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Abstract: High-dimensional data pose challenges to traditional clustering al-
gorithms due to their inherent sparsity and data tend to cluster in different and
possibly overlapping subspaces of the entire feature space. Finding such sub-
spaces is called subspace mining. We present SCHISM, a new algorithm for min-
ing interesting subspaces, using the notions of support and Chernoff-Hoeffding
bounds. We use a vertical representation of the dataset, and use a depth-first
search with backtracking to find maximal interesting subspaces. We test our al-
gorithm on a number of high-dimensional synthetic and real datasets to test its
effectiveness.
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and ISCB.

1 Introduction

Clustering is an unsupervised learning process, in which a multidimensional space is
partitioned into disjoint regions, such that all points within any such region/cluster are sim-
ilar to each other, but dissimilar with respect to points in other clusters. If the clustering is
done using all available features, it is called afull-dimensionalclustering. Many such al-
gorithms like BIRCH, DBSCAN, CURE [14] have been proposed for this task. While they
show acceptable performance on lower dimensional datasets, a large number of dimensions
poses problems [15]. One of the main reasons, is that data is generally very sparse in high
dimensional datasets. In addition, most of the full dimensional algorithms use distance
metrics, which treat every dimension with equal importance. For high dimensional spaces,
it has been argued that under certain reasonable assumptions on the data distribution, the
ratio of the distances of the nearest and farthest neighborsto a given target is almost 1 for
a variety of distance functions and data distributions [7].In such a scenario, many full
dimensional clustering algorithms have little meaning, asthe pairwise distances between
the points in distinct clusters need not provide an acceptable contrast.

One of the solutions to the problem of clustering high-dimensional datasets proposed
is designing new distance metrics [1]. Another is reducing the dimensionality [12] and
then running thefull-dimensionalalgorithm on the lower dimensional dataset. Dimension
reduction techniques are of two types:feature selection, in which one aims to find linear or
non-linear combinations of the original set of dimensions,andvariable selection, in which
we select a subset of the original set of dimensions.

Prominent among the feature selection methods are the Karhunen-Loeve transforma-
tion (KLT) or singular value decomposition (SVD), which project the dataset from the
original d to a k dimensional space, wherek ≪ d, and each new dimension is a linear
combination of the original dimensions; after this clustering is done using only thesek
dimensions. However, it may not always be possible to reducethe dimensionality of the
space. Consider the case, where there exist subsets of the embedded subspaces, which
are unconstrained in each dimension. For such datasets, theratio of the largest eigen-
value to the smallest one may not be large enough to discard the corresponding eigen-
values/dimensions and hence dimensionality reduction maynot be feasible. Also, such a
strategy may be inappropriate since clusters in the transformed feature space may be hard
to interpret. Earlier literature [4, 21] cites examples in which KLT does not reduce the di-
mensionality without trading off considerable information, as the dataset contains subsets
of points which lie in different and sometimes overlapping lower dimensional subspaces.
In variable selection, some of the dimensions are selected heuristically without transfor-
mation [8]. This removes the problem of interpretability, but still only a fixed subspace is
used for clustering.

There also exists the method of multidimensional scaling [19], which uses a similarity
matrix to infer the underlying dimensionality. Here too, the transformed features space
require expert interpretation. These challenges have caused the focus of much recent work
in clustering to shift towards finding the interesting subspaces within a high-dimensional
space[2, 3, 4, 9, 10, 17, 20, 21]. Other challenges encountered in subspace mining are that
subspaces may share dimensions as well as objects, i.e., they may overlap. The subspace
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mining problem has wide applications, especially with datasets having ordinal/nominal
values, e.g., datasets found in bioinformatics, intrusiondetection, etc.

In this paper, we tackle the problem of finding statistically‘interesting’ subspaces in
a high dimensional dataset using an algorithm called SCHISM(Support andChernoff-
Hoeffding bound-basedInterestingSubspaceM iner). We use the Chernoff-Hoeffding
bound to prune the search for interesting subspaces, as a nonlinear function of the number
of dimensions in which the subspace is constrained. We use a vertical representation of
the dataset and capitalize on various advances made in itemset mining. We use a depth-
first search with backtracking to find maximal interesting subspaces. We finally test our
algorithm on a wide array of high-dimensional datasets.

2 Related Work

Let A = {A1, A2, . . . , Ad} be the set of dimensions. Each dimensionAi has a totally
ordered and bounded domain. Then,S = A1 × A2 × . . . × Ad is the high-dimensional
space. The inputDB, is a set ofn points,DB = {pi|i ∈ [1, n], pi ∈ S}}. We partition
S into non-overlapping rectangular units, obtained by partitioning each dimension intoξ
intervals of equal width.

Definition 1: A subspace is an axis-aligned hyper-rectangle,[l1, h1]× [l2, h2]× . . .×
[ld, hd], whereli = (aDi)/ξ, andhi = (bDi)/ξ, a, b are positive integers, anda < b ≤ ξ

If hi − li = Di, the subspace is unconstrained in dimensioni whose range is given as
Di. A m-subspace is a subspace constrained inm dimensions, denoted asSm.

Subspace clustering methods may be classified into two main categories: density-based
and projected clustering.

Density-based Clustering:Agrawal et al. [4], proposed CLIQUE, which discretizes the
domain of each of thed dimensions into a user-specified number,ξ, of equal-width in-
tervals. This transformation from a possibly continuous toa discrete space allows for an
analogy between frequent itemset mining [5] and subspace clustering. The corresponding
intervals are then analogous to items and the points are analogous to a transaction. Ak-
subspace is analogous to ak-itemset. They usesupport(the fraction of points that lie in
a subspace) to denote the density of a subspace; only those subspaces above a minimum
density thresholds, are mined. Based on this definition of ‘dense’, it is trivialto see that, if
any (p + 1)-subspace is dense, then allp-subspaces enclosing it, are also dense. They first
find all dense 1-subspaces and using a breadth-first search, iteratively find all dense sub-
spaces. In theith iteration, the dataset is scanned and the frequencies of thosei-subspaces,
for which there exist at least two dense(i − 1)-subspaces (dense in the firsti − 2 dimen-
sions), are updated. Using these frequencies, the densei-subspaces may be determined.
Using such a bottom-up Apriori-like [5] approach, they minehigher-dimensional ‘dense’,
hyper-rectangular subspaces. To prune their search at a faster rate, they use the minimum-
description length (MDL) principle as a heuristic, therebymaking it an approximate search.
They then merge ‘dense’ subspaces sharing faces, and use covering algorithms to mine the
minimal descriptions of the subspaces.

Instead of support, Cheng [10], proposed using entropy as a measure of subspace in-
terestingness. Subspaces satisfying an entropy thresholdare mined. However, they do
not suggest a principled or intuitive way to set the entropy threshold. Nagesh et al. in
MAFIA[20], partition each dimension into variable width intervals, based on the distri-
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bution of points. They first construct a very fine-grained histogram for each attribute.
Non-overlapping windows of fixed bin sizex, covering the histogram are then examined.
Each window is assigned a value, equal to the number of elements in the most populous
bin in it. Going from left to right, windows are merged if theyare withinβ (a user specified
parameter, typically 20%) of each other. The resulting interval is considered ‘dense’ if the
number of points in it exceeds the threshold(αan)/Di, wheren is the number of points in
the dataset andα is a user-specified parameter, called thecluster dominance factor. Here,
(an)/Di corresponds to the number of points expected to lie inside the interval having
a windows in thei-th dimension, which has rangeDi. Using adaptive width intervals
minimizes rigidity of clusters obtained by CLIQUE. There ishowever, no strong intuition
behind the selection of parametersα, β, x.

Kailing et al. [18] suggest using a sample of the points in thedataset. They generate
dense subspaces enclosing each point of the sample if it is acore object, i.e., if it has more
thanMinPts, a user-specified threshold, points within a threshold radiusǫ. The subspaces
are then assigned a quality rating, which takes into accountthe number of dimensions in
which the subspace is constrained and this rating is used to prune lower quality subspaces.
By providing a rating, it is only possible for the user to determine the relative interesting-
ness of a subspace w.r.t. another subspace. It is not easy forthe user to know the absolute
interestingness of the subspace.

Projected Clustering: Aggarwal [2, 3] uses projective clustering to partition thedataset
into clusters occurring in possibly different subsets of dimensions in a high dimensional
dataset. PROCLUS [2] seeks to find axis-aligned subspaces bya three stage approach.
First, a set ofk cluster medoids are iteratively selected, without replacement, from the
dataset, using a greedy approach. Second, a CLARANS-related[14], hill-climbing tech-
nique is used to cluster the data. In each iteration, the dataset is covered by spheresLi,
centered at medoidmi. For eachmi, a set of dimensionsDi, is determined for which, the
points inLi show little variation. The dataset is then partitioned using the nearest neighbor
algorithm, with Manhattan distance computed from medoidmi only overDi. Finally, after
the average intra-cluster Manhattan distance stabilizes,a cluster refinement phase is used.
ORCLUS [3], finds arbitrarily oriented clusters by using a variant of the iterative agglomer-
ative hierarchical clustering. Initiallyke > k full dimensional points are randomly selected
as subspace centers. In each iteration using the nearest neighbor algorithm, the distance of
each point in the dataset to eachde-dimensional subspace is determined and the dataset is
partitioned. The eigenvectors corresponding to the smallestβde eigenvalues for the covari-
ance matrix for the points in each resulting partition are retained and using merging, the
number of clusters decreases byα < 1. Both the algorithms require the number of clusters
and the expected number of dimensions for each cluster to be input.

In DOC [21], Procopiuc et al. devise a Monte Carlo algorithm for finding projective
clusters. They propose a mathematical formulation for the notion of optimal projective
cluster based on the density of the points in the subspaces. In an intuition-wise ORCLUS-
like algorithm [9], Chakrabarti et al. search for local correlations in the data and perform
dimensionality reduction on the locally correlated clusters of data individually.
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3 Interestingness Measure

Let Xp be the random variable (RV) denoting the number of points in agiven subspace
Sp. If the probability of finding no less thannp points inSp, is bounded by a reason-
ably low, user-specified threshold probabilityτ , Sp is considered to be interestinga, i.e.,
Pr(Xp ≥ np) ≤ τ implies thatSp is an interesting subspace. Accordingly, we have

Definition 2: A subspace isinteresting if the number of points it contains is statisti-
cally significantly higher than that expected under the assumption that all dimensions are
independent and uniformly distributed.

It is obvious that a dataset that is scattered uniformly and independently, spanning the
entireS, is of least interest from a clustering view-point, as the entropy is maximized.
If a subspace deviates significantly from the uniform distribution, then it is potentially
interestingb. If np points are found inSp, CLIQUE considersSp to be ‘dense’ ifnp/n ≥ s,
wheres is the user-specified support threshold. MAFIA considers the subspace ‘dense’ if
np/n ≥ αE[Xp]. SUBCLU denotes ap-hypersphere as dense, in that it contains a ‘core’
object, if its projectedǫ-neighborhood encloses the projections of more thanMinPts
points.

In general, all density-based subspace finding algorithms,use an interestingness thresh-
old functionthresh : Z+ → ℜ whereZ+ is the set of positive integers, and denotes the
number of constrained dimensions in acandidatesubspace. The value ofthresh(p) corre-
sponds to the interestingness threshold that must be exceeded for the candidate subspace to
be called ‘dense’. For example, support based pruning in CLIQUE, threshCLIQUE(p) =
s,∀p ∈ [1, d], i.e., no matter what the number of constrained dimensions of a subspace, the
pruning threshold is a constant. This is counterintuitive,in that asp increases, the volume
of thep-subspace decreases exponentially, and hence the expectednumber of points in it
should also decrease. This creates a bias towardsp-subspaces, wherep ≪ d.

Thethresh function may be either constant (as in CLIQUE) or monotonically increas-
ing or monotonically decreasing.

Lemma 1 (Effect of thresh on monotonicity):
If any given subspaceSp+1 ⊂ S is interesting, then everyp-subspaceSp, which encloses
Sp+1 and is unconstrained in one of the(p+1) constrained dimensions ofSp+1, is always
interesting ifthresh(p + 1) ≥ thresh(p), 1 ≤ p ≤ d − 1, for interestingness threshold
functionthresh.
Proof: If Sp+1 is interesting,np+1

n
≥ thresh(p+1). But,np ≥ np+1 becauseSp+1 ⊂ Sp.

Thus,np

n
≥ np+1

n
≥ thresh(p+1). If, thresh(p+1) ≥ thresh(p), thennp

n
≥ thresh(p)

and we are guaranteed to find all interesting subspaces.

Lemma 2: For p=1. . . d, letthresh be monotonically increasing and letthresh2(p) =
thresh(r), wherer is the number of dimensions constrained inSr, a maximally interest-
ing subspace underthresh. If Sr ⊆ Sp, thenSp is also interesting underthresh2.
Proof: SinceSr is interesting, thennr

n
≥ thresh(r). Also, asSr ⊆ Sp, 1 ≤ p ≤

r− 1, np ≥ nr. Hence,np

n
≥ nr

n
≥ thresh(r) = thresh2(p). Thus,Sp is also interesting

underthresh2.

aTypically τ is set toO( 1

n
) ≪ 0.05, which is statistically significant

bSee Eq. 3 and following comment
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A consequence of the above lemmas is that it in order to find allthe maximal inter-
esting subspaces found bythresh2, one must setthresh(1) to a very low value so that it
converges tothresh2. This causes generation of a number of candidate subspaces which
do not yield maximal interesting subspaces but add to computation time. Hence, it makes
little sense to have a monotonically increasing threshold function. Thethresh function
must be either constant or monotonically decreasing. However, it has been observed, that
in order to find small interesting subspaces having few points inside it, the constant sup-
port threshold function has to be set very low,which makes subspace mining very slow.
Hence, we propose a non-linear monotonically decreasing threshold function, which does
not guarantee mining all interesting subspaces,c but does mine in a more reasonable time.
The intuition behind why this might work, is that asp increases, the subspace becomes
constrained in more and more dimensions, making its volume smaller and smaller. Hence
the threshold too, must decrease asp increases, for the enclosed (Sp+1) and enclosing (Sp)
subspaces to have comparable interestingness.

3.1 Chernoff-Hoeffding bound

We use the Chernoff-Hoeffding bound [11, 16] to bound the tail of the distribution
of Xp and measure the level of interestingness. IfYi, i = 1 . . . n, are independently
distributed RV, with0 ≤ Yi ≤ 1 andV ar[Yi] < ∞, then forY =

∑n

i=1 Yi, t > 0,

Pr[Y ≥ E[Y ] + nt] ≤ e−2nt2 (1)

whereE[Y ] =
∑n

i=1 E[Yi] by linearity of expectation.
Given ap-subspaceSp, let Yi correspond to the RV that theith point in DB, when

projected onto the set ofp constrained dimensions ofSp, lies within Sp. ThenY = Xp.
Using Eq. (1) and for some realtp > 0,

Sp is interesting if Pr[Xp ≥ np] ≤ e−2nt2p ≤ τ (2)

whereE[Xp]+ntp = np, which implies thattp =
np

n
− E[Xp]

n
. Substitutingtp in the right

hand term of (2), we havee
−2n

“

np
n

−
E[Xp]

n

”2

≤ τ which on simplification gives,

np

n
≥ E[Xp]

n
+

√

1

2n
ln(

1

τ
) (3)

Thus, for ap-subspace to be interesting, (3) must hold. (3) makes no assumption, other than
independence, about the comparative distribution. Hence,it can be used to find interesting
subspaces in datasets, having non-uniform distributions.

Note that the interestingness measure,thresh(p) =
E[Xp]

n
+

√

1
2n

ln( 1
τ
) is a non-

linear monotonically decreasing function in the number of dimensionsp, in which Sp is
constrained. Also, note thatthresh is analogous to the support and density threshold mea-
sures used to prune search in the CLIQUE [4] and MAFIA [20] algorithms respectively. In

comparison with CLIQUE, the term
√

1
2n

ln( 1
τ
) corresponds to minimum densitys set by

the user. The interestingness threshold probability (τ ) seems intuitively easier to set than

cFor monotonically decreasingthresh, the Apriori principle may not be applicable. Consider,
np

n
=

np+1

n
= thresh(p + 1). If thresh(p + 1) < thresh(p), then

np

n
< thresh(p) andSp is not interest-

ing althoughSp+1 is.
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s. The chief difference is the termE[Xp]
n

, which makes pruning conscious of the volume of
the subspace and hence conscious of the number of constrained dimensions of the subspace

on which it is being carried out. Also, the equivalence betweens and the term
√

1
2n

ln( 1
τ
)

provides insight into setting of parameters, in that it should be inversely proportional to the
square root of the dataset size. In comparison with MAFIA, the termE[Xp] corresponds
to αE[Xp]. Thus, SCHISM inadvertently unifies ideas from both CLIQUE and MAFIA.
Unlike earlier proposed interestingness measures [18], this one gives the user a sense of
absolute interestingness.

Note that for somev ∈ Z, 1 ≤ v ≤ d, we haveE[Xp] ≤ 1, and thusE[Xp]
n

+
√

1
2n

ln( 1
τ
) ≈

√

1
2n

ln( 1
τ
). The threshold function thus converges to a constant when the

number of constrained dimensionsp ≥ v; analogous to minimum thresholds in CLIQUE.
To summarize,

threshSCHISM (d ≥ p ≥ v) =

√

1

2n
ln(

1

τ
)

From Lemma 1, forp ≥ v, Sp+1 is interesting implies thatSp is interesting, as
SCHISM is similar to CLIQUE and uses support-based pruning for a large part of the

subspace mining process. Note that this constant
√

1
2n

ln
(

1
τ

)

varies inversely as
√

n and

hencethreshSCHISM converges to a higher threshold for smaller datasets. This is a nega-
tive result, in that for large datasets, we require a lower pruning threshold to achieve similar
interestingness. This is contrary to the way, most users would set a pruning threshold like
s and provides more motivation for our idea.

While threshSCHISM is constant forp ≥ v, we can gain some improvements in
empirical results by changing the rate of change inthreshSCHISM (p < v) to increase
the likelihood of monotonic search. We do so by trading off some tightness of the bound
by using a penalty term. Iff(p) is the penalty term, such that∀p ∈ [1, d], f(p) ≤ 1,
thene−2nt2p ≤ e−2nf(p)t2p . Using this in 2,Pr(Xp ≥ np) ≤ e−2nf(p)t2p ≤ τ . After
simplification,

threshSCHISM (0 < p < v) = min

(

u,
E[Xp]

n
+

s

1

2nf(p)
ln

„

1

τ

«

)

The termu is used to upper boundthreshSCHISM (1), which is empirically too large for
typical values ofξ. Typical values off(p) are p

a
(a ≥ v =⇒ f(p) ≤ 1), 1

(c−bp2) . The
last penalty term provides a parabolic as opposed to exponential drop in the threshold asp
increases. Typically,u = 0.05. In summary, we have

threshSCHISM (p) =







min
{

u,
E[Xp]

n
+

√

1
2nf(p) ln

(

1
τ

)

}

if p < v
√

1
2n

ln
(

1
τ

)

if p ≥ v
(4)

If each dimension of thed-dimensional dataset is discretized intoξ equi-width intervals
andp(i, j) corresponds to the probability, that a point in the dataset lies in thejth interval
of theith dimension. IfSp = [l1, h1] × . . . × [ld, hd] then,

E[Xp] =

d
∑

i=1

∑

j∈[li,hi]

p(i, j)
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3.2 Under assumption of a multivariate uniform background distribution

If we assume that each dimension in thed-dimensional space is independent and uni-
formly distributed and discretized intoξ levels, then the probability that a point lies in a
specific interval of any dimension is1

ξ
. Hence, the probability that a point lies in a spe-

cific p-subspace (assuming it is constrained to a single interval in each of thep constrained
dimensions) is( 1

ξ
)p. Thus, the probability of findingnp points in any subspaceSp, is dis-

tributed as per the binomial distribution with meanE[Xp] = n( 1
ξ
)p. Here,v = ⌈ log(n)

log(ξ) ⌉
To mine more subspaces than those found by the support threshold (u) in CLIQUE [4],

u ≥ 1

ξv
+

√

1

2n
ln(

1

τ
) (5)

Substituting typical values e.g.,τ = 10−5, n = 105, ξ = 10, v = 5 in Eq. (5), we get
u ≥ .0076. It is unusual to setu to lower values for typical high-dimensional datasets, as
that would makeApriori-based search virtually impossible. Thus, usingthreshSCHISM

helps mine for smaller subspaces than CLIQUE.

4 SCHISM Algorithm

A number of the subspace mining algorithms [4, 10, 20] use a bottom-up, breadth-
first search. In contrast, SCHISM, which is based on the GenMax algorithm that mines
maximal itemsets [13], uses a depth-first search with backtracking to mine the maximal
interesting subspaces. The main steps in SCHISM are shown inFig. 1; we first discretize
the dataset and convert it to a vertical format. Then we mine the maximal interesting
subspaces. Finally, we assign each point to its cluster, or label it as an outlier.

SCHISM (DB, s, ξ, τ ):
//s is the minimum support threshold
//ξ is the number of intervals per dimension
//τ is the user-specified interestingness threshold
1. DDB = Discretize(DB, ξ)
2. V DB=HorizontalToVertical (DDB)
3. MIS = MineSubspaces(V DB, s, ξ, τ )
4. AssignPoints(DB,MIS)

Figure 1 The SCHISM Algorithm

d1 d2 d3 d4 d5 d6 d7 d8

I1 -1 -1 -1 478 -1 673 774 -1
I2 -1 163 475 260 -1 -1 -1 786
I3 -1 949 -1 985 72 204 806 317

Table 1 Original subspaces
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DB d1 d2 d3 d4 d5 d6 d7 d8

p1 755 689 306 482 838 657 743 980
p2 818 166 494 302 378 439 633 805
p3 418 159 499 260 139 921 986 780
p4 833 173 484 236 948 17 647 781
p5 264 960 465 985 70 209 782 309
p6 991 972 118 986 72 209 804 341
p7 921 963 910 976 71 220 818 317
p8 686 965 623 993 68 202 800 287
p9 448 146 605 205 984 423 654 983

Table 2 Original dataset: DB

d′1 d′2 d′3 d′4 d′5 d′6 d′7 d′8
I ′1 -1 -1 -1 34 -1 56 67 -1
I ′2 -1 11 24 32 -1 -1 -1 77
I ′3 -1 19 -1 39 40 52 68 73

Table 3 Discretized subspaces

DDB d′1 d′2 d′3 d′4 d′5 d′6 d′7 d′8
p′1 7 16 23 34 48 56 67 79
p′2 8 11 24 33 43 54 66 78
p′3 4 11 24 32 41 59 69 77
p′4 8 11 24 32 49 50 66 77
p′5 2 19 24 39 40 52 67 73
p′6 9 19 21 39 40 52 68 73
p′7 9 19 29 39 40 52 68 73
p′8 6 19 26 39 40 52 68 72
p′9 4 11 26 32 49 54 66 79

Table 4 Discretized dataset: DDB

Discretization: In SCHISM, we first discretize all points (figure 1, line 1). Given the
original datasetDB, we divide each dimension intoξ bins, and give each interval a unique
id (for example, the intervals in dimensiond0 are labeled from0 to ξ − 1, those ford1

are labeled fromξ to 2ξ − 1, etc.). Consider the example datasetDB shown in Table 2,
generated by our synthetic data generator (see section 5.1), with n = 9, ξ = 10 andd = 8.
The seed subspaces used to generateDB are shown in Table 1.

Here−1 implies that the subspaces are unconstrained in that dimension. Thus,p1 is
generated from subspaceI1, pointsp2, p3, p4 are generated fromI2, pointsp5, p6, p7, p8

are generated fromI3 andp9 is an outlier. Table 4 shows the discretized datasetDDB
obtained fromDB; the corresponding discretized subspaces are shown in Table 3.

Data Transformation: The next step in SCHISM (figure 1, line 2) is to convert the dataset
into a vertical tidset format [13], which lists for each subspace (initially a single interval)
Sp, the set of points that belong to it, i.e., the tidsett(Sp). Using a vertical format dataset
gives us a number of advantages. Firstly, better memory utilization results from having
only the relevant subspaces in memory at a time, as opposed tothe horizontal format
in which the entire dataset is scanned. Secondly, computingsupport of subspaces to be
merged via tidset intersections is very fast. Fig. 3 (forp = 1) shows the tidsets for the
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initial ‘interesting’ intervals. For example, for interval 11, its tidset is given ast(11) =
{2, 3, 4, 9}.

MineSubspaces(V DB, ξ, τ ):
1. FindIS1 andIS2 //sortIS1 as optimization
2. MIS-backtrack (φ, IS1,MIS, 0, ξ, τ )
3. returnMIS

MIS-backtrack (Sp, Cp,MIS, l, ξ, τ )
4. ∀Sx ∈ Cp

5. Sp+1 = Sp ∪ Sx

6. Pp+1 = {Sy ∈ Cp |Sy > Sx}
7. If MergeSubspaces(MIS, (Sp+1 ∪ Pp+1)) return
8. Cp+1 = IS-candidate(Sp+1, Pp+1, l, ξ, τ )
9. If Cp+1 is empty
10. If Sp+1 has enclosed no subspace inMIS,
11. MIS = MIS ∪ Sp+1

12. elseMIS-backtrack (Sp+1, Cp+1,MIS, p + 1, ξ, τ )

MergeSubspaces(MIS,Zp+1)
13. If maxSf∈MIS Sim(Zp+1, Sf ) > ρ × min(f, |Zp+1|)
14. MIS = MIS − Sf

15. MIS = MIS ∪ (Sf ∪ (Zp+1)
16. return true
17. return false

IS-candidate(Sp+1, Pp+1, l, ξ, τ )
18. Cp+1 = φ
19. ∀Sy ∈ Pp+1

20. t(S′
y) = t(Sp+1) ∩ t(Sy)

21. If
|t(S′

y)|

n
≥ thresh(|S′

y|)
22. Cp+1 = Cp+1 ∪ Sy

23. returnCp+1

Figure 2 Mining Interesting Subspaces

Mining Interesting Subspaces:In SCHISM, interesting subspaces are mined (figure 1,
line 3), using a depth-first search with backtracking, allowing us to prune a considerable
portion of the search space. The pseudo-code forMineSubspaces is shown in Fig. 2.
The method first finds all interesting subspaces in one (IS1) and two dimensions (IS2).
Next, we call the recursiveMIS-backtrack procedure to mine the set of maximal inter-
esting subspaces (MIS).

MIS-backtrack accepts as input, a singlep-subspaceSp, and a setCp of candidate
p-subspaces that can be used to constrain (or extend)Sp in an interval of another dimen-
sion. EachSx ∈ Cp results in a potential new(p + 1)-subspace,Sp+1 = Sp ∪ Sx (line 5),
for which we have to calculate the new candidate setCp+1 (line 8). We do this by using a
possiblesetPp+1 (line 6) of potential candidate subspaces, which are all theunprocessed
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subspaces inSy > Sx in Cp. If Cp+1 is empty (line 9), thenSp+1 is potentially maximal;
it will be added toMIS if there is no maximal subspace that it encloses (lines 10-11). If
Cp+1 is non-empty, then we recursively callMIS-backtrack.

The call toIS-Candidate (line 8) constructs the new candidate setCp+1 for Sp+1

for the next level. The basic idea is to intersect tidset ofSp+1 with every possible subspace
in Pp+1 (line 20). We keep only those subspace extensions that pass thethresh() function
(lines 21-22).

Typically, a depth-first search with backtracking producesa number of subspaces,
which may overlap considerably, leading to redundant subspaces. To avoid this behav-
ior, we prune the search tree by usingMergeSubspaces (line 7). If the subspace
Zp+1 = Sp+1 ∪ Pp+1, resulting from constrainingSp+1 with all its remaining possible
intervals inPp+1, is significantly similar (typically, we set the merging thresholdρ = 0.8)
to some knownSf ∈ MIS (line 13), we replaceSf with a typically more constrained
subspace (lines 14-15),Sf ∪ Zp+1. As ρ < 1, we may merge subspaces, which are con-
strained to adjacent intervals in a few dimensions, thus compensating for uniform width
intervals in each dimension. TheSim function (line 13) used to calculate the similarity
of two subspacesA andB is given asSim(A,B) =

∑d

i=1 JaccardSimilarity(Ai, Bi),
whereAi, Bi are the sets of interesting intervals spanned byA,B in the i-th dimension
andJaccardSimilarity(X,Y ) = |X∩Y |

|X∪Y | . For example for pointp′1 ∈ DDB and seed
subspaceI ′2 (see Table 4 and 3 respectively),Sim(p′1, I

′
2) = 2, as they are identically

constrained in the second (11) and third (24) dimensions.
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Figure 3 Lattice of running example
Example: Let’s consider how SCHISM works on our example datasetDB. Let u =
0.25, τ = 4/n = 0.44. Then,IS1 = {11, 19, 24, 32, 39, 40, 52, 68, 73}. Likewise we
computeIS2. The initial call toMIS-backtrack is with Sp = ∅, andCp = IS1, which
results in a recursive call ofMIS-backtrack for each interval, with a new candidate set
Cp+1. For example, the candidate-set for11 is given byC1 = {24, 32, 39, 40, 52, 68, 73},
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thus in the next level, we will try to extend11 with 24, 32, · · · , 73, and so on, recur-
sively. For our running example, whenSp+1 = 11, Sy = 24, thenS′

y = {11, 24}. Also
t(Sp+1) = {2, 3, 4, 9}, andt(Sy) = {2, 3, 4, 5}, which givest(S′

y) = {2, 3, 4} (see Fig.
3). Asp = 1, we use the interestingness measure for pruning the search (line 21), i.e., the
second case in Equation 4. WiththreshSCHISM (1) = 0.21, n1/n = 3/9 = 0.33 > 0.22;
thusS′

y is interesting, and we add24 to the candidate set. Proceeding in this manner, we
get the lattice shown in Fig.3. The rectangles shaded in grayare the elements ofMIS.

AssignPoints(DB,MIS):
1. for each pointpi ∈ DB
2. If maxj Sim(pi,MISj) > ThresholdSim
3. pi → MISargmaxjSim(pi,MISj)

4. elsepi is an outlier

Figure 4 Assign Points

Assigning Points to Clusters:Based on the intervals to which each subspace is con-
strained, we can estimate discrete probability distribution functions (p.d.f.) for each dimen-
sion for each mined subspace. If each dimension of thed-dimensional dataset is discretized
into ξ equi-width intervals, thenB(i, j) corresponds to the probability, that subspaceB is
constrained in thejth interval of theith dimension. Thus,∀i ∈ [1, d],

∑ξ

j=1 B(i, j) =
1.0. If b(i) is the number of intervals to whichB is constrained in dimensioni,

∀i ∈ [1, d], B(i, j) =

{

1
b(i) if B is constrained in dimensioni

0 otherwise
(6)

Let A correspond to thed-subspace surrounding a pointpi. Let Y andy be the RV
denoting the similarity and the true similarity betweenA andB, respectively.

The JaccardSimilarityover any dimension between two such subspaces, can be ex-
pressed as the dot products of their p.d.f.s in that dimension. Hence,

Sim(A,B) = Y =

d
∑

i=1

Yi, whereYi =

ξ
∑

j=1

A(i, j)B(i, j)

Then,E(Yi) = 1 × 1
b(i) ×

b(i)
ξ

= 1
ξ

Y is then, the sum ofd Bernoulli RVs with meanE[Y ] = d
ξ
. Using Chernoff-Hoeffding

bounds again, ifPr[Y ≥ y] ≤ exp(−2dt2) ≤ τ for reasonably small user-specified
thresholdτ , it implies that the similarity betweenA and B is unusually high and the
point in A is with high probability generated from the subspaceB. Now, exp(−2dt2) ≤
τ implies thatt ≥

√

1
2d

ln
(

1
τ

)

. Substitutingt in y = E[Y ] + dt = d
ξ

+ dt, we get

ThresholdSim = d
ξ

+
√

d
2 ln

(

1
τ

)

.

Fig. 1, line 4 of SCHISM assigns each point to the most similarmaximal interest-
ing subspace (lines 2-3), or else labels it as an outlier (line 4). Figure 4 shows these
steps. Additionally, we have to examine if the similarity isstatistically significant by using
ThresholdSim computed above.
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5 Experiments

We perform tests on a range of synthetic high-dimensional datasets using our data
generator and a couple of real datasets. We evaluate SCHISM based on two metrics: i)
speed: the time taken to find the interesting subspaces in thedataset, and ii) accuracy:
measured in terms of entropy and coverage. For a clusteringC, entropy is defined as
E(C) = −∑

Cj
(

nj

n

∑

i pij log(pij)), wherepij =
nij

n
, Cj is thejth cluster inC, nj is

the number of points inCj , andnij is the number of points assigned toCj , which actually
belong to subspacei. The lower theE(C), the better the clustering.Coverageis the
fraction of points inDB which are accurately labeled as not being outliers. Ideallythis is
1.

5.1 Synthetic Data Sets

We generate synthetic datasets using our own data generatorwhich employs techniques
similar to those mentioned in [2, 3, 21]. We embedk multivariate Gaussian subspaces in
a dataset ofn points andd dimensions. We first serially generate the subspace centersand
then generate points from the subspaces. Each dimension of asubspace is constrained,
with probability c. As some dimensions are unconstrained with a non-zero probability,
the resulting subspace is as per Definition 1. If a subspace isconstrained in a dimension,
the next subspace to be generated has the same dimension constrained with probabilityo
and its mean is two standard deviations from the previous subspace’s mean. This ensures
that the subspaces have different volumes and they can overlap in some dimensions. If the
points are normally distributed in the subspaces, the standard deviation for each dimension,
for each subspace, is 20. Each point has integral coordinates in the range [0,1000]. For
the constrained dimensions of subspace centers, the coordinates are chosen uniformly over
this range. Letx be the fraction of the points generated as outliers and let the fraction
of points generated for thei-th subspace embedded beαi, such thatx +

∑k

i=1 αi = 1.
In order that the number of points in the subspaces differ, weuse imbalance parameter
κ = maxi αi

mini αi
, i.e., the ratio of theαis of the subspace with the most points to the subspace

with the least points. An outlier has each dimension chosen uniformly in [0,1000]. The
points for each subspace are independently and normally distributed about its center and
the coordinates for dimensions in which the center is unbounded are chosen uniformly in
[0,1000]. Thus, the subspaces generated in the dataset are oriented parallel to the axes. For
all experiments, unless otherwise mentioned, we set as parameters to our data generator,
k = 10, n = 1000, d = 50, c = 0.5, o = 0.5, κ = 4.0, x = 0.05. Also, we set support
thresholdu = 0.05, τ = 1/n, ξ = 10 as the parameters to SCHISM. Also, we use
f(p) = p

d
. The unconstrained dimensions are Gaussian distributed withe same standard

deviation chosen uniformly from [1,30] and mean chosen uniformly in [0,1000].
Experiments were carried out on a Sun Sparc 650 MHz machine running on a Solaris

O/S with 256 MB RAM. Since we have the seed subspaces we can easily evaluate the
accuracy of SCHISM. We first mine the subspaces and partitionthe points in the space, so
that they either belong to some interesting subspace or theyare classified as outliers. Each
of the following graphs, unless otherwise mentioned, showsthe variation in performance,
as a measure of two evaluation metrics: execution time and coverage (shown on y-axis),
as a parameter of either SCHISM or the synthetic dataset is varied (shown on x-axis).The
entropy for all these experiments is below 0.004 and hence not shown. This implies that
SCHISM mines very pure clusters from our synthetic datasets. Ideally, the running time
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curve should be flat or linear and the coverage curve should beflat at 1.0.

5.1.1 Effect of varying dataset parameters

Effect of dataset size and dimensionality:In Fig. 5, it is evident that as the dataset size
increases, the coverage remains constant, while the running time grows linearly.

Note that in Fig. 6, as the dimensionality of the dataset increases, the coverage remains
more or less constant, but the running time seems to grow exponentially initially, and then
grows linearly from dimensions 200-300. In the worst case, this algorithm has exponential
complexity in the number of dimensions, but in practice as shown here, the DFS algorithm
coupled with the varying threshold function, significantlyprunes the search space.

Effect of subspace size and dimensionality:In Fig. 7, we observe the variation in cover-
age and running time, as the ratioκ = maxi αi

mini αi
increases from 2 to 12. We observe that

as the ratio increases, the coverage dips marginally and therunning time remains constant.
The coverage decreases because the subspaces which containa smaller number of points
have, on average, as large a volume as those containing a larger number of points, leading
to a lower density. A smaller fraction of their enclosing subspaces are likely to be identified
as ‘interesting’ and hence only a small fraction of their points are detected as non-outliers,
as compared to when the ratio is not so large.

In Fig. 8, we observe the variation in coverage and running time, as the probability of
constraining a dimension in a subspacec, increases from0.3 to 0.9. We observe that as
c increases, the running time remains constant but larger fractions of the dataset are con-
strained to smaller volumes, making them more ‘interesting’ and hence coverage improves
somewhat.

Performance on datasets with less dense subspaces:In this experiment we run SCHISM
on Gaussian and hyper-rectangular datasets. We decrease the density of the Gaussian
datasets by increasing the standard deviation of each constrained dimension in each sub-
space. For hyper-rectangular subspaces, each constraineddimension is constrained to an
interval of width, chosen uniformly in [0.5w,1.5w]. Thus, the density is decreased by in-
creasing w; the volume of the subspace and keeping the numberof points assigned to it is
the same.

From Fig. 9 and Fig. 10, it is clear that as density decreases,SCHISM’s performance
deteriorates. This is because a smaller percentage of the subspace’s points tend to fall into
the same interval as that of the subspace center, as the volume increases. In such a case,
decreasing the number of intervals in the dimension (ξ) might help or we must search for
less ‘interesting’ subspaces, i.e., decreaseτ .

Effect of number of clustersk: Note from Fig. 5.1.1, that the running time remains
constant as the number of embedded subspaces (k) increases, while coverage worsens after
k = 8 as some clusters become very small and hence not ‘interesting’.

5.1.2 Effects of varying algorithm parameters

Effect ofτ : In Fig. 5.1.1, we decrease the user specified interestingness thresholdτ
from 10−12 to 10−.25, and observe its effect on the coverage and running time. Note that
the coverage increases rapidly, implying thatτ is the main parameterwhich determines
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how much of the search space is mined and hence running time drops rapidly too. Our
experiments on the effect ofu on SCHISM performance (which are not shown due to lack
of space), indicate thatτ has a more precise control on pruning thanu.

Effect of ξ: From Fig. 5.1.1, we observe that, varying the number of intervals into
which each dimension is discretized (ξ), has a small effect on SCHISM’s performance
for a considerable range of values forξ. This is because the termξ is incorporated into
threshSCHISM . Outside this range however (ξ > 15), performance is severely degraded
as the interval size becomes so small that very few contain enough points to be considered
‘interesting’.

Effect ofthresh() function on performance: Here we compare the performance of the
thresh() function given in Eq. 4, with that of CLIQUE on the synthetic datasets. From
Fig. 5.1.1, we observe that as the density of the hyper-rectangular clusters dips due to in-
crease in the width of its constrained dimensions, the running time of CLIQUEd increases
rapidly over that of SCHISM. Also, CLIQUE tends to split clusters into smaller ones. Its
performance closely mirrors that of SCHISM for datasets having well-defined distinct clus-
ters. However, when clusters overlap in a number of dimensions, the coverage and entropy
suffers. Agrawal et al. [4], have shown that CLIQUE performsbetter than DBSCAN, SVD
and CLARANS and hence we have used it as our benchmark.

5.2 Real Data Sets

We apply SCHISM to two well researched datasets from different domains. The
PenDigits datasete [6] contains 7,494 16-dimensional vectors. 30 different writers wrote
approximately 250 digits, sampled randomly from the digit set [0,9] on a pressure-sensitive
tablet. Each vector corresponds to the(x, y) coordinates of 8 points, spatially sampled
from each of these handwritten digits. Note that the embedded subspaces, i.e., the digits 0-
9, overlap considerably in the 16-dimensional space. SCHISM outputs 128 subspaces in 4

dOur implementation of CLIQUE involves simply replacingthreshSCHISM with threshCLIQUE in our
implementation to test the significance of our threshold function

eSee ftp://ftp.ics.uci.edu/pub/machine-learning-databases/pendigits
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Class C1 C2 C3 C4 C5 C6 C7 C8 C9

‘0’ 0 0 0 15 0 0 0 0 1
‘1’ 0 272 0 0 0 0 0 4 9
‘2’ 0 2 0 0 2 1 0 0 11
‘3’ 0 7 0 0 0 0 53 43 405
‘4’ 0 0 38 0 0 1 0 3 6
‘5’ 322 0 0 0 0 0 6 11 78
‘6’ 1 0 11 109 0 78 4 1 9
‘7’ 1 74 0 0 24 13 0 0 1
‘8’ 22 0 0 0 36 14 1 0 2
‘9’ 0 11 3 0 0 0 24 15 160

Class C10 C11 C12 C13 C14 C15 C16 C17

‘0’ 0 0 0 0 0 0 0 0
‘1’ 6 39 24 0 0 3 1 0
‘2’ 142 284 56 0 0 7 0 0
‘3’ 0 0 0 0 0 0 52 0
‘4’ 0 0 0 80 82 0 0 0
‘5’ 0 0 0 0 0 0 2 0
‘6’ 3 0 0 9 31 0 0 0
‘7’ 0 0 1 0 0 16 0 94
‘8’ 0 0 5 0 0 24 0 8
‘9’ 0 1 0 3 2 0 33 0

Table 5 Confusion Matrix for PenDigits Data Set

seconds, of which the 17 clusters with the highest entropiesare shown in the confusion ma-
trix in Table 5. It achieves a coverage of 69% and an entropy of0.365 (u = .01, τ = 0.018).
CLIQUE achieves a coverage of 60.7% and an entropy of 0.49 in approximately 4 seconds
too. As in DOC, ORCLUS, we provide a confusion matrix (Table 5), which is interpreted
as follows: cell(i, j) of the matrix denotes the number of points having true classi, which
were clustered by SCHISM into subspacej. Ideally, each row and each column have only a
single non-zero entry implying E(C)=0. Note that samples of the digits{3, 9} are both as-
signed by SCHISM to clustersC7, C8, C9 due to their similarity in structure. The clusters
not shown typically have all their samples from the same digit class.

The other dataset is the gene expression data for the yeast cell cycle f , obtained for
2884 genes (rows) at 17 (columns) points in time. We obtaineda number of clusters of
which a few were highly populated and the others relatively empty. Ideally, clustering
gene expression data should produce clusters of genes whichare similar in function. How-
ever, almost all the genes have multiple functions and hencegenes cannot be labeled by a
single class. The highly populated clusters we mined using SCHISM, contained groups
of genes which are known to have strong similarity in terms offunction, e.g., out of
5 genes in our dataset known (see www.yeastgenome.org) to beinvolved in ribonucle-
ase MRP activity, 4 (POP4,POP5,POP8,SNM1) are assigned to the same cluster, 4 genes
(SEC7,AGE1,SFT1,COG6) out of 6 involved in intra-Golgi transport, are assigned to the
same cluster, etc. (ξ = 5, τ = 0.018). While SCHISM finds 59 such groups of genes

fSee http://arep.med.harvard.edu/biclustering/yeast.matrix
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which are clustered together in larger clusters, CLIQUE finds only 33, both doing so in
approximately 8.5 seconds.

While, we attempted to compare our algorithm performance with that of SUBCLU
[17], we found default parameter setting for SUBCLU to be unsatisfactory and manual
setting to be extremely hard, as it took an unreasonably longtime (on the order of a number
of hours) to produce output for our synthetic and real datasets. The clusters produced
generally split the embedded clusters into distinct clusters.

6 Conclusions

We define a new interestingness measure which provides absolute guarantees to the
user about the interestingness of the subspaces reported, as per our definition of interest-
ing. We use the interestingness measure itself to prune our search, as opposed to traditional
methods[22], which determine interestingness of patternsafter the search is completed,
making the process faster. We use an algorithm which requires parameters which are rel-
atively easy to set intuitively. These contributions can also be applied to the problem of
finding interesting itemsets.
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