
Finding Hidden Group Structure in a Stream of

Communications⋆

J. Baumes1, M. Goldberg1, M. Hayvanovych1, M. Magdon-Ismail1, W.
Wallace2, and M. Zaki1

1 CS Department, RPI, Rm 207 Lally, 110 8th Street, Troy, NY 12180, USA.
Email: {baumej,goldberg,hayvam,magdon,zaki}@cs.rpi.edu.

2 DSES Department, RPI, 110 8th Street, Troy, NY 12180, USA.
Email: wallaw@rpi.edu.

Abstract. A hidden group in a communication network is a group of
individuals planning an activity over a communication medium with-
out announcing their intentions. We develop algorithms for separating
non-random planning-related communications from random background
communications in a streaming model. This work extends previous re-
sults related to the identification of hidden groups in the cyclic model.
The new statistical model and new algorithms do not assume the ex-
istence of a planning time-cycle in the stream of communications of a
hidden group. The algorithms construct larger hidden groups by build-
ing them up from smaller ones. To illustrate our algorithms, we apply
them to the Enron email corpus in order to extract the evolution of
Enron’s organizational structure.

1 Introduction

Modern communication networks (telephone, email, Internet chat room, etc.)
facilitate rapid information exchange among millions of users around the world.
This vast communication activity provides the ideal environment for groups to
plan their activity undetected: the related communications are embedded (hid-
den) within the myriad of random background communications, making them
difficult to discover. When a number of individuals in a network exchange com-
munications related to a common goal, or a common activity, they form a group;
usually, the presence of the coherent communication activity imposes a certain
structure on the communications of that set (group) of actors. A group of actors
may communicate in a structured way while not being forthright in exposing
its existence and membership. In this paper, we describe a novel statistical and
algorithmic approach to discovering such hidden groups. Our work extends pre-
vious results related to the identification of hidden groups in the cyclic model.

⋆ This material is based upon work partially supported by the National Science Foun-
dation under Grant No. 0324947. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

The new statistical model and new algorithms do not assume the existence of a
planning time-cycle in the stream of communications of a hidden group.

The tragic events of September 11, 2001 underline the need for algorithmic
tools (and corresponding software implementations) which facilitate the discov-
ery of hidden (malicious) groups during their planning stage, before they move
to implement their plans. A generic way of discovering such groups is based on
discovering correlations among the communications of the actors in the com-
munication network. Although the content of the messages can be informative
and natural language processing may be brought to bear in its analysis, such
an analysis is generally time consuming and intractable for large datasets. The
research presented here makes use of only three properties of a message: its time,
the name of the sender and the name of the recipient of the message.

Our approach is based on the observation that a pattern of communications
exhibited by actors in a social group pursuing a common objective is different
from that of a randomly selected set of actors. Specifically, we focus on the
discovery of such groups whose communications during the observation time-
period exhibit statistical correlations. Since any group, even one which tries to
hide itself, must communicate regularly, hidden groups will have communications
that display statistically significant structure, as compared to a group formed
at random. This is related to the social concept of homophily, which states that
individuals will tend to communicate with those similar to themselves [1].

Identifying structure in networks has been studied in [2–6], which focuses
on static non-planning hidden groups. The study of identifying planning hid-
den groups was initiated in [7] using Hidden Markov models. In [2, 3], al-
gorithms were established for detecting groups which are correlated in time,
given certain assumptions. In particular, it was assumed that the group com-
municates among all members at least once over consecutive disjoint time in-
tervals of a given length – the cycle model. The contribution of this paper
is the formulation of the problem of finding hidden groups in a streaming
model (streaming hidden groups), together with algorithms for finding such hid-
den groups. In this model, hidden groups do not necessarily display a fixed
time-cycle, during which all members of group members exchange messages.

A

C

F

HG

B

D E

Fig. 2. Group struc-
ture for Figure 1

An example of a streaming hidden group is illustrated in
Figure 1(a) – a group planning a golf game. Given the mes-
sage content, it is easy to identify two “waves” of commu-
nication. The first wave (in darker font) establishes the
golf game; and, the second wave (in lighter font) final-
izes the game details. Based on this data, it is not hard
to identify the group and conclude that the “organiza-
tional structure” of the group is represented in Figure 2
to the right (each actor is represented by their first initial).
The challenge is to deduce this same information from the
communication stream without the message contents (Fig-
ure 1(b)). There are two main features that distinguish the
stream model from the cycle model:

00 A→C Golf tomorrow? Tell everyone.
05 C→F Alice mentioned golf tomorrow.
06 A→B Hey, golf tomorrow? Spread the word
12 A→B Tee time: 8am; Place: Pinehurst.
13 F→G Hey guys, golf tomorrow .
13 F→H Hey guys, golf tomorrow .
15 A→C Tee time: 8am; Place: Pinehurst.
20 B→D We’re playing golf tomorrow.
20 B→E We’re playing golf tomorrow.
22 C→F Tee time: 8am; Place: Pinehurst.
25 B→D Tee time: 8am; Place: Pinehurst.
25 B→E Tee time 8am, Pinehurst.
31 F→G Tee time 8am, Pinehurst.
31 F→H Tee off 8am,Pinehurst.

00 A→C

05 C→F

06 A→B

12 A→B

13 F→G

13 F→H

15 A→C

20 B→D

20 B→E

22 C→F

25 B→D

25 B→E

31 F→G

31 F→H

(a) (b)

Fig. 1. (a) Streaming hidden group with two waves of planning. (b) Streaming group
without message content – only time, sender id and receiver id are available.

(i) communication waves may overlap, as in Figure 1(a);
(ii) waves may different durations, some considerably longer than others.

The first feature may result in bursty waves of intense communication (many
overlapping waves) followed by periods of silence. Such a type of communica-
tion dynamics is hard to detect in the cycle model, since all the (overlapping)
waves of communication may fall in one cycle. The second can be quantified by
a propagation delay function which specifies how much time may elapse between
a hidden group member receiving the message and forwarding it to the next
member; sometimes the propagation delays may be large, and sometimes small.
One would typically expect that such a streaming model would be appropriate
for hidden groups with some organizational structure as illustrated in the tree.
We present algorithms which not only discover the streaming hidden group, but
also its organizational structure without the use of message content.

We use the notion of communication frequency in order to distinguish non-
random behavior. Thus, if a group of actors communicates unusually often using
the same chain of communication, i.e. the structure of their communications
persists through time, then we consider this group to be statistically significant
and indicative of a hidden group. We present algorithms to detect small frequent
tree-like structures, and build hidden structures starting from the small ones.

Paper Organization. We begin in Section 2 by formally describing the problem
and the data representation. We present our algorithms and statistical models
for discovering streaming hidden groups in Sections 3, 4 and 5. In Section 6,
we give some experimental results on the evolution of the Enron organizational
structure using the Enron e-mail corpus, and conclude in Section 7 with some
future directions.

2 Problem Statement

A communication stream is a set of tuples of the form
〈senderID, receiverID, t, msg〉, where senderID sends the message msg to re-

ceiverID at time t. In our approach to detecting hidden groups, we do not rely on
any semantic information (message content) contained in the communications.
The reason is that communications on a public network are usually encrypted in
some way and can be quite complex to analyze, hence the message information
may be either misleading or unavailable.

B C

D

A

tCD

tAB

tBC

tBD

tAC

Fig. 3. Hypothetical
Group Structure

A hidden group communication structure can be rep-
resented by a directed graph. Each vertex is an actor and
every edge shows the direction of the communication.
For example a hierarchical organization structure could
be represented by a directed tree. The graph in Figure
3 to the right is an example of a communication struc-
ture, in which actor A “simultaneously” sends messages
to B and C; then, after receiving the message from A,
B sends messages to C and D; C sends a message to D

after receiving the messages from A and B. Every graph
has two basic types of communication structures: chains

and siblings. A chain is a path of length at least 3, and
a sibling is a tree with a root and two or more children,
but no other nodes. Of particular interest are chains and sibling trees with three
nodes, which we denote triples. For example, the chains and sibling trees of
size three (triples) in the communication structure above are: A → B → D;
A → B → C; A → C → D; B → C → D; A → B, C; and, B → C, D. We
suppose that a hidden group employs a communication structure that can be
represented by a directed graph as above. If the hidden group is hierarchical, the
communication graph will be a tree. The task is to discover such a group and
its structure based solely on the communication data.

If a communication structure appears in the data many times, then it is
likely to be non-random, and hence represent a hidden group. To discover hidden
groups, we will discover the communication structures that appear many times.
We thus need to define what it means for a communication structure to “appear”.
Specifically, we consider chain and sibling triples (trees of size three). For a chain
A → B → C to appear, there must be communication A → B at time tAB and a
communication B → C at time tBC such that (tBC − tAB) ∈ [τmin, τmax]. This
intuitively represents the notion of causality, where A → B “causes” B → C

within some time interval specified by τmin, τmax. A similar requirement holds
for the sibling triple A → B, C; the sibling triple appears if there exists tAB and
tAC such that (tAB − tAC) ∈ [−δ δ]. This constraint represents the notion of B

sending messages “simultaneously” to C and D which are within a small time
of each other, as specified by δ. For an entire graph (such as the one above) to
appear, every chain and sibling triple in the graph must appear using a single
set of times. For example, in the graph example above, there must exist a set
of times, {tAB, tAC , tBC , tBD, tCD}, which satisfies all the six chain and sibling

constraints. A graph appears multiple times if there are disjoint sets of times
each of which is an appearance of the graph. A set of times satisfies a graph if
all chain and sibling constraints are satisfied by the set of times. The number of
times a graph appears is the maximum number of disjoint sets of times that can
be found, where each set satisfies the graph. Causality requires that multiple
occurrences of a graph should monotonically increase in time. Specifically, if
tAB “causes” tBC and t′AB “causes” t′BC with t′AB > tAB , then it should be
that t′BC > tBC . In general, if we have two disjoint occurrences (sets of times)
{t1, t2, . . .} and {s1, s2, . . .} with s1 > t1, then it should be that si > ti for all i.

A communication structure which occurs frequently enough becomes statisti-
cally significant when its frequency of occurrence exceeds the expected frequency
of such a structure from the random background communications. The goal is
to find all statistically significant communication structures, which is formally
stated in the following algorithmic problem statement.

Input: A communication data stream; δ, τmin, τmax, h, κ.
Output: All communication structures of size ≥ h, which appear at least κ

times, where the appearance is defined with respect to δ, τmin, τmax.

The statistical task is to determine h and κ to ensure that all output communi-
cation structures are statistically significant. We will first consider small trees,
specifically chain and sibling triples. We then develop a heuristic algorithm to
build up larger hidden groups from clusters of triples. We will also obtain evolv-
ing hidden groups by using a sliding window.

3 Algorithms for Chain and Sibling Trees

We will start by introducing a technique to find chain and sibling triples, i.e.
trees of type A → B → C (chain) and trees of type A → B, C (sibling). To
accomplish this, we will enumerate all the triples and count the number of times
each triple occurs. Enumeration can be done by brute force, i.e. considering each
possible triple in the stream of communications. We have developed a general
algorithm for counting the number of occurrences of chains of length ℓ, and
siblings of width k. These algorithms proceed by posing the problem as a multi-
dimensional matching problem, which in the case of tipples becomes a two-
dimensional matching problem. Generally multi-dimensional matching is hard
to solve, but in our case the causality constraint imposes an ordering on the
matching which allows us to construct a linear time algorithm. Finally we will
introduce a heuristic to build larger graphs from statistically significant triples
using overlapping clustering techniques [8].

3.1 Computing the Frequency of a Triple

Consider the triple A → B → C and the associated time lists L1 = {t1 ≤ t2 ≤
. . . ≤ tn} and L2 = {s1 ≤ s2 ≤ · · · ≤ sm}, where ti are the times when A sent to
B and si the times when B sent to C. An occurrence of the triple A → B → C

is a pair of times (ti,si) such that (si − ti) ∈ [τmin τmax]. Thus, we would like to
find the maximum number of such pairs which satisfy the causality constraint. It
turns out that the causality constraint does not affect the size of the maximum
matching, however it is an intuitive constraint in our context.

We now define a slightly more general maximum matching problem: for a
pair (ti, si) let f(ti, si) denote the score of the pair. Let M be a matching
{(ti1 , si1), (ti2 , si2) . . . (tik

, sik
)} of size k. We define the score of M to be

Score(M) =
k

∑

j=1

f(tij
, sij

).

The maximum matching problem is to find a matching with a maximum score.
The function f(t, s) captures how likely a message from B → C at time s was
“caused” by a message from A → B at time t. In our case we are using a hard
threshold function

f(t, s) = f(t − s) =

{

1 if t − s ∈ [τmin, τmax],
0 otherwise.

The matching problem for sibling triples is identical with the choice

f(t, s) = f(t − s) =

{

1 if t − s ∈ [−δ, δ],
0 otherwise.

We can generalize to chains of arbitrary length and siblings of arbitrary width
as follows. Consider time lists L1, L2, . . . ,Lℓ−1 corresponding to the chain A1 →
A2 · · · → Aℓ, where Li contains the sorted times of communications Ai → Ai+1.
An occurrence of this chain is now an ℓ−1 dimensional matching {t1, t2, . . . , tℓ−1}
satisfying the constraint (ti+1 − ti) ∈ [τmin τmax] ∀ i = 1,· · · ,ℓ − 2.

The sibling of width k breaks down into two cases - ordered siblings which
obey constraints similar to the chain constraints, and unordered siblings. Con-
sider the sibling tree A0 → A1, A2, · · ·Ak with corresponding time lists L1, L2,
. . . ,Lk, where Li contains the times of communications A0 → Ai. Once again,
an occurrence is a matching {t1, t2, . . . , tk}. In the ordered case the constraints
are (ti+1 − ti) ∈ [−δ δ]. This represents A0 sending communications “simulta-
neously” to its recipients in the order A1, . . . , Ak. The unordered sibling tree
obeys the stricter constraint (ti − tj) ∈ [−(k − 1)δ, (k − 1)δ], ∀ i, j pairs, i 6= j.
This stricter constraint represents A0 sending communications to its recipients
“simultaneously” without any particular order.

Both problems can be solved with a greedy algorithm. The detailed al-
gorithms for arbitrary chains and siblings are given in Figure 4(a). Here we
sketch the algorithm for triples. Given two time lists L1={t1, t2, . . . , tn} and
L2={s1, s2, . . . , sm} the idea is to find first valid match (ti1 , si1), which is the first
pair of times that obey the constraint (si1 − ti1) ∈ [τmin τmax]. Then, recursively
find the maximum matching on the remaining sub lists L′

1 = {ti1+1, . . . , tn} and
L′

2 = {si1+1, . . . , sm}.
The case of general chains and ordered sibling trees is similar. The first valid

match is defined similarly. Every pair of entries tLi
∈ Li and tLi+1

∈ Li+1 in

the maximum matching must obey the constraint (tLi+1
− tLi

) ∈ [τmin τmax].
To find the first valid match, we begin with the match consisting of the first
time in all lists. Denote these times tL1

, tL2
, . . . , tLℓ

. If this match is valid (all
consecutive pairs satisfy the constraint) then we are done. Otherwise consider
the first consecutive pair to violate this constraint. Suppose it is (tLi

, tLi+1
); so

either (tLi+1
− tLi

) > τmax or (tLi+1
− tLi

) < τmin. If (tLi+1
− tLi

) > τmax (tLi

is too small), we advance tLi
to the next entry in the time list Li; otherwise

(tLi+1
− tLi

) < τmin (tLi+1
is too small) and we advance tLi+1

to the next entry
in the time list Li+1. This entire process is repeated until a valid first match is
found. An efficient implementation of this algorithm is given in Figure 4. The
algorithm for unordered siblings follows a similar logic.

In the algorithms below, we initialize i = 0; j = 1 (i, j are time list indices), and
P1, . . . , Pn = 0 (Pk is an index within Lk). Let ti = Li[Pi] and tj = Lj [Pj].

1: Algorithm Chain

2: while Pk ≤ ‖Lk‖ − 1, ∀k do

3: if (tj − ti) < τmin then

4: Pj ← Pj + 1
5: else if (tj−ti) ∈ [τmin, τmax] then

6: if j = n then

7: (P1, . . . , Pn) is the next match
8: Pk ← Pk + 1, ∀k; i← 0; j ← 1
9: else

10: i← j; j ← j + 1
11: else

12: Pi ← Pi + 1; j ← i; i← i− 1

1: Algorithm Sibling

2: while Pk ≤ ‖Lk‖ − 1,∀k do

3: if (tj − ti) < −(k − 1)δ then

4: Pj ← Pj + 1
5: else if (tj − ti) > (k − 1)δ,∀i < j then

6: Pi ← Pi + 1; j ← i + 1
7: else

8: if j = n then

9: (P1, . . . , Pn) is the next match
10: Pk ← Pk + 1,∀k; i← 0; j ← 1
11: else

12: j ← j + 1

(a) (b)

Fig. 4. (a) maximum matching algorithm for chains and ordered siblings; (b) maximum
matching algorithm for unordered siblings

The next theorem gives the correctness of the algorithms.

Theorem 1. Algorithm-Chain and Algorithm-Sibling find maximum matchings.

Proof. By induction. Given a set of time lists L = (L1, L2, . . . , Ln) our algo-
rithm produces a matching M = (m1, m2, . . . , mk), where each matching mi is
a sequence of n times from each of the n time lists mi = (ti1, t

i
2, . . . , t

i
n). Let

M∗ = (m∗

1, m
∗

2, . . . , m
∗

k∗) be a maximum matching of size k∗. We prove that
k = k∗ by induction on k∗. We will need the next two lemmas which follow by
construction in the Algorithms (we postpone the detailed proofs).

Lemma 1. If there is a valid matching our algorithm will find one.

Lemma 2. Algorithm-Chain and Algorithm-Sibling find an earliest valid match-

ing: let the first valid matching found by either algorithm be m1 = (t1, t2, . . . , tn).
Then for any other valid matching m′ = (s1, s2, . . . , sn) ti ≤ si ∀ i = 1, · · · , n.

If k∗ = 0, then k = 0 as well. If k∗ = 1, then there exists a valid matching
and by Lemma 1 our algorithm will find it.

Suppose that for all sets of time lists for which k∗ = M , the algorithm finds
matchings of size k∗. Now consider a set of time lists L = (L1, L2, . . . , Ln) for
which an optimal algorithm produces a maximum matching of size k∗ = M + 1
and consider the first matching in this list (remember that by the causality
constraint, the matchings can be ordered). Our algorithm constructs the earliest
matching and then recursively processes the remaining lists. By Lemma 2, our
first matching is not later than optimal’s first matching, so the partial lists
remaining after our first matching contain the partial lists after optimal’s first
matching. This means that the optimal matching for our partial lists must be
M . By the induction hypothesis our algorithm finds a matching of size M on
these partial lists for a total matching of size M + 1.

For a given set of time lists L = (L1, L2, . . . , Ln) as input, where each Li has
a respective size di, define the total size of the data as ‖D‖ =

∑n

i=1
di.

Theorem 2. Algorithm-Chain runs in O(‖D‖) time.

Proof. When looking for a matching, we compare a pair of elements from two
time lists. For each comparison, we increment at least once in a time list if the
comparison failed. After n−1 successful comparisons, we increment in every time
list by one. Thus there can be at most O(‖D‖) failed comparisons and O(‖D‖)
successful comparisons, since the are ‖D‖ list advances in total.

Theorem 3. Algorithm-Sibling runs in O(n · ‖D‖) time.

Proof. As in Algorithm-Chain a failed comparison leads to at least one incre-
ment, but now

(

n
2

)

successful comparisons are needed before incrementing in
every time list. Therefore, in the worst case O(n2) comparisons lead to O(n) list
advances. Since there are at most ‖D‖ list advances, the maximum number of
comparisons is O(n · ‖D‖)

3.2 Finding all Triples

Assume the data are stored in a vector. Each component in the vector corre-
sponds to a sender id and stores a balanced search tree of receiver lists (indexed
by a receiver id). And S is the whole set of the distinct senders. The algorithm for
finding chain triples considers sender id s and its list of receivers {r1, r2, · · · , rd}.
Then for each such receiver ri that is also a sender, let {ρ1, ρ2, · · · , ρf} be the
receivers to which ri sent messages. All chains begining with s are of the form
s → ri → ρj . This way we can more efficiently enumerate the triples (since we
ignore triples which do not occur). For each sender s we count the frequency of
each triple s → ri → ρj . Assuming all time lists of approximately the same size,
the total runtime is O(dmax‖D‖), where dmax is the size of the longest possible
list of receivers and ‖D‖ is the total dataset size.

4 Statistically Significant Triples

In order to determine the minimum frequency κ that makes a triple statistically
significant, we build a statistical model that mimics certain features of the data.
In particular we model the inter-arrival time distribution and receiver id prob-
ability conditioned on sender id. Using this model, we generate synthetic data
and find all randomly occurring triples to determine the threshold frequency κ.

4.1 A Model for the Data

We estimate directly from the data the message inter-arrival time distribution
f(τ), the conditional probability distribution P (r|s), and the marginal distribu-
tion P (s) using simple histograms (one for f(τ), S for P (r|s) and S for P (s), i.e.
one conditional and marginal distribution histogram for each sender, where S is
the number of senders). One may also model additional features (eg. P (s|r)), to
obtain more accurate models. One should however bear in mind that the more
accurate the model, the closer the random data is to the actual data, hence the
less useful the statistical analysis will be - it will simply reproduce the data.

Generating a Synthetic Data Set. Suppose one wishes to generate N messages
using f(τ), P (r|s) and P (s). First we generate N inter-arrival times indepen-
dently, which specifies the times of the communications. We now must assign
sender-receiver pairs to each communication. The senders are selected indepen-
dently from P (s). We then generate each receiver independently, but conditioned
on the sender of that communication, according to P (r|s).

4.2 Determining Significance Threshold

To determine the significance threshold κ, we generate M (as large as possible)
synthetic data sets and determine the triples together with their frequencies of
occurrence in each synthetic data set. The threshold κ may be selected as the
average plus two standard deviations, or (more conservatively) as the maximum
frequency of occurrence of a triple.

5 Constructing Larger Graphs using Heuristics

Now we discuss a heuristic method for building larger communication structures,
using only statistically significant triples. We will start by introducing the notion
of an overlap factor. We will then discuss how the overlap factor is used to
build a larger communication graph by finding clusters, and construct the larger
communication structures from these clusters.

5.1 Overlap between Triples

Given two statistically significant triples (A, B, C) and (D, E, F) of chain or
sibling type, let their maximum matchings occur respectively at the times M1 =
{(t1, s1), . . . , (tk, sk)} and M2 = {(t′1, s

′

1), . . . , (t
′

p, s
′

p)}.
We define an overlap weighting function W (M1, M2) to capture the degree

of coincidence between the matchings M1 and M2. The simplest such overlap
weighting function is the extent to which the two time intervals of communica-
tion overlap. Specifically, W (M1, M2) is the percentage overlap between the two
intervals [t1, sk] and [t′1, s

′

p], if they overlap, and otherwise zero:

W (M1, M2) = max

{

min(sk, s′p) − max(t1, t
′

1)

max(sk, s′p) − min(t1, t′1)
, 0

}

A large overlap factor suggests that both triples are part of the same hidden
group. More sophisticated overlap factors could take into account intermittent
communication but for our present purpose, we will use this simplest version.

5.2 The Weighted Overlap Graph and Clustering

We construct a weighted graph by taking all significant triples to be the vertices
in the graph. Let Mi be the maximum matching corresponding to vertex (triple)
vi. Then, we define the weight of the edge eij to be ω(eij) = W (Mi, Mj). Thus,
we have an undirected complete graph (some weights may be 0). By thresholding
the weights, one could obtain a sparse graph. Dense subgraphs in this graph
correspond to triples that were all active at about the same time, and are a
candidate hidden group. Thus, we want to cluster the graph into dense possibly
overlapping subgraphs. Given the triples in a cluster we can build a directed
graph which will represent a communication structure within that cluster. The
graph built will be constructed to be consistent with all the triples in the cluster,
and will usually be a single connected component. If a cluster contains multiple
connected components, this may imply the existence of some hidden structure
connecting them. Here is an outline of the entire algorithm:

1: Obtain the significant triples.
2: Construct a weighted graph by computing overlap factors between every pair

of significant triples.
3: Perform clustering on the weighted graph.
4: Use each cluster to determine a candidate hidden group structure.

The analysis of each step of this algorithm has already been presented except
for the clustering. For the clustering, since we allow overlapping clusters, we use
the algorithms presented in [8], [9].

6 Experimental Results

6.1 Finding Triples in Enron Data

For our experiments we considered the Enron email corpus. We took τmin to be 1
hour and τmax to be 1 day. Figure 5 compares the number of triples occurring in

the data to the number that occur randomly in the synthetically generated data
using the model derived from the Enron data. As can be observed, the number
of triples in the data by far exceeds the random triples. After some frequency
threshold, no random triples of higher frequency appear - i.e., all the triples
appearing in the data at this frequency are significant. We used M = 1000 data
sets to determine the random triple curve in Figure 5. For chains the significance

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

frequency of triples

of

 tr
ip

le
s

Chain Triples
Random
Enron
Threshold

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

frequency of triples

of

 tr
ip

le
s

Sibling Triples
Random

Enron

Threshold

(a) (b)

Fig. 5. Abundance of triples occurring as a function of frequency of occurrence. (a)
chain triples; (b) sibling triples

threshold frequency was κchain = 35 and for siblings it was κsibling = 160. We
used a sliding window of one year to obtain evolving hidden groups. On each
window we obtained the significant chains (frequency > κchain) and significant
siblings (frequency > κsibling) and the clusters in the corresponding weighted
overlap graph. We use the clusters to build the communication structures and
show the evolution of one of the hidden groups in Figure 6.

7 Conclusions

In this paper we have given algorithms for finding significant chain and sibling
triples from streaming communication data. Using a heuristic to build from
triples, we find hidden groups of larger sizes. Using a moving window we can track
the evolution of the organizational structure as well as hidden group membership.

Our algorithms do not use communication content and do not differentiate
between the natures of the hidden groups discovered, i.e. some of the hidden
groups may be expected and some may not. Further work, perhaps using human
analysts may be needed to identify the trully suspicious groups. This is the
content of future work. Our statistical algorithms serve to narrow down the set
of possible hidden groups that need to be analysed further.

H

K

A B

D

G

C

L

D

K

I

E

H

A B

C

F

G

J

H

D E

I

K

A B

C F

Mar. 2000 - Mar. 2001 Sept. 2000 - Sept. 2001 Mar. 2001 - Mar. 2002

Fig. 6. Evolution of part of the Enron organizational structure from 2000 - 2002.

Future work includes exact efficient algorithms to obtain the frequency of
general trees and to enumerate all statistically significant general trees of a
specified size. In addition, other scoring functions for the matching and overlap
weighting functions for the clustering may yield interesting results.

References

1. Monge, P., Contractor, N.: Theories of Communication Networks. Oxford University
Press (2002)

2. Baumes, J., Goldberg, M., Magdon-Ismail, M., Wallace, W.: Discovering hidden
groups in communication networks. Intelligence and Security Informatics ISI) (2004)
378–389

3. Baumes, J., Goldberg, M., Magdon-Ismail, M., Wallace, W.: On hidden groups in
communication networks. Technical report, TR 05-15, CS Dept., RPI (2005)

4. Capocci, A., Servedio, V.D.P., Caldarelli, G., Colaiori, F.: Detecting communities
in large networks. Workshop on Algorithms and Models for the Web-Graph (WAW)
(2004) 181–188

5. Newman, M.E.J.: The structure and function of complex networks. SIAM Review
45 (2003) 167–256

6. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proc. Natl. Acad. Sci. 99 (2002) 7821–7826

7. Magdon-Ismail, M., Goldberg, M., Wallace, W., Siebecker, D.: Locating hidden
groups in communication networks using Hidden Markov Models. In: International
Conference on Intelligence and Security Informatics (ISI 2003), Tucson, AZ (2003)

8. Baumes, J., Goldberg, M., Krishnamoorthy, M., Magdon-Ismail, M., Preston, N.:
Finding comminities by clustering a graph into overlapping subgraphs. Proceedings
of IADIS Applied Computing (2005) 97–104

9. Baumes, J., Goldberg, M., Magdon-Ismail, M.: Efficient identification of overlapping
communities. Intelligence and Security Informatics (ISI) (2005) 27–36

