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MANY REAL-WORLD DATA SETS

contain irrelevant or redundant attributes.
This might be because the data was collected
without data mining in mind or without a prj-
ori knowledge of the attribute dependences.
Many data mining methods such as classifi-
cation and clustering degrade prediction accu-
racy when trained on data sets contain|ng
redundant or irrelevant attributes or featuregroblem is to select an optimal feature subdsed to classify chess games into, for exan
Selecting the right feature set not only caset of sizenfrom the fulld-dimensional fea-

improve accuracy but also can reduce the
ning time of the predictive algorithms an
lead to simpler, more understandable mod
Good feature selection is thus a fundamer
data-preprocessing step in data mining.

To provide good feature selection f
sequential domains, we developed Featu
Mine, a scalable feature-mining algorithm th
combines two powerful data mining par
digms: sequence mining and classificati
algorithms. Tests on three practical doma
demonstrate that FeatureMine can efficien
handle very large data sets with thousand
items and millions of records.

Working in sequential
domains

Most feature-selection research h
focused on nonsequential domains. Here

I Data

h Lab

FEATUREMINE COMBINES SEQUENCE MINING AND
CLASSIFICATION ALGORITHMS TO EFFICIENTLY SELECT
FEATURES FROM LARGE DATA SETS.

ple, ones played by experts versus one
uture space, where ideally< d. The selected played by novices.
dsubset should maximize some optimization Selecting the right features in sequentia
elsriterion such as classification accuracy, or ibr temporal domains is even more challeng
ntahould faithfully capture the original data dis-ing than in nonsequential data. The origing
tribution. The subset search space hag deature set is itself undefined; potentially, a
orexponentially large number of features. | infinite number of sequences of arbitrary
re- Instead of traditional nonsequential datalength exist oved categorical attributes or
atve focus on sequential data, where a s@imensions. Even if we restrict ourselves t
a-quence of “events” represents each examplsome maximum sequence lengthve have
orEach event might be described by a set gfotentially O(d¥) subsequences oved
inpredicates; that is, we are dealing with catedimensions. The complexity d if we con-
tigorical sequential domains. Examples |o$ider the maximum subsequence length to |
s ebquential data include text, DNA sequencesl, as opposed td'an the nonsequential case.
Web-use data, multiplayer games, and plan- Feature selection in sequential domain
execution traces. In sequential domains, feaims to select the best subset of sequent
tures are ordered sets of partial event desgcrifeatures out of thek possible sequential fea-
tions. For example, a sequential feature thatires (that is, subsequences) that can be co
describes a chess game is “Black movesmosed out of the attributes for describing
knight, and then white moves a bishop |tandividual events. We chose data mining
asquare d6.” This feature holds in some chegschniques because of the exponentially larg
tlgames but not in others, and thus might|bset of possible features. Alternatively, you
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could sg tha we ae constuacting nev fea
tures out of the pmitives br descibing
events.These ne feaures augment the igr
inal spaces dimensionality ¥ effectively
pulling apartt examples of the samdass,
making them mar easy distinguishéale by
classiication algorithms. Of couse con
stiucting feaures out of pmitives is equi-
alent to selectingeftures fom the space o
all combindions of those pmitives.

The input to our system is a set diéded
training sequenceand the output is a fung
tion tha maps from a nev sequence to &
label. In other wrds,we ae inteested in
selecting (or consticting) feaures br
sequence lassiication. To generte this
function, our algrithm first uses sequenc
mining on a paion of the taining daa to
discover frequent and distinate sequences
It then uses these sequenceseaiifes to
feed into alassifcation algorithm to gener
ate a dassifer from the emainder of the da.

Previous ieseath has used theiles po-
duced ly daa mining algrithms to constict
classifers pimarily by ordeting the ules into
decision list¥2or by meging them into mae
geneal rules thaoccur in the tmining daa 2
In this aticle, we cowvert the patems dis
covered by the mining algrithm into a set o'
Boolean éaures to €ed into standdrdas
sification algorithms.The dassification alg-
rithms,in tum, assign veights to thedaures,
which lets @idence or different feaures be
combined to lassify a nev example

Poker and feature mining

A simple poler game will illustrate the
basic poblem. Suppose & obseve thee

players with betting sequences and outcomesh” for alli, j < Nwherei # j. Consideing

sud as

Example:P; Bets $3,P, Calls, P; Raises $2,
P, Raises $1P, Folds,P; Calls0 P; wins

Example: P, PassesP; Bets $1,P; Folds,
P, Raises $2P; Raises $2P, Calls0] P;wins

We want to lean a function thepredicts vho

is most lilely to win gven a betting se
guenceThis task esemies standaf dasst

fication: we ae gven labeled taining -

amples and mst poduce a function tha
classifes nev, unlabeled gamples. Mag

classifers require, however, that examples
be epresented asectors of feaure—alue

pairs. This aticle concens selectingdaures

to represent the betting sequences.

First,consider an obous fedure set. Let
N be the length of the lorgt betting se
guenceWe can epresent betting sequence
with 3N feaures ly genesting a distinctéa
ture for the peson who made théh bet,the
type of theith bet,and the amount of théh
bet,0<i < N. However, this feaure set leads
to poor ¢assifcation, as we shav later.

One poblem with thesedaures is thaan
individual feaure can gpress ony} tha a par
ticular, complete biding sequence too
place not tha an inteesting subsequenc
occured sud as

Feaure: P; Raises twice

Feaure: P, Folds and then fRaises $2

WE CONVERT THE PATTERNS
DISCOVERED BY THE MINING
ALGORITHM INTO A SET

OF BOOLEAN FEATURES TO
FEED INTO STANDARD
CLASSIFICATION ALGORITHMS.

e

The first feaure would be impotant if P,
tends to win en sheaises twiceA classt
fier could constict a Booleanx@ression out
of these éaures to cature the notior'P,
Raises twicé However, the epression
would hare N2 disjuncts because & need a
disjunct br“P; raises in théh bet and in the

pattial specifcations is impotant because o
the dificulty of knawing in adrance vinether
“P, raises twice’dbr “P, raises ly 2 and then
raises ly 3” will be the moe useful égure.
An altenaive is to use a oth lamger fea
ture set. If theg ae thiee plyers, four bids,
and fve different amountghen thee ae 4x
5x 6 =120 paial specifcations of a betsut
as“Someone bets '3We can bain patial
speciications tayether with arfand thenrela:
tion,as in“P, raises and then someone béts
The rumber of sub feaures of lengthK is
120¢. However, this fedure set is too lage; sets
of 10,000 édures ae considezd lage for das
sification algprithms. Futhemore, as we men
tioned peviously, irrelevant or edundantéa
tures caneduce tassifcation accuagy.*

f

We adopt a midle gound betveen these
two extremes. EgureMine seathes though

2sthe seconghuge fedure set and selects a sub

set br dassifcation.

Data mining for features

The formulation of our FeaureMine alg-
rithm involved specifying a langga for fea
tures tha can &press sequences of fiat

e desciptions of &ents (with gps),sud as'P,

raises and then in somedabid Dlds” We

also had to detarine the dteria for selecting
a subset of thettures flom the entie set tha
can be gpressed in our langge.

A language for expressing sequenceyVe
adopted teaninology tha closely resemies
sequence-mining tarinology.® Let F be a
set of distinctéaures,eah with someihite
set of possile values. Letl contain a unique
element ér every possilte feaure—alue pair
A sequencés an odered list of subsets df
For example if 7={A,B,C,...}, one &kam
ple sequence &B - A - BC.We denote a
sequenceas @, — s —» ... —» Q,), where
ead sequence elemeatis a subset of. A
sequencelengthis n, and itswidth is the
maximum siz of ary a; for 1<i<n.We sy
that ais asubsequencef 3, denoted agr <
B, if integersiy <i, < ... <i, exist sud tha
a;0B; for all g. For xample AB - Cis a
subsequence &B - A - BC. LetH be a
set of ¢ass ldels;c 0 Hiis a ldbel. An exam
pleis a pair €1, ¢>. Eah example has a
unique identiier eid, and eah a; has a time
stamp awhich it occured An example <,
c> containssequenc@gif S < a.

Our input déebaseD consists of a set of
examplesThis means thidhe déa we look &
has nultiple sequences of sets of iterfibe
frequeny of sequenc@in D, denotedt (3,
D), is the faction of @amples infD tha con
tain 8. The conidenceof the wle 8 O c,
denotecton{, c, D), is the conditional mb-
ability that cis the ldel of an @ample inD
given tha it contains sequeng@ That is,

_ fr(B.Dy)

conf(B,c, D) E)

3where D, is the subset ofxamples inD

with class ldelc. A sequence ifrequentf
its frequeny is moee than a usespecifed
min_freqthresholdA rule isstrongif its con
fidence is moz than a usespecifed
min_confthreshold Our gpal is to mine ér
frequent and sting patems.
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- Freguent sequences
EID |Eventtime| Items | Class Class = ¢,
: 1 rg
10 B min_freq (c,) = 75%
Item Percent
1 20 B ¢
30 AB A 100
20 AC B 100
2 30 | ABC | ¢ A-A | 100
50 B AB 75
10 A
A-B 100
3 30 B ¢ BoA -
40 A BB 75
30 AB
AB-B 75
4 40 A ¢
Class = c,
50 min_freq (c,) = 67%
10 AB
5 c, Iltem Percent
50 AC
™ ) A 67
6 [0}
40 C 100
(@) 7 20 ¢ ¢ A-C 67
New Boolean features
EID A A-A B-A B AB A-B B-B AB-B C A-C Class
1 1 1 1 1 1 1 1 0 0 o
2 1 1 0 1 1 1 1 1 1 0 (o)
w 3| 1 0 1 1 0 1 0 0 0 0 o
@
g4/ 1 |2 |2 |1 |2 |21 1 ]o0o | 0]¢
K
H5l 1 1 1 1 1 0 0 0 1 1 c
6 1 0 0 0 0 0 0 0 1 1 c,
2] 0 0 0 0 0 0 0 0 1 0 c,
(b)

Figure 1. Two databases: (a) the initial version with seven examples in two classes; (b) a new version with Boolean features.

Figure 1a shars a déebase of seen ekam:
ples,four in dassc; and thee in ¢assc,. Of
course more than tvo dasses @ possite.
We ae looking br different min_freq
sequences on eacdass. Br example
althoughC is frequent ér dassc,, it's not
frequent ér dassc;. The uleC 0 c, has a
confidence of 3/4 (0.75hile the uleC O
¢, has a condlence of 1/4 (0.25).

A sequencelassifer is a function fom
sequences tdass ldels.To evalude a tas
sifier, we can use standhmetics sut as
accung and coerage.

Here's hav frequent sequencé, ..., 3,
can seve as édures br dassifcation. Recall
tha the input to may standad dassifers is
an xample epresented asector of £a

ture—alue pais. We represent anxample
sequence as a ector of Egdure—\alue pais
by treaing eat sequencg, as a Boolearetx

ture thais true if and ony if 5 < a. For exam:

ple, suppose thesktures aef; =A - D, f, =
A - BC, andf;=CD. So,the sequencaB -

BD -~ BCwould be 41, true>, <f2, true>,

<f3, false>, and the sequen@BCD - B -

DE would be 41, true>, <f2, false>, <f3,
true>. Feaures carf'skip” steps:the feaure
A - BCholds inAB — BD — BC.Figure 1b
shavs the nev daa set ceded from the fe-
quent sequences of ouxanple déebase
Although we use all fequent sequences &
fedures in this gample generlly we use oyl
a“good” subset of all quent sequences &
fedures,as ve desabe next.

Asis available thd provides stictly more infor-

asin D that contain eaure f. Fedure f; sub

Selection citeria for mining. We want to
find sequences shithd representing am-
ples with them will yield a higlyl accuete
sequencelassifer. However, we do not vant
to seach over the space of all subsets e&f
tures*we want instead tovaluae eat nev
sequentialéaure in isoldion or by pairwise
compaison to other candide fegures.

Heuristics.Cettainly, the citeria for selecting
feaures might dpend on the domain and the
classifer being usedWe believe, however,
that these domain- andassifer-independent
heuistics ae useful br selecting sequences
to sewe as édures:

e Fedures should be éguent.

¢ Feaures should be distinet of & least
one ¢ass.

¢ Fedure sets should not contagdundant
feaures.

The intuition behind therfst heuistic is
simply tha rare feaures ae, by defnition,
only rarely useful br dassifying &amples.
In our pioblem formulation, this heurstic
transldes into aequirement thaall fegures
have some miniram frequeng in the tain
ing set. Becauseawse a dferentmin_freq
for eat dass,patems tha are rare in the
entire ddabase can still bedquent ér a spe
cific dassWe ignoe onl those ptiems tha
are rare for ary class.

The intuition behind the second histic
is tha feaures tha are equal likely in all
classes do not help deteine the €ass to
which an &ample belongs. Of cose a con
junction of multiple nondistinctve feaures
can be distinctie. In this casgour algrithm
prefers to use a distinaté conjunction as a
fedure rather than a nondistinat¢ con
junction.We encode this heistic by requir
ing tha ead selectedddure corelate sig
nificantly with a least onelass in vhich it
is frequent.

The basisdr our thid heuistic is thd if
two feaures ae dosely corelaed, either of
them is as usefubf dassiication as both
are together As we shav later, we can
reduce the mmber of aures and the time
needed to mineof feaures ty pruning
redundantules. Besides anting to pune
fedures tha provide the same imfmation,
we want to pune a égure if anotheréaure

mation. LetM(f, D) be the set oh@mples

sumededure f, with respect to grdicting
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Intersect A~ Band B— B

Intersect A and B

Event A Event B AB-B
Event Event Event
EID | time EID | time EID | time
1 10 1 |10 10
1 30 1 |20 30
2 | 2 1 130 v 30
2 30 2 30 A-B B-B
3 10 2 50 Event Event
3 40 3 30 EID | time EID | time
4 30 4 30 1 10 1 10
4 40 4 50 2 20 1 20
5 10 5 10 2 30 2 30
5 50 3 10 4 30
4 40
Frequent sequence lattice Original ID-list database — -
Suffix-joins on ID-lists
B A-B B-B AB-B
EID 1 2 3 4 5 6 7 Frequency(c,) 4 4 4 3 3
Class | ¢, c, c, c, c, c, c, Frequency(c,) 2 1 0 0 0
Class index table Frequency table

Figure 2. A frequent-sequence lattice and frequency computation for the database in Figure 1a.

classcin daa setD if and ony if M(f,, D,)
O M(fy, Do) andM(fy, D-o) O M(f,, D-o).
Intuitively, if f; subsumes, for dassc, then
f,is supeior tof, for predictingc becausé,
covers every example ofc in the taining
data thd f, covers andf; covers only a sub
set of the nore examples thaf, covers. A
feauref, can be a better pdictor of ¢assc
thanf, even iff, covers moe examples ot
if, for exkample every example thaf, covers
is inc but only one-half the xamples thef;
covers ae inc. In this casgeneither gdure
subsumes the other

Pruning rules.The thid heurstic leads to
two pruning ules.The frstis thawe do not
extend (thais, specializ) ary feaure with
100% accuagy. Letf; be a édure contained
by examples of on} one ¢ass. Specializa
tions off; might pass the équeng and con
fidence tests in the deition of feature min
ing but will be subsumedyhf;. The Pllowing
lemmaywhich follows from the dehition of
subsumegjustifies this puning wle:

Lemma 1:1f f; < f;andconff;, ¢, D) = 1.0,then
fi subsumes with respect to lassc.

Our net pruning ule concens corela
tions betveen indvidual items. Recall tha
the examples inD are represented as
sequence of seldle sy tha A~ Bin exam

ples D if B occuss in every set in eery
sequence iD in which A occuss. The fol-
lowing lemma stees thaif A~ B, ary fea
ture containing a set with bothandB will
be subsumedybone of its gnealizaions:

Lemma2:Leta=a; - a, - ... » a,wher
A,B 0 a; for some ki <n. If A~ B, thena
will be subsumedyoa; - ...a-1 - (a;—B) -
divg ... = Up.

We precompute the set of éll~ Brela
tions; duing the seah, FeaureMine imme
diately prunes ay feaure thd contains a se
with bothAandB. In“Empirical evaluaion,’
we discuss Wy A ~ B reldions aise and
shaw they are cucial for our gproad’s sue
cess 6r some poblems.

Defining feature miningWe can nw defne
the feaure-mining taskThe inputs to the
FeaureMine algrithm ae a set of eamples
D and the pametes min_freq max,, and
max. The output is a nordundant set of the
frequent and distinaté feaures of width
max, and lengtimax. Here’s the brmal def
inition of feaure mining:

Given xkamplesD and paametes min_freq,
max,, andmay, retum feaure set’F suc tha
for every feaure f; and eery classc 0 H,if

D

length(f;) < max andwidth(f;) < max, and fr(,

D) = min_freq(c;) andconf(B, ¢;, D) is sig
nifiJcantly greder thanD |/|D|, then F con
tainsf; or contains adaure tha subsumegwith
respect to lassc in daa setD (we use alai-
squaed test to deterine signifcance).

Efficient featur e mining. FeaureMine is
based on thescenty proposed Spade ag
rithm for fast discoery of sequential pa
tems5 Spade is a scdite, disk-based algr
rithm tha can handle millions ofxample
sequences and thousands of itefiesscon
struct FeaureMine, we adated Spade to
seach daabases of laeled @amples. Ea
tureMine sinultaneoust mines the péems
predictive of all the tasses in the dabase
Unlike previous gproades thafirst mine
millions of pdatems and thengply pruning
as a postmrcessing sig FeaureMine inte
grates puning tetiniques in the mining atg
rithm. This lets it seath a lage space Wwere
previous methods wuld falil.

FeaureMine uses the obsation tha the
subsequenceeldion < defines a paial
order on sequences.df< 3, we sy tha a
is moe generl thangor tha Bis moe spe
cific thana. The eldion < is amonotone
specializéion relation with respect to the é
queng fr(a, D); tha is, if Bis a frequent
sequenceall subsequences < ( are fre-
quent.The algrithm system#cally seaches
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FegureMine (D, min_freqc)):
P = { parent partitions, P}
for each parent partition 2; do Enumera

Enumerate-Features(S):
for all elements A; [ S do
for all elements A; 00 S, with j> ido

R= A0 A; L(R) = L(A) n L(A);

if Rule-Prune(R, max,, max) ==

frequency(R, c;) = min_freq(c;) for any c; then

T=TO{R; F=FUO{RE
Enumerate-Features(T);

Rule-Prune(R, max,, max)):
if width(R) > max,, or length(R) > max))
if accuracy(R) == 100% return TRUE;
return FALSE;

te-Features(P;)

FALSE and

return TRUE;

Figure 3. The FeatureMine algorithm.

the sequence tice spannedythe subse
quence elation, from genenl to speciic
sequencesn a deth-first mannerFgure 2
shaws the fequent sequencesrfour exam
ple daabase

Frequeng computéion. FegureMine uses a
vertical daabase Igout tha assocites with
ead itemXin the sequencetkice itsidlist,
denoted((X). The idlist is a list of alleam
ple eids andent-time pais containing the
item. Hgure 2 shavs the idlists ér all items
A andB. Given the sequence idlistge can
detemine the suppadof ary k-sequenceyp
simply intersecting the idlists of its Xéco-
graphically last two (k — 1)-length subse
guencesA ched on the esulting idlists car
dinality tells us vinether the ne sequence is
frequent.

Intersections come in tatypestemposl
andequality For example Figure 2 shavs
the idlist or A - B obtained § performing
a tempoal intersection on the idlists @and
B—tha is, L(A — B) = L(A) n{ L(B). Fea
tureMine does thisypdetemining if, within
the same eidA occuss bebre B, and listing
all such occurences. On the other hawae
obtain the idlistér AB - B by an equality
intersection—thais, L(AB - B) = L(A -
B) ne L(B - B). Her we dhed to see if the
two subsequences occur in the same &i
the same timgFor adlitional detailssee the
article by Mohammed Zak®)

We also maintain thelass inde table (see
Figure 2),which indicaes the tasses dr
ead example Using this tale, we can deter
mine a sequencefrequeny in all the ¢asses
at the same timeFor example A occuss in
eids {1,2,3,4,5,6}. However, eids {1,2, 3,
4} have labelc, and {5,6} have labelc,. So,
the frequeng of Ais four for ¢, and two for
C,. Thefrequeng table (see kgure 2) shavs
the dass fequenciesdr ead patem.

To use ory a limited amount of mair
memoy, FeaureMine beaks up the se
quence seah space into smalihdependent,
manayeable chunks thacan be pocessed in
memoy. The algrithm accomplishes this
through sufix-based paitioning. Two k-
length sequenceseaain the same equilence
class orpartition if they shae a commonk
- 1)-length sufix. The patitions, suc as
{[A], [B], [C]}, based on length-one $xies
are parent patitions. Eat paent patition
is independent in thiait has complete irir-
mation for geneeting all frequent sequence
tha shae the same sfik. For ekample if a
class ] has the elemen¥ - XandZ - X,
the ony possilbe frequent sequences
the net stgp ae Y Z X,
Z - Y - X and Y2 - X. No other itenQ
can lead to a équent sequence with the su
fix X, unless QX) orQ — Xis also in K].

— —

Feaure erumeation. FeaureMine pocesses
ead paent patition in a dgth-first manner
as Rgure 3 shavs.The input to the mcedue
is a patition, along with the idlistér eat of
its elementsThe algrithm geneetes fre-
guent sequencey intersecting the idlists of
all pairs of sequences in gapatition and
cheding the cadinality of the esulting idlist
againstmin_suifc;). The sequencesiind to
d be frequent 6r some tassc; at the curent
level form patitions for the nat level. This
process epeds until FeaureMine has ea
merated all frequent sequences.

Integrated constaints. TheRule-Punepro-
cedue elimindes eaures based on our tw
pruning wles and based on length and wig
constaints.While we nust test theiffst prun-
ing rule eab time we extend a sequence wit
a nav item,FeaureMine uses aely efficient
one-time methoddr goplying theA~>Brule.
We first compute the égueny of all length-

two sequences. H(B|A) =fr(AB)/fr(A) = 1.0,
thenA~> B, and we can emore ABfrom the
suffix pattition [B]. This guaantees thaAB
will never gpear in ap set of ag sequence

Empirical evaluation

We tested BaureMine to see Wwether the
feaures it ppduces wuld impiove the per
formance of th&Vinnow® and Nave Bayes'
classifcation algorithms.

Winnow is a nultiplicative weight-updé
ing algorithm. We used aatiant ofWinnow
tha maintains a wightw;; for eab feaure
fiand dassg;. For an eample the actvation
level for dassg; is

3 oW

wherx; is 1 if feauref; is true in the gam-
ple, or 0 otherwiseGiven an gample Win-
now outputs the lass with the highest aeti
vation level. Duiing training, Winnow
iterates though the taining xamples. If
Winnow’s dassifcation of a taining exam-
sple does notgree with its ldel, Winnow
updaes the wights of ed feauref; tha was
true in the gample:it multiplies the veights
a for the corect dass ly some constard > 1
and multiples the veights br the incorect
classes ppsome constari< 1. In our e&per
fiments,a= 1.1 and3=.91. Leaning is often
sensitve to the alues ofa and3; we chose
our values based onhat is common in the
literature and a little xpetimentaion.

Winnow can actuail be used to pme
irrelevant fedures. for example we canun
Winnow with large feaure sets (sa10,000)
and then thow away ary feaures tha are
assigned wight 0 or near 0. Heever, this is
not practical br sequence lassiication
because the space of potenti@dttires is
exponential.

For eat feaure f; and dassc;, Naive
Bayes computes R|c;) as the faction of
training ekamples ot tha containf;. Given
a nav example in vhich feguresfs, ..., f,are
true, Naive Bayes etums the tass thamax
imizesP(c)) x P(f;|c;) x ... x P(fy|c;). Even
though the Naie Bayes al@rithm gppeas

tho male the unjustied assumption thall
fedures ae indeendentjt performs sur

h prisingly well, often doing as ell as or bet
ter than C4.5.

D

The test domainsWe chose these domains:
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random paty problems,forest fre planning
and contgt-sensitve spelling carection.

Random paty problemsWe first desdbe a
nonsequential mblem on which standad
classiication algorithms perbrm very
pootly. In this poblem, every fedure is tue
in exactly one-half the xamples in edt
class.The ony way to sole this poblem is
to discaover which combingions of eaures
are corelaed with the diferent dasses.

Intuitively, we constuct a poblem by
generting N randomy weightedmetata
tures ead of which consists of a set &f
actual,or obsevable, feaures.The paity of
the M obsevable feaures detemines
whether the caesponding meta&ture is
true or Blse and an instance'dass ldel is
a function of the sum of theeights of the
true metadaures. Soto sohe these pb-
lems, FeaureMine nust detemine which
obsevable feaures corespond to the sam
metakaure. Discovering the metadaures
with higher veights is moe impotant than
discorering ones with laver weights Addi-
tionally, to increase the mblem’s difficulty,
we adl irrelevant fegures—thais, ones tha
have no beang on an instance’'dass.

More formally, the poblem consists oN
paiity problems of sizM with L distracting or
irrelevant,fedures. for every i,0<i <N, and
j,0<j <M, aBooleanéaureF;; exists.Addi-
tionally, for every k, 0< k<L, an irelevant
Boolean éaure |, exists. To geneste an
instancewe randomy assign edcrelevant and
irrelevant Boolean tre or flse with 50-50
probability. An example instanceof N= 3,M
=2,andL=2is Fy,=true F, ,=falsgF, ;=
trug F,,= trug F3; = falsg F3 ;= falsg I, =
trug |, = false).There aeN x M + L fedures
and 2"M+L distinct instancesAll posside
instances arequaly likely.

We also booseN weightswy, ..., Wy, from
the unibrm distibution between 0 and Me
credit an instance with @ightw; if and only
if theith set oM fedures has amnven paity.
That is, an instance “score” is the sum of
the weightsw; for which the umber of tue
feaures inf; 4, ..., ; v is even. If an instance’
scoe is geder than one-half the sum of g
the weights,

Z i'ilwi

we assign thelass ldel On to thainstance;
otherwisewe assign df If M > 1, no fea

e Forest-fre planning FeaureMine’s oiiginal

lldomain based loosebn the Phoenixife

ture by itself is indicaive of On or Of, which

........................... B. ..++...B.. .+B+++.B++
.................... +B....d.+ .+B+. .. A+ ++d++. A+
.......... ..B.bb.B.. ++d....d.+ ++d....d++ ++d++++d++
...bb... ..d.bb.d.. ++d.bb.d++ ++d.bb.d++ ++d.+b.d++
. .Bbb.B. . WWWWWW . ++d.bb.d++ ++d.bb.d++ ++d.++.d++
. WWWWWW . . WWWWWW . +HWWWWWW++  ++WWWWWW++  ++WWWWWW++
. WWWWWW . . WWWWWW . . +HWWWWWW++  ++WWWWWW++  ++WWWWWW++
CAWWW. . C o HEWWW. .. ++++HWWWH++  ++H+HFWWWHH+ A WWWH
.......... R T B e S o i ko S S SR SR A
.......... R s I +H+++++++++ FHtrrbr++ bbb+
time 1 time 10 time 20 time 30 time 40

Figure 4. An ASCII representation of several time slices of a simulation of the forest-fire domain. A + indicates fire;
D indicates a base; B indicates a bulldozer; & indicates where the bulldozer has dug a fire line; and w indicates water,

an unburnable terrain.

is why paiity problems ae so hadl for most
classifers.

FedureMine essentiafifigures out vinich
feaures should be rguped tgether For
example feaures thaFeaureMine poduced
for this domain inlude §; ;= trug f; ,=true),
and €4, = true f;, = false).We used a
min_freqof .02 to .05max = 1 andnax, = M.

task was plan monitang in stohastic
domains. Pababilistic plannes constuct
plans with a high mbability of achieving
their gpal. The monitors task is to \atch the
plan eecute and mdict whether the plan
will succeed ordil, to facilitate replanning

Plan monitoing (or monitomg ary prob-
abilistic process thewe can siralate) is an
attractive aea br madine leaning because
an essentiayl unlimited suppy of training
daa eists. Unbrtunéaely, because theum-
ber of possile execution p#hs inceases
exponentialy with the length of the plan o
processye cannot consider all poskglexe-
cution pahs. Havever, we can gnegte arbi
trary numbes of nev examples with Monte
Cailo simulation. This reduces werfitting
because w can test our ypotheses on
“fresh”dda sets.

Given a plan andagl, to build a monitor
we first sinulate the planepededly to gen
erate execution tacesWe label eab execu
tion trace with Success offure, depend
ing on whether the gal is abieved in the
simulation. These gecution taces become
the input to EaureMine

We constucted a simple drest-ire

simulator® (execution taces ag available by
e-mail,lesh@mercom).We use agd rep-
resenttion of the terain. Eat grid cell can
contain \egetaion, water, or a baseFgure
4 shavs example terain. At ead simula-
tion’s bajinning, fire stats & a mndom loca
tion. In eat iteration of the sinulation, the

r

fire speads stdgasticaly. The pobability

of a cell igniting &timet is calculded based
on the cell$ vegetdion, the wind diection,
and hev mary of the cells neighbos ae
buring & timet — 1. Additionally, the sim
ulation uses blldozers to contain theiffe.
For eat example terain,we hand-designed
a plan br hulldozers to dig aife line to stop
the ire. A bulldozer’s speedaries from sim
ulation to sinulation. Hee’s pat of an eam
ple sinmulation:

(time0 Ignite X3v7), (time0 MoveTo BD1 X3
Y4), (time0 MoveTo BD2 X7Y4), (time0O
DigAt BD2 X7Y4), ..., (time6 Ignite X4Y8),
(time6 Ignite X3Y8), (time8 DigAt BD2 X7
Y3), (time8 Ignite X3Y9), (time8 DigAt BD1
X2 Y3), (time8 Ignite X5Y8), ..., (time32
Ignite X6Y1), (time32 Ignite X6r0), ....

We tag eat plan with Success if no loca
tion with a base has beearbed in theihal
stae, or Failure otherwiseTo train a plan
monitor tha can pedict & timek whether or
not the bases will ultintaly be lurned we
include ony events thaoccur ty timekin the
training examples.Two feaures tha Fea
tureMine poduced or this domain a

e (MoveTo BD1 X2) - (time6) and
e (Ignite X2) - (time8 MoveToY3).

The frst sequence holds iubdozer BD1
moves to the second column bef time 6.
The second holds if @é ignites agpwhere in
the second column and thenydmlldozer
moves to the thil row a time 8.

Many correlations used $ our second
pruning wle (desdbed in“Selection cite-
ria for mining”) afse in these da sets. Br
example Y8 ~> Ignite aises in one of our
test plans in Wwich a lulldozer never moves
in the eighth column.

For the fre dda, 38 Boolean éaures
descibe eab event. Sowe seath over (38
x 2) Ma% xmax composite éaures. In these
expeliiments,min_freq= .2, max, = 3,and
max = 3.
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Table 1. The average classification accuracy using different feature sets to represent the examples. TF indicates features obtained by the times x features approach, and FM
indicates features produced by FeatureMine. FeatureMine produced the most accurate features. The standard deviations are in parentheses following each average, except for the
spelling problems, for which we used only one test and training set.

EXPERIMENT Winnow WinnowTF WinnowFM Baves BavesTF BavesFM
Random parity
N=5 M=3,L=5 51(.02) N/A .97 (.03) 50 (.01) N/A .97 (.04)
N=3,M=4,1=8 .49 (.01) N/A .99 (.04) .50 (.01) N/A 1.00 (0)
N=10, M=4, L =10 50 (.01) N/A .89 (.03) 50 (.01) N/A .85 (.06)
Forest fire planning
Time=5 .60 (.11) 65 (.12) .79 (.02) .69 (.02) 72(.02) 81 (.02)
Time =10 .60 (.14) 77 (.07) .85 (.02) .68 (.01) .68 (.01) .75 (.02)
Time = 15 55 (.16) 74 (11) .89 (.04) .68 (.01) .68 (.01) 72(.02)
Spelling correction
Their vs. there .70 N/A .94 .75 N/A .78
| vs. me .86 N/A .94 .66 N/A .90
Than vs. then .83 N/A .92 .79 N/A 81
You're vs. your 77 N/A .86 77 N/A .86

Contet-sensitve spelling corection.We
tested our algrithm on the task of coect
ing spelling erors tha result in \alid words,
sud as substitutintherefor their.1° For eat
test, we dchose tvo commony confused
words and seahed br sentences in the one-
million-word Brown copust! containing
either word. We removed the taget word and
then epresented edcword by the word
itself, the pat-of-speeb teg in the Bown
corpus,and the positionalaive to the taget
word. For example the sentenceAnd then
there is politics"transldes into (vord=and
tag=cc pos=2) - (word=then tg=rb pos=
-1) - (word=is tagy=bez pos=+1)-
(word=politics tag=nn pos=+2).

Two fedures tha FeaureMine poduced
are (pos=+3)- (word=the),indicating tha
theoccus & least thee words after the tar
get word, and (pos=4) - (tag=nn) -
(pos=+1),indicaing tha a noun occly
within three words bebre the taget word.
These éaures (br reasons not atious to us)
correlaed signifcantly with eitherthere or
theirin the taining set.

Thel versusmedata set had 3,8024ining
examples944 test gamplesand 4,692éa
ture—\alue pais. Thethere versustheir data
set had 2,917 aining xamples,755 test
examplesand 5,663daure—\alue pais.The
thanversusthendata set had 2,0194ining
examples494 test gamplesand 4,331éa

Table 2. The number of features that FeatureMine considered and returned.

FEATURES
EXPERIMENT EVALUATED SELECTED
Random parity, 7,693,200 196
N=10,M=4,L=10
Forest fire planning, 64,766 553
time = 10
Spelling correction, 72,264 318

there vs. their

ture—alue pais. Theyou'reversusyour daa

set had 647 &éining examples;173 test gam

ples,and 1,646 édure—alue pais. If N is

the rumber of égure—\alue pais,we seath

over anN™® > Ma&% pattem spaceln these
expeiiments,min_freq=.05,max, = 3,and
max = 2.

Results.For ead test in the paty and ire
domainswe geneeted 7,000 andom tain-
ing examplesWe mined éaures fom 1,000
examplespruned eaures thadid not pass a
chi-squaed signifcance test @r corelaion
to a dass in vhich the Baure was frequent)
in 2,000 @amplesand tained the lassifer
on the emaining 5,000>@amplesWe then
tested on 1,000 aditional examples.The
results inTables 1 and 2dr these domains
are averages flom 25 to 50 suttests.

For spelling corection,we used all the
examples in the Bmwn copus,roughly 1,000
to 4,000 gamples per ward setsplit 80—20
(by sentence) into &ining and test seté/e
mined faures fom 500 sentences and
trained the lassifer on the enti training set.

Table 1 shevs thd the eaures poduced
by FeaureMine impoved dassifcation per
formance We compaed using thedaure
set poduced ly FeaureMine with using
only the pimitive feaures themseks—tha
is, length-one éaures. In the érest-re
domain,we also galuged the &éaure set
containing aéaure for ead primitive fea
ture & eat time st@ (this is the éaure set
of size N descibed in“Poker and éaure
mining”). BothWinnow and Nave Bayes

5 performed nuch better with thedaures po-

duced ly FeaureMine. In the paity exper

Table 3. The running time and nodes visited for FeatureMine with and without A ~> B pruning. The results are from one data set for each example. “All pruning” means

both pruning rules were applied.

CPU seconps FEATURES EXAMINED
EXPERIMENT No PRUNING A ~> B PRUNING ALL PRUNING No PRUNING A ~> B PRUNING ALL PRUNING
Random parity 320 337 337 1,547,122 1,547,122 1,547,122
Forest fire planning 5.8 hours 560 559 25,336,097 511,215 511,215
Spelling correction 490 407 410 1,126,114 999,327 971,085
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iments, the mined éaures damaically
improved the peidrmance of thelassifers,
and in the otheng@eliments the mined éa
tures signifcantly improved the accuacy
of the dassifers, often by more than 20%.

Table 2 shavs the mmber of éaures &al-
uaed and the mmber etumed for three
problems. For the andom-paity problem,
there were 100 million possile feaures.
(There ae 50 Booleanddures,giving rise
to 100 Baure—\alue pais.We seathed to a
depth of four becaus# = 4.) Havever, the
pruning les implicity rejected most.

Table 3 shavs theA ~> B pruning wle’s
impact. The results ae from one dta set
from eat domainwith slightly higher \al-
ues br max andmay, than in the pavious
expeiiments.The puning wle did not avays
improve mining timebut it made a g#men
dous diference in thedrest-ire pioblems,
where the same vent desdptors often
appear tgetherWithoutA~> B pruning the
forest-fre poblems ae essentiajl unsolv
able because éaureMine inds moe than
20 million frequent sequences.

A related task is to mdict impotant
events in a continous steam of obsefa-
tions,rather than in the sequences withar
beginnings and ends theve considezd hee.
One gample of sul a task is to @dict when
a computer seer is likely to crash based on
obsewations of netvark traffic. Another vay
in which this work could be gtended is to
involve human gpetts in the selection oé&
tures.Tha is, the feaures selectedybour
algorithm could be viered as sugestions to
be eviewed by a human user

HE RESUITS SHON THAT WE CAN
constuct pioblems in vhich dassifers per
form no better thanandom guessing using
the oiginal feaures lut perbrm with neaty
perfect accuacgy when using thedfgures po-
duced ly FeaureMine More geneally, this
work shavs thd we can aply classifcation
algorithms to domains thaontain no obi-
ous small set oEfgtures br descibing exam
ples hut tha contain a lage space of combi
nations of pimitive fedures tha probably
include some usefukitures. Futue work
could involve gplying these ideas to th
classifcation of, for example images or

Related work

Fedure-subset selection haspelienced a e deal of eseatch, motivated by the obsera-
tion tha classifers can peidrm worse with £aure setfthan with someF 0 F.* Sudh algp-
rithms eplore the &ponentialy large space of all subsets of iaen feaure set. In conast,we
explore exponentialy large sets of potentiabEures lut evaluae eat feaure indgoendenty.
The fedure-subsetjgproad seems irdasilbe for the ppblems we considemwhich contain hun
dreds of thousands to millions of potentigdttires.

Andrew Golding and Dan Rothpplied awinnow-based algrithm to contet-sensitve
spelling corection? They used sets of 10,000 to 40,0@@tfires and either used all thogef
tures or puned some based on tHassifcation accuacy of the indvidual feaures.They
obtained higher accaey than ve did Their gpproad, hawever, involved an ensenid of Win-
nows,combined § majoiity weighting and thg took moe cae in dhoosing @od paametes
for this specit task. Our gal was simpy to demonstte tha the f&ures poduced f Fea
tureMine impove dassifcation perbrmance

Data mining algrithms hae often beengplied to ¢assifcation.3 Bing Liu, Wynne Hsu,
andYimin Ma huilt decision lists out of gems found ly associdon mining which is the non
sequential @rsion of sequence miningdditionally, while previous work has eplored nev
methods ér combining assodi@n rules to hild classifers, the thust of our vork has been to
leverage and augment standadassiication algorithms. Our puning ules esemke ones used
by Richard Seyal and Oen Etzioniwho also hee emplged dda mining to constrct decision
lists# Previous work on using d& mining br dassifcation has 6cused on combining highl
accugte les. In contast,our dassifcation algorithms can wigh eidence fom mary
fedaures thaead have lov accurngy to dassify nev examples.

Our work is dose in spiit to tha of Daniel Kudenlo and Hgm Hirsh® who also constrcted
a set of sequentidBoolean &&ures br use ly classifcation algrithms.They emplg/ed
FGEN a heuistic seach algorithm tha incrementaly generlizes £&ures to ceer moe and
more of the taining examplespased on itslassifcation perbrmance on a holdout set cin-
ing dda. In contast,we perbrm an &haustve seath (to some deth) and acqet all fegures
tha meet our selectioniteria. Also, we use a dftrent fegure languge and hee tested our
approades on diferent dassifers.
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Editorial
Calendar

JAN/FEB — Cross-Pollinating Disciplines

Ideally, every engineering discipline should learn from each other’s strengths to minimize the
risk to public safety. However, specialization within each discipline often inhibits mutual
learning. This issue offers lessons the software industry can learn from other disciplines and
vice versa.

MAR/APR — Cobol

Now that Y2K preparations are over, what is Cobol’s role from here on? This issue will present
some innovative but practical answers, as well as leads on related tools.

MAY/JUN — Process Diversity

People who build software use a myriad of different approaches for development, from extreme
programming to CMM, depending on factors such as application domain, system size,
architecture, project size, reliability, and safety requirements. This focus looks at the diversity
range of approaches and where to get more information about each.

Requirements Engineering

This issue highlights the best papers from ICRE ‘99, contributions that address changes in
people’s expectations, in business practices, in social forces, in enabling technology
opportunities. The magazine will be bundled with the conference proceedings and distributed to
all attendees.

JUL/AUG — Corporate-Level Implementations of CMM

Only a few have made it to Level 5. Who are they? Where have they succeeded? Where do
they go from here? Is anything still missing?

Software Engineering in the Small

Small groups, especially those developing mass-market and Internet software products, rarely
work according to the published, formal methods. This issue deals with the particular needs of
small groups working on complex projects—realistic best practices, failure and success
stories, and helpful tools.

SEP/OCT — Viruses, Intrusion Detection, and Security

What are the big shops and government labs doing? What can all of us do to protect our
information and our organizations? This issue will also provide a full list of security products.

Human Factors

What is being done to make computers adapt to the needs of their human counterparts? How
can we change our systems to help our teams work better? What resources are available to
improve relations between users and their computers.

Estimation
What is the latest on software project estimation approaches, techniques, and tools? This issue
will cover today’s practices as well as research that might lead to tomorrow’s advances.

NOV/DEC — Why2K? Lessons Learned

We’ve had time to reflect, evaluate, and look ahead. What have we learned? Where do
similar dangers lie ahead?

Multisite/Multicultural Project Ware Stories
What works and what doesn’t when a team is distributed across time zones, continents, and

cultures?
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