertical approach (lines 10-11). Partitioning frequent patterns into
equivalence classes leads to a Fk×Fk candidate generation i.e. an Fk+1 candidate
is generated by joining two Fk sized patterns. It should also be noted that for
graphs g ∈ Fk implies g has k edges (not k nodes). Some of the salient features
of our algorithm’s design are:

Search Strategy. Several variants exist, depth-first search (DFS) and breadth-
first search (BFS) being the primary ones. BFS has the advantage of providing
better pruning of candidates but suffers from the cost of storing all of a given
level’s frequent patterns in memory. Recent algorithms for mining complex pat-
terns like trees and graphs have focused on the DFS approach, hence it is the
preferred choice for our toolkit as well. Nevertheless, support for BFS mining of
itemsets and sequences is provided.

Vertical Mining. It has been shown that efficient vertical mining typically
outperforms the horizontal approaches [28, 29, 30]. The vertical approach accom-
plishes fast support counting by intersection of VATs, thereby avoiding repeated
database accesses. Section 4 gives details of the support we provide for vertical
as well as horizontal mining.

Right-Most Extension. Recent algorithms towards solving tree and graph
mining [30, 26] have focused on an approach of right-most extension i.e. a new
node is added to the pattern only on the right most path from the root. This
method has been shown to exhaustively enumerate all candidates for trees and
graphs, and we believe that it can be augmented to work for itemsets and se-
quences as well. Though in the current framework the extension strategy is an
internal component of each pattern’s specialized routine, part of the proposed fu-
ture work is devising a completely generic pattern mining algorithm, leveraging

Towards Generic Pattern Mining 9

aspects such as right most extension and depth-first search which are common
across a wide range of patterns. We believe that developing the motivation to
look for such unifying themes in pattern mining is one of the key contributions
of this toolkit.

DMTL provides generic algorithms encapsulating these search strategies; by
their definition these algorithms can work on any type of pattern: Itemset, Se-
quence, Tree or Graph. An example is the generic algorithm DFS-Mine<class
PatFamType> (PatternFamily<PatFamType> &pf, DB &db, ...), which
mines the frequent patterns using a depth-first search (DFS) [28, 29]. The DFS
algorithm in turn relies on other generic subroutines for creating equivalence
classes, for generating candidates, and for support counting. There is also a
generic BFS-Mine that performs Breadth-First Search [1, 20] over the pattern
space.

dfs mine (DB,result pats):
1. F1 = {level-1 frequent patterns}
2. result pats = result pats ∪F1

3. F2 = {optimized mining of level-2 patterns}
4. result pats = result pats ∪ F2

5. F2 = {partition F2 into equivalence classes}
6. for each equivalence class [P]1 in F2 do
7. extend(DB, result pats, [P]1)

extend (DB, result pats, [P]):
//DFS, equivalence class-based extension

6. Fk+1 = ∅
7. ∀ patterns Pi, Pj ∈ [P] such that i �= j
8. new pat = Pi

⊙
Pj //generate new candidate

9. if new pat.canonical code is minimal then
//candidate has passed isomorphism test

10. new pat.vat = Pi.vat
⊗

Pj .vat //vat intersection
11. if |new pat.vat| ≥ minsup then //new pat is frequent
12. result pats = results pat ∪ new pat
13. Fk+1 = Fk+1 ∪ new pat
14. Fk+1 = {partition Fk+1 into equivalence classes}
15. for each equivalence class [P]k in Fk+1 do
16. extend(DB, result pats, [P]k)

Fig. 3. Generic DFS Pattern Mining

Figure 3 seeks to illustrate the major steps of DFS-Mine, our equivalence class-
based vertical mining algorithm. The toolkit employs templates to provide for
efficient compile time polymorphism based on the pattern type: the underlying
algorithm stays the same but each distinct pattern has its specialized implemen-
tation of the key steps. For instance, the isomorphism check in line 9 is necessary
only for graphs, and is omitted for other simpler patterns. Isomorphism checking

10 M.J. Zaki et al.

is achieved through the canonical code member of each pattern. Each graph has
a canonical code representation, and an ordering is defined on the code such
that among all isomorphic graphs only one has the the least canonical code; all
other graphs shall be discarded at line 9. DMTL applies the DFS minimal code
of gSpan [26] but is not constrained by the choice of the canonical code. It is also
to be noted that the equivalence class partitioning is omitted for graphs since
Fk ×F1 candidate generation does not lend itself easily to equivalence partitions.

3.4 Candidate Generation

We now provide a brief review of our extension routine (
⊙

) for the four primary
pattern types, details of the VAT intersection follow later.

Itemset: Itemset join is the simplest and DMTL employs a vertical mining
approach based on [28]. The join operation is defined on two itemsets Px and
Py, belonging to the same equivalence class, [P], which yields Pxy ∈ [Px].

Sequence: An equivalence class of sequences can comprise members which are
sequence atoms (P → X) or event atoms (PY). As described in [29], a join
of two sequences within the same equivalence class [P] can lead to one of three
possibilities – i) joining PB with PD yields PBD (join of two event atoms); ii)
join of PB with P → A results in PB → A (join of event atom with sequence
atom) and iii) join of two sequence atoms, P → A with P → F leads to three
outcomes: an event atom P → AF and two sequence atoms, P → A → F and
P → F → A.

Tree: An equivalence class of trees comprises members which share the common
prefix, but differing in the last node of the tree and the position where it is
attached to the prefix. Hence members of the same equivalence class [P] may
be denoted as pairs of (last node, position). A join of (x, i) with (y, j) leads to
the following possibilities: i) if i = j add (y, j) and (y, ni)) to [Px], where ni is
the depth-first number of node x; ii) if i > j the new candidate is (y, j) in class
[Px]; and iii) no candidates are possible when i < j. We refer the reader to [30]
for elaboration on the prefix based representation scheme used for trees.

Graph: To assist in systematic candidate generation and isomorphism testing,
DMTL uses the ordering of vertex and edge labels to generate graphs from a
core tree structure [26]. An Fk × F1 join on graphs is a complex operation; at
each such extension a new edge is added to the given graph. Two types of edge
extensions are defined: a back edge which introduces a cycle, and a forward edge
which adds a new node to the graph. See [26] for more details.

3.5 Isomorphism Checking

Since a graph encompasses other simpler patterns (itemset, sequence, tree) we
define the isomorphism problem for graphs: a graph p is isomorphic to q if there
exists a mapping M : pv → qv such that for all xi, xj ∈ p, Lp(xi) = Lq(M(xi))

Towards Generic Pattern Mining 11

and (xi, xj) ∈ pe iff (M(xi), M(xj)) ∈ qe. It has been shown that for itemsets,
sequences and ordered trees the isomorphism checking may be averted by in-
telligent candidate generation, e.g., for the case of itemsets, AB and BA are
isomorphic, but the algorithm can avoid generating BA by joining an itemset Pi

only with a lexicographically greater itemset Pj (where both belong to the equiv-
alence class [P]). Such schemes exist for sequences and ordered trees as well, but
more complex patterns like unordered trees, free trees, directed acyclic graphs
(DAGs) and generic graphs shall require some form of isomorphism testing.

Isomorphism Checking in Graphs: We follow the scheme outlined in [26]
to achieve isomorphism checking for graphs. Based on a linear order on vertex
and edge labels, a unique depth-first traversal is defined for any given graph.
Each vertex in the graph is assigned a depth-first id, which is its order in the
depth-first traversal. Each edge is represented by a 5-tuple (i, j, li, lij , lj) where
i is the DFS id of the first vertex of the edge and j of the second one, and li,
lij and lj are labels of the first vertex, the edge and second vertex respectively.
Isomorphism checking is accomplished by defining an order on such 5-tuples.

4 DMTL: Persistency and Database Support

DMTL employs a back-end storage manager that provides the persistency and
indexing support for both the patterns and the database. It supports DMTL
by seamlessly providing support for memory management, data layout, high-
performance I/O, as well as tight integration with database management sys-
tems (DBMS). It supports multiple back-end storage schemes including flat files,
embedded databases, and relational or object-relational DBMS. DMTL also pro-
vides persistent pattern management facilities, i.e., mined patterns can them-
selves be stored in a pattern database for retrieval and interactive exploration.

DMTL provides native database support for both the horizontal [1] and ver-
tical [28, 29, 30] data formats. It is also worth noting that since in many cases the
database contains the same kind of objects as the patterns to be extracted (i.e.,
the database can be viewed as a pattern family), the same database functionality
used for horizontal format can be used for providing persistency for pattern fam-
ilies. It is relatively straightforward to store a horizontal format object, and by
extension, a family of such patterns, in any object-relational database. Thus the
persistency manager for pattern families can handle both the original database
and the patterns that are generated while mining. DMTL provides the required
buffer management so that the algorithms continue to work regardless of whether
the database/patterns are in memory or on disk.

4.1 Vertical Attribute Tables

To provide native database support for objects in the vertical format, DMTL
adopts a fine grained data model, where records are stored as Vertical Attribute
Tables (VATs). Given a database of objects, where each object is characterized
by a set of properties or attributes, a VAT is essentially the collection of objects

12 M.J. Zaki et al.

that share the same values for the attributes. For example, for a relational ta-
ble, cars, with the two attributes, color and brand, a VAT for the property
color=red stores all the transaction identifiers of cars whose color is red. The
main advantage of VATs is that they allow for optimizations of query intensive
applications like data mining where only a subset of the attributes need to be
processed during each query. As was mentioned earlier these kinds of vertical
representations have proved to be useful in many data mining tasks [28, 29, 30].

In DMTL there is one VAT per pattern-type. Depending on the pattern type
being mined the vat-type class may be different. Accordingly, their intersection
(line 10, Figure 3) shall vary as well:

Itemset. For an itemset the VAT is simply a vector <tid>, where each tid
may be stored as an int. VAT intersection in this case is straight forward,
new pat.vat = {t|t ∈ Pi.vat and t ∈ Pj .vat}, where new pat = Pi

⊙
Pj .

Sequence. The VAT for a sequence is defined as a vector<pair<tid, vector
<time-stamp>>>. In this case the intersection has to take into account the type
of extension under consideration (refer to the section on sequence extension).
The intersection operation is a simple intersection of tid-lists for a join of two
event atoms, but requires comparison of the timestamps when doing sequence
joins. For instance, when computing the VAT intersection for P → A → F from
its subsequences P → A and P → F , one needs to match the tid and ensure
that the time-stamp of A in that tid is less than that of F .

Tree. Define triple to be (tid, scope, match-label), then the VAT for a
tree pattern is a vector<triple>. The tid identifies a tree in the input database;
scope is an interval [l,u] which denotes the range of DFS ids which lie em-
bedded under the last depth-first node of the tree, and match-label is a list
of DFS positions at which the current tree is embedded in that tree of the
database. Intersection of tree VATs is an involved operation, comprising in-scope
and out-scope tests corresponding to the two types of tree extensions described
earlier [30].

Graph. The VAT for a graph is defined as a vector<edge vat> where an
edge vat is defined as vector<tid, vids> where vids is a vector <pair<int,
int>>. A graph may be viewed as a collection of edges; following this approach
an edge vat is in essence the VAT for an edge of a graph. It stores the tid of
the graph in which the edge is present, and a collection of pair of vertex ids –
each pair denoting an occurrence of the edge in that graph. Intersection of graph
VATs is complicated due to isomorphism checking, and the details are beyond
the scope of this paper.

DMTL provides support for creating VATs during the mining process, i.e.,
during algorithms execution, as well as support for updating VATs (add and
delete operations). In DMTL VATs can be either persistent or non-persistent.
Finally DMTL uses indexes for a collection of VATs for efficient retrieval based
on a given attribute-value, or a given pattern.

Towards Generic Pattern Mining 13

4.2 Storage and Persistency Manager

The database support for VATs and for the horizontal family of patterns is
provided by DMTL in terms of the following classes, which are illustrated in
Figure 4. Vat-type is a class describing the vat-type that composes the body
of a VAT, for instance int for itemsets and pair<int,time> for sequences.
VAT<class V> is the class that represents VATs. This class is composed of a col-
lection of records of vat-type V. Storage<class PM> is the generic persistency-
manager class that implements the physical persistency for VATs and other
classes. The class PM provides the actual implementations of the generic oper-
ations required by Storage. For example, PM metakit and PM gigabase are two
actual implementations of the Storage class in terms of different DBMS like
Metakit [24], a persistent C++ library that natively supports the vertical format,
and Gigabase [14], an object-relational database. Other implementations can eas-
ily be added as long as they provide the required functionality. MetaTable<class
V, class PM> represents a collection of VATs. It stores a list of VAT pointers
and the adequate data structures to handle efficient search for a specific VAT
in the collection. It also provides physical storage for VATs. It is templatized
on the vat-type V and on the Storage implementation PM. In the figure the H
refers to a pattern and B its corresponding VAT. The Storage class provides for
efficient lookup of a particular VAT object given the header. DB<class V, class
PM> is the database class which holds a collection of Metatables. This is the
main user interface to VATs and constitutes the database class DB referred to
in previous sections. It supports VAT operations such as intersection, as well as

H

B

H

B

H

B

H

B

H

B

H

B

��������������������
��������������������
��������������������

��������������������
��������������������
��������������������

MetaTable<V,PM>

VAT<V> VAT<V>

DB<V,PM>

Buffer<V>

Intersect(VAT &v1, VAT &v2)

Get_Vats()

Get_Vat_Body()

Storage<PM> Storage<PM>

Fig. 4. DMTL: High level overview of the different classes used for Persistency

14 M.J. Zaki et al.

the operations for data import and export. The DB class is a doubly templated
class where both the vat-type and the storage implementation need to be speci-
fied. An example instantiation of a DB class for itemset patterns would therefore
be DB<int,PM metakit> or DB<int, PM gigabase>. DB has as data members an
object of type Buffer<V> and a collection of MetaTables<V,PM>. Buffer<class
V> provides a fixed-size main-memory buffer to which VATs are written and
from which VATs are accessed, used for buffer management to provide seamless
support for main-memory and out-of-core VATs (of type V). When a VAT body
is requested from the DB class, the buffer is searched first. If the body is not
already present there, it is retrieved from disk, by accessing the Metatable con-
taining the requested VAT. If there is not enough space to store the new VAT
in the buffer, the buffer manager will (transparently) replace an existing VAT
with the new one. A similar interface is used to provide access to patterns in a
persistent family or the horizontal database.

5 Extensibility of DMTL

DMTL provides a highly extensible yet potent framework for frequent pattern
mining. We provide this flexibility via two central distinctions built into the
library by design.

Containers and Algorithms. DMTL makes a clear delineation between pat-
terns and the containers used to store them, and the underlying mining algo-
rithm. This enables us to introduce the concept of a generic pattern mining
algorithm, e.g., dfs mine. The algorithms presented are the first step towards
that end, and in our conclusions we outline the future challenges. We believe
the benefits of a generic framework are at least two-fold: firstly, it provides a
single platform for the field of frequent pattern mining and facilitates re-use of
mining techniques and methodologies among various patterns, and secondly it
may yield insight into discovering algorithms for newer patterns, e.g. DAGs.

Front-End and Back-End. We provide an explicit demarcation between the
roles played by the containers and methods used by the actual mining algorithms
(called the front-end operations) and those employed by the database to provide
its functionality (back-end operations). FPM algorithms so far have mainly fo-
cused on a highly integrated approach between the front-end operations and
back-end procedures. Though such an approach leads to efficient mining algo-
rithms, it compromises on their extensibility and scalability. For instance, there
is little support for persistency, buffer management, or even adding new DBMSs.
DMTL addresses this issue by demonstrating a clean way of seamlessly integrat-
ing new pattern types, buffer management techniques or even support for a
new DBMS. Furthermore, such a framework also enables us to define distinctly
the roles played by its various components, especially in the vertical mining ap-
proach, e.g., a pattern need not be aware of its VAT representation at all, and this
appeals intuitively too. A pattern is characterized completely by its definition
only, and its VAT is an entity defined by us in order to achieve vertical mining.

Towards Generic Pattern Mining 15

This concept is again depicted cleanly in our toolkit - the pattern is aware of
only the high-level methods add vat() and get vat(); it is not restricted by
the specific VAT representation used.

This design enables DMTL to provide extensibility in three key ways.

Adding a New Pattern-Type. Due to the inherent distinction between con-
tainers and algorithms, a new pattern type can be added to DMTL in a clean
fashion. We demonstrate how it may be extended for unordered, rooted trees [17].
The order of a node’s children is relevant in ordered trees, while it is not so in
unordered trees. We observe that DMTL already provides tree mining, hence
much of the infrastructure may be re-used. The only significant modification
required is isomorphism checking. Hence the user can define an unordered tree
class, utree, similar to the in-built tree class. utree should provide an im-
plementation for its canonical code member, which our algorithm shall use to
determine isomorphism. In addition, a vertical representation (VAT) needs to be
provided for utree. Since utree is essentially a tree itself, it may utilize tree’s
vat body but needs to provide its distinct implementation of VAT intersection.
In this instance, due to its similarity to tree, utree could utilize many of the
common algorithms and routines. We acknowledge that this may not always be
the case; nevertheless for a new pattern-type, the user needs to define specialized
implementations of the main containers, viz., utree and utree vat and their
methods, but can reuse the toolkit’s infrastructure for vertical/horizontal and
DFS/BFS mining, as well as buffering and persistency. This way all algorithms
are guaranteed to work with any pattern as long as certain basic operations are
defined.

Buffering Scheme. The Buffer class provides memory management of pat-
terns and VATs. A new buffer manager may be put in place simply by defining an
appropriate new class, say NFU Buffer employing a not frequently used strategy.
NFU Buffer should define methods such as add vat(vat body&) which shall im-
plement the appropriate buffering of VATs. No other modification to the toolkit
is necessary.

DBMS Support. The back-end DBMS and buffer manager are interleaved to
provide seamless retrieval and storage of patterns and VATs. The buffer manager
fetches data as required from the DBMS, and writes out excess patterns/VATs
to the DBMS as the buffering strategy may dictate. In order to provide support
for a new DBMS, appropriate methods shall have to be defined, which the toolkit
would invoke through templatization of the DB class. Again, the design ensures
that this new DBMS can be cleanly integrated into the toolkit.

6 Experiments

Templates provide a clean means of implementing our concepts of genericity of
containers and algorithms; hence DMTL is implemented using the C++ Stan-
dard Template Library [4]. We present some experimental results on the time

16 M.J. Zaki et al.

taken by DMTL to perform different types of pattern mining. We used the IBM
synthetic database generator [1] for itemset and sequence mining, the tree gen-
erator from [30] for tree mining and the graph generator by [16], with sizes
ranging from 10K to 500K (or 0.5 million) objects. The experiment were run
on a Pentium4 2.8Ghz Processor with 6GB of memory, running Linux.

Figure 5 shows the DMTL mining time versus the specialized algorithms for
itemset mining (Eclat [28]), sequences (Spade [29]), trees (TreeMiner [30]) and
graphs (gSpan [26]). For the DMTL algorithms, we show the time with differ-
ent persistency managers/databases: flat-file (Flat), metakit backend (Metakit)
and the gigabase backend (Gigabase). The left hand column shows the effect of
minimum support on the mining time for the various patterns, and the column
on the right hand size shows the effect of increasing database sizes on these al-
gorithms. Figures 5(a) and 5(b) contrast performance of DMTL with Eclat over
varying supports and database sizes, respectively. As can be seen in, Figure 5(b),
DMTL(Metakit) is as fast as the specialized algorithm for larger database sizes.
Tree mining in DMTL (figures 5(e) and 5(f)) substantially outperforms TreeM-
iner; we attribute this to the initial overhead that TreeMiner incurs by reading
the database in horizontal format, and then converting it into the vertical one.
We have accomplished high optimization of the mining algorithm for itemsets
and trees; proposed future work is to utilize similar enhancements for sequences
and graphs. For graph and sequence patterns, we find that DMTL is at most,
within a factor of 10 as compared to specialized algorithms and often much closer
(Figure 5(d)). Overall, the timings demonstrate that the performance and scal-
ability benefits of DMTL are clearly evident with large databases. For itemsets,
another experiments (not shown here) reported that Eclat breaks for a database
with 5 million records, while DMTL terminated in 23.5s with complete results.

7 Future Work: Generic Closed Patterns

Our current DMTL prototype allows the mining of all frequent patterns. How-
ever, in the future we also plan to implement generic mining of other pattern
spaces such as maximal patterns, and closed patterns. Informally, a maximal
frequent pattern is a pattern which is not contained in another longer frequent
pattern, whereas a closed frequent patterns is not contained in a longer frequent
pattern which has the same frequency. We are especially interested in closed pat-
terns since they form a lossless representation for the set of all frequent patterns.

Mining closed patterns has a direct connection with the elegant mathemati-
cal framework of formal concept analysis (FCA) [9], especially in the context of
closed itemset mining. Using notions from FCA one can define a closure oper-
ator [9] between the item (N) and transaction (O) subset spaces, which allows
one to define a closed itemset lattice. This in turn provides significant insight
into the structure of the closed itemset space, and has lead to the development
of efficient algorithms. Initial use of closed itemsets for association rules was
studied in [32, 18]. Since then many algorithms for mining all the closed sets
have been proposed, such as Charm [31], Closet [19], Closet+ [22] Closure [8],
Mafia [6] and Pascal [5]. More recent algorithms have been studied in [10].

Towards Generic Pattern Mining 17

Fig. 5. Itemset, Sequence, Tree and Graph Mining: Effect of Minimum Support and
Database Size

18 M.J. Zaki et al.

Recently, there has also been a surge of interest in mining other kinds of closed
patterns such as closed sequences [23], closed trees [21, 7] and closed graphs [27].
For trees and graphs patterns there is currently no good understanding on how
to construct the closure operator, and to leverage that to develop more efficient
algorithms. The methods cited above use the intuitive notion of closed patterns
(i.e., having no super-pattern with the same support) for mining. Recently, for or-
dered data or sequences, a closure operator has been proposed [13]. In our future
work, we would like to develop the theory of a generic closure operator for any
pattern and we will also develop generic data structures (e.g., partial-order
pattern family) and algorithms to efficiently mine the set of all closed patterns.

8 Conclusions

In this paper we describe the design and implementation of the DMTL prototype
for important FPM tasks, namely mining frequent itemsets, sequences, trees,
and graphs. Following the ideology of generic programming, DMTL provides a
standardized, general, and efficient implementation of frequent pattern mining
tasks by isolating the concept of data structures or containers, from algorithms.
DMTL provides container classes for representing different patterns, collection of
patterns, and containers for database objects (horizontal and vertical). Generic
algorithms, on the other hand are independent of the container and can be
applied on any valid pattern. These include algorithms for candidate generation,
isomorphism testing, VAT intersections, etc.

The generic paradigm of DMTL is a first-of-its-kind in data mining, and we
plan to use insights gained to extend DMTL to other common mining tasks like
classification, clustering, deviation detection, and so on. Eventually, DMTL will
house the tightly-integrated and optimized primitive, generic operations, which
serve as the building blocks of more complex mining algorithms. The primitive
operations will serve all steps of the mining process, i.e., pre-processing of data,
mining algorithms, and post-processing of patterns/models. Finally, we plan to
release DMTL as part of open-source, and the feedback we receive will help drive
more useful enhancements. We also hope that DMTL will provide a common
platform for developing new algorithms, and that it will foster comparison among
the multitude of existing algorithms.

References

1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Inkeri Verkamo. Fast
discovery of association rules. In U. Fayyad and et al, editors, Advances in Knowl-
edge Discovery and Data Mining, pages 307–328. AAAI Press, Menlo Park, CA,
1996.

2. R. Agrawal and R. Srikant. Mining sequential patterns. In 11th Intl. Conf. on
Data Engg., 1995.

3. T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Satamoto, and S. Arikawa. Effi-
cient substructure discovery from large semi-structured data. In 2nd SIAM Int’l
Conference on Data Mining, April 2002.

Towards Generic Pattern Mining 19

4. M. H. Austern. Generic Programming and the STL. Addison Wesley Longman,
Inc., 1999.

5. Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal. Mining frequent
patterns with counting inference. SIGKDD Explorations, 2(2), December 2000.

6. D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: a maximal frequent itemset
algorithm for transactional databases. In Intl. Conf. on Data Engineering, April
2001.

7. Yun Chi, Yirong Yang, Yi Xia, and Richard R. Muntz. Cmtreeminer: Mining
both closed and maximal frequent subtrees. In 8th Pacific-Asia Conference on
Knowledge Discovery and Data Mining, 2004.

8. D. Cristofor, L. Cristofor, and D. Simovici. Galois connection and data mining.
Journal of Universal Computer Science, 6(1):60–73, 2000.

9. B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag, 1999.

10. B. Goethals and M.J. Zaki. Advances in frequent itemset mining implementations:
report on FIMI’03. SIGKDD Explorations, 6(1), June 2003.

11. K. Gouda and M. J. Zaki. Efficiently mining maximal frequent itemsets. In 1st
IEEE Int’l Conf. on Data Mining, November 2001.

12. A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining
frequent substructures from graph data. In 4th European Conference on Principles
of Knowledge Discovery and Data Mining, September 2000.

13. J.L.Balcazar and G.Casas-Garriga. On horn axiomatizations for sequential data.
In 10th International Conference on Database Theory, 2005.

14. Konstantin Knizhnik. Gigabase, object-relational database management system.
http://sourceforge.net/projects/gigabase.

15. R. Kohavi, D. Sommerfield, and J. Dougherty. Data mining using mlc++, a ma-
chine learning library in c++. International Journal of Artificial Intelligence Tools,
6(4):537–566, 1997.

16. M. Kuramochi and G. Karypis. Frequent subgraph discovery. In 1st IEEE Int’l
Conf. on Data Mining, November 2001.

17. Siegfried Nijssen and Joost N. Kok. Efficient discovery of frequent unordered trees.
In 1st Int’l Workshop on Mining Graphs, Trees and Sequences, 2003.

18. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. In 7th Intl. Conf. on Database Theory, January
1999.

19. J. Pei, J. Han, and R. Mao. Closet: An efficient algorithm for mining frequent closed
itemsets. In SIGMOD Int’l Workshop on Data Mining and Knowledge Discovery,
May 2000.

20. R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and per-
formance improvements. In 5th Intl. Conf. Extending Database Technology, March
1996.

21. A. Termier, M-C. Rousset, and M. Sebag. Dryade: a new approach for discovering
closed frequent trees in heterogeneous tree databases. In IEEE Int’l Conf. on Data
Mining, 2004.

22. J. Wang, J. Han, and J. Pei. Closet+: Searching for the best strategies for mining
frequent closed itemsets. In ACM SIGKDD Int’l Conf. on Knowledge Discovery
and Data Mining, August 2003.

23. Jianyong Wang and Jiawei Han. Bide: Efficient mining of frequent closed sequences.
In IEEE Int’l Conf. on Data Engineering, 2004.

24. Jean-Claude Wippler. Metakit. http://www.equi4.com/metakit/.

20 M.J. Zaki et al.

25. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann Publishers, 1999.

26. X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In IEEE
Int’l Conf. on Data Mining, 2002.

27. X. Yan and J. Han. Closegraph: Mining closed frequent graph patterns. In ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, August 2003.

28. M. J. Zaki. Scalable algorithms for association mining. IEEE Transactions on
Knowledge and Data Engineering, 12(3):372-390, May-June 2000.

29. M. J. Zaki. SPADE: An efficient algorithm for mining frequent sequences. Machine
Learning Journal, 42(1/2):31–60, Jan/Feb 2001.

30. M. J. Zaki. Efficiently mining frequent trees in a forest. In 8th ACM SIGKDD
Int’l Conf. Knowledge Discovery and Data Mining, July 2002.

31. M. J. Zaki and C.-J. Hsiao. ChARM: An efficient algorithm for closed itemset
mining. In 2nd SIAM International Conference on Data Mining, April 2002.

32. M. J. Zaki and M. Ogihara. Theoretical foundations of association rules. In
3rd ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge
Discovery, June 1998.

	Introduction
	Preliminaries
	FPM Instances
	Database Format

	DMTL: Data Structures and Algorithms
	Containers
	Persistency Manager for Patterns
	Generic Mining Algorithms
	Candidate Generation
	Isomorphism Checking

	DMTL: Persistency and Database Support
	Vertical Attribute Tables
	Storage and Persistency Manager

	Extensibility of DMTL
	Experiments
	Future Work: Generic Closed Patterns
	Conclusions

