
40 1541-1672/05/$20.00 © 2005 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

D a t a M i n i n g f o r B i o i n f o r m a t i c s

MicroCluster:
Efficient Deterministic
Biclustering of
Microarray Data
Lizhuang Zhao and Mohammed J. Zaki, Rensselaer Polytechnic Institute

B iclustering1 has proved of great value for finding interesting patterns in

microarray expression data, which record the expression levels of many

genes, for different biological samples. (For more on gene expression, see the related

sidebar.) Biclustering can identify the coexpression patterns of a subset of genes

that might be relevant to a subset of the samples
of interest.

Mining microarray data for biclusters presents
four main challenges. First, biclustering is NP-hard,1

so many proposed bicluster-mining algorithms use
heuristic methods or probabilistic approximations,
which decrease the final clustering results’accuracy.
Second, microarray data is susceptible to noise,
owing to varying experimental conditions, so meth-
ods should handle noise well. Third, given that we
don’t understand the cell’s complex gene regulation
circuitry, clustering methods should allow overlap-
ping clusters that share subsets of genes or samples.
Finally, the methods should be flexible enough to
mine several (interesting) types of clusters.

MicroCluster is an efficient, deterministic, and
complete biclustering method that addresses these
challenges. Our approach has four key features. First,
we mine only the maximal biclusters satisfying cer-
tain homogeneity criteria. Second, the clusters can
be arbitrarily positioned anywhere in the input data
matrix, and they can have arbitrary overlapping
regions. Third, MicroCluster uses a flexible defini-
tion of a cluster that lets it mine several types of
biclusters (which previously were studied indepen-
dently). Finally, MicroCluster can delete or merge
biclusters that have large overlaps. So, it can tolerate
some noise in the data set and let users focus on the
most important clusters. We’ve developed a set of
metrics to evaluate the clustering quality and have
tested MicroCluster’s effectiveness on several syn-
thetic and real data sets.

Preliminary concepts
Let G = {g0, g1, …, gn�1} be a set of n genes, and

let S = {s0, s1, …, sm�1} be a set of m biological sam-
ples (or conditions). A microarray data set is a real-
valued n � m matrix D = G � S = {dij} (with i � [0,
n � 1], j � [0, m � 1]), whose rows correspond to
genes and whose columns correspond to samples.
Each entry dij records the (absolute or relative)
expression level of gene gi in sample sj. For example,
figure 1 shows a data set with 10 genes and seven
samples. For clarity, certain cells are blank; we
assume that random expression values fill them.

A bicluster C is a submatrix of D, where C = X �
Y = {cij}, with X � G and Y � S, provided certain
conditions of homogeneity are satisfied. For exam-
ple, a simple condition might be that all values cij are
identical or approximately equal (a constant pattern).
You can also define other homogeneity conditions,
such as a similar column or row pattern or a scaling
or shifting pattern.2 Given B, the set of all biclusters
that satisfy the given homogeneity conditions, then
C = X � Y � B is a maximal bicluster if and only if
there doesn’t exist C � = X � � Y � � B such that C �C �
(that is, X � X � and Y � Y �).

Let C = X � Y be a bicluster, and let

be an arbitrary 2 � 2 submatrix of C. We call C a clus-
ter if and only if it’s a maximal bicluster satisfying
these properties:

c c

c c
ia ib

ja jb

MicroCluster can

mine different types of

arbitrarily positioned

and overlapping

clusters of genetic data

to find interesting

patterns.

• If ri = |cib/cia| and rj = |cjb/cja|, then
(max(ri, rj)/min(ri, rj)) � 1 � �, where � is
a maximum ratio threshold. This thresh-
old ensures that the ratios of column val-
ues across any two rows in the cluster are
similar.

• If cia � cib < 0, then sign(cia) = sign(cja) and
sign(cib) = sign(cjb), where sign(x) returns
�1 if x is negative or 1 if x is nonnegative
(the preprocessing step replaces expres-
sion values of zero with a small random
positive correction value). This lets us eas-
ily mine data sets having negative expres-
sion values. (It also prevents us from
reporting that, for example, expression
ratio �5/5 is equal to 5/�5.)

• If rx = max(cxa, cxb)/min(cxa, cxb), then rx �
1 � �r, where x � {i, j} and �r is a maxi-
mum row range threshold. So, the clus-
ter can allow at most �r variation in the
rows.

• If ry = max(ciy, cjy)/min(ciy,cjy), then ry � 1
� �c, where y � {a, b} and �c is a maxi-
mum column range threshold. So, the
cluster can allow at most �c variation in
the columns.

• |X| � mr and |Y| � mc, where mr denotes
the minimum row cardinality threshold
and mc denotes the minimum column car-
dinality threshold. This lets us find only
meaningfully large clusters.

Lemma 1 (symmetry property)
Given the bicluster C and the 2 � 2 sub-

matrix mentioned previously, if ri = |cib/cia|,
rj = |cjb/cja|, ra = |cja/cia|, and rb = |cjb/cib|, then
(max(ri, rj)/min(ri, rj)) � 1 � � 	 (max(ra,
rb)/min(ra, rb)) � 1 � �.

Here’s the proof: Without loss of generality,
assume that ri � rj, then |cib/cia| � |cjb/cja| 	
|cja/cia| � |cjb/cib| 	 ra � rb. Also, max(ri,
rj)/min(ri, rj) = ri/rj = |cib/cia|/|cjb/cja| =
|cja/cia|/|cjb/cib| = ra/rb = max(ra, rb)/min(ra, rb).

Lemma 2 (shifting cluster)
Let C = X � Y = {cxy} be a submatrix of

data set D = {dxy}, and let

be an arbitrary 2 � 2 submatrix of C. Let

be the new data set obtained by applying the
exponential function (base e) to each value
dxy in D. If eC is a scaling cluster in eD, then

C is a shifting cluster in D.
Here’s the proof: Let

be any 2 � 2 submatrix of eC. Without loss of
generality, assume that

then

that is, C is a shifting cluster of D with win-
dow size ��.

This lemma shows that we can mine shift-
ing biclusters by first transforming each
value in the data set by taking its exponent.
Any (scaling) cluster discovered in the trans-
formed data set is, by this lemma, a shifting
cluster in the original data set.

Obtaining clusters
Figure 1b shows examples of different clus-

ters that we can obtain from our example data
set by some row or column permutations. Let
mr = mc = 3, and let � = 0.01. If we let �r =
�c =
 (that is, unconstrained), then C1 = {g1,
g4, g8} � {s0, s1, s4, s6} is a scaling cluster; that
is, each row or column is some scalar multi-
ple of another row or column. We also dis-
cover two other maximal overlapping clusters:
C2 = {g0, g2, g6, g9} � {s1, s4, s6} and C3 = {g0,
g7, g9} � {s1, s2, s4, s5}. If we set mc = 2, we
find another maximal cluster C4 = {g0, g2, g6,
g7, g9} � {s1, s4}, which is subsumed by C2

and C3. As we’ll show later, MicroCluster can
delete such a cluster in the final steps.

Different choices of row and column range
thresholds (�r and �c) give MicroCluster the
flexibility to produce different kinds of clus-
ters. For example, if �r = �c � 0, then we obtain
clusters with approximately identical values.
We obtain row constant clusters by constrain-
ing only �r � 0 and column constant clusters
by constraining only �c � 0. When �r � 0 and
�c � 0, we obtain a scaling cluster, and by
Lemma 2 we can mine shifting clusters as well.

0 1≤ − − − ≤ + = ′| | | | ln()c c c cib ia jb ja ε ε

0 1≤ − ≤| / |

| / |

e e

e e

c c

c c

ib ia

jb ja
ε

e
e e

e e

C
c c

c c

ia ib

ja jb

2 2, =

e eD dxy= { }

C
c c

c c
ia ib

ja jb
2 2, =

NOVEMBER/DECEMBER 2005 www.computer.org/intelligent 41

In every organism, different genes are expressed in different types of cells and
tissues at different times. Analysis of these gene expressions can help us under-
stand disease states, drug functions, and so on. Genes with similar or correlated
expression levels (that is, genes that display similar behaviors, at least in terms of
the amount of their presence) are said to be coexpressed. From gene coexpression,
we can infer the gene coregulation mechanism or the involved genes’ biological
function (coexpressed genes might share the same regulation mechanism or be
functionally related).

Gene Expressions

(a)

 s0 s1 s2 s3 s4 s5 s6

g0 1.0 1.0 1.0 1.0 1.0
g1 3.0 2.5 2.0 1.0
g2 5.0 5.0 5.0
g3 6.6 5.5 2.0
g4 9.0 7.5 6.0 3.0
g5 6.6 4.4 2.0
g6 3.0 3.0 3.0
g7 8.0 8.0 8.0 8.0
g8 6.0 5.0 4.0 2.0
g9 4.0 4.0 4.0 4.0 4.0

Ge
ne

(b)

 s3 s0 s6 s4 s1 s5 s2

g5 6.6 2.0 4.4
g2 5.0 5.0 5.0
g6 3.0 3.0 3.0
g0 1.0 1.0 1.0 1.0 1.0
g9 4.0 4.0 4.0 4.0 4.0
g7 8.0 8.0 8.0 8.0
g3 6.6 2.0 5.5
g4 9.0 3.0 6.0 7.5
g8 6.0 2.0 4.0 5.0
g1 3.0 1.0 2.0 2.5

SampleSample

Ge
ne

Figure 1. An (a) example microarray data set and (b) some clusters.

The MicroCluster algorithm
Because of the symmetry property, Micro-

Cluster always mines a data set that has more
rows than columns, transposing the input
data set (matrix) if necessary. MicroCluster
has three main steps:

1. Find the valid ratio ranges for all pairs
of columns, and construct a range
multigraph.

2. Mine the maximal clusters from the
range multigraph.

3. Optionally delete or merge clusters.

Constructing a range multigraph
Given D, mr, mc, and �, let sa and sb be any

two columns in D and let

be the ratio of the expression values of gene
gx in columns sa and sb, where x � [0, n � 1].
A ratio range is an interval of ratio values
[rl, ru], with rl � ru. Let

be the gene set, the set of genes whose ratios
with regard to columns sa and sb lie in the
given ratio range.

First, MicroCluster quickly tries to sum-
marize the valid ratio ranges that can con-
tribute to some cluster. More formally, we
call a ratio range valid if and only if

• (max(|ru|, |rl|)/min(|ru|, |rl|)) � 1 � �,
• |Gab([rl, ru])| � mr,
• exists for some gene gx, then all

the values {dxa}/{dxb} in the same column
have the same sign (negative or nonnega-
tive), and

• [rl, ru] is maximal with regard to �; that is,
we can’t add another gene to Gab([rl, ru])
and yet preserve the � bound.

Given the set of all valid ranges across any
pairs of columns sa, sb with a < b, given as

we construct a weighted, directed, range
multigraph M = (V, E), where V = S (all
columns), and for each

there exists a weighted, directed edge (sa, sb) �
E with weight

In addition, each edge in the range multigraph
has an associated gene set corresponding to the
range on that edge. For example, suppose
mc = 3, mr = 3, and � = 0.01. Figure 2 shows the
range multigraph constructed from figure 1.

Mining clusters
Construction of the range multigraph filters

out most unrelated data. Next, MicroCluster
uses a depth-first search on the range multi-
graph to mine all the clusters (see figure 3). It
takes as input the set of parameter values �,
mr, mc, �r, �c, M, G, and S. It will output the

w
r

r

u
ab

l
ab
i

i

=

Ri
ab ab∈R

R ab
i
ab

l
ab

u
ab

a bR r r s s S
i i

= =

 ∈{ }, : ,

rx
ab < 0

Gab l u x x
ab

l ur r g r r r, : , () = ∈ { }

r
d

dx
ab xa

xb
=

D a t a M i n i n g f o r B i o i n f o r m a t i c s

42 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

 Input : parameters: , mr, mc, r, c, range graph M, set of genes G and samples S
 Output : cluster set C
 Initialization : C = ∅, call MICROCLUSTER(C = G × ∅, S)
 MICROCLUSTER (C = X × Y, P):;
 if C satisfies r, c then
 if |C.X | ≥ mr and |C.Y | ≥ mc then
 if /∃ C ′ ∈ C, such that C ⊂ C ′ then
 Delete any C ′′ ∈ C, if C ′′ ⊂ C
 C ← C + C

 foreach sb ∈ P do
 Cnew ← C
 Cnew.Y ← Cnew.Y + sb
 P ←P – sb
 if C.Y = ∅ then
 MICROCLUSTER(Cnew, P)
 else
 forall sa ∈ C .Y and each Ri

ab ∈ Rab satisfying |G(Ri
ab) ∩ C .X | ≥ mr do

 Cnew.X ← (∩all sa ∈C . Y G(Ri
ab)) ∩ C .X

 if |Cnew.X | ≥ mr then
 MICROCLUSTER(Cnew, P)

1
2
3
4
5

6
7
8
9

10
11

12

13

14

15

ε δ δ

δ δ

Figure 3. The MicroCluster algorithm’s clique-mining step.

s2 s4
s6

s3

s5 s1
s0

1/
1:

 g
0,

g 2
,g

6,
g 7

,g
9

2/1: g1,g4,g8

3/
1:

 g
1,

g 4
,g

8

5/
4:

 g
1,

g 4
,g

8

1/1: g0,g7,g9 1/1: g0,g2,g6,g9

1/
1:

 g
0,

g 7
,g

9

1/1
: g 0,g

7,g
9

1/1: g
0 ,g

7 ,g
9

3/2: g
1 ,g

4 ,g
5 ,g

8

1/1
: g 0,g

2,g
6,g

9

5/2
: g 1,

g 4,
g 8

6/5: g1,g3,g4,g81/1: g0,g7,g9

Figure 2. A weighted, directed range multigraph compactly represents the possible
valid ratio ranges and the genes that meet those ranges.

NOVEMBER/DECEMBER 2005 www.computer.org/intelligent 43

final set of all clusters C. MicroCluster is a
recursive algorithm that at each call accepts a
current candidate cluster C = X � Y and a set
of not-yet-expanded samples P. The initial call
is made with a cluster C = G � with all
genes G, but no samples, and with P = S.

Lines 1 through 5 of figure 3 check whether
C meets the thresholds mr and mc (line 1) and
�r and �c (line 2). If so, we next check whether
some maximal cluster C� � C already contains
C (line 3). If not, we first remove any cluster
C�� � C that C has already subsumed (line 4)
and then add C to C (line 5).

Lines 6 through 15 generate a new candi-
date cluster by expanding the current candi-
date by one more sample and constructing
the appropriate gene set for the new candi-
date, before making a recursive call. Micro-
Cluster begins by adding to C each new sam-
ple sb � P (line 6), to obtain a new candidate
Cnew (lines 7 and 8). Microcluster removes
already-processed samples from P (line 9).
Let sa be all samples added to C until the pre-
vious recursive call. If no previous vertex sa

exists (which happens initially) (line 10), we
simply call MicroCluster with the new can-
didate (line 11). Otherwise, MicroCluster
tries all combinations of each qualified range
edge between sa and sb for all sa � C.Y
(line 12), obtains their gene set intersection

and intersects with C.X to obtain the valid
genes in Cnew (line 13). If Cnew has at least
mr genes, then another recursive call to
MicroCluster is made (lines 14 and 15).

Deleting or merging clusters
This step is important because real data

can be noisy, and having many clusters with

large overlaps only makes it harder for users
to select the important ones.

Let A = XA � YA and B = XB � YB be any
two mined clusters. We define the span of a
cluster C = X � Y as the set of gene sample
pairs belonging to the cluster, given as LC =
{(gi, sj) | gi � X, sj � Y}. Then we can define
these derived spans:

• LA � B = LA � LB,
• LA�B = LA � LB, and
• .

MicroCluster deletes or merges the
involved clusters if any of these overlap con-
ditions exist:

• Delete B. If LA > LB and if |LB�A|/|LB| < �,
then delete B. As figure 4a illustrates, this
means that if the cluster with the smaller
span (B) has only a few extra elements,
then delete that cluster.

• Delete A. This is a generalization of the
previous case. For a cluster A, if a set of
clusters {Bi} exists such that

then delete cluster A. As figure 4b shows,
A is mostly covered by the {Bi}’s and
therefore can be deleted.

• Merge A and B. If |LA+B�A�B|/|LA+B| < �,
merge A and B into one cluster (XA � XB) �
(YA � YB) (see figure 4c).

Here, � and � are user-defined thresholds.

Complexity analysis
Constructing the range multigraph takes

O(|G||S|2) time. Cluster mining, which corre-
sponds to constrained maximal clique enumer-

ation, is the most expensive of the three steps.
The precise number of clusters mined depends
on the data set and the input parameters.

Nevertheless, for microarray data sets
MicroCluster will likely be very efficient for
two reasons. First, the range multigraph
prunes away much of the noise and irrelevant
information. Second, MicroCluster keeps
intermediate gene sets for all candidate clus-
ters, so it can prune the search the moment
input criteria aren’t met. Deleting and merg-
ing apply to only those pairs of clusters that
actually overlap, which can be determined in
O(|C| log (|C|)) time.

Parameter selection
The seven input parameters (�, mr, mc, �r,

�c, �, and �) are indispensable for generating
different kinds of biclusters satisfying user
requirements. Moreover, setting these para-
meters is relatively easy (we show an exper-
imental justification later). In the beginning,
you might not set � and �. You can set these
later for removing highly overlapped clus-
ters or for tolerating noise. �r and �c restrict
scaling or shifting patterns to be constant col-
umn or row patterns. You can also leave these
unconstrained initially, to obtain more inter-
esting clusters. However, if you’re interested
in constant patterns only, you can set �r and
�c to gain further pruning and speedup.

For a specific data set, � decides the clus-
ter pattern’s accuracy, and mr and mc decide
a qualified cluster’s minimum size; together,
they affect the running time for generating
clusters. For MicroCluster, � and mr affect the
number of edges between vertices in the
multigraph, which affects the running speed
and results. In contrast, mc affects the mini-
mum search depth and cluster deletion.
Because at first you might not know the data

L L

L

A B

A

i i
−

<
∪

η

L LA B X X Y YA B A B+ ∪()× ∪()=

∩all s C Y i
ab

a
R∈ (). G

Ri
ab

(b) (c)(a)

B

A

A

Bj

Bi A

B

Figure 4. Three deletion or merging cases: (a) deleting cluster B, (b), deleting cluster A, and (c) merging A and B.

distribution, you can set these three parame-
ters to be highly constrained—that is, small �
(for example, 1 percent of the value range)
and large mr and mc (for example, 30 percent
of the original data set size). Then according
to concrete requirements and the real running
time, you can relax or strengthen these con-
straints. After obtaining the initial clusters, you
can apply � and � according to your noise
tolerance and overlapping allowance.

Evaluating MicroCluster’s
effectiveness

As we mentioned before, we evaluated
MicroCluster on both synthetic and real data
sets. Unless otherwise noted, we performed
all experiments on a Fedora virtual machine
(448 Mbytes of memory, a 1.4 GHz Pen-

tium-M) over Windows XP through VMware
middleware.

Synthetic data sets
The synthetic data sets let us embed clusters

and then test how MicroCluster performs for
varying input parameters in isolation. The
input parameters to the synthetic generator
were the total number of genes and samples,
number of clusters to embed, percentage of
overlapping clusters, row and column ranges
for the cluster sizes, and amount of noise for
the expression values. Once all the clusters are
generated, the generator assigned random val-
ues to the noncluster regions. We generated
synthetic data with these default parameters:
a 5,000 � 40 data matrix, 10 clusters, a clus-
ter column size of 8 and a row size of 200, a

20 percent overlap, and a 3 percent noise level.
For each experiment, we kept all default para-
meters except the varying parameter. We also
chose appropriate parameter values for Micro-
Cluster so that it found all embedded clusters.

Figures 5a through 5e show MicroClus-
ter’s sensitivity to the different parameters.
The time increases linearly with cluster row
size (figure 5a) but exponentially with clus-
ter column size (figure 5b). The time is also
linear with regard to the number of clusters
(figure 5c), whereas the overlap percentage
doesn’t seem to affect the time much (figure
5d). Finally, as noise increases (figure 5e),
the time to mine the clusters increases
because the chance is greater that a random
gene or sample can belong to some cluster.

We next varied the total number of rows

D a t a M i n i n g f o r B i o i n f o r m a t i c s

44 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

(b) (c)(a)

(e) (f)(d)

(g)

0

 40

 80

 120

 160

 200

6 8 10 12 14

Ti
m

e
(s

ec
.)

Cluster column size

0

4

8

 12

 16

 20

5 10 15 20 25 30 35

Ti
m

e
(s

ec
.)

Number of clusters

0

2

4

6

8

 10

 150 200 250 300 350 400

Ti
m

e
(s

ec
.)

Cluster row size

0

1

2

3

4

5

5 10 15 20 25 30 35 40

Ti
m

e
(s

ec
.)

Overlap (%)

0

3

6

9

 12

1 2 3 4 5 6 7 8

Ti
m

e
(s

ec
.)

Variation (%)

 0.2

 0.4

 0.6

 0.8

200 300 400 500 600

Ti
m

e
(s

ec
.)

|G |

|S | = 35

0

 70

 140

210

30 40 50 60 70

Ti
m

e
(s

ec
.)

|S |

|G | = 800

Figure 5. MicroCluster’s performance on synthetic data: (a) cluster row size, (b) cluster column size, (c) number of clusters,
(d) overlap percentage, (e) variation (noise), (f) total number of rows |G|, and (g) total number of columns |S|.

NOVEMBER/DECEMBER 2005 www.computer.org/intelligent 45

Researchers have proposed many subspace and biclustering
algorithms.1 We briefly review the most relevant.

CLIQUE (Clustering in Quest) introduced the problem of sub-
space clustering; it’s a complete algorithm that finds axis-aligned
dense subspaces.2 (Given a data set with d dimensions, a sub-
space is restricted to some smaller subset of dimensions k << d.
Furthermore, even within each of the k dimensions that are
retained, the subspace is confined to some subrange of the
possible values for those dimensions.) PROCLUS (Projected Clus-
tering) uses projective clustering to find axis-aligned subspaces
by partitioning the set of points and then uses hill-climbing to
refine the partitions.3 Such subspace methods aren’t designed
to mine coherent patterns from microarray data sets.

For microarray analysis, �-biclustering introduced the concept
of biclusters.4 It uses mean-squared residue of a submatrix (X �
Y) to find biclusters. If a submatrix with enough size has a
mean-squared residue less than a threshold �, it’s a �-bicluster.
Initially, �-biclustering starts with the whole data matrix, then
repeatedly adds or deletes a row or column from the current
matrix greedily until convergence occurs. After finding a clus-
ter, it replaces the submatrix with random values and contin-
ues to find the next best cluster. This process iterates until it
can find no further clusters. One limitation of �-biclustering is
that it might converge to a local optimum. Also, it can easily
miss overlapping clusters owing to the random-value substitu-
tions it performs.

CLIFF (Clustering via Iterative Feature Filtering) iterates
between feature filtering and sample partitioning.5 It first
calculates k best features (genes) according to their intrinsic
discriminability, using current partitions. Then it partitions the
samples with these features by keeping the minimum normal-
ized weights. This process iterates until convergence occurs.

SAMBA (Statistical-Algorithmic Method for Bicluster Analysis)
uses a bipartite graph to model and implement clustering.6 It
repeatedly finds the maximal highly connected subgraph in
the bipartite graph. Then it performs local improvement by
adding or deleting a single vertex until no further improve-
ment is possible.

HCS (Highly Connected Subgraph) is a full-space clustering
algorithm.7 It cuts a graph into subgraphs by removing some
edges, and repeats until all the vertices in each subgraph are
similar enough.

xMotif uses a Monte Carlo method to find biclusters; it requires
all gene expressions to be similar across all the samples in a biclus-
ter.8 It randomly picks a seed sample s and a sample subset d
(called a discriminating set), and then finds all such genes that
are conserved across all the samples in d.

These methods share several drawbacks. First, some of them are
randomized methods based on shrinking and expansion, which
sometimes results in incomplete clusters. Second, none of them
can deal properly with overlapping clusters. Third, the greedy
methods will lead to a local optimum and might miss important
clusters. In general, none of them are deterministic, so they can’t
guarantee that they’ll find all valid (overlapping) clusters.

Among the recent methods most similar to MicroCluster is
pCluster,9 which defines a cluster C as a submatrix of the origi-
nal data set, such that for any 2 � 2 submatrix

of C, |(cxa � cya) � (cxb � cyb)| < �, where � is a threshold. The

algorithm first scans the data set to find the set of all column-
pair and row-pair maximal clusters, called an MDS (maximal
dimension set). Then it prunes the data set, in turn using the
row-pair MDS and the column-pair MDS. It then mines the
final clusters on the basis of a prefix tree data structure. MaPle
(Maximal Pattern-Based Clustering) is an extension of pCluster.10

By skipping trivial subclusters and pruning nonpromising cluster
candidates earlier, it performs more quickly than pCluster
(approximately twice as fast, on the basis of the experiments of
Jian Pie and his colleagues10).

Both pCluster and MaPle run more slowly than MicroCluster,
which is 1.4 to 20 times faster than pCluster, as we show in the
main article. These methods don’t delete or merge similar clus-
ters, so they can’t properly handle highly overlapping clusters
with noise, which commonly occur in real data sets. In contrast,
MicroCluster uses deletion and merging to handle these prob-
lems. Also, pCluster and MaPle both have an exponential run-
time dependence on the number of genes, which is much
larger than the number of samples. In contrast, MicroCluster
can transpose the data sets and thus has an exponential run-
time dependence only on the number of samples, not genes.

References

1. S.C. Madeira and A.L. Oliveira, “Biclustering Algorithms for Biologi-
cal Data Analysis: A Survey,” IEEE/ACM Trans. Computational Biol-
ogy and Bioinformatics, vol. 1, no. 1, 2004, pp. 24–45.

2. R. Agrawal et al., “Automatic Subspace Clustering of High Dimen-
sional Data for Data Mining Applications,” Proc. 1998 ACM
SIGMOD Conf. Management of Data (SIGMOD 98), ACM Press,
1998, pp. 94–105.

3. C.C. Aggarwal et al., “Fast Algorithms for Projected Clustering,”
Proc. 1999 ACM SIGMOD Conf. Management of Data (SIGMOD 99),
ACM Press, 1999, pp. 61–72.

4. Y. Cheng and G.M. Church, “Biclustering of Expression Data,” Proc.
8th Int’l Conf. Intelligent Systems for Molecular Biology (ISMB 00),
ACM Press, 2000, pp. 93–103.

5. E.P. Xing and R.M. Karp, “CLIFF: Clustering High-Dim Microarray
Data via Iterative Feature Filtering Using Normalized Cuts,” Bioin-
formatics, vol. 17, suppl. 1, 2001, pp. S306–S315.

6. A. Tanay, R. Sharan, and R. Shamir, “Discovering Statistically Signifi-
cant Biclusters in Gene Expression Data,” Bioinformatics, vol. 18,
suppl. 1, 2002, pp. S136–S144.

7. E. Hartuv et al., “An Algorithm for Clustering cDNAs for Gene
Expression Analysis,” Proc. 3rd Ann. Int’l Conf. Computational Mol-
ecular Biology, ACM Press, 1999, pp. 188–197.

8. T.M. Murali and S. Kasif, “Extracting Conserved Gene Expression
Motifs from Gene Expression Data,” Proc. Pacific Symp. Biocomput-
ing (Biocomputing 03), World Scientific Press, 2003, pp. 77–88;
http://helix-web.stanford.edu/psb03/murali.pdf.

9. H. Wang et al., “Clustering by Pattern Similarity in Large Data
Sets,” Proc. ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD 02), ACM Press, 2002, pp. 394–405.

10. J. Pei et al., “MaPle: A Fast Algorithm for Maximal Pattern-Based
Clustering,” Proc. 3rd IEEE Int’l Conf. Data Mining (ICDM 03), IEEE
CS Press, 2003, pp. 19–22.

c c
c c

xa xb

ya yb

Related Work on Subspace and Biclustering Algorithms

(|G|) or columns (|S|) in a data set, keeping
these default parameters: 5 clusters, a cluster
column size between 20 and 27 percent (that
is, for |S| total columns, a cluster will have a
column size between 0.2|S| and 0.27|S|), a
cluster row size between 10 and 14 percent, 20
percent overlap, and 2 percent noise.

Figures 5f and 5g show the running time. If
we fix |S| = 35 and vary |G|, the time increases
linearly (figure 5f), but if we fix |G| = 800 and
vary |S|, the time increases exponentially (fig-
ure 5g).

Real data sets
We used four real data sets:

• Yeast Elutriation (1,536 � 14) (genome-
www.stanford.edu/cellcycle/data/rawdata/
individual.html),

• Yeast (2,884 � 17),1

• CAMDA’04 (7,091 � 46) (www.camda.
duke.edu/camda04), and

• Cancer (12,625 � 13) (http://pepr.cnmc
research.org).

To analyze MicroCluster’s performance
on these sets, we defined four metrics:

• Cluster# is just |C|.
• Element_Sum is the sum of the spans of all

clusters—that is, Element_Sum = �C �C|LC|.
• Coverage is the span of the union of all

clusters—that is, .
• Overlap is (Element_Sum � Coverage)/

Coverage.

Element_Sum will count an overlapping
element as many times as the number of clus-
ters containing that element. Coverage
counts each element only once, as long as it
is part of some cluster. So, Overlap measures
the degree of average overlap among the
clusters. With these metrics, we can analyze
the clustering results systematically.

How parameter changes affect the output.
We applied MicroCluster to a real subset
(50 � 14) of the Yeast Elutriation data set with
different input parameters to analyze how
parameter changes affect the final output.
The default parameters are mc = 4, mr = 7,
� = 8 percent, � = 7 percent, and � = 7 per-
cent. For each experiment, we kept all default
parameter settings, except for the varying
parameter as marked by the x-axis.

Figures 6a through 6c show that the orig-
inal (before deletion and merging) Cluster#
and Overlap vary more than linearly as mr,

mc, or � changes. However, after deletion and
merging, Cluster# and Overlap change grad-
ually as mr, mc, or � changes. Coverage
reflects the real information conveyed by the
clusters, which changes little during deletion
or merging, as figures 6a through 6c show.
In other words, deletion and merging remove
much redundant information while retaining
good coverage. Figures 6d and 6e tell us that
changing � and � affects the final Cluster#,
Overlap, and Coverage (after deletion and
merging) approximately linearly.

Our experiments also confirmed Micro-
Cluster’s robustness. Between two sequen-
tial experiments (changing one parameter
only), the second experiment’s original
clusters were always a subset of the first

experiment’s clusters. That is, MicroClus-
ter generated a consistent cluster change.
So, you can always modify the input para-
meters to get the most satisfying clustering
(for example, compromising between the
number of clusters found and the desired
coverage).

Finding relevant clusters. Figure 7 illus-
trates four types of clusters that MicroClus-
ter mined.

Figure 7a represents a bicluster mined on
CAMDA’04.

From the Cancer data set, we tested Micro-
Cluster on gene expression data of human
cancer from 13 (six high-grade and seven
low-grade) pediatric astrocytomas with
12,625 genes. (An astrocytoma is a nervous-
system tumor beginning in the brain or spinal
cord in small, star-shaped cells called astro-
cytes.) Our experiments show MicroCluster
can separate these two kinds of samples very
well. It outputs one cluster with 254 genes
and six samples (� = 0.02), all belonging to

the low-grade class. Figure 7b shows the
gene expression pattern.

Figures 7c and 7d are constant column and
constant row clusters, respectively, mined on
a subset of the Yeast data set. The color change
(green-black-red) represents a value ranging
from 60 (light green) to 140 (light red).

We compared MicroCluster with pCluster2

and MaPle,3 which are also deterministic algo-
rithms. However, they capture only a subset of
the bicluster patterns that MicroCluster does
(that is, they can obtain the same clusters if we
let �r = �c =
 and � = � = 0). We used a Cyg-
win/WindowsXP PC with 768 MBytes of
memory and a 1.4 GHz Pentium M processor.
We obtained the pCluster and MaPle exe-
cutable codes from their authors. We used small
thresholds to get the same outputs from all
methods: a cluster tolerance of � = 1 for pClus-
ter and � = 0 for MaPle, and � = 0.1 percent for
MicroCluster. (For unknown reasons, when ��
1, MaPle runs very slowly—45 seconds for 8
� 50, 615 sec. for 8 � 45, and more than 2,000
sec. for other combinations in table 1.)

Table 1 shows that whereas all the algo-
rithms found exactly the same clusters,
MicroCluster is 1.4 to 20 times faster than
pCluster and faster than MaPle in most cases
for the unbalanced microarray data set. (For
more on pCluster and MaPle, see the “Related
Work on Subspace and Biclustering Algo-
rithms” sidebar on the previous page.)

We also checked if any clusters that Micro-
Cluster discovered share a common gene
process, function, or cellular location, using
the Gene Ontology (www.geneontology.org)
project data. This project aims to develop
three structured, controlled vocabularies
(ontologies) that describe gene products in
terms of their associated biological processes,
cellular components, and molecular func-
tions, in a species-independent manner. We
used the yeast genome gene ontology term
finder (www.yeastgenome.org) to verify the
biological significance of MicroCluster’s
result (four clusters obtained from the Yeast
data set, with � = 0.01, mr = 60, and mc = 5).

Table 2 shows the shared GO terms used
to describe each cluster’s set of genes. We
display only the statistically significant
shared terms with a p-value less than 0.01.
Also, when multiple hierarchical terms
involve the same group of genes, we report
only the most significant terms. For exam-
ple, for cluster C1, we find significant genes
involved in meiotic gene conversion and cell
cycle checkpoint. We can see that the clus-
ters capture different aspects of process,

Coverage L
C C=

∈∪ C

D a t a M i n i n g f o r B i o i n f o r m a t i c s

The clusters capture different

aspects of process, function, and

location, although there are some

similarities due to the overlap

among the clusters.

46 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

NOVEMBER/DECEMBER 2005 www.computer.org/intelligent 47

 300

 600

 900

5 6 7 8

(a)

(b)

(c)

(d)

(e)

 0

 100

 200

 300

3 4 5 6

Cl
us

te
r#

Minimum column threshold Minimum column threshold Minimum column threshold

Minimum row threshold Minimum row threshold Minimum row threshold

 0

 400

 800

 1,200

3 4 5 6

Ov
er

la
p

(%
)

 0

 200

 400

 600

3 4 5 6

Co
ve

ra
ge

0

 500

 1,000

 1,500

5 6 7 8

Cl
us

te
r#

0

Co
ve

ra
ge

0

 50

 100

 150

7.0 7.5 8.0 8.5

Cl
us

te
r#

Maximum ratio threshold (%) Maximum ratio threshold (%) Maximum ratio threshold (%)

 0

 300

 600

 900

7.0 7.5 8.0 8.5

Ov
er

la
p

(%
)

0

 200

 400

 600

7.0 7.5 8.0 8.5

Co
ve

ra
ge

 0

 30

 60

 90

4 7 10 13

Cl
us

te
r#

Deletion threshold (%) Deletion threshold (%) Deletion threshold (%)

 0

 300

 600

 900

4 7 10 13

Ov
er

la
p

(%
)

 240

 300

 360

 420

4 7 10 13

Co
ve

ra
ge

 0

 30

 60

 90

4 7 10 13

Cl
us

te
r#

Merging threshold (%) Merging threshold (%) Merging threshold (%)

 0

 300

 600

 900

4 7 10 13

Ov
er

la
p

(%
)

 300

 360

 420

 480

4 7 10 13

Co
ve

ra
ge

0

 3,000

 6,000

 9,000

5 6 7 8

Ov
er

la
p

(%
)

Original
After deletion
After merging

Original
After deletion
After merging

Original
After deletion
After merging

Original
After deletion
After merging

Original
After deletion
After merging

Original
After deletion
After merging

Original
After deletion
After merging

Original
After deletion
After merging

Original
After deletion
After merging

Original
After deletion
After merging

Original
After deletion
After merging

Original
After deletion
After merging

Original
After deletion
After merging

Original
After deletion
After merging

Original
After deletion
After merging

Figure 6. How parameter changes affect MicroCluster’s final output, for Cluster# (the number of clusters), Overlap, and Coverage:
the (a) minimum column threshold, mc; (b) minimum row threshold, mr; (c) maximum ratio threshold, �; (d) deletion threshold, �;
and (e) merging threshold, �.

function, and location, although there are
some similarities due to the overlap among
the clusters. These clusters are related mainly
to meosis, transport, and localization. Some
genes are localized in membranes.

For comparison, we also ran SAMBA4 and
xMotif5 on the same data set, also with mr =
60 and mc = 5. SAMBA found four highly sim-
ilar clusters (each containing approximately
140 genes), any two of which overlap more
than 97 percent. So, SAMBA actually obtained
only one cluster containing 140 genes. xMo-
tif found three clusters (containing 36, 86,
and 120 genes, respectively) that had some
similarities to our clusters. However, many
genes reported in a cluster had “unknown
biological process/function” as a significant
GO term. Furthermore, xMotif gave differ-
ent results each time, even with the same
input parameters, because of its randomized
nature. These results indicate that Micro-
Cluster can find potentially biologically sig-
nificant clusters where other approaches
might not be so effective. (For more on
SAMBA and xMotif, see the “Related Work
on Subspace and Biclustering Algorithms”
sidebar.)

B iclustering shows obvious advantages
over traditional full-space clustering

algorithms for microarray data. A good
microarray-biclustering algorithm should
have the basic properties of accuracy, noise
handling, and feasible speed. To be accurate,
MicroCluster mines multiple patterns and
uses an enumeration method that guarantees
not missing any qualified clusters, which sto-
chastic or probabilistic algorithms can’t do.
To deal with microarray data’s inherent
noise, MicroCluster’s merging and deletion
stages control the noise tolerance in a cluster
appropriately; their effectiveness is clearly
illustrated by the performance evaluation
metrics we defined in this article. Further-
more, MicroCluster gains a reasonable run-
ning time in two ways, which are verified on
large data sets. First, it exploits microarray
data’s symmetry and enumerates the not-so-
overwhelming sample combinations. Sec-
ond, it applies multiple pruning techniques
to speed up enumeration. To decrease the
cost of cluster mining further, we plan to
develop additional new techniques for prun-
ing the search space.

D a t a M i n i n g f o r B i o i n f o r m a t i c s

48 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

(b)(a)

(d)(c)

 0.6
 0.8
1.0
 1.2
 1.4
 1.6
 1.8
2.0
 2.2
 2.4

0 1 2 3 4 5 6 7 8

Ex
pr

es
si

on
 v

al
ue

s

Genes

 100

 1,000

 10,000

 0 50 100 150 200 250Ex
pr

es
si

on
 v

al
ue

s
(in

 lo
g

sc
al

e)
Genes

YAR061W

YBR032W

YBR174C

YCL003W

YCR056W

YCR058C

YCR063W

YCR081W

YDL146W

YDL247W

YDR282C

YER028C

YAR0002C-A

YAR061W

YBR072W

YDL113C

YDL206W

YDL210W

YDL239C

YDR171W

YEL006W

YEL016C

YEL052W

YER060W

Figure 7. Example clusters in the (a) CAMDA’04 and (b) Cancer data sets, and a (c) constant
column and (d) constant row cluster. In figure 7d, the color change (green-black-red)
represents a gene expression value ranging from 60 (light green) to 140 (light red).

Table 1. A comparison of MicroCluster (MC), pCluster (PC), and MaPle on
the Yeast data set.

mc*

6 7 8

mr* MC PC MaPle MC PC MaPle MC PC MaPle

40 Runtime (sec.) 639 883 228 18 150 80 13 27 34
Cluster# 1,195 106 5
Element_Sum 333,502 32,782 1,688
Coverage 6,456 2,234 682

45 Runtime (sec.) 162 876 165 12 148 67 11 23 27
Cluster# 554 35 1
Element_Sum 169,534 12,082 392
Coverage 5,349 1,483 392

50 Runtime (sec.) 43 871 138 11 146 58 10 22 20
Cluster# 243 11 0
Element_Sum 81,456 4,200 0
Coverage 4,178 961 0

* mr is the minimum row cardinality threshold; mc is the minimum column cardinality threshold.

Acknowledgments
This work was supported in part by US National

Science Foundation CAREER Award IIS-0092978,
US Department of Energy Career Award DE-
FG02-02ER25538, and NSF grants EIA-0103708
and EMT-0432098.

References
1. Y. Cheng and G.M. Church, “Biclustering of

Expression Data,” Proc. 8th Int’l Conf. Intel-
ligent Systems for Molecular Biology (ISMB
00), ACM Press, 2000, pp. 93–103.

2. H. Wang et al., “Clustering by Pattern Simi-
larity in Large Data Sets,” Proc. ACM SIG-
MOD Int’l Conf. Management of Data (SIG-
MOD 02), ACM Press, 2002, pp. 394–405.

3. J. Pei et al., “Maple: A Fast Algorithm for
Maximal Pattern-Based Clustering,” Proc.
3rd IEEE Int’l Conf. Data Mining (ICDM 03),
IEEE CS Press, 2003, pp. 19–22.

4. A. Tanay, R. Sharan, and R. Shamir, “Dis-
covering Statistically Significant Biclusters
in Gene Expression Data,” Bioinformatics,
vol. 18, suppl. 1, 2002, pp. S136–S144.

5. T.M. Murali and S. Kasif, “Extracting Con-
served Gene Expression Motifs from Gene
Expression Data,” Proc. Pacific Symp. Bio-

computing (Biocomputing 03), World Scien-
tific Press, 2003, pp. 77–88; http://helix-web.
stanford.edu/psb03/murali.pdf.

For more information on this or any other com-
puting topic, please visit our Digital Library at
www.computer.org/publications/dlib.

NOVEMBER/DECEMBER 2005 www.computer.org/intelligent 49

Table 2. Significant shared Gene Ontology project terms (process, function, and component) for genes in different clusters.

Cluster Gene ontology term Gene names p-value

C1 (62 � 5) Process: meiotic gene conversion SAE3, REC114 0.00740
Process: cell cycle checkpoint KCC4, RFX1, CSM3 0.00768

C2 (62 � 5) Process: meiotic DNA recombinase assembly RAD57, SAE3 0.00086
Process: carbohydrate transport MAL31, MPH2, YEA4 0.00265
Function: solute:cation symporter activity MAL31, UGA4, FCY21 0.00012
Function: transporter activity MAL31, UGA4, MPH2, YEA4, YEL006W, FCY21, YFL054C, PMC1, 0.00085

VHT1, QDR1, YMR034C
Function: carbohydrate transporter activity MAL31, MPH2, YEA4 0.00201

C3 (60 � 5) Process: transport, establishment of localization ERP1, MAL31, ATG20, UGA4, MPH2, YEA4, YEL006W, 0.0018
YFL054C, PMC1, VHT1, MIP6, QDR1, PEP8, SAL1, LAS17, SYT1

Process: response to drug SNG1, SLI1, QDR1 0.00220
Function: solute:cation symporter activity MAL31, UGA4, FCY21 0.00011
Function: transporter activity MAL31, UGA4, MPH2, YEA4, YEL006W, FCY21, YFL054C, 0.00015

PMC1, VHT1, QDR1, YMR034C, SAL1
Function: metal ion binding SAL1, IZH4 0.00695
Location: membrane ATG20, UGA4, ADY3, MPH2, COQ4, YEL006W, FCY21, 0.00203

YFL054C, PMC1, VHT1, SNG1, SLI1, MIP6, QDR1, PEP8,
SAL1, IZH4

C4 (61 � 5) Process: carbohydrate transport MAL31, MPH2, YEA4 0.00253
Process: polyamine transport UGA4, TPO2 0.00327
Process: transport, establishment of localization ERP1, SSA3, MAL31, ATG20, UGA4, MPH2, YEA4, YEL006W, 0.00570

YFL054C, PMC1, VHT1, TPO2, VMR1, QDR1, PEP5
Function: transporter activity MAL31, UGA4, MPH2, YEA4, YEL006W, FCY21, YFL054C, 4.26e–05

PMC1, VHT1, TPO2, VMR1, QDR1, YMR034C
Function: solute:cation symporter activity MAL31, UGA4, FCY21 0.00011
Function: carbohydrate transporter activity MAL31, MPH2, YEA4 0.00191
Function: polyamine transporter activity UGA4, TPO2 0.00912
Location: vacuolar membrane UGA4, PMC1, TPO2, PEP5 0.00871

T h e A u t h o r s
Lizhuang Zhao is a PhD student of computer science at Rensselaer Polytechnic
Institute. His research interests are data mining and bioinformatics—for exam-
ple, subspace clustering of microarray gene expression data and logical-rela-
tionship analysis of binary-valued Boolean data sets. He has received mas-
ter’s degrees in computer science from both the Harbin Institute of Technology
and the Rensselaer Polytechnic Institute. He’s a student member of ACM
SIGMOD. Contact him at the Dept. of Computer Science, Rensselaer Poly-
technic Inst., Troy, NY 12180; zhaol2@cs.rpi.edu.

Mohammed J. Zaki is an associate professor of computer science at Rens-
selaer Polytechnic Institute. His research interests involve developing novel
data mining techniques, with applications in bioinformatics, Web mining, and
so on. He is an action editor for Data Mining and Knowledge Discovery: An
International Journal, is an associate editor for IEEE Transactions on Knowl-
edge and Data Engineering, and is on the editorial board of the International
Journal of Data Warehousing and Mining, the International Journal of Data
Mining and Bioinformatics, and Scientific Programming. He received his PhD
in computer science from the University of Rochester. Contact him at the Dept.
of Computer Science, Rensselaer Polytechnic Inst., Troy, NY 12180; zaki@
cs.rpi.edu.

