
D A T A M I N I N G

Scalable Feature Mining for
Sequential Data
Neal Lesh, Mitsubishi Electric Research Lab
Mohammed J. Zaki, Rensselaer Polytechnic Institute
Mitsunori Ogihara, University of Rochester

MANY REAL-WORLD DATA SETS
contain irrelevant or redundant attributes.
This might be because the data was collected
without data mining in mind or without a pri-
ori knowledge of the attribute dependences.
Many data mining methods such as classifi-
cation and clustering degrade prediction accu-
racy when trained on data sets containing
redundant or irrelevant attributes or features.
Selecting the right feature set not only can
improve accuracy but also can reduce the run-
ning time of the predictive algorithms and
lead to simpler, more understandable models.
Good feature selection is thus a fundamental
data-preprocessing step in data mining.

To provide good feature selection for
sequential domains, we developed Feature-
Mine, a scalable feature-mining algorithm that
combines two powerful data mining para-
digms: sequence mining and classification
algorithms. Tests on three practical domains
demonstrate that FeatureMine can efficiently
handle very large data sets with thousands of
items and millions of records.

Working in sequential
domains

Most feature-selection research has
focused on nonsequential domains. Here the

problem is to select an optimal feature sub-
set of size mfrom the full d-dimensional fea-
ture space, where ideally m¿ d. The selected
subset should maximize some optimization
criterion such as classification accuracy, or it
should faithfully capture the original data dis-
tribution. The subset search space has an
exponentially large number of features.

Instead of traditional nonsequential data,
we focus on sequential data, where a se-
quence of “events” represents each example.
Each event might be described by a set of
predicates; that is, we are dealing with cate-
gorical sequential domains. Examples of
sequential data include text, DNA sequences,
Web-use data, multiplayer games, and plan-
execution traces. In sequential domains, fea-
tures are ordered sets of partial event descrip-
tions. For example, a sequential feature that
describes a chess game is “Black moves a
knight, and then white moves a bishop to
square d6.” This feature holds in some chess
games but not in others, and thus might be

used to classify chess games into, for exam-
ple, ones played by experts versus ones
played by novices.

Selecting the right features in sequential
or temporal domains is even more challeng-
ing than in nonsequential data. The original
feature set is itself undefined; potentially, an
infinite number of sequences of arbitrary
length exist over d categorical attributes or
dimensions. Even if we restrict ourselves to
some maximum sequence length k, we have
potentially O(dk) subsequences over d
dimensions. The complexity is dd if we con-
sider the maximum subsequence length to be
d, as opposed to 2d in the nonsequential case.

Feature selection in sequential domains
aims to select the best subset of sequential
features out of the dk possible sequential fea-
tures (that is, subsequences) that can be com-
posed out of the d attributes for describing
individual events. We chose data mining
techniques because of the exponentially large
set of possible features. Alternatively, you

FEATUREMINE COMBINES SEQUENCE MINING AND

CLASSIFICATION ALGORITHMS TO EFFICIENTLY SELECT

FEATURES FROM LARGE DATA SETS.

48 1094-7167/00/$10.00 © 2000 IEEE IEEE INTELLIGENT SYSTEMS

could say that we are constructing new fea-
tures out of the primitives for describing
events. These new features augment the orig-
inal space’s dimensionality by effectively
pulling apart examples of the same class,
making them more easily distinguishable by
classification algorithms. Of course, con-
structing features out of primitives is equiv-
alent to selecting features from the space of
all combinations of those primitives.

The input to our system is a set of labeled
training sequences,and the output is a func-
tion that maps from a new sequence to a
label. In other words,we are interested in
selecting (or constructing) features for
sequence classification. To generate this
function,our algorithm first uses sequence
mining on a portion of the training data to
discover frequent and distinctive sequences.
It then uses these sequences as features to
feed into a classification algorithm to gener-
ate a classifier from the remainder of the data.

Previous research has used the rules pro-
duced by data mining algorithms to construct
classifiers primarily by ordering the rules into
decision lists1,2or by merging them into more
general rules that occur in the training data.3

In this article, we convert the patterns dis-
covered by the mining algorithm into a set of
Boolean features to feed into standard clas-
sification algorithms. The classification algo-
rithms,in turn,assign weights to the features,
which lets evidence for different features be
combined to classify a new example.

Poker and feature mining

A simple poker game will illustrate the
basic problem. Suppose we observe three
players with betting sequences and outcomes
such as

Example:P1 Bets $3,P2 Calls,P3 Raises $2,
P1 Raises $1,P2 Folds,P3 Calls ⇒ P1 wins

Example:P2 Passes,P3 Bets $1,P1 Folds,
P2 Raises $2,P3 Raises $2,P2 Calls ⇒ P3 wins

We want to learn a function that predicts who
is most likely to win given a betting se-
quence. This task resembles standard classi-
fication: we are given labeled training ex-
amples and must produce a function that
classifies new, unlabeled examples. Many
classifiers require, however, that examples
be represented as vectors of feature–value
pairs. This article concerns selecting features
to represent the betting sequences.

First,consider an obvious feature set. Let
N be the length of the longest betting se-
quence. We can represent betting sequences
with 3N features by generating a distinct fea-
ture for the person who made the ith bet,the
type of the ith bet,and the amount of the ith
bet,0 ≤ i ≤ N. However, this feature set leads
to poor classification,as we show later.

One problem with these features is that an
individual feature can express only that a par-
ticular, complete bidding sequence took
place, not that an interesting subsequence
occurred, such as

Feature:P1 Raises twice

Feature:P2 Folds and then P1 Raises $2

The first feature would be important if P1

tends to win when she raises twice. A classi-
fier could construct a Boolean expression out
of these features to capture the notion “P1

Raises twice.” However, the expression
would have N2 disjuncts,because we need a
disjunct for “P1 raises in the ith bet and in the
jth” for all i, j < N where i ≠ j. Considering
partial specifications is important because of
the difficulty of knowing in advance whether
“P1 raises twice”or “P1 raises by 2 and then
raises by 3” will be the more useful feature.

An alternative is to use a much larger fea-
ture set. If there are three players, four bids,
and five different amounts,then there are 4 ×
5 ×6 = 120 partial specifications of a bet,such
as “Someone bets 3.” We can chain partial
specifications together with an “and then”rela-
tion,as in “P1 raises and then someone bets 3.”
The number of such features of length K is
120K. However, this feature set is too large; sets
of 10,000 features are considered large for clas-
sification algorithms. Furthermore,as we men-
tioned previously, irrelevant or redundant fea-
tures can reduce classification accuracy.4

We adopt a middle ground between these
two extremes. FeatureMine searches through
the second, huge feature set and selects a sub-
set for classification.

Data mining for features

The formulation of our FeatureMine algo-
rithm involved specifying a language for fea-
tures that can express sequences of partial
descriptions of events (with gaps),such as “P1

raises and then in some later bid folds.” We
also had to determine the criteria for selecting
a subset of the features from the entire set that
can be expressed in our language.

A language for expressing sequences.We
adopted terminology that closely resembles
sequence-mining terminology.5 Let F be a
set of distinct features,each with some finite
set of possible values. Let I contain a unique
element for every possible feature–value pair.
A sequenceis an ordered list of subsets of I.
For example, if I = {A,B, C,…}, one exam-
ple sequence is AB→ A → BC. We denote a
sequence α as (α1 → α2 → … → αn), where
each sequence element α i is a subset of I. A
sequence’s lengthis n, and its width is the
maximum size of any α i for 1 ≤ i ≤ n. We say
that α is a subsequenceof β, denoted as α a
β, if integers i1 < i2 < … < in exist such that
α j ⊆ Βij for all α j. For example, AB→ C is a
subsequence of AB→ A → BC. Let H be a
set of class labels; c ∈ H is a label. An exam-
ple is a pair <α, c>. Each example has a
unique identifier eid, and each α i has a time
stamp at which it occurred. An example <α,
c> containssequence β if β a α.

Our input database D consists of a set of
examples. This means that the data we look at
has multiple sequences of sets of items. The
frequency of sequence β in D, denoted fr(β,
D), is the fraction of examples in D that con-
tain β. The confidenceof the rule β ⇒ c,
denoted conf(β,c,D), is the conditional prob-
ability that c is the label of an example in D
given that it contains sequence β. That is,

where Dc is the subset of examples in D
with class label c. A sequence is frequentif
its frequency is more than a user-specified
min_freqthreshold. A rule is strongif its con-
fidence is more than a user-specified
min_confthreshold. Our goal is to mine for
frequent and strong patterns.

conf c

fr

fr
cβ β

β
, ,

(,)

(,)
D D

D() =

MARCH/APRIL 2000 49

WE CONVERT THE PATTERNS

DISCOVERED BY THE MINING

ALGORITHM INTO A SET

OF BOOLEAN FEATURES TO

FEED INTO STANDARD

CLASSIFICATION ALGORITHMS.

Figure 1a shows a database of seven exam-
ples,four in class c1 and three in class c2. Of
course, more than two classes are possible.
We are looking for different min_freq
sequences on each class. For example,
although C is frequent for class c2, it’ s not
frequent for class c1. The rule C ⇒ c2 has a
confidence of 3/4 (0.75),while the rule C ⇒
c1 has a confidence of 1/4 (0.25).

A sequence classifier is a function from
sequences to class labels. To evaluate a clas-
sifier, we can use standard metrics such as
accuracy and coverage.

Here’s how frequent sequences β1, …, βn

can serve as features for classification. Recall
that the input to many standard classifiers is
an example represented as vector of fea-

ture–value pairs. We represent an example
sequence α as a vector of feature–value pairs
by treating each sequence βi as a Boolean fea-
ture that is true if and only if βi d α. For exam-
ple, suppose the features are f1 = A → D, f2 =
A→ BC, and f3 = CD. So,the sequence AB →
BD → BC would be <f1, true>, <f2, true>,
<f3, false>, and the sequence ABCD → B →
DE would be <f1, true>, <f2, false>, <f3,
true>. Features can “skip” steps:the feature
A → BCholds in AB → BD → BC.Figure 1b
shows the new data set created from the fre-
quent sequences of our example database.
Although we use all frequent sequences as
features in this example,generally we use only
a “good” subset of all frequent sequences as
features,as we describe next.

Selection criter ia for mining. We want to
find sequences such that representing exam-
ples with them will yield a highly accurate
sequence classifier. However, we do not want
to search over the space of all subsets of fea-
tures;4 we want instead to evaluate each new
sequential feature in isolation or by pairwise
comparison to other candidate features.

Heuristics.Certainly, the criteria for selecting
features might depend on the domain and the
classifier being used. We believe, however,
that these domain- and classifier-independent
heuristics are useful for selecting sequences
to serve as features:

• Features should be frequent.
• Features should be distinctive of at least

one class.
• Feature sets should not contain redundant

features.

The intuition behind the first heuristic is
simply that rare features are, by definition,
only rarely useful for classifying examples.
In our problem formulation, this heuristic
translates into a requirement that all features
have some minimum frequency in the train-
ing set. Because we use a different min_freq
for each class,patterns that are rare in the
entire database can still be frequent for a spe-
cific class. We ignore only those patterns that
are rare for any class.

The intuition behind the second heuristic
is that features that are equally likely in all
classes do not help determine the class to
which an example belongs. Of course, a con-
junction of multiple nondistinctive features
can be distinctive. In this case, our algorithm
prefers to use a distinctive conjunction as a
feature rather than a nondistinctive con-
junction. We encode this heuristic by requir-
ing that each selected feature correlate sig-
nificantly with at least one class in which it
is frequent.

The basis for our third heuristic is that if
two features are closely correlated, either of
them is as useful for classification as both
are together. As we show later, we can
reduce the number of features and the time
needed to mine for features by pruning
redundant rules. Besides wanting to prune
features that provide the same information,
we want to prune a feature if another feature
is available that provides strictly more infor-
mation. Let M(f, D) be the set of examples
in D that contain feature f. Feature f1 sub-
sumesfeature f2 with respect to predicting

50 IEEE INTELLIGENT SYSTEMS

A→C

0

0

0

0

0

1

1

A

0

1

1

1

1

1

1

A→A

1

1

1

0

1

0

0

B→A

1

1

0

0

1

1

0

B

1

1

1

1

1

0

0

AB

1

1

1

0

1

0

0

A→B

1

0

0

1

1

1

0

B→B

1

0

0

0

0

1

1

AB→B

1

0

0

0

1

1

0

C

1

0

0

1

0

1

1

New Boolean features
Class

c1

c1

c1

c1

c2

c2

c2

1

2

3

4

5

6

7

Ex
am

pl
es

EID

Item

B

A→B

B→A

B→B

AB→B

AB

A→A

100

75

75

75

75

100

100

 100A

 Percent

Item Percent

EID
Frequent sequences

7

min_freq (c2) = 67%
Class = c2

(a)

(b)

min_freq (c1) = 75%
Class = c1

A

C

A→C

67

67

100

4

3

2

1

A B

A B C

B

B

A C

A

B

A

A B

A

B

C

A C

A B

C

A

Items

A B

20

30

50

10

30

40

30

40

50
10

50
30

40

20

Event time

20

30

10

5

6

Class

c1

c1

c1

c1

c2

c2

c2

Figure 1. Two databases: (a) the initial version with seven examples in two classes; (b) a new version with Boolean features.

class c in data set D if and only if M(f2, Dc)
⊆ M(f1, Dc) and M(f1, D¬c) ⊆ M(f2, D¬c).
Intuitively, if f1 subsumes f2 for class c, then
f1 is superior to f2 for predicting c because f1
covers every example of c in the training
data that f2 covers and f1 covers only a sub-
set of the non-c examples that f2 covers. A
feature f2 can be a better predictor of class c
than f1 even if f1 covers more examples of c
if , for example, every example that f2 covers
is in c but only one-half the examples that f1
covers are in c. In this case, neither feature
subsumes the other.

Pruning rules.The third heuristic leads to
two pruning rules. The first is that we do not
extend (that is, specialize) any feature with
100% accuracy. Let f1 be a feature contained
by examples of only one class. Specializa-
tions of f1 might pass the frequency and con-
fidence tests in the definition of feature min-
ing but will be subsumed by f1. The following
lemma,which follows from the definition of
subsume, justifies this pruning rule:

Lemma 1: If fi a fj and conf(fi, c, D) = 1.0,then
fi subsumes fj with respect to class c.

Our next pruning rule concerns correla-
tions between individual items. Recall that
the examples in D are represented as a
sequence of sets. We say that AV B in exam-

ples D if B occurs in every set in every
sequence in D in which A occurs. The fol-
lowing lemma states that if A V B, any fea-
ture containing a set with both A and B will
be subsumed by one of its generalizations:

Lemma 2:Let α = α1 → α2 → ... → αn where
A, B ∈ α i for some 1 ≤ i ≤ n. If A V B, then α
will be subsumed by α1 → ... αi−1 → (αi − B) →
α i+1 … → αn.

We precompute the set of all A V B rela-
tions; during the search,FeatureMine imme-
diately prunes any feature that contains a set
with both Aand B. In “Empirical evaluation,”
we discuss why A V B relations arise and
show they are crucial for our approach’s suc-
cess for some problems.

Defining feature mining. We can now define
the feature-mining task. The inputs to the
FeatureMine algorithm are a set of examples
D and the parameters min_freq, maxw, and
maxl. The output is a nonredundant set of the
frequent and distinctive features of width
maxw and length maxl. Here’s the formal def-
inition of feature mining:

Given examples D and parameters min_freq,
maxw, and maxl, return feature set F such that
for every feature fi and every class cj ∈ H, if
length(fi) ≤ maxl and width(fi) ≤ maxw and fr(β,

Dcj
) ≥ min_freq(cj) and conf(β, cj, D) is sig-

nificantly greater than |D c|/|D|, then F con-
tains fi or contains a feature that subsumes fi with
respect to class cj in data set D (we use a chi-
squared test to determine significance).

Efficient featur e mining. FeatureMine is
based on the recently proposed Spade algo-
rithm for fast discovery of sequential pat-
terns.5 Spade is a scalable, disk-based algo-
rithm that can handle millions of example
sequences and thousands of items. To con-
struct FeatureMine, we adapted Spade to
search databases of labeled examples. Fea-
tureMine simultaneously mines the patterns
predictive of all the classes in the database.
Unlike previous approaches that first mine
millions of patterns and then apply pruning
as a postprocessing step, FeatureMine inte-
grates pruning techniques in the mining algo-
rithm. This lets it search a large space where
previous methods would fail.

FeatureMine uses the observation that the
subsequence relation d defines a partial
order on sequences. If α a β, we say that α
is more general than β or that β is more spe-
cific than α. The relation d is a monotone
specialization relationwith respect to the fre-
quency fr(α, D); that is, if β is a frequent
sequence, all subsequences α d β are fre-
quent. The algorithm systematically searches

MARCH/APRIL 2000 51

{ }

1 2 3 6 754
c1 c1 c1 c1 c2 c2 c2

EID

Class

4

2

4

1 0

3

0

3

0

4Frequency(c1)

Frequency(c2)

Class index table Frequency table

3

Frequent sequence lattice

3 3 4

B

34

44

Event BEvent A

EID
1

2
2

3
3
4
4

1

5
5

6

EID
1

2

3
4
4

1
1

2

5

Original ID-list database

A B

Suffix-joins on ID-lists

EID
1
2
4

AB→B

EID
1
2
2
3
4
4

A→B

EID
Event
time
10
20
30

B→B

2
1
1

4 30

A→B B→B AB→B

10

40

20
30

30
10
40
30

10
50

30

Event
time

10
20

30
30
50

50
30
30

10

Event
time

10
20
30
10
30
40

Event
time

30
30

10

Event
time

AB→B

A→A B→A B→BA→BAB

A

A→C

C

Intersect A→B and B→B

Intersect A and B

{ }

Figure 2. A frequent-sequence lattice and frequency computation for the database in Figure 1a.

the sequence lattice spanned by the subse-
quence relation, from general to specific
sequences,in a depth-first manner. Figure 2
shows the frequent sequences for our exam-
ple database.

Frequency computation.FeatureMine uses a
vertical database layout that associates with
each item X in the sequence lattice its idlist,
denoted L(X). The idlist is a list of all exam-
ple eids and event-time pairs containing the
item. Figure 2 shows the idlists for all items
A and B. Given the sequence idlists,we can
determine the support of any k-sequence by
simply intersecting the idlists of its lexico-
graphically last two (k − 1)-length subse-
quences. A check on the resulting idlist’s car-
dinality tells us whether the new sequence is
frequent.

Intersections come in two types:temporal
and equality. For example, Figure 2 shows
the idlist for A → B obtained by performing
a temporal intersection on the idlists of Aand
B—that is, L(A → B) = L(A) ∩t L(B). Fea-
tureMine does this by determining if, within
the same eid, A occurs before B, and listing
all such occurrences. On the other hand, we
obtain the idlist for AB → B by an equality
intersection—that is, L(AB → B) = L(A →
B) ∩eL(B → B). Here we check to see if the
two subsequences occur in the same eid at
the same time. (For additional details,see the
article by Mohammed Zaki.5)

We also maintain the class index table (see
Figure 2),which indicates the classes for
each example. Using this table, we can deter-
mine a sequence’s frequency in all the classes
at the same time. For example, A occurs in
eids {1,2,3,4,5,6}. However, eids {1,2,3,
4} have label c1 and {5,6} have label c2. So,
the frequency of A is four for c1 and two for
c2. The frequency table (see Figure 2) shows
the class frequencies for each pattern.

To use only a limited amount of main
memory, FeatureMine breaks up the se-
quence search space into small,independent,
manageable chunks that can be processed in
memory. The algorithm accomplishes this
through suffix-based partitioning. Two k-
length sequences are in the same equivalence
class or partition if they share a common (k
− 1)-length suffix. The partitions, such as
{[A], [B], [C]}, based on length-one suffixes
are parent partitions. Each parent partition
is independent in that it has complete infor-
mation for generating all frequent sequences
that share the same suffix. For example, if a
class [X] has the elements Y→ Xand Z→ X,
the only possible frequent sequences at
the next step are Y → Z → X,
Z → Y→ X, and (YZ) → X. No other item Q
can lead to a frequent sequence with the suf-
fix X, unless (QX) or Q → X is also in [X].

Feature enumeration.FeatureMine processes
each parent partition in a depth-first manner,
as Figure 3 shows. The input to the procedure
is a partition, along with the idlist for each of
its elements. The algorithm generates fre-
quent sequences by intersecting the idlists of
all pairs of sequences in each partition and
checking the cardinality of the resulting idlist
against min_sup(ci). The sequences found to
be frequent for some class ci at the current
level form partitions for the next level. This
process repeats until FeatureMine has enu-
merated all frequent sequences.

Integrated constraints.The Rule-Prunepro-
cedure eliminates features based on our two
pruning rules and based on length and width
constraints. While we must test the first prun-
ing rule each time we extend a sequence with
a new item,FeatureMine uses a very efficient
one-time method for applying the AV B rule.
We first compute the frequency of all length-

two sequences. If P(B|A) = fr(AB)/fr(A) = 1.0,
then A V B, and we can remove ABfrom the
suffix partition [B]. This guarantees that AB
will never appear in any set of any sequence.

Empirical evaluation

We tested FeatureMine to see whether the
features it produces would improve the per-
formance of the Winnow6 and Naive Bayes7

classification algorithms.
Winnow is a multiplicative weight-updat-

ing algorithm. We used a variant of Winnow
that maintains a weight wi,j for each feature
fi and class cj. For an example, the activation
level for class cj is

where xi is 1 if feature fi is true in the exam-
ple, or 0 otherwise. Given an example, Win-
now outputs the class with the highest acti-
vation level. During training, Winnow
iterates through the training examples. If
Winnow’s classification of a training exam-
ple does not agree with its label, Winnow
updates the weights of each feature fi that was
true in the example:it multiplies the weights
for the correct class by some constant α > 1
and multiples the weights for the incorrect
classes by some constant β < 1. In our exper-
iments,α = 1.1 and β = .91. Learning is often
sensitive to the values of α and β; we chose
our values based on what is common in the
literature and a little experimentation.

Winnow can actually be used to prune
irrelevant features. For example, we can run
Winnow with large feature sets (say 10,000)
and then throw away any features that are
assigned weight 0 or near 0. However, this is
not practical for sequence classification
because the space of potential features is
exponential.

For each feature fi and class cj, Naive
Bayes computes P(fi|cj) as the fraction of
training examples of cj that contain fi. Given
a new example in which features f1, …, fn are
true, Naive Bayes returns the class that max-
imizes P(cj) × P(f1|cj) × ... × P(fn|cj). Even
though the Naive Bayes algorithm appears
to make the unjustified assumption that all
features are independent,it performs sur-
prisingly well, often doing as well as or bet-
ter than C4.5.8

The test domains.We chose these domains:

w xi j ii
n

,=∑ 0

52 IEEE INTELLIGENT SYSTEMS

Figure 3. The FeatureMine algorithm.

FeatureMine (D, min_freq(ci)):
P = { parent partitions, Pi}
for each parent partition Pi do Enumerate-Features(Pi)

Enumerate-Features(S):
for all elements Ai ∈ S do

for all elements Aj ∈ S, with j > i do
R = Ai ∪ Aj; L(R) = L(Ai) ∩ L(Aj);
if Rule-Prune(R, maxw, maxl) == FALSE and

frequency(R, ci) ≥ min_freq(ci) for any ci then
T = T ∪ {R}; F = F ∪ {R};

Enumerate-Features(T);

Rule-Prune(R, maxw, maxl):
if width(R) > maxw or length(R) > maxl) return TRUE;
if accuracy(R) == 100% return TRUE;
return FALSE;

random parity problems,forest fire planning,
and context-sensitive spelling correction.

Random parity problems.We first describe a
nonsequential problem on which standard
classification algorithms perform very
poorly. In this problem,every feature is true
in exactly one-half the examples in each
class. The only way to solve this problem is
to discover which combinations of features
are correlated with the different classes.

Intuitively, we construct a problem by
generating N randomly weighted metafea-
tures, each of which consists of a set of M
actual,or observable, features. The parity of
the M observable features determines
whether the corresponding metafeature is
true or false, and an instance’s class label is
a function of the sum of the weights of the
true metafeatures. So,to solve these prob-
lems,FeatureMine must determine which
observable features correspond to the same
metafeature. Discovering the metafeatures
with higher weights is more important than
discovering ones with lower weights. Addi-
tionally, to increase the problem’s difficulty,
we add irrelevant features—that is,ones that
have no bearing on an instance’s class.

More formally, the problem consists of N
parity problems of size M with L distracting,or
irrelevant,features. For every i, 0 ≤ i ≤ N, and
j, 0 ≤ j ≤ M, a Boolean feature Fi,j exists. Addi-
tionally, for every k, 0 ≤ k ≤ L, an irrelevant
Boolean feature Ik exists. To generate an
instance,we randomly assign each relevant and
irrelevant Boolean true or false with 50–50
probability. An example instance for N= 3,M
= 2,and L = 2 is (F1,1= true,F1,2= false,F2,1=
true, F2,2 = true, F3,1 = false, F3,2 = false, I1 =
true, I2 = false). There are N × M + L features
and 2N×M+L distinct instances. All possible
instances are equally likely.

We also choose Nweights w1, ...,wN, from
the uniform distribution between 0 and 1. We
credit an instance with weight wi if and only
if the ith set of M features has an even parity.
That is, an instance’s “score” is the sum of
the weights wi for which the number of true
features in fi,1, ...,fi,M is even. If an instance’s
score is greater than one-half the sum of all
the weights,

we assign the class label On to that instance;
otherwise, we assign Off. If M > 1, no fea-
ture by itself is indicative of On or Off, which

is why parity problems are so hard for most
classifiers.

FeatureMine essentially figures out which
features should be grouped together. For
example, features that FeatureMine produced
for this domain include (f1,1= true, f1,2= true),
and (f4,1 = true, f4,2 = false). We used a
min_freqof .02 to .05,maxl = 1 and maxw = M.

Forest-fire planning. FeatureMine’s original
task was plan monitoring in stochastic
domains. Probabilistic planners construct
plans with a high probability of achieving
their goal. The monitor’s task is to watch the
plan execute and predict whether the plan
will succeed or fail, to facilitate replanning.

Plan monitoring (or monitoring any prob-
abilistic process that we can simulate) is an
attractive area for machine learning because
an essentially unlimited supply of training
data exists. Unfortunately, because the num-
ber of possible execution paths increases
exponentially with the length of the plan or
process,we cannot consider all possible exe-
cution paths. However, we can generate arbi-
trary numbers of new examples with Monte
Carlo simulation. This reduces overfitting
because we can test our hypotheses on
“fr esh”data sets.

Given a plan and goal,to build a monitor,
we first simulate the plan repeatedly to gen-
erate execution traces. We label each execu-
tion trace with Success or Failure, depend-
ing on whether the goal is achieved in the
simulation. These execution traces become
the input to FeatureMine.

We constructed a simple forest-fire
domain based loosely on the Phoenix fire
simulator9 (execution traces are available by
e-mail,lesh@merl.com). We use a grid rep-
resentation of the terrain. Each grid cell can
contain vegetation, water, or a base. Figure
4 shows example terrain. At each simula-
tion’s beginning, fire starts at a random loca-
tion. In each iteration of the simulation, the
fire spreads stochastically. The probability

of a cell igniting at time t is calculated based
on the cell’s vegetation, the wind direction,
and how many of the cell’s neighbors are
burning at time t − 1. Additionally, the sim-
ulation uses bulldozers to contain the fire.
For each example terrain,we hand-designed
a plan for bulldozers to dig a fire line to stop
the fire. A bulldozer’s speed varies from sim-
ulation to simulation. Here’s part of an exam-
ple simulation:

(time0 Ignite X3 Y7), (time0 MoveTo BD1 X3
Y4), (time0 MoveTo BD2 X7 Y4), (time0
DigAt BD2 X7 Y4), …, (time6 Ignite X4 Y8),
(time6 Ignite X3 Y8), (time8 DigAt BD2 X7
Y3), (time8 Ignite X3 Y9), (time8 DigAt BD1
X2 Y3), (time8 Ignite X5 Y8), …, (time32
Ignite X6 Y1), (time32 Ignite X6 Y0), ….

We tag each plan with Success if no loca-
tion with a base has been burned in the final
state, or Failure otherwise. To train a plan
monitor that can predict at time k whether or
not the bases will ultimately be burned, we
include only events that occur by time k in the
training examples. Two features that Fea-
tureMine produced for this domain are

• (MoveTo BD1 X2) → (time6) and
• (Ignite X2) → (time8 MoveTo Y3).

The first sequence holds if bulldozer BD1
moves to the second column before time 6.
The second holds if a fire ignites anywhere in
the second column and then any bulldozer
moves to the third row at time 8.

Many correlations used by our second
pruning rule (described in “Selection crite-
ria for mining”) arise in these data sets. For
example, Y8 V Ignite arises in one of our
test plans in which a bulldozer never moves
in the eighth column.

For the fire data, 38 Boolean features
describe each event. So,we search over (38
× 2) maxw × maxl composite features. In these
experiments,min_freq= .2,maxw = 3, and
maxl = 3.

wii
N
=∑ 1

MARCH/APRIL 2000 53

Figure 4. An ASCII representation of several time slices of a simulation of the forest-fire domain. A + indicates fire;
b indicates a base; B indicates a bulldozer; d indicates where the bulldozer has dug a fire line; and w indicates water,
an unburnable terrain.

..........B.. ..++...B.. .+B+++.B++

..........+B....d.+ .+B+...d.+ ++d++..d++

.......... ..B.bb.B.. ++d....d.+ ++d....d++ ++d++++d++

....bb.... ..d.bb.d.. ++d.bb.d++ ++d.bb.d++ ++d.+b.d++

...Bbb.B.. ..wwwwww.. ++d.bb.d++ ++d.bb.d++ ++d.++.d++

..wwwwww.. ..wwwwww.. ++wwwwww++ ++wwwwww++ ++wwwwww++

..wwwwww.. ..wwwwww.. ++wwwwww++ ++wwwwww++ ++wwwwww++

...+www... ..++www... ++++www+++ ++++www+++ ++++www+++

.......... ..++++.... ++++++++++ ++++++++++ ++++++++++

.......... ..++++.... ++++++++++ ++++++++++ ++++++++++
time 1 time 10 time 20 time 30 time 40

Context-sensitive spelling correction.We
tested our algorithm on the task of correct-
ing spelling errors that result in valid words,
such as substituting therefor their.10For each
test, we chose two commonly confused
words and searched for sentences in the one-
million-word Brown corpus11 containing
either word. We removed the target word and
then represented each word by the word
itself, the part-of-speech tag in the Brown
corpus,and the position relative to the target
word. For example, the sentence “And then
there is politics”translates into (word=and
tag=cc pos=−2) → (word=then tag=rb pos=
−1) → (word=is tag=bez pos=+1) →
(word=politics tag=nn pos=+2).

Two features that FeatureMine produced
are (pos=+3) → (word=the),indicating that
theoccurs at least three words after the tar-
get word, and (pos=−4) → (tag=nn) →
(pos=+1), indicating that a noun occurs
within three words before the target word.
These features (for reasons not obvious to us)
correlated significantly with either there or
their in the training set.

The I versus medata set had 3,802 training
examples,944 test examples,and 4,692 fea-
ture–value pairs. The thereversus their data
set had 2,917 training examples,755 test
examples,and 5,663 feature–value pairs. The
thanversus thendata set had 2,019 training
examples,494 test examples,and 4,331 fea-

ture–value pairs. The you’reversus yourdata
set had 647 training examples,173 test exam-
ples,and 1,646 feature–value pairs. If N is
the number of feature–value pairs,we search
over an Nmaxw × maxl pattern space. In these
experiments,min_freq= .05,maxw = 3,and
maxl = 2.

Results.For each test in the parity and fire
domains,we generated 7,000 random train-
ing examples. We mined features from 1,000
examples,pruned features that did not pass a
chi-squared significance test (for correlation
to a class in which the feature was frequent)
in 2,000 examples,and trained the classifier
on the remaining 5,000 examples. We then
tested on 1,000 additional examples. The
results in Tables 1 and 2 for these domains
are averages from 25 to 50 such tests.

For spelling correction,we used all the
examples in the Brown corpus,roughly 1,000
to 4,000 examples per word set,split 80–20
(by sentence) into training and test sets. We
mined features from 500 sentences and
trained the classifier on the entire training set.

Table 1 shows that the features produced
by FeatureMine improved classification per-
formance. We compared using the feature
set produced by FeatureMine with using
only the primitive features themselves—that
is, length-one features. In the forest-fire
domain,we also evaluated the feature set
containing a feature for each primitive fea-
ture at each time step (this is the feature set
of size 3N described in “Poker and feature
mining”). Both Winnow and Naive Bayes
performed much better with the features pro-
duced by FeatureMine. In the parity exper-

54 IEEE INTELLIGENT SYSTEMS

Table 2. The number of features that FeatureMine considered and returned.

FEATURES

EXPERIMENT EVALUATED SELECTED

Random parity, 7,693,200 196
N = 10, M = 4, L = 10

Forest fire planning, 64,766 553
time = 10

Spelling correction, 72,264 318
there vs. their

Table 3. The running time and nodes visited for FeatureMine with and without A V B pruning. The results are from one data set for each example. “All pruning” means
both pruning rules were applied.

CPU SECONDS FEATURES EXAMINED

EXPERIMENT NO PRUNING A V B PRUNING ALL PRUNING NO PRUNING A V B PRUNING ALL PRUNING

Random parity 320 337 337 1,547,122 1,547,122 1,547,122
Forest fire planning 5.8 hours 560 559 25,336,097 511,215 511,215
Spelling correction 490 407 410 1,126,114 999,327 971,085

Table 1. The average classification accuracy using different feature sets to represent the examples. TF indicates features obtained by the times × features approach, and FM
indicates features produced by FeatureMine. FeatureMine produced the most accurate features. The standard deviations are in parentheses following each average, except for the

spelling problems, for which we used only one test and training set.

EXPERIMENT WINNOW WINNOWTF WINNOWFM BAYES BAYESTF BAYESFM

Random parity
N = 5, M = 3, L = 5 .51 (.02) N/A .97 (.03) .50 (.01) N/A .97 (.04)
N = 3, M = 4, L = 8 .49 (.01) N/A .99 (.04) .50 (.01) N/A 1.00 (0)
N = 10, M = 4, L = 10 .50 (.01) N/A .89 (.03) .50 (.01) N/A .85 (.06)

Forest fire planning
Time = 5 .60 (.11) .65 (.12) .79 (.02) .69 (.02) .72 (.02) .81 (.02)
Time = 10 .60 (.14) .77 (.07) .85 (.02) .68 (.01) .68 (.01) .75 (.02)
Time = 15 .55 (.16) .74 (.11) .89 (.04) .68 (.01) .68 (.01) .72 (.02)

Spelling correction
Their vs. there .70 N/A .94 .75 N/A .78
I vs. me .86 N/A .94 .66 N/A .90
Than vs. then .83 N/A .92 .79 N/A .81
You’re vs. your .77 N/A .86 .77 N/A .86

iments, the mined features dramatically
improved the performance of the classifiers,
and in the other experiments,the mined fea-
tures significantly improved the accuracy
of the classifiers,often by more than 20%.

Table 2 shows the number of features eval-
uated and the number returned, for three
problems. For the random-parity problem,
there were 100 million possible features.
(There are 50 Boolean features,giving rise
to 100 feature–value pairs. We searched to a
depth of four because M = 4.) However, the
pruning rules implicitly rejected most.

Table 3 shows the A V B pruning rule’s
impact. The results are from one data set
from each domain,with slightly higher val-
ues for maxl and maxw than in the previous
experiments. The pruning rule did not always
improve mining time, but it made a tremen-
dous difference in the forest-fire problems,
where the same event descriptors often
appear together. Without A V Bpruning, the
forest-fire problems are essentially unsolv-
able because FeatureMine finds more than
20 million frequent sequences.

A related task is to predict important
events in a continuous stream of observa-
tions,rather than in the sequences with clear
beginnings and ends that we considered here.
One example of such a task is to predict when
a computer server is likely to crash based on
observations of network traffic. Another way
in which this work could be extended is to
involve human experts in the selection of fea-
tures. That is, the features selected by our
algorithm could be viewed as suggestions to
be reviewed by a human user.

THE RESULTS SHOW THAT WE CAN
construct problems in which classifiers per-
form no better than random guessing using
the original features but perform with nearly
perfect accuracy when using the features pro-
duced by FeatureMine. More generally, this
work shows that we can apply classification
algorithms to domains that contain no obvi-
ous small set of features for describing exam-
ples but that contain a large space of combi-
nations of primitive features that probably
include some useful features. Future work
could involve applying these ideas to the
classification of, for example, images or
audio signals. We also plan to test the mined
features for clustering tasks. For background
on related research on feature mining, see the
sidebar.

Acknowledgment
Mitsunori Ogihara is supported in part by

National Science Foundation grants CCR-
9701911,CCR-9725021,and INT-9726724 and
by DARPA grant F30602-98-2-0133.

References
1. R. Segal and O. Etzioni,“Learning Decision

Lists Using Homogeneous Rules,” Proc.
AAAI ’94: 12th Nat’ l Conf. Artificial Intelli-
gence,AAAI Press,Menlo Park, Calif.,1994,
pp. 619–625.

2. B. Liu,W. Hsu,and Y. Ma,“Integrating Clas-
sification and Association Rule Mining,”
Proc. Fourth Int’l Conf. Knowledge Discovery
and Data Mining, AAAI Press,Menlo Park,
Calif., 1998,pp. 80–86.

3. W. Lee, S. Stolfo,and K. Mok,“Mining Audit
Data to Build Intrusion Detection Models,”
Proc. Fourth Int’l Conf. Knowledge Discovery
and Data Mining, AAAI Press,Menlo Park,
Calif., 1998,pp. 66–72.

4. R. Caruana and D. Freitag, “Greedy Attribute
Selection,” Proc. ML ’94: 11th Int’l Conf.
Machine Learning, Morgan Kaufmann,San

MARCH/APRIL 2000 55

Related work
Feature-subset selection has experienced a great deal of research,motivated by the observa-

tion that classifiers can perform worse with feature set F than with some F’ ⊂ F.1 Such algo-
rithms explore the exponentially large space of all subsets of a given feature set. In contrast,we
explore exponentially large sets of potential features but evaluate each feature independently.
The feature-subset approach seems infeasible for the problems we consider, which contain hun-
dreds of thousands to millions of potential features.

Andrew Golding and Dan Roth applied a Winnow-based algorithm to context-sensitive
spelling correction.2 They used sets of 10,000 to 40,000 features and either used all those fea-
tures or pruned some based on the classification accuracy of the individual features. They
obtained higher accuracy than we did. Their approach, however, involved an ensemble of Win-
nows,combined by majority weighting, and they took more care in choosing good parameters
for this specific task. Our goal was simply to demonstrate that the features produced by Fea-
tureMine improve classification performance.

Data mining algorithms have often been applied to classification.3 Bing Liu,Wynne Hsu,
and Yimin Ma built decision lists out of patterns found by association mining, which is the non-
sequential version of sequence mining. Additionally, while previous work has explored new
methods for combining association rules to build classifiers,the thrust of our work has been to
leverage and augment standard classification algorithms. Our pruning rules resemble ones used
by Richard Segal and Oren Etzioni,who also have employed data mining to construct decision
lists.4 Previous work on using data mining for classification has focused on combining highly
accurate rules. In contrast,our classification algorithms can weigh evidence from many
features that each have low accuracy to classify new examples.

Our work is close in spirit to that of Daniel Kudenko and Haym Hirsh,5 who also constructed
a set of sequential,Boolean features for use by classification algorithms. They employed
FGEN, a heuristic search algorithm that incrementally generalizes features to cover more and
more of the training examples,based on its classification performance on a holdout set of train-
ing data. In contrast,we perform an exhaustive search (to some depth) and accept all features
that meet our selection criteria. Also,we use a different feature language and have tested our
approaches on different classifiers.

References

1. R. Caruana and D. Freitag, “Greedy Attribute Selection,” Proc. ML ’94: 11th Int’l Conf.
Machine Learning, Morgan Kaufmann,San Francisco,1994,pp. 28–36.

2. A. Golding and D. Roth,“Applying Winnow to Context-Sensitive Spelling Correction,”
Proc. ML ’96: 13th Int’l Conf. Machine Learning, Morgan Kaufmann,San Francisco,
1996,pp. 180–190.

3. B. Liu, W. Hsu,and Y. Ma,“Integrating Classification and Association Rule Mining,”
Proc. Fourth Int’l Conf. Knowledge Discovery and Data Mining, AAAI Press,Menlo
Park, Calif., 1998,pp. 80–86.

4. R. Segal and O. Etzioni,“Learning Decision Lists Using Homogeneous Rules,” Proc.
AAAI ’94:12th Nat’ l Conf. Artificial Intelligence, AAAI Press,Menlo Park, Calif., 1994,
pp. 619–625.

5. D. Kudenko and H. Hirsh,“Feature Generation for Sequence Categorization,” Proc.
AAAI ’98:15th Nat’ l Conf. Artificial Intelligence, AAAI Press,Menlo Park, Calif., 1998,
pp. 733–739.

Francisco,1994,pp. 28–36.

5. M.J. Zaki, “Ef ficient Enumeration of Fre-
quent Sequences,” Proc. CIKM ’98: Seventh
Int’ l Conf. Information and Knowledge Man-
agement, ACM Press,New York, 1998,pp.
68–75.

6. N. Littlestone, “Learning Quickly When
Irrelevant Attributes Abound:A New Linear-
Threshold Algorithm,” Machine Learning,
Vol. 2,No. 4,1987,pp. 285–318.

7. R.O. Duda and P.E. Hart, Pattern Classifica-
tion and Scene Analysis, John Wiley & Sons,
New York, 1973.

8. P. Domingos and M. Pazzani,“Beyond Inde-
pendence:Conditions for the Optimality of
the Simple Bayesian Classifier,” Proc. ML
’96: 13th Int’l Conf. Machine Learning, Mor-
gan Kaufmann,San Francisco,1996, pp.
105–112.

9. D.M. Hart and P.R. Cohen,“Predicting and
Explaining Success and Task Duration in the
Phoenix Planner,” Proc. First Int’l Conf. Arti-
ficial Intelligence Planning Systems, AAAI
Press,Menlo Park, Calif.,1992,pp. 106–115.

10. A. Golding and D. Roth,“Applying Winnow
to Context-Sensitive Spelling Correction,”
Proc. ML ’96: 13th Int’l Conf. Machine
Learning, Morgan Kaufmann,San Francisco,
1996,pp. 180–190.

11. H. Kucera and W.N. Francis,Computational
Analysis of Present-Day American English,
Brown Univ. Press,Providence, R.I., 1967.

Neal Leshis a research scientist at the Mitsubishi
Electric Research Lab. His research interests focus
on plan recognition, collaborative planning, and
probabilistic-inference tasks. He received his BS
in computer science from Brown University and
his PhD in computer science from the University
of Washington. Contact him at MERL,201 Broad-
way, Cambridge, MA 02139; lesh@merl.com.

Mohammed J. Zaki is an assistant professor of
computer science at Rensselaer Polytechnic Insti-
tute. His research interests focus on developing
efficient, scalable, parallel, and interactive algo-
rithms for data mining and knowledge discovery.
He received his BS in computer science from
Angelo State University and his MS and PhD in
computer science from the University of
Rochester. Contact him at the Computer Science
Dept., Rensselaer Polytechnic Inst.,Troy, NY
12180; zaki@cs.rpi.edu.

Mitsunor i Ogihara (also known as Ogiwara) is
an associate professor in,and the chair of, the
Computer Science Department at the University
of Rochester. His research interests are computa-
tional complexity, DNA computing, and data min-
ing. He received his BS, MS, and PhD in infor-
mation sciences from the Tokyo Institute of
Technology. Contact him at the Computer Science
Dept.,Univ. of Rochester, Rochester, NY 14627;
ogihara@cs.rochester.edu.

IEEE INTELLIGENT SYSTEMS

2000
Editorial
Calendar

computer.org/software

JAN/FEB — Cross-Pollinating Disciplines
Ideally, every engineering discipline should learn from each other’s strengths to minimize the
risk to public safety. However, specialization within each discipline often inhibits mutual
learning. This issue offers lessons the software industry can learn from other disciplines and
vice versa.

MAR/APR — Cobol
Now that Y2K preparations are over, what is Cobol’s role from here on? This issue will present
some innovative but practical answers, as well as leads on related tools.

MAY/JUN — Process Diversity
People who build software use a myriad of different approaches for development, from extreme
programming to CMM, depending on factors such as application domain, system size,
architecture, project size, reliability, and safety requirements. This focus looks at the diversity
range of approaches and where to get more information about each.

Requirements Engineering
This issue highlights the best papers from ICRE ‘99, contributions that address changes in
people’s expectations, in business practices, in social forces, in enabling technology
opportunities. The magazine will be bundled with the conference proceedings and distributed to
all attendees.

JUL/AUG — Corporate-Level Implementations of CMM
Only a few have made it to Level 5. Who are they? Where have they succeeded? Where do
they go from here? Is anything still missing?

Software Engineering in the Small
Small groups, especially those developing mass-market and Internet software products, rarely
work according to the published, formal methods. This issue deals with the particular needs of
small groups working on complex projects—realistic best practices, failure and success
stories, and helpful tools.

SEP/OCT — Viruses, Intrusion Detection, and Security
What are the big shops and government labs doing? What can all of us do to protect our
information and our organizations? This issue will also provide a full list of security products.

Human Factors
What is being done to make computers adapt to the needs of their human counterparts? How
can we change our systems to help our teams work better? What resources are available to
improve relations between users and their computers.

Estimation
What is the latest on software project estimation approaches, techniques, and tools? This issue
will cover today’s practices as well as research that might lead to tomorrow’s advances.

NOV/DEC — Why2K? Lessons Learned
We’ve had time to reflect, evaluate, and look ahead. What have we learned? Where do
similar dangers lie ahead?

Multisite/Multicultural Project Ware Stories
What works and what doesn’t when a team is distributed across time zones, continents, and
cultures?

