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and ISCB.

1 Introduction

Clustering is an unsupervised learning process, in whiclultidimensional space is
partitioned into disjoint regions, such that all pointshiritany such region/cluster are sim-
ilar to each other, but dissimilar with respect to pointstines clusters. If the clustering is
done using all available features, it is calletui-dimensionalclustering. Many such al-
gorithms like BIRCH, DBSCAN, CURE [14] have been proposettiiis task. While they
show acceptable performance on lower dimensional datasletgie number of dimensions
poses problems [15]. One of the main reasons, is that datnirglly very sparse in high
dimensional datasets. In addition, most of the full dimenal algorithms use distance
metrics, which treat every dimension with equal importarke® high dimensional spaces,
it has been argued that under certain reasonable assumptiaine data distribution, the
ratio of the distances of the nearest and farthest neighb@given target is almost 1 for
a variety of distance functions and data distributions [If].such a scenario, many full
dimensional clustering algorithms have little meaningthespairwise distances between
the points in distinct clusters need not provide an accéptaintrast.

One of the solutions to the problem of clustering high-disienal datasets proposed
is designing new distance metrics [1]. Another is reducimg dimensionality [12] and
then running thédull-dimensionallgorithm on the lower dimensional dataset. Dimension
reduction techniques are of two typdsature selectionin which one aims to find linear or
non-linear combinations of the original set of dimensi@mgjvariable selectionin which
we select a subset of the original set of dimensions.

Prominent among the feature selection methods are the KarhLoeve transforma-
tion (KLT) or singular value decomposition (SVD), which ot the dataset from the
original d to ak dimensional space, whete < d, and each new dimension is a linear
combination of the original dimensions; after this clustgris done using only theske
dimensions. However, it may not always be possible to redueaimensionality of the
space. Consider the case, where there exist subsets of theddad subspaces, which
are unconstrained in each dimension. For such datasetsatibeof the largest eigen-
value to the smallest one may not be large enough to discarddiresponding eigen-
values/dimensions and hence dimensionality reduction moaye feasible. Also, such a
strategy may be inappropriate since clusters in the tram&fd feature space may be hard
to interpret. Earlier literature [4, 21] cites examples inieh KLT does not reduce the di-
mensionality without trading off considerable informatj@s the dataset contains subsets
of points which lie in different and sometimes overlappiog/ér dimensional subspaces.
In variable selection, some of the dimensions are seleaeddtically without transfor-
mation [8]. This removes the problem of interpretabilityt ktill only a fixed subspace is
used for clustering.

There also exists the method of multidimensional scalif®j, [@hich uses a similarity
matrix to infer the underlying dimensionality. Here tooe tttansformed features space
require expert interpretation. These challenges haveedahg focus of much recent work
in clustering to shift towards finding the interesting sudesgs within a high-dimensional
space[2, 3, 4, 9, 10, 17, 20, 21]. Other challenges encaatrrisubspace mining are that
subspaces may share dimensions as well as objects, iyymtheoverlap. The subspace
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mining problem has wide applications, especially with data having ordinal/nominal
values, e.g., datasets found in bioinformatics, intrusietection, etc.

In this paper, we tackle the problem of finding statisticaltyeresting’ subspaces in
a high dimensional dataset using an algorithm called SCH{Siypport andChernoff-
Hoeffding bound-basetinterestingSubspaceMiner). We use the Chernoff-Hoeffding
bound to prune the search for interesting subspaces, adinewrfunction of the number
of dimensions in which the subspace is constrained. We usstigal representation of
the dataset and capitalize on various advances made ingtenising. We use a depth-
first search with backtracking to find maximal interestinpspaces. We finally test our
algorithm on a wide array of high-dimensional datasets.

2 Related Work

Let A = {41, As, ..., Ay} be the set of dimensions. Each dimensibrhas a totally
ordered and bounded domain. Theéh= A; x As x ... x Ay is the high-dimensional
space. The inpub B, is a set ofn. points, DB = {p;|i € [1,n],p; € S}}. We partition
S into non-overlapping rectangular units, obtained by parting each dimension intd
intervals of equal width.

Definition 1: A subspace is an axis-aligned hyper-rectanilgh1] x [l2, ho] X ... X
[l4, ha], wherel; = (aD;) /&, andh; = (bD;)/&, a,b are positive integers, and < b < &

If h; —1; = D;, the subspace is unconstrained in dimengiamose range is given as
D;. A m-subspace is a subspace constrained iimensions, denoted &5,,.

Subspace clustering methods may be classified into two raségaries: density-based
and projected clustering.

Density-based Clustering: Agrawal et al. [4], proposed CLIQUE, which discretizes the
domain of each of the dimensions into a user-specified numbgrpf equal-width in-
tervals. This transformation from a possibly continuousa wiscrete space allows for an
analogy between frequent itemset mining [5] and subsparstering. The corresponding
intervals are then analogous to items and the points aregmad to a transaction. A-
subspace is analogous tdcatemset. They ussupport(the fraction of points that lie in
a subspace) to denote the density of a subspace; only thospages above a minimum
density threshold, are mined. Based on this definition of ‘dense’, it is triiiakee that, if
any (p + 1)-subspace is dense, thena$ubspaces enclosing it, are also dense. They first
find all dense 1-subspaces and using a breadth-first seterdtjviely find all dense sub-
spaces. In théh iteration, the dataset is scanned and the frequenciéeesét-subspaces,
for which there exist at least two den@e— 1)-subspaces (dense in the fiist 2 dimen-
sions), are updated. Using these frequencies, the desigespaces may be determined.
Using such a bottom-up Apriori-like [5] approach, they mirigher-dimensional ‘dense’,
hyper-rectangular subspaces. To prune their search ates fate, they use the minimum-
description length (MDL) principle as a heuristic, therelgking it an approximate search.
They then merge ‘dense’ subspaces sharing faces, and wsgngpalgorithms to mine the
minimal descriptions of the subspaces.

Instead of support, Cheng [10], proposed using entropy asasune of subspace in-
terestingness. Subspaces satisfying an entropy threghelchined. However, they do
not suggest a principled or intuitive way to set the entrdmgshold. Nagesh et al. in
MAFIA[20], partition each dimension into variable widthtarvals, based on the distri-
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bution of points. They first construct a very fine-grainedtdgsam for each attribute.
Non-overlapping windows of fixed bin sizg covering the histogram are then examined.
Each window is assigned a value, equal to the number of elsniethe most populous
bin init. Going from left to right, windows are merged if thaye withings (a user specified
parameter, typically 20%) of each other. The resultingrirgteis considered ‘dense’ if the
number of points in it exceeds the thresh@ldin)/D;, wheren is the number of points in
the dataset and is a user-specified parameter, called ¢thester dominance factoHere,
(an)/D; corresponds to the number of points expected to lie insidertterval having
a windows in thei-th dimension, which has range;. Using adaptive width intervals
minimizes rigidity of clusters obtained by CLIQUE. Therehimwever, no strong intuition
behind the selection of parameters 3, x.

Kailing et al. [18] suggest using a sample of the points indhtaset. They generate
dense subspaces enclosing each point of the sample if ddeeaobjecti.e., if it has more
thanMinPts, a user-specified threshold, points within a thresholdusdiThe subspaces
are then assigned a quality rating, which takes into acctienhumber of dimensions in
which the subspace is constrained and this rating is usediteegpower quality subspaces.
By providing a rating, it is only possible for the user to detme the relative interesting-
ness of a subspace w.r.t. another subspace. It is not eathefaser to know the absolute
interestingness of the subspace.

Projected Clustering: Aggarwal [2, 3] uses projective clustering to partition thetaset
into clusters occurring in possibly different subsets ahelnsions in a high dimensional
dataset. PROCLUS [2] seeks to find axis-aligned subspacesthsee stage approach.
First, a set oft cluster medoids are iteratively selected, without repteemeat, from the
dataset, using a greedy approach. Second, a CLARANS-d§ldfe hill-climbing tech-
nique is used to cluster the data. In each iteration, thesdata covered by spherds,
centered at medoidh,;. For eachn;, a set of dimension®),, is determined for which, the
points inL; show little variation. The dataset is then partitioned gshre nearest neighbor
algorithm, with Manhattan distance computed from medojdnly overD;. Finally, after
the average intra-cluster Manhattan distance stabil&ekjster refinement phase is used.
ORCLUS [3], finds arbitrarily oriented clusters by using a&at of the iterative agglomer-
ative hierarchical clustering. Initially, > & full dimensional points are randomly selected
as subspace centers. In each iteration using the nearghboeilgorithm, the distance of
each point in the dataset to ea¢hdimensional subspace is determined and the dataset is
partitioned. The eigenvectors corresponding to the sistalté, eigenvalues for the covari-
ance matrix for the points in each resulting partition ataired and using merging, the
number of clusters decreasesdy 1. Both the algorithms require the number of clusters
and the expected number of dimensions for each cluster topos. i

In DOC [21], Procopiuc et al. devise a Monte Carlo algoritton finding projective
clusters. They propose a mathematical formulation for thigon of optimal projective
cluster based on the density of the points in the subspatas ihtuition-wise ORCLUS-
like algorithm [9], Chakrabarti et al. search for local @ations in the data and perform
dimensionality reduction on the locally correlated clustef data individually.
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3 Interestingness Measure

Let X, be the random variable (RV) denoting the number of pointsgiven subspace
Sp. If the probability of finding no less than, points inS,, is bounded by a reason-
ably low, user-specified threshold probability.S, is considered to be interestidgi.e.,
Pr(X, > n,) < 7 implies thatS,, is an interesting subspace. Accordingly, we have

Definition 2: A subspace ifteresting if the number of points it contains is statisti-
cally significantly higher than that expected under the agstion that all dimensions are
independent and uniformly distributed.

It is obvious that a dataset that is scattered uniformly adépendently, spanning the
entire S, is of least interest from a clustering view-point, as th&@py is maximized.

If a subspace deviates significantly from the uniform disttion, then it is potentially
interesting. If n,, points are found i1$,,, CLIQUE considersS,, to be ‘dense’ ifn,, /n > s,
wheres is the user-specified support threshold. MAFIA consideesstlibspace ‘dense’ if
n,/n > aE[X,]. SUBCLU denotes a-hypersphere as dense, in that it contains a ‘core’
object, if its projected-neighborhood encloses the projections of more théain Pts
points.

In general, all density-based subspace finding algorithisesan interestingness thresh-
old functionthresh : ZT — R whereZ™ is the set of positive integers, and denotes the
number of constrained dimensions inandidatesubspace. The value tfresh(p) corre-
sponds to the interestingness threshold that must be edéedthe candidate subspace to
be called ‘dense’. For example, support based pruning ifQCIH, threshcrnique(p) =
s,Vp € [1,d], i.e., no matter what the number of constrained dimensibasaobspace, the
pruning threshold is a constant. This is counterintuitinghat asp increases, the volume
of the p-subspace decreases exponentially, and hence the expectder of points in it
should also decrease. This creates a bias towasidbspaces, whefe< d.

Thethresh function may be either constant (as in CLIQUE) or monotdhjidacreas-
ing or monotonically decreasing.

Lemma 1 (Effect of thresh on monotonicity):

If any given subspacé,;; C S is interesting, then evenysubspaces,,, which encloses
Sp+1 and is unconstrained in one of tife+ 1) constrained dimensions 6f,, 1, is always
interesting ifthresh(p + 1) > thresh(p),1 < p < d — 1, for interestingness threshold
functionthresh.

Proof: If Sp41is interesting,”’;—z+l > thresh(p+1). But,n, > n,., because,; C S,.
Thus, 22 > 2241 > thresh(p+1). If, thresh(p+1) > thresh(p), then™2 > thresh(p)
and we are guaranteed to find all interesting subsmces.

Lemma 2: For p=1...d, letthresh be monotonically increasing and lekreshs(p) =
thresh(r), wherer is the number of dimensions constrainedsin a maximally interest-
ing subspace undéhiresh. If S, C S, thenS,, is also interesting undeihreshs.

Proof: Since S, is interesting, thert= > thresh(r). Also, asS, C S,,1 < p <
r—1,n, > n,. Hence,"Tf > e > thresh(r) = thresha(p). Thus,S, is also interesting
underthreshs B

aTypically 7 is set toO(%) < 0.05, which is statistically significant
bSee Eq. 3 and following comment
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A consequence of the above lemmas is that it in order to finthallmaximal inter-
esting subspaces found byreshs, one must sethresh(1) to a very low value so that it
converges tahreshs. This causes generation of a number of candidate subspdiels w
do not yield maximal interesting subspaces but add to coatiputtime. Hence, it makes
little sense to have a monotonically increasing threshoitttion. Thethresh function
must be either constant or monotonically decreasing. Hewévhas been observed, that
in order to find small interesting subspaces having few gdimgide it, the constant sup-
port threshold function has to be set very low,which makdsgace mining very slow.
Hence, we propose a non-linear monotonically decreasimgltiold function, which does
not guarantee mining all interesting subspdtilst does mine in a more reasonable time.
The intuition behind why this might work, is that asincreases, the subspace becomes
constrained in more and more dimensions, making its volumedler and smaller. Hence
the threshold too, must decreasepaiscreases, for the enclosefl,( ;) and enclosingg,,)
subspaces to have comparable interestingness.

3.1 Chernoff-Hoeffding bound

We use the Chernoff-Hoeffding bound [11, 16] to bound thédathe distribution
of X, and measure the level of interestingness.Ylf ¢ = 1...n, are independently
distributed RV, with0 <Y; <1 andVar[Y;] < oo, thenfory =" | Y;,t > 0,

PrlY > E[Y] +nt] < e=2 1)

whereE[Y] = >""_, E[Y;] by linearity of expectation.

Given ap-subspaces,, let Y; correspond to the RV that théh point in DB, when
projected onto the set gf constrained dimensions &f,, lies within S,,. ThenY = X,
Using Eqg. (1) and for some reg) > 0,

Sy is interesting if Pr[X, > n,] < e~ < 7 2
whereE[X,] +nt, = n,, which implies that, = “z — 221 substituting, in the right

np  BE[Xp]

hand term of (2), we havefQ”(T g ) < 7 which on simplification gives,

ny _ E[X,) 11

> —In(= 3

n - n + 2n n(T) )
Thus, for gp-subspace to be interesting, (3) must hold. (3) makes norgsgun, other than
independence, about the comparative distribution. Hehcan be used to find interesting

subspaces in datasets, having non-uniform distributions.

Note that the interestingness measuve;esh(p) = XLy \/3=(n(%) is a non-

linear monotonically decreasing function in the number iofehsionsp, in which S, is
constrained. Also, note thatresh is analogous to the support and density threshold mea-
sures used to prune search in the CLIQUE [4] and MAFIA [20pathms respectively. In

comparison with CLIQUE, the terr s-1In(L) corresponds to minimum densityset by
the user. The interestingness threshold probabitijys€ems intuitively easier to set than

¢For monotonically decreasinthresh, the Apriori principle may not be applicable. Considé}jl =

"”% = thresh(p + 1). If thresh(p + 1) < thresh(p), then%" < thresh(p) and S is not interest-
ing althoughS,, 11 is.



SCHISM: A New Approach to Interesting Subspace Mining 143

s. The chief difference is the terlﬂf—”], which makes pruning conscious of the volume of
the subspace and hence conscious of the number of constthimensions of the subspace
on which it is being carried out. Also, the equivalence bemveand the term /5-in(1)
provides insight into setting of parametein that it should be inversely proportional to the
square root of the dataset size. In comparison with MAFI&,tBrmE[X,] corresponds
to aE[X,]. Thus, SCHISM inadvertently unifies ideas from both CLIQUE BIAFIA
Unlike earlier proposed interestingness measures [18]otfie gives the user a sense of
absolute interestingness.

Note that for somev € Z,1 < v < d, we haveE[X,] < 1, and thus—% ol

\/ﬁl”(%) s \/%ln(%). The threshold function thus converges to a constant when th

number of constrained dimensiops> v; analogous to minimum threshaidn CLIQUE.
To summarize,

E[X

1 1
threshscursm(d > p > v) = %ln(;)

From Lemma 1, fop > v, Sp41 is interesting implies thab), is interesting, as
SCHISM is similar to CLIQUE and uses support-based prunorgaf large part of the

subspace mining process. Note that this cons{égﬁgln ( ) varies inversely ag/n and

hencethreshscrrsy converges to a higher threshold for smaller datasets. $hisega-
tive result, in that for large datasets, we require a lowanprg threshold to achieve similar
interestingness. This is contrary to the way, most userdd\art a pruning threshold like
s and provides more motivation for our idea.

While threshscmrsa is constant forp > v, we can gain some improvements in
empirical results by changing the rate of changelineshscrrsa(p < v) to increase
the likelihood of monotonic search. We do so by trading offisdightness of the bound
by using a penalty term. If(p) is the penalty term, such thap € [1,d], f(p) < 1,
thene 2" < ¢~20/(% Using this in 2,Pr(X, > n,) < e 2®)% < 7. After
simplification,

. E[X,)] 1 1
threshSCHfsM(O<p<v)—m1n{u, p + an(p)ln (7_)}

The termu is used to upper bountreshscrrsa (1), which is empirically too large for
typical values of. Typical values off (p) are(a > v = f(p) < 1), (6771@2) The
last penalty term provides a parabolic as opposed to expiahdrop in the threshold gs
increases. Typically, = 0.05. In summary, we have

[X,,]

+/zrmin (5 )} ifp<wv
anin (7) ifpzv

min {u

(4)

threshscmrsm(p) =

If each dimension of thé-dimensional dataset is discretized igtequi-width intervals
andp(i, j) corresponds to the probability, that a point in the datasstih thejth interval
of theith dimension. IfS, = [I1, k1] x ... X [lg, hq] then,

J-Y Y

=1 j€[l;,hq]
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3.2 Under assumption of a multivariate uniform backgroursdrdbution

If we assume that each dimension in theimensional space is independent and uni-
formly distributed and discretized intplevels, then the probability that a point lies in a
specific interval of any dimension % Hence, the probability that a point lies in a spe-
cific p-subspace (assuming it is constrained to a single intemedch of the constrained
dimensions) is{%)P. Thus, the probability of finding,, points in any subspacs,, is dis-

tributed as per the binomial distribution with me&ifiX,,] = n(%)l’. Here,v = H‘;g((z))}

To mine more subspaces than those found by the support thdgsh in CLIQUE [4],

1 1 1
> —In(= 5
w2 gy gatn() (5)
Substituting typical values e.gr, = 107°,n = 10°,¢ = 10,v = 5in Eq. (5), we get

u > .0076. It is unusual to set to lower values for typical high-dimensional datasets, as
that would makeApriori-based search virtually impossible. Thus, usihgeshscprsa
helps mine for smaller subspaces than CLIQUE.

4 SCHISM Algorithm

A number of the subspace mining algorithms [4, 10, 20] usettbmwup, breadth-
first search. In contrast, SCHISM, which is based on the Gendligorithm that mines
maximal itemsets [13], uses a depth-first search with backing to mine the maximal
interesting subspaces. The main steps in SCHISM are shotig.irl; we first discretize
the dataset and convert it to a vertical format. Then we mirenhaximal interesting
subspaces. Finally, we assign each point to its clusteabml it as an outlier.

SCHISM (DB, s, &, 7):

/s is the minimum support threshold

/¢ is the number of intervals per dimension
/7 is the user-specified interestingness threshold
1. DDB = Discretiz DB, )

2. V. DB=HorizontalToVertical (DD B)
3. MIS =MineSubspaceél’ DB, s,&,T)
4. AssignPoints(D B, M 1.5)

Figure 1 The SCHISM Algorithm

‘ di do d3 d¢ ds ds dr dg
L -1 -1 -1 478 -1 673 774 -1
I, | -1 163 475 260 -1 -1 -1 786
Is | -1 949 -1 985 72 204 806 317

Table 1 Original subspaces
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DB | d; dsy ds dy ds dg dr ds

p1 | 755 689 306 482 838 657 743 980
p2 | 818 166 494 302 378 439 633 805
ps | 418 159 499 260 139 921 986 780
py | 833 173 484 236 948 17 647 781
ps | 264 960 465 985 70 209 782 309
ps | 991 972 118 986 72 209 804 341
py | 921 963 910 976 71 220 818 317
ps | 686 965 623 993 68 202 800 287
po | 448 146 605 205 984 423 654 983

Table 2 Original dataset: DB

| dy dy dy dy dy dy  dp dy
/-1 -1 -1 34 -1 56 67 -1
-1 11 24 32 -1 -1 -1 77
I5|-1 19 -1 39 40 52 68 73
Table 3 Discretized subspaces

DDB | d| d, d, d, d, d, d, d
P, | 7 16 23 34 48 56 67 79
p, | 8 11 24 33 43 54 66 78
Py | 4 11 24 32 41 59 69 77
p, | 8 11 24 32 49 50 66 77
P, | 2 19 24 39 40 52 67 73
P, | 9 19 21 39 40 52 68 73
. | 9 19 29 39 40 52 68 73
Py | 6 19 26 39 40 52 68 72
Py | 4 11 26 32 49 54 66 79

Table 4 Discretized dataset: DDB

Discretization: In SCHISM, we first discretize all points (figure 1, line 1). v&i the
original dataseD B, we divide each dimension infobins, and give each interval a unique
id (for example, the intervals in dimensiaely are labeled frond to ¢ — 1, those ford;
are labeled frong to 2¢ — 1, etc.). Consider the example datageB shown in Table 2,
generated by our synthetic data generator (see sectiombth ), = 9, £ = 10 andd = 8.
The seed subspaces used to gendrdbeare shown in Table 1.

Here—1 implies that the subspaces are unconstrained in that diorenghus,p, is
generated from subspade, pointsp., p3, p4 are generated fronk,, pointsps, pg, p7, Ps
are generated fronfs andpg is an outlier. Table 4 shows the discretized datd3étB3
obtained fromD B; the corresponding discretized subspaces are shown ie Babl

Data Transformation: The next step in SCHISM (figure 1, line 2) is to convert the seta
into a vertical tidset format [13], which lists for each sphase (initially a single interval)
Sy, the set of points that belong to it, i.e., the tidggt,). Using a vertical format dataset
gives us a number of advantages. Firstly, better memorigatiibn results from having
only the relevant subspaces in memory at a time, as oppostte thorizontal format
in which the entire dataset is scanned. Secondly, compstipgort of subspaces to be
merged via tidset intersections is very fast. Fig. 3 @fo= 1) shows the tidsets for the
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initial ‘interesting’ intervals. For example, for intedval, its tidset is given ag(11) =
{2,3,4,9}.

MineSubspacegV DB, &, 7):

1. FindIS; andIS, /[sortlS| as optimization
2. MIS-backtrack (¢, IS1, MIS,0,&,7)

3. returnM1IS

MIS-backtrack (S, Cp,, M1S,1,,T)
4. VS, € Cp
5 Spy1=5,US8;

6. Po1={S,€Cy|S, > S}

7. If MergeSubspace§/ IS, (Sp+1 U Pyi1)) return
8. Cpy1 =IS-candidate(Sy 1, Ppt1,1,,7)

9. IfCpyyisempty

10. If Sy+1 has enclosed no subspacelify S,

11. MIS = MISU S,

12.  elseMIS-backtrack (Sp11, Cpt1, MIS,p+1,€,7)

MergeSubspace@\/ 1S, Z,1)

13. Ifmaxs,enrs Sim(Zpi1,Sy) > p x min(f,[Z,41])
14, MIS=MIS - Sy

15. MIS=MISU(S;U(Zy11)

16. return true

17. return false

IS-candidate(S, 1, Ppi1,1,&,7)
18 Cp+1 = (b

19 VSy (S Pp+1

20.  t(S)) = t(Spr1) NE(S,)

21 1M S yresn(|st)

22. Cpy1 =Cpi1 U8y
23. returnCpq

Figure 2 Mining Interesting Subspaces

Mining Interesting Subspacesin SCHISM, interesting subspaces are mined (figure 1,
line 3), using a depth-first search with backtracking, alfmws to prune a considerable
portion of the search space. The pseudo-codéfareSubspaces is shown in Fig. 2.
The method first finds all interesting subspaces in difg ) and two dimensions/(Ss).
Next, we call the recursivi®l S- backt r ack procedure to mine the set of maximal inter-
esting subspaced/15).

M S- backt r ack accepts as input, a singbesubspace,,, and a set’,, of candidate
p-subspaces that can be used to constrain (or extgnd) an interval of another dimen-
sion. EachS,, € C, results in a potential neyp + 1)-subspace$,+1 = S, U S, (line 5),
for which we have to calculate the new candidate($gt; (line 8). We do this by using a
possibleset P, ; (line 6) of potential candidate subspaces, which are alutiprocessed
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subspaces i§, > S, in C,. If Cpy1 is empty (line 9), therb,; is potentially maximal;
it will be added toM IS if there is no maximal subspace that it encloses (lines 90411
Cp+1 is non-empty, then we recursively cdll S- backt r ack.

The call tol S- Candi dat e (line 8) constructs the new candidate gt ; for 5,41
for the next level. The basic idea is to intersect tidsef,nf; with every possible subspace
in P,41 (line 20). We keep only those subspace extensions thatlpasssh() function
(lines 21-22).

Typically, a depth-first search with backtracking produeesumber of subspaces,
which may overlap considerably, leading to redundant satesp To avoid this behav-
ior, we prune the search tree by usiMgr geSubspaces (line 7). If the subspace
Zp+1 = Spy1 U Py, resulting from constraining,; with all its remaining possible
intervals inP,4 1, is significantly similar (typically, we set the mergingéisholdp = 0.8)
to some knownS; € MIS (line 13), we replace; with a typically more constrained
subspace (lines 14-15%; U Z, 1. As p < 1, we may merge subspaces, which are con-
strained to adjacent intervals in a few dimensions, thuspssrsating for uniform width
intervals in each dimension. Th&m function (line 13) used to calculate the similarity
of two subspaced and B is given asSim(A, B) = Zle JaccardSimilarity(A;, B;),
where A;, B; are the sets of interesting intervals spanneddbhy3 in the i-th dimension

and JaccardSimilarity(X,Y) = {ﬁﬂﬂ For example for poinp, € DDB and seed

subspacd), (see Table 4 and 3 respectivelyim(p}, I}) = 2, as they are identically
constrained in the secondll) and third ¢4) dimensions.

19,39,40,52,68,73 5
6 =
° p
y
19,39,40,52,68
6
7 =5
8 p
Y
19,39.405
=4
7 p
/S
A
11,2432 19,39,40
3 5 _
4 6 p=3
7
A 8
1124 | | 19.30 A
2 5 _
3 6 p=2
4 7
) 8
1 19 24 39 40 52 32 68 73
2 5 2 5 5 5 3 6 5
3 6 3 6 6 6 4 7 6 _
4 7 4 7 7 7 9 8 7 p=1
9 8 5 8 8 8

Figure 3 Lattice of running example

Example: Let's consider how SCHISM works on our example datagét. Letu =
0.25,7 = 4/n = 0.44. Then,IS; = {11,19,24,32,39,40,52,68,73}. Likewise we
computel S,. The initial call toM S- backt r ack is with S, =, andC},, = I.S;, which
results in a recursive call &l S- backt r ack for each interval, with a new candidate set
Cp41. For example, the candidate-set idris given byC, = {24, 32, 39,40, 52, 68, 73},
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thus in the next level, we will try to extentil with 24,32, ... .73, and so on, recur-
sively. For our running example, whef) .1 = 11, S, = 24, thenS; = {11,24}. Also
t(Sp41) = {2,3,4,9}, andt(S,) = {2,3,4,5}, which givest(S,) = {2,3,4} (see Fig.

3). Asp = 1, we use the interestingness measure for pruning the sdarel21), i.e., the
second case in Equation 4. Withreshscprsa (1) = 0.21, ny /n = 3/9 = 0.33 > 0.22;
thus S is interesting, and we adzi to the candidate set. Proceeding in this manner, we
get the lattice shown in Fig.3. The rectangles shaded in@mayhe elements o/ 1.5.

AssignPoints(D B, M 1S):

1. for each poinp; € DB

2. Ifmax; Sim(p;, MI1S;) > ThresholdSim
3. pbi — MISargmaszim(Pi,MISj)

4. elsep; is an outlier

Figure 4 Assign Points

Assigning Points to Clusters:Based on the intervals to which each subspace is con-
strained, we can estimate discrete probability distrdnufunctions (p.d.f.) for each dimen-
sion for each mined subspace. If each dimension oftienensional dataset is discretized
into £ equi-width intervals, them(4, j) corresponds to the probability, that subspaces
constrained in thgth interval of theith dimension. Thusy: € [1,d], 2521 B(i,j) =

1.0. If b(2) is the number of intervals to whicB is constrained in dimension

Vi€ [1,d], B(i, j) = 0) if Bis (_:onstramed in dimensian ©)
0 otherwise

Let A correspond to th@-subspace surrounding a popt LetY andy be the RV
denoting the similarity and the true similarity betweémnd B, respectively.

The JaccardSimilarityover any dimension between two such subspaces, can be ex-
pressed as the dot products of their p.d.f.s in that dimensience,

d 3
Sim(A,B) =Y =Y _Y;, whereY; = > A(i, j)B(i, j)

i=1 j=1

Then,E(Y;) =1 x le) > @ :%

Y is then, the sum of Bernoulli RVs with meanE[Y] = g. Using Chernoff-Hoeffding
bounds again, ifPr[Y > y] < exp(—2dt?) < 7 for reasonably small user-specified
thresholdr, it implies that the similarity betweerd and B is unusually high and the
point in A is with high probability generated from the subspdteNow, exp(—2dt?) <

Timpliesthatt > /-5in (1). Substitutingt in y = E[Y] + dt = g + dt, we get

Fig. 1, line 4 of SCHISM assigns each point to the most simitaximal interest-
ing subspace (lines 2-3), or else labels it as an outliee (i Figure 4 shows these
steps. Additionally, we have to examine if the similaritytatistically significant by using
ThresholdSim computed above.

ThresholdSim = ¢ +/4In (}).
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5 Experiments

We perform tests on a range of synthetic high-dimensiontdsgés using our data
generator and a couple of real datasets. We evaluate SCH#SkHoN two metrics: i)
speed: the time taken to find the interesting subspaces iddtaset, and ii) accuracy:
measured in terms of entropy and coverage. For a clustéringntropyis defined as
E(C) = =3¢, (5 22, pijlog(pi;)), wherep;; = =2, C; is the jth cluster inC, n; is
the number of points id';, andn;; is the number of points assignedd, which actually
belong to subspacé The lower theE(C'), the better the clusteringCoverageis the
fraction of points inD B which are accurately labeled as not being outliers. Idghlyis
1.

5.1 Synthetic Data Sets

We generate synthetic datasets using our own data gene#atdr employs techniques
similar to those mentioned in [2, 3, 21]. We embechultivariate Gaussian subspaces in
a dataset of points andi dimensions. We first serially generate the subspace ceardrs
then generate points from the subspaces. Each dimensiosudispace is constrained,
with probability c. As some dimensions are unconstrained with a non-zero pildpa
the resulting subspace is as per Definition 1. If a subspagenistrained in a dimension,
the next subspace to be generated has the same dimensidraic@tswith probabilityo
and its mean is two standard deviations from the previouspade’'s mean. This ensures
that the subspaces have different volumes and they carapversome dimensions. If the
points are normally distributed in the subspaces, the atarkviation for each dimension,
for each subspace, is 20. Each point has integral coordimatie range [0,1000]. For
the constrained dimensions of subspace centers, the natediare chosen uniformly over
this range. Letc be the fraction of the points generated as outliers and &efrdction
of points generated for theth subspace embedded bg such thatr + Zle a; = 1.

In order that the number of points in the subspaces differuseimbalance parameter
k= Dol j.e., the ratio of they;s of the subspace with the most points to the subspace
with the'least points. An outlier has each dimension chosgfoumly in [0,1000]. The
points for each subspace are independently and normatiybdited about its center and
the coordinates for dimensions in which the center is untdedrare chosen uniformly in
[0,1000]. Thus, the subspaces generated in the datasetemted parallel to the axes. For
all experiments, unless otherwise mentioned, we set asngdeas to our data generator,
k =10, n = 1000, d = 50, ¢ = 0.5, 0 = 0.5, k = 4.0, = = 0.05. Also, we set support
thresholdu = 0.05, 7 = 1/n, £ = 10 as the parameters to SCHISM. Also, we use
f(p) = &. The unconstrained dimensions are Gaussian distributtrgt \wame standard
deviation chosen uniformly from [1,30] and mean chosenaunify in [0,1000].

Experiments were carried out on a Sun Sparc 650 MHz machm@ng on a Solaris
O/S with 256 MB RAM. Since we have the seed subspaces we céy eaaluate the
accuracy of SCHISM. We first mine the subspaces and parthiepoints in the space, so
that they either belong to some interesting subspace orateeglassified as outliers. Each
of the following graphs, unless otherwise mentioned, shibwssariation in performance,
as a measure of two evaluation metrics: execution time amerage (shown on y-axis),
as a parameter of either SCHISM or the synthetic datasetisdvéshown on x-axis)The
entropy for all these experiments is below 0.004 and hentshmwn This implies that
SCHISM mines very pure clusters from our synthetic datadelisally, the running time
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curve should be flat or linear and the coverage curve shouildbat 1.0.
5.1.1 Effect of varying dataset parameters

Effect of dataset size and dimensionalityn Fig. 5, it is evident that as the dataset size
increases, the coverage remains constant, while the mtiniie grows linearly.

Note that in Fig. 6, as the dimensionality of the datase&iases, the coverage remains
more or less constant, but the running time seems to grownextially initially, and then
grows linearly from dimensions 200-300. In the worst casis,dlgorithm has exponential
complexity in the number of dimensions, but in practice aswshhere, the DFS algorithm
coupled with the varying threshold function, significantlyines the search space.

Effect of subspace size and dimensionalityn Fig. 7, we observe the variation in cover-
age and running time, as the ratio= % increases from 2 to 12. We observe that
as the ratio increases, the coverage dips marginally anditimeng time remains constant.
The coverage decreases because the subspaces which eosia@tier number of points
have, on average, as large a volume as those containingea tarmber of points, leading
to a lower density. A smaller fraction of their enclosing spéces are likely to be identified
as ‘interesting’ and hence only a small fraction of theimpeiare detected as non-outliers,
as compared to when the ratio is not so large.

In Fig. 8, we observe the variation in coverage and runnimg tias the probability of
constraining a dimension in a subspacéncreases fronf.3 to 0.9. We observe that as
¢ increases, the running time remains constant but largetidres of the dataset are con-
strained to smaller volumes, making them more ‘interesing hence coverage improves
somewhat.

Performance on datasets with less dense subspadeshis experiment we run SCHISM
on Gaussian and hyper-rectangular datasets. We decreaskenbkity of the Gaussian
datasets by increasing the standard deviation of eachrearesi dimension in each sub-
space. For hyper-rectangular subspaces, each constdiinedsion is constrained to an
interval of width, chosen uniformly in [0.5w,1.5w]. Thu$et density is decreased by in-
creasing w; the volume of the subspace and keeping the nushpeints assigned to it is
the same.

From Fig. 9 and Fig. 10, it is clear that as density decre&@blISM’s performance
deteriorates. This is because a smaller percentage of ispace’s points tend to fall into
the same interval as that of the subspace center, as the e@hemreases. In such a case,
decreasing the number of intervals in the dimensg@m{ight help or we must search for
less ‘interesting’ subspaces, i.e., decrease

Effect of number of clusterk: Note from Fig. 5.1.1, that the running time remains
constant as the number of embedded subspag&scfeases, while coverage worsens after
k = 8 as some clusters become very small and hence not ‘integéstin

5.1.2 Effects of varying algorithm parameters
Effect of7: In Fig. 5.1.1, we decrease the user specified interestisgtmessholdr

from 10712 to 10725, and observe its effect on the coverage and running timee Natt
the coverage increases rapidly, implying thats the main parametewhich determines
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Figure 13 Effect of Figure 14 thresh: CLIQUE vs. SCHISM

how much of the search space is mined and hence running tiopes dapidly too. Our
experiments on the effect afon SCHISM performance (which are not shown due to lack
of space), indicate thathas a more precise control on pruning than

Effect of¢&:  From Fig. 5.1.1, we observe that, varying the number of vatisrinto
which each dimension is discretizeg),(has a small effect on SCHISM's performance
for a considerable range of values far This is because the tergnis incorporated into
threshscmsm- Outside this range howevef & 15), performance is severely degraded
as the interval size becomes so small that very few contangmpoints to be considered
‘interesting’.

Effect ofthresh() function on performance: Here we compare the performance of the
thresh() function given in Eq. 4, with that of CLIQUE on the synthetiatdsets. From
Fig. 5.1.1, we observe that as the density of the hypermgatar clusters dips due to in-
crease in the width of its constrained dimensions, the nmtiime of CLIQUEY increases
rapidly over that of SCHISM. Also, CLIQUE tends to split dess into smaller ones. Its
performance closely mirrors that of SCHISM for datasetsriwawell-defined distinct clus-
ters. However, when clusters overlap in a number of dimessiitne coverage and entropy
suffers. Agrawal et al. [4], have shown that CLIQUE perfotmetter than DBSCAN, SVD
and CLARANS and hence we have used it as our benchmark.

5.2 Real Data Sets

We apply SCHISM to two well researched datasets from diffedomains. The
PenDigits datasét[6] contains 7,494 16-dimensional vectors. 30 differentevs wrote
approximately 250 digits, sampled randomly from the digit[8,9] on a pressure-sensitive
tablet. Each vector corresponds to they) coordinates of 8 points, spatially sampled
from each of these handwritten digits. Note that the embgddbspaces, i.e., the digits 0-
9, overlap considerably in the 16-dimensional space. S®HIBtputs 128 subspaces in 4

dOur implementation of CLIQUE involves simply replacitlyreshsc i s With threshcrrqu e inour
implementation to test the significance of our threshold fionct
€See ftp://ftp.ics.uci.edu/pub/machine-learning-dasakfpendigits
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Class (& Cy | Cg Cy | Cs5 | Cs | Cr | Cy Cy
‘0’ 0 0 0 15 0 0 0 0 1
‘1 0| 272 0 0 0 0 0 4 9
2 0 2 0 0 2 1 0 0 11
‘3 0 7 0 0 0 0| 53| 43| 405
‘4 0 0| 38 0 0 1 0 3 6
‘5" | 322 0 0 0 0 0 6| 11 78
‘6’ 1 0| 11| 109 0| 78 4 1 9
7 1 74 0 0] 24| 13 0 0 1
‘8’ 22 0 0 0| 36| 14 1 0 2
‘9’ 0 11 3 0 0 0| 24| 15| 160

Class| Cig | C11 | Cia | Ci3 | Cia | Ci5 | Ci6 | Cir

‘0’ 0 0 0 0 0 0 0 0
‘1 6 39 24 0 0 3 1 0
‘2" | 142 | 284 | 56 0 0 7 0 0
‘3 0 0 0 0 0 0 52 0
‘4 0 0 0 80 82 0 0 0
‘5’ 0 0 0 0 0 0 2 0
‘6’ 3 0 0 9 31 0 0 0
7 0 0 1 0 0 16 0 94
‘8’ 0 0 5 0 0 24 0 8
‘9’ 0 1 0 3 2 0 33 0

Table 5 Confusion Matrix for PenDigits Data Set

seconds, of which the 17 clusters with the highest entrapieshown in the confusion ma-
trix in Table 5. It achieves a coverage of 69% and an entrofy385 (. = .01, 7 = 0.018).
CLIQUE achieves a coverage of 60.7% and an entropy of 0.4pproximately 4 seconds
too. As in DOC, ORCLUS, we provide a confusion matrix (Tablevéhich is interpreted
as follows: cell(z, j) of the matrix denotes the number of points having true das$ich
were clustered by SCHISM into subspgcédeally, each row and each column have only a
single non-zero entry implying E{)=0. Note that samples of the digi{8, 9} are both as-
signed by SCHISM to clusteis;, Cg, Cy due to their similarity in structure. The clusters
not shown typically have all their samples from the samet digss.

The other dataset is the gene expression data for the ydhsyde ', obtained for
2884 genes (rows) at 17 (columns) points in time. We obtamedmber of clusters of
which a few were highly populated and the others relativehpty. Ideally, clustering
gene expression data should produce clusters of genes att@cimilar in function. How-
ever, almost all the genes have multiple functions and hgeones cannot be labeled by a
single class. The highly populated clusters we mined usi@gISM, contained groups
of genes which are known to have strong similarity in termdusiction, e.g., out of
5 genes in our dataset known (see www.yeastgenome.org) itovblwed in ribonucle-
ase MRP activity, 4 (POP4,POP5,POP8,SNM1) are assignéa teaime cluster, 4 genes
(SEC7,AGE1,SFT1,COGS6) out of 6 involved in intra-Golginsport, are assigned to the
same cluster, etc.£(= 5,7 = 0.018). While SCHISM finds 59 such groups of genes

fSee http://arep.med.harvard.edu/biclustering/yeasimat
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which are clustered together in larger clusters, CLIQUEdindly 33, both doing so in
approximately 8.5 seconds.

While, we attempted to compare our algorithm performancé wiat of SUBCLU
[17], we found default parameter setting for SUBCLU to beatisactory and manual
setting to be extremely hard, as it took an unreasonablytiomeg(on the order of a number
of hours) to produce output for our synthetic and real dasas&he clusters produced
generally split the embedded clusters into distinct chsste

6 Conclusions

We define a new interestingness measure which providesubgsgplarantees to the
user about the interestingness of the subspaces repostedr aur definition of interest-
ing. We use the interestingness measure itself to prunesauc!s, as opposed to traditional
methods[22], which determine interestingness of pattaftes the search is completed,
making the process faster. We use an algorithm which resjp@eameters which are rel-
atively easy to set intuitively. These contributions casodbe applied to the problem of
finding interesting itemsets.
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