
Distribution-Based Synthetic Database Generation Techniques for Itemset Mining

Ganesh Ramesh
University of British Columbia

ramesh@cs.ubc.ca

Mohammed J. Zaki∗

Rensselaer Polytechnic Institute

zaki@cs.rpi.edu

William A. Maniatty
University at Albany, SUNY

maniatty@cs.albany.edu

Abstract

The resource requirements of frequent pattern mining algo-
rithms depend mainly on the length distribution of the mined
patterns in the database. Synthetic databases, which are used
to benchmark performance of algorithms, tend to have distri-
butions far different from those observed in real datasets. In
this paper we focus on the problem of synthetic database gen-
eration and propose algorithms to effectively embed within the
database, any given set of maximal pattern collections, and
make the following contributions:
1. A database generation technique is presented which takes
k maximal itemset collections as input, and constructs a
database which produces these maximal collections as output,
when mined atk levels of support. To analyze the efficiency
of the procedure, upper bounds are provided on the number of
transactions output in the generated database.
2. A compression method is used and extended to reduce the
size of the output database. An optimization to the generation
procedure is provided which could potentially reduce the num-
ber of transactions generated.
3. Preliminary experimental results are presented to demon-
strate the feasibility of using the generation technique.

1. Introduction

Frequent and maximal frequent itemset mining are
classic data mining problems that are widely used in
practice. Informally, given a transaction database where
each transaction is a set of items, frequent itemset min-
ing looks for all possible itemsets occurring in at least
a certain fraction of the database. This fraction which
is commonly called the minimum support threshold is
specified by the user. All existing frequent and maxi-
mal itemset mining algorithms have exponential worst
case complexity as they could potentially output all the
possible itemsets. However, the methods perform well
in practice: partly due to the statistical distributions of
real datasets and partly because they employ heuristics
which exploit statistical information from the database

∗This work was supported in part by NSF CAREER Award IIS-
0092978, DOE Career Award DE-FG02-02ER25538, and NSF grants
EIA-0103708 and EMT-0432098.

to prune the output space.
Itemset mining algorithms are developed with an in-

tention to perform efficiently on real datasets. However,
copyright violations and intellectual property rights have
limited the availability of real datasets. Hence, the per-
formance analysis of itemset mining methods has heav-
ily relied on benchmark datasets. Specific synthetic
datasets such as those generated by IBM’s synthetic
dataset generator [6], that are widely used for bench-
marking, tend to have substantially different distribu-
tions from those found in real world datasets. This fact
has been recently established in [19]. This makes the
quality of benchmarks obtained from such datasets ques-
tionable, when the algorithms are indeed intended for
use on real datasets. Zheng et. al. [19] and our earlier
work [15] also observed that the resource requirements
of the mining algorithm relied on the length distribution
of the mined patterns.

As a reasonable assumption to disclosure, let us sup-
pose that organizations that are concerned with privacy
are willing to disclose some data characteristics (say dis-
tributions) without disclosing the actual contents of the
data. A natural question arises:

Can we generate synthetic datasets that mimic real
datasets with respect to these disclosed characteristics?

For this work, we assume that the organizations are
willing to disclose distributions of patterns at various
support levels in the database. We focus on the prob-
lem of generating a synthetic dataset in which the pat-
tern distributions match the specified distributions. The
problem of privacy preservation with respect to disclo-
sure of these distributions is interesting but orthogonal
to this work and hence we do not consider it here. Such
a generation technique could then be used in a setting
where organizations could reveal distributions of pat-
terns without actually revealing the patterns or the trans-
actions in the database, for developing benchmarks for
itemset mining algorithms. Specifically, we make the
following technical contributions.

• A database generation technique is presented which
takesk maximal itemset collections as input and
constructs a database which produces these maxi-
mal collections as output when mined atk levels
of support. To analyze the efficiency of the proce-
dure, upper bounds are provided on the number of
transactions output in the generated database.

• A compression method (earlier defined in [16]) is
used and suitably extended to provide a technique
for reducing the size of the output database. An op-
timization to the generation procedure is provided
which could potentially reduce the number of trans-
actions generated.

• We provide preliminary experimental results to
demonstrate the feasibility of using the generation
technique in practice.

1.1. Related Work

A variety of methods have been proposed for fre-
quent and maximal itemset mining [6, 2, 11, 18, 10].
They span from methods which employ various types
of search through the lattice space of frequent itemsets
to studying these patterns with constraints [14]. Pri-
vacy issues in data mining have currently received at-
tention and several issues in this direction have been ex-
plored [8, 12]. Theoretical results have been obtained
in the general context of relating hypergraph transversal
and mining interesting patterns by Gunopulos et al. [5].
They relate these mining problems to the model of exact
learning in computational learning theory and provide
complexity results and lower bounds. The complex-
ity of mining frequent and maximal frequent itemsets
have been studied by Yang in [17]. The author proves
that counting the number of distinct maximal frequent
itemsets in a database is #P-Complete and concludes
that the problem of mining maximal frequent itemsets
is NP-Hard. In a seminal work on application of com-
binatorial results, Geerts et. al. [9] provided a tight up-
per bound on candidate patterns that are computed by
breadth-wise bottom up algorithm likeApriori [1]. In a
previous study [16], we used combinatorial techniques
to formally characterize the feasible frequent and max-
imal itemset distributions and gave preliminary tech-
niques to embed distributions in a database. Work has
also been done by Toon Calders et al. [3] on mining non-
derivable itemsets and providing bounds on candidates.
The concept of transaction maps/bags was motivated by
the notion of bags which exist in multiset terminology
and which were also used in [7]. General condensed
representations for finding frequent patterns were also

studied in [4]. Almost all synthetic datasets are gener-
ated using the IBM synthetic dataset generator [6]. This
generator uses a Poisson frequent pattern distribution to
generate datasets, about a user specified mean. To the
best of our knowledge, our technique in [16] is the first
in terms of distribution based dataset generation.

2. Preliminaries and Problem Statement

[Itemset, Transaction, Database]: Let I be a non-
empty set of elements. Eachx ∈ I is called anitem. A
non-empty subsetX ⊆ I is called anitemset. Thesize
or lengthof an itemsetX, denoted by|X|, is the num-
ber of items inX. An itemset of sizek is also called a
k-itemset. The power set ofI, denoted byP(I), is the
set of all possible itemsets ofI. The set of all possible
k-itemsets ofI is denoted byI(k). For X, Y ∈ P(I),
X is said tocontainY, if Y ⊆ X. A transactionT , is an
itemset with a unique identifier, called thetransaction
identifier or tid. A databaseDB = {T1, T2, . . . , TN} is
a finite, non-empty multi-set of transactions, with size
|DB| = N. A transactionTi is said to contain an itemset
X if X ⊆ Ti. A transactionTi is said to be amaximal
transactionif @Tj ∈ DB, such thatTi ⊂ Tj.
Assumptions:For the rest of the paper, we assume that
items are drawn from the set of positive integers. Even
though in the domain of sets, the actual elements are un-
ordered, we implicitly assume an ordering< (less than)
on the items.
[Itemset Collections, D-sequence]:An itemset collec-
tion is a set of itemsets. More formally, a setF ⊆ P(I)
(with ∅ 6∈ F) is called anitemset collectionover I.
We distinguish two types ofk-itemsets that are asso-
ciated with an itemset collectionF . The first type of
k-itemsets are those that are members ofF . The sec-
ond type ofk-itemsets are those that are contained in
members ofF . These are formally defined as fol-
lows. Thek-collection of F , denotedFk, is the col-
lection of all k-itemsets inF , i.e.,Fk = F ∩ I(k) =
{X ∈ I(k) | X ∈ F }. On the other hand, thein-
ducedk−collection ofF , denoted[F]k, is the set of
k-itemsets contained in some element ofF , defined as,
[F]k = {X ∈ I(k) | X ⊆ Y for someY ∈ F }. Note that
[F] =

⋃
k[F]k. Letfk = |Fk| denote the size ofFk. Let

l ≤ n be the length of the longest itemset inF . Then,
the length distribution of itemsets inF given by the se-
quence〈F〉 = 〈f1, f2, · · · , fl〉, is called thedistribution
sequenceor theD-sequenceof F . A maximal itemset
collectionor maximal collectionis an itemset collection
MF where(X ∈MF) ⇒ @Y ∈MF ,3 X ⊂ Y.
[Containment, Cover]: Let C1 andC2 be two itemset
collections overI. C1 is said to becontainedin C2 (or

C2 containsC1) iff C1 ⊆ C2. C1 is said to beproperly
containedin C2 iff C1 ⊂ C2. C1 is said to becovered
byC2, denoted asC1 v C2 (orC2 coversC1), iff ∀(X ∈
C1) ⇒ (∃Y ∈ C2|X ⊆ Y). That is,C1 v C2 ⇔ C1 ⊆
[C2]. C1 is properly covered byC2, denotedC1 @ C2

if in additionC1 6= C2.
[Support, Frequent/Maximal Frequent Itemset]: The
notion of support captures how often an itemset occurs
in a database and comes in two flavors. Theabsolute
supportof an itemsetX in DB, defined asπA(X, DB) =
|{Ti ∈ DB|X ⊆ Ti}|, is the number of transactions inDB
that containX. The (relative) supportof an itemsetX
in DB is the fraction of transactions inDB that contain
X, and is defined as,π(X, DB) =

πA(X,DB)
|DB| . An item-

setX is said to befrequentif π(X, DB) ≥ πmin, where
0 < πmin ≤ 1 is a user-specified minimum support
threshold. A frequent itemsetX ∈ F is maximalif it has
no frequent superset, i.e.,(@Y | (X ⊂ Y) ∧ (Y ∈ F)). A
collection of frequent (or maximal) itemsets is denoted
asF(DB, πmin) or F (resply.MF(DB, πmin) or MF).

Definition 2.1 [Containment Property] Let
C1, C2, . . . Ck be k itemset collections overI.
C1, . . . , Ck satisfy the containment property iff
Ck v Ck−1 v . . . v C2 v C1. In such a case,
C1, . . . , Ck are said to form achain.

Frequent itemsets are closed under the⊆ operation and
is widely used in itemset mining algorithms to generate
candidates and pruning. More formally,

Proposition 2.2 [6] Any subset of a frequent itemset is
frequent:X ∈ F andY ⊆ X impliesY ∈ F. �

Frequent and maximal frequent itemsets are related in
terms of induced subsets and the maximal itemsets of a
given frequent itemset collection, is the smallest set of
itemsets from which the frequent itemsets can be identi-
fied (but not their support values).

Proposition 2.3 [16] Given a database DB and
a minimum support levelπmin, F(DB, πmin) =
[MF(DB, πmin)]. Furthermore,MF is the smallest col-
lection of frequent itemsets from which the elements ofF
(not their support values) can be derived. �

We now define the notion ofisomorphic itemset collec-
tionswhich is used later in our paper.

Definition 2.4 [Isomorphic Itemset Collections] LetI1

andI2 be two itemset collections overI. I1 andI2 are
said to beisomorphic itemset collectionsiff there exists
a bijection λ : I → I such thatβ : I1 → I2 is a
bijection fromI1 to I2 where for allX = {x1, . . . , xk} ∈
I1, β(X) = {λ(x1), . . . , λ(xk)}.

Intuitively, for two isomorphic itemset collections,
we can transform one itemset collection into another
by relabeling the individual items in the collection uni-
formly across the entire collection.

Ordering plays an important role in the performance
of algorithms that mine for itemsets. Various types of
orderings can be defined on itemset collections. Two of
the popular orderings on itemsets are thelexicographic
(or lex) and theco-lexicographic(or colex) orderings,
which are defined as follows.

Definition 2.5 [Lex and Colex Order] LetX, Y ∈ F ∩
I(k) be any two distinctk-itemsets inF , with X =
x1x2 · · · xk and Y = y1y2 · · ·yk. The lexicographic
(or lex) ordering�l is given as:X �l Y if and only
if ∃z < k such that∀i : 1 ≤ i < z, xi = yi and
xz < yz. In contrast thecolex 1 or squashedordering
�c is given as:X �c Y if and only if∃z < k such that
∀i : z < i ≤ k, xi = yi and xz < yz. Both lex and
colex ordering are total orders onk-itemsets. We define
therankof ak-itemset as its position in the ordering, the
first element having a rank of1. We denote byC(k)(m)

the firstm itemsets inI(k) in colex order.

2.1. Problem Statement

The database generation problem has two variants de-
pending on the type of input. The first problem takesD-
sequences ofk maximal collections as input while the
second type, takes the actual maximal collections as in-
put.

Problem 2.6 [Database Generation for D-sequences]
Let D1, D2, . . . , Dk be the D-sequences ofk maximal

itemset collections. Construct a databaseDB and k
minimum support levelsπmin

1 , πmin
2 , . . . , πmin

k such that

1. 0 < πmin
1 ≤ πmin

2 . . . ≤ πmin
k

2. 〈MF(DB, πmin
i)〉 = Di, ∀1 ≤ i ≤ k

Problem 2.7 [Database Generation for maximal col-
lections] LetM1,M2, . . . , Mk be k maximal itemset
collections. Construct a databaseDB (if it exists) and
k minimum support levelsπmin

1 , . . . , πmin
k such that

1. 0 < πmin
1 ≤ πmin

2 . . . ≤ πmin
k ≤ 1

2. MF(DB, πmin
j) = Mj for all 1 ≤ j ≤ k.

These two problems address the task of embedding
k different distributions (D-sequences) or actual itemset
collections into the generated database, such that mining
atπmin

i yieldsMi as the maximal frequent itemsets. The

1An alternate definition is given as:X �c Y if and only if the
largest item in symmetric difference ofX andY is in Y only.

correspondingoptimization problemsrequire the gener-
ation of a database with the smallest number of transac-
tions satisfying the conditions of the problem.

It is important to differentiate between the two vari-
ants of the database generation problem. The generation
of a database which takes as input a set of D-sequences,
may require an additional procedure to generate the
maximal itemset collections corresponding to the D-
sequences. With respect to optimization results, any op-
timizations that hold for the case when D-sequences are
provided as input also hold for the case when the maxi-
mal itemset collections are provided as input. The con-
verse is not necessarily true. Any optimizations that are
applied to a specific set of maximal itemset collections
that are explicitly provided as input, need not necessarily
generalize to all instances which correspond to a given
set of D-sequences. However, there are some general op-
timizations for maximal itemset collections which may
hold for D-sequences as well.

Note 2.8 A given sequence ofD-sequences may not be
a feasible sequence of distributions. To check for fea-
sibility, one could use and directly extend the methods
in [16]. For this work, we assume that the input comes
from the distribution of maximal collections mined from
a database at various (increasing or decreasing) levels
of minimum support and is hence, feasible.

3. Some Basic Observations

We first summarize some basic results about
databases and itemsets which are used later.

Proposition 3.1 [6] Let DB be a database and letX
and Y be two itemsets overI such thatX ⊆ Y. Then
πA(X, DB) ≥ πA(Y, DB). �

The following proposition states that at any given sup-
port level, the maximal collection obtained at that sup-
port level is contained in the frequent itemset collection
at that support level.

Proposition 3.2 MF(DB, σ) ⊆ F(DB, σ). �

Proposition 3.3 Let DB be a database and letσ1 and
σ2 be two values of support. Ifσ1 ≤ σ2 then:
1) F(DB, σ2) ⊆ F(DB, σ1), and
2) MF(DB, σ2) v MF(DB, σ1).

Proof: 1) Let σ1 ≤ σ2. X ∈ F(DB, σ2) implies thatX
occurs in at least a fractionσ2 of DB which implies that
it occurs in at least a fractionσ1 ≤ σ2 of DB. Hence,
X ∈ F(DB, σ1), andF(DB, σ2) ⊆ F(DB, σ1).
2) By proposition 3.2MF(DB, σ2) ⊆ F(DB,σ2), and
F(DB,σ2) ⊆ F(DB, σ1). SoX ∈ MF(DB, σ2) implies

X ∈ F(DB, σ1). By definition ofMF , this implies∃Y ∈
MF(DB, σ1) such thatX ⊆ Y. ThusMF(DB, σ2) v
MF(DB, σ1). �

Proposition 3.3 can be directly generalized to more
than two support values as follows.

Lemma 3.4 Let DB be a database and let0 ≤ σ1 ≤
σ2 ≤ . . . ≤ σk ≤ 1 bek values of support. Then for
1 ≤ i ≤ j ≤ k: 1) F(DB, σj) ⊆ F(DB, σi), and 2)
MF(DB, σj) v MF(DB, σi). �

From definition 2.1 and lemma 3.4, we have,

Corollary 3.5 LetDB be a database andσ1, . . . , σk be
k values of support such thatσ1 ≤ σ2 ≤ . . . ≤ σk.
ThenMF(DB, σ1), . . . , MF(DB, σk) satisfies the con-
tainment property. �

The following lemma shows that the maximal trans-
actions are the maximal itemsets obtained from any
database at the lowest level of support (absolute support
of 1 or relative support of 1

|DB|).

Lemma 3.6 Let DB be a database. LetMτ be the set
of all the maximal transactions inDB. Then, at support
σ = 1

|DB| , MF(DB, σ) = Mτ.

Proof: If Ti ∈ Mτ then be definition,6 ∃Tj ∈ Mτ,3
Ti ⊂ Tj, andπA(Ti) = 1 impliesTi ∈ MF(DB, σ). If
Ti ∈ MF(DB, σ), then 6 ∃X ⊆ I,3 Ti ⊂ X. Since every
transaction is also an itemset, this impliesTi ∈ Mτ. �

4. Database Generation in Stages

In [16], we used a generation procedure to demon-
strate the existence of a database when feasible D-
sequences are provided as input. We generated the col-
lections in colex order and showed the procedure to
work for such collections. In this section, we prove a
stronger result by showing that the generation procedure
works not only for colex ordered collections but forany
sequence of maximal itemset collections satisfying the
containment property (Definition 2.1). We analyze the
procedure and provide an upper bound on the number of
transactions in the database generated by the procedure.

Definition 4.1 Let DB be a database. DefinêM(DB)

asM̂(DB) = max{πA(x, DB) : x ∈ I}. In other words,
M̂(DB) is the maximum of the absolute support values
of all the singleton items that occur inDB.

To facilitate understanding, we define the following
database generation operator.

Algorithm DB-Gen
Given: k maximal collectionsM1, . . . , Mk
satisfying the containment property
Output: DB andk real numbersπmin

1 , . . . , πmin
k such

thatMF(DB, πmin
i) = Mi, 1 ≤ i ≤ k

Steps:
1. DB1 = D(M1); c1 = 1;
2. j = 2; DB = DB1;
3. c2 = M̂(DB) + 1;
4. while(j <= k)

(a)DBj = Dcj(Mj); (UseDBj = Bcj(Mj) for Bags)
(b) DB = DB

S
DBj

(c) cj+1 = M̂(DB) + 1
(d) j = j + 1;

5. for(i = 1; i <= k; i = i + 1) πmin
i =

ci
|DB|

;

Figure 1. ConstructDB from k maximal collections

Definition 4.2 [Database Generation Operator] LetF
be a non-empty itemset collection, and letn ≥ 1 be an
integer. Let{X}n denote the multiset withn copies ofX,
i.e.,{X}n = {Xi, . . . , Xn}, such thatXi = X,∀i ∈ [1, n].
We defineDn(F) to be an operation that generates a
database that consists ofn copies of each itemset in
F , i.e., Dn(F) =

⋃
X∈F{X}n. We denoteD1(F) by

D(F). LetDB be an existing database, we assume that
the operator ensures that every transaction inDn(F) or
DB ′ = DB ∪ Dn(F) has a unique identifier.

The following proposition states that̂M(DB) is an up-
per bound for the support ofany itemset inDB and is a
direct consequence of Proposition 3.1 and definition 4.1.

Proposition 4.3 LetDB be a database. For anyX ⊆ I,
πA(X, DB) ≤ M̂(DB). �

Proposition 4.3 forms the central fact in the database
generation algorithmDB-Gen given in figure 1. Algo-
rithm DB-Gen generates the databases ink stages. In
the first stage, it adds the elements ofM1 as transac-
tions of the database and computesM̂(DB) for the next
stage of generation. At stagej in the generation pro-
cess, it dynamically maintains the value of support for
the singleton items and computes thêM value. It uses
this value to replicate the itemsets inMj and applies the
database generation operator to add the replicated col-
lection to the database. The procedure remembers the
replication factor computed at each stage to compute the
support values to be output at the end of the procedure.
The central features of Algorithm DB-Gen are summa-
rized below.

• The algorithm outputs the database ink stages.

• During thejth stage, itemsets fromMj are added
as transactions in the database. Each itemset in
Mj is replicated thesamenumber of times in the
database.

• At the end of thejth stage,M1 . . .Mj are maxi-
mal collections embedded inDB at absolute sup-
port levelsc1, . . . , cj respectively.

Lemma 4.4 LetDB be the database generated by algo-
rithm DB-Gen of figure 1. For any transactionT ∈ DB,
T ∈

⋃k
i=1 Mi. Furthermore, the maximal transactions

of DB is precisely the setM1. �

The following theorem proves the correctness of algo-
rithm DB-Gen.

Theorem 4.5 Given k maximal collections
M1, . . . ,Mk satisfying the containment property,
the databaseDB generated and the support values
πmin

1 , . . . , πmin
k computed by algorithm DB-gen satisfy

the property thatMF(DB, πmin
i) = Mi, for 1 ≤ i ≤ k.

Proof: Consider any stagej of the generation proce-
dure. Clearly, ifj = 1, then the procedure produces
M1 as the maximal collection at absolute support1 (and
hence at relative support1DB) by lemma 4.4. Letj > 1.
Let DBj−1 be the database generated up to the begin-
ning of thejth stage. By proposition 4.3, no itemset has
a minimum support ofcj calculated by the algorithm.
Hence, addingcj transactions for each element ofMj

to the database will make the element frequent at abso-
lute support levelcj in DB. Thus,Mj is the maximal
frequent itemset collection at support level. Note that
the containment property is essential to ensure that when
Mj is added, it does not affect the frequencies ofMj−1,
that was already added to the database. �

Proposition 4.6 Let DB be a database and let̂M(DB)

be as defined in definition 4.1. Then̂M(DB) ≤ |DB|.

Proof: No itemset can have absolute support greater
than the number of transactions in the database. The
inequality follows directly. �

Using repeated applications of proposition 4.6, we
obtain an upper bound on the number of transactions in
the database after any stage in the generation procedure
that is given by the following theorem.

Theorem 4.7 Let mj denote the|Mj| for 1 ≤ j ≤ k
and let DBj be the database generated at the end of
the jth stage of algorithm DB-Gen. Then,|DBj| ≤
mj(1 + mj−1 ∗ (1 + . . . ∗ (1 + m2 ∗ (1 + m1)))) ≤∑j

i=1

∏j
l=i ml.

Proof: |DB1| = |M1| = m1 is true by step 1 of the
algorithm. In stage2, each of them2 maximal itemsets
in M2 is replicatedc2 = 1 + M̂(DB1) ≤ 1 + |DB1| ≤
1 + m1 times and hence|DB2| ≤ m2 ∗ (1 + m1) ≤
m2 +m1 ∗m2. Proceeding all the way up to stagej, we
get the equation in the theorem. �

From the above theorem, we have the following up-
per bound for the number of transactions in the database
generated by algorithm DB-Gen.

Theorem 4.8 Let M1, . . . ,Mk be k maximal itemset
collections satisfying the containment property and let
mj denote|Mj| for 1 ≤ j ≤ k. Then, the algorithm DB-
Gen given in figure 1 generates a databaseDB with at
mostO(k ·

∏k
i=1 mi) transactions.

Proof: From theorem 4.7 the maximum value of sum-
mation is

∏k
i=1 mi, and there arek terms, giving the

desired bounds. �
Thus, algorithm DB-Gen produces as output, a

database where the number of transactions is propor-
tional to the product of the size of the input maximal
collections. Note that this number can be prohibitively
large for practical collections of maximal itemsets. For
example, for threeD-sequences or maximal collections,
each containing1000 maximal itemsets (Mi = 1000
and k = 3), the procedure can potentially generate a
billion transactions!!!

4.1. Compression using Transaction Bags
In this section, we study an alternative to generat-

ing replicated transactions to avoid generating such large
databases. One of the primary reasons for the explosion
in the number of transactions is the replication of item-
sets during each stage of database generation. During
any stagej, j > 1, every itemset inMj is repeatedly
written into the databasecj times. This causes a waste of
storage space. To overcome the disk space consumption
by repeated duplication of transactions, we proposed the
idea of a transaction map in [16].

Definition 4.9 [Transaction Map/Bag] Atransaction
mapor transaction bagis a triple 〈C, i, T〉, whereC >
0 denotes the count of itemsetT , i ≥ 0 is a unique
map/bag identifier, andT ⊆ I is an itemset. A trans-
action bag database is a set of transaction bags.

The database generation operator can be appropri-
ately generalized to generate transaction bags as follows.

Definition 4.10 [Transaction Bag Generator] Given an
itemset collectionF and an integern ≥ 1, we define
Bn(F) to be an operation that generates a database that
consists of one transaction bag with countn for each
X ∈ F , i.e.,Bn(F) = {〈n, iX, X〉|X ∈ F }. We denote
B1(F) by B(F). Let DB be an existing database, we
assume that the operator ensures that every transaction
bag inBn(F) or DB ′ = DB∪Bn(F) has a unique bag
identifier.

Using transaction bags, we can achieve significant
compression as follows. We useDBj = Bcj(Mj) in-
stead of the statementDBj = Dcj(Mj) in step4 of al-
gorithm DB-Gen to generate transaction bags.

Lemma 4.11 In stagej of algorithm DB-Gen, the num-
ber of transaction bags that are generated by the proce-
dure is|Mj|.

Proof:Stagej adds one transaction bag for every itemset
in Mj and hence the lemma follows. �

From lemma 4.11, we can compute the exact number
of transaction bags in the database generated by algo-
rithm DB-Gen as follows.

Theorem 4.12 Let DB be a transaction bag database
generated by algorithm DB-Gen for the input set of max-
imal collectionsM1, . . . ,Mk. Let |Mj| = mj, for
1 ≤ j ≤ k. Then|DB| =

∑k
i=1 mi. �

Theorem 4.12 shows that by using transaction bags,
we can obtain significant compression over the corre-
sponding transaction databases in terms of the transac-
tions that are actually stored in the database. For the
same example discussed earlier, when there are three
maximal itemset collections each consisting of1000
maximal itemsets, the transaction bag database will con-
sist of at most3000 transaction bags as opposed to the
at most1 billion transactions in the original procedure,
achieving an order of compression of106. Transaction
bags may be a good alternative to transactions especially
when a lot of repetitions happen. However, the limita-
tions of DB-Gen can also constrain the use of transaction
bag databases, as shown empirically in section 6.

5. An Optimization to DB-Gen

The database generation algorithm DB-Gen assumes
a pessimistic repetition factor for each stage of gener-
ation. The main reason for using such a conservative
repetition factor is the ease with which it can be com-
puted. For determining the value of̂M(DB) at each
stage, the algorithm only needs to maintain the counts
of individual items in a vector of size|I |, whereI is
the set of items over which the itemsets are constructed.
The trade-off between the ease of computation and the
size of output imposes limitations to the algorithm which
constrains its usage in practice (see section 6). A sec-
ond limitation in the generation procedure is that all the
itemsets in a maximal collection are repeated the same
number of times at any stage (cj in the jth stage). The
procedure is not flexible enough to add itemsets on anas
neededbasis to the database. In this section, we present
an optimization that can potentially reduce the number
of transactions (the count value in case of transaction
bags) in the output database (but with an overhead in
time and space caused by the intermediate structures).

The main motivation behind the optimization to al-
gorithm DB-Gen is based on the following intuition. At
stagei, Algorithm DB-Gen repeatedly adds the itemsets
in Mi to make them frequent at ahigh enoughvalue
of absolute support. Thishigh enoughvalue of support
is computed using the naive upper bound given byM̂
(which is easy to compute). However, this repetition
factor ignores the support of each itemset inMi in the

database already generated so far (i.e., before the addi-
tion). For instance, in stage2, the support of itemsets in
M2 in the current database, are not taken into account
when adding those itemsets to the database. Hence, if
itemsets inM2 need to have a certain value of support
sayh, they are replicatedh times, even though they oc-
cur with a certain support in the database generated thus
far. Secondly, the replication value of̂M(DB) is too
conservative. Is there a better replication value we can
use? To address this issue, we first extend the definition
of M̂(DB) to a given itemset collection as follows.

Definition 5.1 LetDB be a database andF be an item-
set collection. ThenM̂(F , DB) is defined as follows:
M̂(F , DB) = max{πA(X, DB) : X ∈ F }. In other
words,M̂(F , DB) is the maximum of the absolute sup-
port values of all the itemsets inF .

The concept ofnegative borderfor a collection of
itemsets is well defined [5, 13]. The negative border
gives the collection of minimal itemsets that are infre-
quent with respect to the item universe. We modify this
definition to suit our current purpose, by defining the
negative border of an itemset collection with respect to
another itemset collection as follows.

Definition 5.2 Let M1 and M2 be two maximal col-
lections such thatM2 v M1. Then therelative neg-
ative borderof M2 with respect toM1 is defined as
δ(M1,M2) = {X ∈ [M1] − [M2]|(@Y ∈ [M1] − [M2] :
Y ⊂ X)}.

The setδ(M1,M2) consists of precisely the minimal
itemsets in[M1] − [M2] (recall that[Mi] denotes the
set of itemsets induced byMi). An example is shown
is figure 2 for two maximal collectionsM1 andM2. In
the sequel, by negative border, we mean the relative neg-
ative border defined above. Intuitively, if a databaseDB
has been generated up to stagej − 1, then the minimum
support for thejth stage can be determined by using the
count values of itemsets inMj andδ(Mj−1,Mj), in-
stead of theM̂ value.

Definition 5.3 Let DB be a database and letM1 and
M2 be two maximal collections such thatM2 v M1.
Let η = M̂(δ(M1,M2), DB). For a given integerσ ≥
0, defineγ(M1,M2, DB, σ) as the smallest value in the
set{πA(X, DB)|X ∈ M2} that is greater than or equal
to Mδ = max{σ, η}, if it exists andMδ, otherwise.

The above definition ofγ(M1,M2, DB, σ) gives a
value of minimum support at which the following two
conditions are satisfied:

1. It is the smallest value of absolute support which
itemsets inMj need to have in the database.

2. No item inδ(M1,M2) has an absolute support of
γ.

Hence, using theγ values computed at every stage, one
could embed the itemsets inM2 without making any
itemset in the border frequent at this value of absolute
support.

1

36 37

1234 256714561235
157 167 467

[M] − 1 [M]2

1234 256714561235
124 134 234 135 235 145 156
256 456 157 257 167 267 467 567
24 34 35 45 26 36 17 27 47 57

56 37 67
123 146 125

M2

156 24 35 45 2634
36 17 27 4734

(M1 M)2,δ

M

Figure 2. Example ofδ(M1, M2) for two collections

Lemma 5.4 Let M1 and M2 be two maximal collec-
tions such thatM2 v M1. Let DB be a database
of transactions and letπA

1 be a value of absolute sup-
port at whichM1 is maximally frequent. Letγ be as
defined in definition 5.3. Then,∀Y ∈ δ(M1,M2),
πA(Y, DB) < γ(M1,M2, DB, πA

1) + 1.

Proof: Follows from definitions 5.2 and 5.3. �
A consequence of lemma 5.4 is algorithmγ-DB-Gen

shown in figure 3 for database generation, which uses
the γ values at each stage instead of thêM values.
This algorithm has the additional overhead of computing
δ(Mj−1,Mj) and computingγ(Mj−1,Mj, DB, cj−1)
at each stage of generation. Computingδ(Mj−1,Mj)
can be a costly step at every stage. The task of comput-
ing theγ values, essentially boils down to computing the
absolute support of itemsets inMj and δ(Mj−1,Mj)
and this can be done in one pass over the database
generated thus far at every stage. For some specific
types of maximal collections, if we know that the ab-
solute support of itemsets inMj is greater than those
in δ(Mj−1,Mj), then the computation ofδ(Mj−1,Mj)
can be avoided altogether. It should also be noted that
the replication factor is not the same forall the itemsets
during any given stage. Instead, the algorithm replicates
itemsets on an as needed basis. From lemma 5.4, we
have the following theorem.

Theorem 5.5 Let M = 〈M1, . . . ,Mk〉 be k maximal
collections satisfying the containment property. LetDB
be the transaction database generated by DB-Gen for
M and DBγ be the transaction database generated by
γ-DB-Gen. Then,|DBγ| ≤ |DB|.

Algorithm γ-DB-Gen
Given: k maximal collectionsM1, . . . , Mk
satisfying the containment property
Output: DB andk real numbersπmin

1 , . . . , πmin
k

such thatMF(DB, πmin
i) = Mi, 1 ≤ i ≤ k

Steps:
1. DB1 = D(M1); c1 = 1;
2. j = 2; DB = DB1;
3. c2 = γ(M1, M2, DB, c1) + 1;
4. while(j <= k)

(a) for X ∈ Mj,
i. if{πA(X, DB) < cj} then

l = cj − πA(X, DB) elsel = 0;
ii. DBj = DBj

S
Dl(X, Mj);

(b) DB = DB
S

DBj;
(c) cj+1 = γ(Mj, Mj+1, DB, cj) + 1; //(for j < k)
(d) j = j + 1;

5. for(j = 1; j <= k; j = j + 1) πmin
i =

ci
|DB|

;

Figure 3. Optimizedγ-DB-Gen Algorithm

Proof: Immediately follows from the fact thatγ(Mj,-
Mj+1, DB, cj) computed byγ-DB-Gen at every stage
is at mostM̂(DB) computed by DB-Gen at the corre-
sponding stage. �

5.1. Closely Packed Maximal Collections

Closely packed maximal collections are generated
using thecolex ordering of itemsets. The nice prop-
erty of these collections which makes them attractive
for study is that these collections can be generated effi-
ciently. Given aD-sequence, a closely packed maximal
collection satisfying thisD-sequence can be generated
in linear time (linear in the output size). More formally,
closely packed collections are defined as below.

Definition 5.6 [Closely Packed Collection]
LetD = 〈d1, . . . , dk〉 be any D-sequence. LetM be the
maximal collection constructed by algorithm Construct-
Closely-Packed shown in figure 4 forD. A maximal col-
lectionW with 〈W〉 = D is said to be aclosely packed
collection iff W is isomorphic toM.

Intuitively, a closely packed maximal collection is
one where the items can be renumbered to give acolex
orderedmaximal collection generated by the algorithm
in figure 4. For a given D-sequenceD = 〈d1, . . . , dk〉,
algorithm Construct-Closely-Packed given in figure 4
generates acolex orderedclosely packed maximal col-
lectionM, with 〈M〉 = D, in time proportional to|M|.
In [16], the authors show that the time is linear in the
size of the output. Generating arbitrary maximal collec-
tions with distributions specified by a given D-sequence
may be time consuming. This is the main motivation be-
hind considering D-sequences in which the itemsets are
in some predefined order.

In the following section, the D-sequences obtained
from the real datasets are used to generate closely
packed maximal collections which are used as input for
the database generation procedure.

Algorithm Construct-Closely-Packed
Given: A D−sequenceD = 〈d1, . . . , dk〉
Output: A closely packed maximal collectionM
overI = {1, 2, ...} such that〈M〉 = D.
Steps:
1. M = C(k)(dk) // first dk k−itemsets in colex order
2. j = k − 1
3. while(j >= 1)

(a)rj = largest rank of the itemsets in[M]j
(b) Add thej−itemsets of rankrj + 1, . . . , rj + dj

in colex ordering ofj−itemsets toM
(c) j = j − 1;

Figure 4. Constructing Closely Packed Collections

6. Experimental Study
We present preliminary experimental results to an-

alyze how applicable the generation procedures are in
practice. We use three real datasets chess, mushroom
and connect2, with database cardinalities as shown in
figure 5. For each dataset, we use GenMax [10] to
obtain the maximal frequent itemset distributions (i.e.,
the D-sequences) at various increasing values of min-
imum support. We usedk = 6, D-sequences from
chess,k = 8 from mushroom andk = 14 from con-
nect datasets respectively. Figure 6 shows the sizes of
the maximal sets for each D-sequence, i.e., thek val-
ues,{|M1|, · · · , |Mk|}. We then use Construct-Closely-
Packed to generate closely packed maximal itemset col-
lections satisfying these input distributions3. The max-
imal collections thus generated are used as input for the
database generation procedure.

Source # trans. in dataset
chess 3196
connect 67557
mushroom 8124

Figure 5. Real Databases Used

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10 12 14

N
um

be
r o

f i
te

m
se

ts

K

Size of Maximal Collections

CONNECT
MUSHROOM

CHESS

Figure 6. Sizes ofMi, i ∈ [1, n] for Real Datasets

2The UCI KDD Archive available atkdd.ics.uci.edu
3In general, the generation procedure works for ANY input set of

maximal collections that satisfy the containment property

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 2 4 6 8 10 12 14

S
iz

e
in

 B
yt

es

Stage Number

Stagewise Bag Database Size

CONNECT
MUSHROOM

CHESS

Figure 7. Stage-wise Database Size in Bytes

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 1e+16

 1 2 3 4 5 6

Tr

an
s.

/B
ag

s/
R

ep
et

iti
on

 F
ac

to
r

Stage Number

Stagewise Progress - CHESS

Trans.
Bags

Repetition Factor
Compression Factor

Figure 8. Generation for chess dataset

Figures 8, 9 and 10 show the stage-wise progress of
results of algorithm DB-Gen. The plots show the num-
ber of transactions, the repetition factor, the number of
transaction bags and the compression factor of using bag
databases over transaction databases for the different
stages;jth stage corresponds to embeddingM1 · · ·Mj

in DB. From the figures, it can be observed that gener-
ating transaction bag databases can provide significant
compression ranging between a factor of a few thou-
sands in the early stages to up to a factor of a billion
in the later stages. It is also interesting that for connect,
the database that embedsMi is in fact smaller than even
the original database.

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 0 2 4 6 8 10 12 14

Tr

an
s.

/B
ag

s/
R

ep
et

iti
on

 F
ac

to
r

Stage Number

Stagewise Progress - CONNECT

Trans.
Bags

Repetition Factor
Compression Factor

Figure 9. Generation for connect dataset

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 1e+16

 1 2 3 4 5 6 7 8

Tr

an
s.

/B
ag

s/
R

ep
et

iti
on

 F
ac

to
r

Stage Number

Stagewise Progress - MUSHROOM

Trans.
Bags

Repetition Factor
Compression Factor

Figure 10. Generation for mushroom dataset

Figure 6 shows the bag database sizes corresponding
to every stage of generation. For the input sequences
corresponding to the connect dataset, the generated bag
databases during each stage were hundreds of kilobytes
in size. For the inputs corresponding to chess and mush-
room datasets, the database sizes ranged from a few
megabytes to a few hundred megabytes, which is quite
reasonable in terms of size. A naive implementation of
algorithmγ-Db-Gen can slow down the generation pro-
cedure significantly. The computation of negative bor-
der at each stage causes significant overhead in run time.
Our ongoing work is addressing the problem of develop-
ing efficient approximations that can avoid this compu-
tation. Specifically, we are studying the existence of rep-
etition factors that are more optimistic than̂M but avoid
the computation of the entire relative negative border.

7. Discussion

Although the results presented in the earlier section
demonstrate the practical feasibility of using algorithm
DB-Gen to generate bag databases of realistic size, the
procedure faces some serious limitations. These limita-
tions are discussed in this section and elaborated in more
detail to illustrate the requirements of database genera-
tion techniques.

Firstly, the bag databases compress transactions by
providing a count value with each bag to illustrate the
repetition factor of the itemset associated with that bag.
The counts associated with the bags in earlier stages are
reasonable in terms of the repetition. But this value can
grow large very quickly. For instance, in the instance
of the input from the mushroom dataset, the repetition
factor grows to a billion at stage7. This might cause a
problem when the input is a large set of maximal collec-
tions each of high cardinality.

Secondly, the constraint of adding only maximal
itemsets from maximal collections during each stage, is
primitive. One can take advantage of computing cov-
ers for groups of itemsets and using these covers to ac-
count for multiple itemsets in terms of counts. Such
an approach can also reduce the large count values that

are evident in later stages. An interesting direction of
work is to allow the addition of any arbitrary itemset as
a transaction (either a subset or superset of a maximal
itemset). Also the generation process is sensitive to the
initial maximal collections provided as input. The in-
stances taken from the chess and mushroom datasets in
the examples in the earlier section, were all obtained at
the lowest levels of absolute support from these datasets.

Thirdly, the complexity of the optimization problem
needs further investigation. Earlier work on hypergraph
transversal by Gunopulos et al [5] has great relevance to
identifying the complexity of the optimization problem.
In parallel to probing better generation procedures, we
are also investigating the complexity of the optimization
problem. Unlike the stage-wise generation procedures,
the global optimization problem considers the maximal
collections as a whole instead of one at a time.

Finally, the generation procedures considered here
are sensitive to the size of the maximal collections/D-
sequences provided as input. Since the generation pro-
ceeds stage-wise, the maximal collections are also em-
bedded in a stepwise manner in the database. This
means thatMi is the maximal collection that would be
frequent in the database for any value of support in the
range[πmin

i , πmin
i+1). The database size, repetition factor

and compression factors are all very sensitive to the size
of the maximal collections.

8. Conclusions and Future Work

In this study, we formalized the synthetic database
generation problem for maximal collections and D-
sequences. We presented a stage-wise generation pro-
cedure that constructs a database andk levels of mini-
mum support at which a given set ofk maximal collec-
tions satisfying the closure property are obtained as out-
put. We analyzed the generation procedure by providing
an upper bound on the number of transactions output.
We developed an alternative approach using transaction
bags, which significantly compresses the size of the out-
put database and we gave an upper bound on the number
of transaction bags generated in the output database. We
presented an optimization that can potentially reduce the
number of transactions/bags generated by the stage-wise
generation procedure. Finally, experimental results are
provided to demonstrate the feasibility of the generation
procedure in practice.

Several future directions naturally present them-
selves. An ongoing study is investigating existing lit-
erature on complexity results in hypergraph transversal
and their relation to itemset mining and lattices for op-
timizations of the database generation problem. Some
results in complexity has already been explored by Yang
in [17]. A second direction is to study the variation
in the two problems defined in the study. One needs
to explore what kind of general results can be obtained
for D-sequences and how they relate to maximal col-

lections. We used closely packed maximal collections
generated from D-sequences; it would be interesting to
explore other efficient transformation schemes from D-
sequences to the actual maximal collections generated.
The question, what is the minimal transaction database
embedding a given itemset collection, remains open.

Acknowledgments
The authors would like to thank Dr. Laks V.S. Lak-

shmanan for his valuable suggestions and comments.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining associa-
tion rules. InVLDB Conference, 1994.

[2] R. J. Bayardo. Efficiently mining long patterns from databases.
In ACM SIGMOD Conference, 1998.

[3] Toon Calders and Bart Goethals. Mining all non-derivable item-
sets. InPrinciples of Data Mining and Knowledge Discovery,
2002.

[4] Artur Bykowski et al. A condensed representation to find fre-
quent patterns. InACM PODS Conference, 2001.

[5] Dimitrios Gunopulos et al. Discovering all most specific sen-
tences.ACM TODS, 2003.

[6] R. Agrawal et al. Fast discovery of association rules. In
U. Fayyad and et al, editors,Advances in Knowledge Discovery
and Data Mining, pages 307–328. AAAI Press, 1996.

[7] Richard M. Karp et al. A simple algorithm for finding frequent
elements in streams and bags.ACM TODS, 2003.

[8] A. Evfimievski, R. Srikant, R. Agrawal, and J. E. Gehrke. Pri-
vacy preserving mining of association rules. InACM SIGKDD
Conference, 2002.

[9] Bart Goethals, Floris Geerts, and Jan Van den Bussche. A tight
upper bound on the number of candidate patterns. InIEEE ICDM
Conference, 2001.

[10] K. Gouda and M. J. Zaki. Efficiently mining maximal frequent
itemsets. InIEEE ICDM Conference, 2001.

[11] J. Han and M. Kamber. Data mining: concepts and techniques.
Morgan Kaufman. 2000.

[12] Murat Kantarcioglu and Chris Clifton. Privacy preserving data
mining of association rules on vertically partitioned data. In
ACM KDD Conference, 2003.

[13] Heikki Mannila and Hannu Toivonen. Levelwise search and
borders of theories in knowledge discovery.Data Mining and
Knowledge Discovery, 1997.

[14] Raymond T. Ng, Laks V. S. Lakshmanan, Jiawei Han, and Alex
Pang. Exploratory mining and pruning optimizations of con-
strained association rules. InACM SIGMOD Conference, 1998.

[15] Ganesh Ramesh, William A. Maniatty, and Mohammed J. Zaki.
Indexing and Data Access Methods for Database Mining. In
ACM SIGMOD Workshop - DMKD, 2002.

[16] Ganesh Ramesh, William A. Maniatty, and Mohammed J. Zaki.
Feasible itemset distributions in data mining: Theory and appli-
cation. InACM PODS Conference, 2003.

[17] Yang G. The Complexity of Mining Maximal Frequent Item-
sets and Maximal Frequent Patterns. InACM KDD Conference,
2004.

[18] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algo-
rithms for fast discovery of association rules. InKDD Confer-
ence, 1997.

[19] Z. Zheng, R. Kohavi, and L. Mason. Real world performance of
association rule algorithms. InACM KDD Conference, 2001.

