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Abstract. The proliferation of recipes and other food information on
the Web presents an opportunity for discovering and organizing diet-
related knowledge into a knowledge graph. Currently, there are several
ontologies related to food, but they are specialized in speci�c domains,
e.g., from an agricultural, production, or speci�c health condition point-
of-view. There is a lack of a uni�ed knowledge graph that is oriented
towards consumers who want to eat healthily, and who need an inte-
grated food suggestion service that encompasses food and recipes that
they encounter on a day-to-day basis, along with the provenance of the
information they receive. Our resource contribution is a software toolkit
that can be used to create a uni�ed food knowledge graph that links the
various silos related to food while preserving the provenance information.
We describe the construction process of our knowledge graph, the plan
for its maintenance, and how this knowledge graph has been utilized in
several applications. These applications include a SPARQL-based service
that lets a user determine what recipe to make based on ingredients at
hand while taking constraints such as allergies into account, as well as
a cognitive agent that can perform natural language question answering
on the knowledge graph.

Resource Website: https://foodkg.github.io

1 Introduction

Chronic diseases such as cardiovascular disease, high blood pressure, type 2 di-
abetes, some cancers, and poor bone health are linked to poor dietary habits
[8]. Although much progress has been made in the development and implemen-
tation of evidence-based nutrition recommendations in the past few decades
[17], that knowledge has not translated into day-to-day dietary practices. One
of the barriers to putting recommended dietary guidelines into practice is that
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the personalization of the guidelines (e.g., with respect to cultural and lifestyle
di�erences) is largely left to individuals. Much more than just watching one's
caloric, fat, salt, and sugar intake, guidelines also advise individuals to eat a
variety of nutrient-dense foods. Thus, the number of nutritional parameters that
need to be considered can become overwhelming.

A natural solution to this problem is to provide an intelligent and automated
method for recommending foods. Trattner et al. [23] provide a comprehensive
review of the state-of-the-art in food recommender systems. They highlight a
recent but growing focus on not only recommending likable foods but going fur-
ther and ensuring that they are healthful foods as well. The authors note that,
despite its importance, food recommendation, in comparison to other domains,
is relatively under-researched. Among the several works they reviewed, only [11]
involved the use of semantics, motivating the need for methodologies for con-
structing a food-focused knowledge graph.

Knowledge graphs (KGs) have an important role in organizing the informa-
tion we encounter on a day-to-day basis and making it more broadly available to
both humans and machines. KGs have been used for a variety of tasks, including
relationship prediction, searching for similar items, and question answering [6].
While machine learning algorithms can e�ectively answer questions, they are
notorious for producing answers that are hard to explain, especially automati-
cally. Knowledge graphs make it possible to produce automatic explanations of
how answers were derived. Interoperability is another important aspect of knowl-
edge graphs, as they enable understanding and reuse. However, the elusiveness
of standards and best practices in this area poses a substantial challenge for
knowledge engineers who want to maximize KG discovery and reuse, as dictated
by the FAIR (Findable, Accessible, Interoperable, Reusable) principles [24].

In this paper, we discuss our methodology for extracting and maintaining
publicly available data about food, and for constructing a knowledge graph that
can be consumed by both humans and machines, thus providing useful food rec-
ommendations that can in turn promote healthier lifestyles. It is important to
note that ours is the �rst extensive FoodKG resource spanning recipes, ingre-
dients, and nutrients that covers over a million recipes and 67 million triples
(see https://foodkg.github.io). The novelty and main contribution of our re-
source is its scope and inclusiveness, not only considering the di�erent datasets
it integrates, but the linking with health concepts and the o�ering of a question-
answering service as an application.

1.1 Use Case

Our use case is designed to assist people in personalizing their dietary goals by
providing them with information to improve the alignment between their eating
behaviors and general nutritional recommendations. For example, consider the
American Diabetes Association's (ADA; [1]) recommendation that �Carbohy-
drate intake from whole grains, vegetables, fruits, legumes, and dairy products,
with an emphasis on foods higher in �ber and lower in glycemic load, should be
advised over other sources, especially those containing sugars�. Unfortunately,
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translating this into healthful yet palatable food choices can be a daunting task
for many individuals, which is partly due to the fact that knowledge is scat-
tered across multiple sources. Thus, our goal is to assist people in exploring how
di�erent modi�cations to their meals can a�ect their alignment with guidelines
by providing a robust system that can be used to construct a Food Knowledge
Graph (FoodKG).

Some of the competency questions (i.e., the questions that help capture the
scope, content, and the form of evaluation of the knowledge that is modeled)
include questions such as: �What are the ingredients and the total calorie count
of a piece of a chocolate cake according to USDA3 nutritional data?�. The answer
may include butter, eggs, sugar, �our, milk, and cocoa powder for the ingredi-
ents, and a calorie count of 424. For a diabetic who is trying to abide by the
ADA guidelines, a question like, �How can I increase the �ber content of this
cake?� may be a natural follow-up question to ask. Similarly, a person su�ering
from lactose intolerance may ask �What can I substitute for milk in chocolate
cake?�. Answering questions like this is not possible from sources such as DB-
pedia4 alone, because the information from those sources is not complete. For
example, the dbo:ingredients5 for the resource dbr:Chocolate_cake6 contains only
dbr:Cocoa_powder and dbr:Chocolate. FoodKG contains additional information
from online recipe sites, along with the corresponding nutrient information from
USDA, that has more relevant information than what is available on DBpe-
dia. Therefore, to answer this question, we can use the semantic structure of
our knowledge graph to suggest that whole wheat �our be used instead of white
�our, or that soy or almond milk be used instead of cow's milk, or that margarine
be used instead of butter.

To address questions like those posed above, we present a methodology that
can be used to extract publicly available data on food and construct a semanti-
cally meaningful knowledge graph that can power applications to help consumers
understand their foods and discover substitutions.

2 Related Work

Ontologies representing food are a well-studied topic. The Food Ontology is
a universal �farm to fork� food vocabulary [9] that covers the provenance of
food contained within the ontology. However, FoodOn lacks nutrition informa-
tion and recipes, which is our focus. The Personalized Information Platform for
Health and Life Services (PIPS) is a large-scale European Union project ded-
icated to the development of new ways to deliver healthcare [5]. It describes
a food ontology that incorporates nutritional information such that it can be

3 USDA refers to US Department of Agriculture. https://www.usda.gov
4 DBpedia [2] has structured content from the information created in the Wikipedia.
5 The dbo pre�x refers to http://dbpedia.org/ontology and dbo:ingredient derefer-
ences to http://dbpedia.org/ontology/ingredient.

6 The dbr pre�x refers to http://dbpedia.org/resource and dbr:Chocolate_cake

dereferences to http://dbpedia.org/resource/Chocolate\_cake.
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applied to help manage di�erent health conditions like diabetes. A similar on-
tology is described in [7] for use by hypertensive individuals. The Healthy Life
Style (HeLiS) Ontology includes a subportion focused on food, including con-
cepts such as `BasicFood' and `Recipe' [10]. It aligns well with our own goal,
although it has a somewhat reduced scope. The Food Product Ontology [16] is
designed for business purposes. It includes concepts such as price and brand,
which is more suitable for food suppliers than end users. The Cooking On-
tology [3] comprises four main classes�actions, foods, recipes, and utensils�
with supplementary class units, measures, and equivalencies, and the ontol-
ogy is integrated into a dialogue system to answer the questions. However,
they currently do not support a version in English, and have not mapped to
comparable classes in other ontologies, which is essential for reuse. Similarly,
the BBC Food Ontology (https://www.bbc.co.uk/ontologies/fo/1.1) only
constructs the important concepts and needs to cooperate with other existing
ontologies to work better. The SmartProducts Network of Ontologies (http:
//projects.kmi.open.ac.uk/smartproducts/ontology.html) also contains a
food ontology, however our USDA nutrients ontology has more than twice as
many food items as in their food_nutrients.owl ontology.

The FOod in Open Data (FOOD) [20] project implements existing ontol-
ogy designs for foods that are designated as �protected� in the European Union,
and then extracts data contained in the Italian agricultural policy documents
to produce Linked Open Data (LOD) for public use. However, they focus on
characteristics important for policy evaluation and enforcement, rather than
for health. Other systems include an information retrieval system that incorpo-
rates knowledge from domains of food, health, and nutrition, to recommend food
health information based on the users' conditions and preferences is described
in [14], and the food search through knowledge graphs [26] focuses on the user's
ratings and opinions on tapas/pintxos (small bites/dishes). Finally, the FOODS-
Diabetes ontology [22] is meant for medical providers to plan patient meals in
terms of caloric intakes, etc., and does not include any recipes or ingredients.

The �internet of food� review [4], and the LOV4iot project [13] (http://
lov4iot.appspot.com/?p=lov4iot-food) list a number of other food related
ontologies. Di�erent food ontologies focus on di�erent aspects of food, such as
chemical compositions, supermarket locations, food sources/packaging, and so
on. Our focus is on recommendation in the context of personalized health, i.e.,
suggesting similar or alternative foods and recipes that are more healthy.

3 Data Acquisition

The resource contribution introduced in this paper aims to bridge the gaps be-
tween silos of data. However, gathering and integrating data from many sources
leads to several challenges with consistency, accuracy, and completeness:

� Invalid data - some textual data contains characters that are illegal in an
RDF based knowledge graph, requiring escaping. Escaping itself can pose
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problems for entity recognition and resolution; it must be applied consis-
tently at all stages of the process.

� Incomplete data - recipes may lack quantities for ingredients, or provide
non-standard units of measure (e.g. �to taste�, �as needed�, �a few shakes�).
Nutrient data might be incomplete, with only some nutrients tabulated.

� Ambiguous entities - many ingredients are di�cult to tie to a speci�c food
item. This has several root causes, such as local spellings and spelling errors;
local names and synonyms; and use of di�erent languages. This can lead to
a large number of equivalent names, for example, corn masa, masa harina,
corn �our.

� Extraneous information - ingredients are occasionally listed with complicated
units (e.g. 1/3 of a 375g can of beans) or unnecessary information (e.g. black
beans from the store).

Our FoodKG relies on three main sources of data: the recipes themselves,
the nutritional content of ingredients, and a food ontology to organize the ingre-
dients. We discuss these sources below.

Recipes Online recipe sites allow users to browse and share recipes. Some dis-
play content from speci�c commercial sources; others permit users to upload their
own recipes. Each website has speci�c conventions for how data is presented. In
some cases, this includes an e�ort to provide machine-readable data.

There also exist large collections of recipe data produced for research and
commercial purposes. An example of the former is the Recipe1M dataset7, pro-
vided by the authors of Im2Recipe [18], and consists of over 1 million recipes
collected from various internet recipe sharing sites.

Nutrients We chose to use USDA's National Nutrient Database for Standard
Reference (https://catalog.data.gov/dataset/food-and-nutrient-database-
for-dietary-studies-fndds), which contains approximately 8,000 records for a
variety of types of food and their nutrients. The majority of the foods are generic,
rather than coming from a speci�c brand. Whilst by no means exhaustive, the
dataset provides a large variety of foods with extensive nutritional information.

Food Ontologies Lists of recipes and nutritional tables provide bulk infor-
mation about millions and thousands of entities, respectively, but su�er from a
lack of meaning - these components form a strong knowledge graph, but lack an
ontology. To resolve this, we incorporate relevant portions of the FoodOn on-
tology [9]. FoodOn provides an extensive taxonomy for foods, organizing them
by source organism, region of origin, and so forth. This provides much-needed
connections between related concepts. For example, gala apples are siblings of
red apples, but are further removed from apple pie. However, it was not designed
as a nutritional reference, and thus FoodOn lacks detailed information about the
nutritional content of items. It also does not directly relate to real-world recipes.

7 The Recipe1M dataset is available for download after signing up at: http://
im2recipe.csail.mit.edu/dataset
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Since FoodOn is a very large taxonomy, we opted to use only a small subset
of it. To accomplish this, we leveraged Ontofox, a tool that extracts terms and
axioms from ontologies [25]. Using the tool, we extracted all children of the food
product by organism node, thus capturing a wide variety of food items in a
useful hierarchical form (providing a breakdown by category of organism, group
of organism, and �nally a speci�c organism of origin).

4 Knowledge Graph Construction

A knowledge graph includes resources with attributes and entities, relation-
ships between such resources, and annotations to express metadata about the
resources. Our complete food knowledge graph contains several key components:

i) Recipes and their ingredients, ii) Nutritional data for individual food items,
iii) Additional knowledge about foods, and iv) Linkages between the above con-
cepts.

Recipes Each recipe describes the ingredients needed to produce a dish. Each
recipe receives a unique identi�er, which is accompanied by its name, any pro-
vided tags, and a set of ingredients. Each ingredient points to its name, unit,
and quantity. An example of the resulting structure is provided in Figure 1.

Pepperoni Potato Bake
http://idea.rpi.edu/heals/kb/recipe/fc9f994e-Pepperoni%20Potato%20Bake

onions
http://idea.rpi.edu/heals/kb/recipe/fc9f994e-Pepperoni%20Potato%20Bake/ingredient/onions

recipe-kb:ing_quantity "2"
recipe-kb:ing_unit ""

recipe-kb:uses

olive oil
http://idea.rpi.edu/heals/kb/recipe/fc9f994e-Pepperoni%20Potato%20Bake/ingredient/olive%20oil

recipe-kb:ing_quantity "1/4"
recipe-kb:ing_unit "cup"

recipe-kb:uses

onions
http://idea.rpi.edu/heals/kb/ingredientname/onions

recipe-kb:ing_name

olive oil
http://idea.rpi.edu/heals/kb/ingredientname/olive%20oil

recipe-kb:ing_name

http://idea.rpi.edu/heals/kb/usda#04053
http://idea.rpi.edu/heals/kb/usda#04053

owl:equivalentClass

http://idea.rpi.edu/heals/kb/usda#11282
http://idea.rpi.edu/heals/kb/usda#11282

owl:equivalentClass

Fig. 1. An example of an imported recipe, pruned to show only two ingredients. The
ingredients have been linked to USDA records.

Individual ingredient records usually appear in the form of (quantity, unit,
name), such as 2 cups �our or 1 1/2 lb cabbage, chopped. Due to the lack of con-
text, parsing these phrases with natural language processors is di�cult, and naive
parsing methods fail due to minor quirks. To e�ectively parse such records, we
utilize the following steps: 1) Parenthesized statements, such as (freshly picked)
or (or chicken), are stripped. These provide additional cues to the reader, but
are not strictly necessarily to understand components that make up the recipe.
Similarly, any text following the �rst comma is dropped, as it generally describes
additional qualities for the ingredient. Whilst these do have meaning, it is less
signi�cant than that of the name itself. 2) Numerical values, such as 1/2 or 2.5,
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are removed from the start of the string and saved as the quantity. The numerical
value for an ingredient is, in almost all cases, found before the unit and name
of the ingredient. 3) A list of units is compared against the �rst word in the
string; if one matches, it is removed and stored as the unit. As when �nding the
quantity, this almost always succeeds; it is highly uncommon for the unit to be
found anywhere but immediately after the quantity. 4) The remaining text is
tokenized with the Natural Language Toolkit (NLTK; https://www.nltk.org).
Adjectives that are not descriptive of color are eliminated. For example, names
such as green bell peppers and red onion are preserved, whilst descriptors like
fresh are eliminated. Verbs and adverbs are also eliminated, simplifying terms
like diced onion and minced garlic. Text following a conjunction is removed. Fi-
nally, NLTK's WordNetLemmatizer is used to eliminate plurals. The resulting
text is then saved as the name. Examples of inputs and results are provided
in Table 1. High-quality name recognition signi�cantly improves the quality of
later results.

Input Quantity Unit Name

1 cup milk 1 cup milk

1 tablespoon parsley, chopped 1 tablespoon parsley

6 tablespoons red currant jelly 6 tablespoons red currant jelly

1 cup butter, softened 1 cup butter

Table 1. Examples of processed ingredient data

Nutrients From recipes, we can produce a network of foods and their ingredi-
ents. However, without information about the nutritional content of each ingre-
dient, we cannot make meaningful health-related suggestions. We use the USDA
public nutrition dataset for this information. The data from USDA exists in
a tabular form, describing several dozen nutritional statistics, such as calories,
macro-nutrients (protein, carbohydrates, fats), and micro-nutrients (vitamins
and minerals). Nutrients are provided per 100 grams of the food item. Two non-
mass measurements of the food are also provided, along with the number of
grams found in each measure. We make use of the Semantic Data Dictionary
approach [21], which produces RDF triples from non-triple data sources. This
turns our tabular data into something that can be integrated into our knowledge
graph. Some examples of the data converted to the concepts in the knowledge
graph can be seen in Table 2.

id description water energy protein lipid carbohydrate

1001 Butter, With Salt 15.87 717 0.85 81.11 0.06

1009 Cheese, Cheddar 37.1 406 24.04 33.82 1.33

Table 2. Example USDA data with a few food items and 5/57 nutrients.

Given this data, we can de�ne the shape of the resulting knowledge graph
via semantic relationships, as can be seen in Table 3: Column represents the
column in the raw data, Attribute/Entity represents what rdf:type this food
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item is,Unit refers to the unit of measurement for that nutrient from community
accepted terminologies such as DBpedia and the Units Ontology, and Label
gives a textual description for the data item that can be used in text mining and
auto-completion tasks in applications that use the FoodKG.

Notice the interlinking to other ontologies in then Attribute/Entity and
the Unit columns. The various pre�xes8 in the annotations in Table 3 points to
the following ontologies:

� chebi : Chemical Entities of Biological Interest Ontology (https://www.ebi.
ac.uk/chebi)

� dbr : DBpedia Resource Ontology (http://dbpedia.org/resource/)
� sio: Semanticscience Integrated Ontology (http://semanticscience.org/

resource/)
� envo: Environment Ontology (http://purl.obolibrary.org/obo/envo.owl#)
� foodon: Food Ontology (http://purl.obolibrary.org/obo/foodon.owl#)
� schema: Schema.org mappings (https://schema.org/)
� uo: Units Ontology (http://purl.obolibrary.org/obo/uo.owl#)

Column Attribute/Entity Unit Label

id chebi:33290, dbr:Food USDA Id for the food

description sio:StatusDescriptor Short description

water
envo:00002006,
chebi:15377, dbr:Water

dbr:Gram,
uo:0000021

Water (g)

energy foodon:03510045 dbr:Kcal Energy (Kcal)

protein dbr:Protein
dbr:Gram,
uo:0000021

Protein (g)

lipid dbr:Lipid
dbr:Gram,
uo:0000021

Lipid Total (g)

carbohydrate
dbr:Carbohydrate,
schema:carbohydrateContent

dbr:Gram,
uo:0000021

Carbohydrate (g)

sugar dbr:Sugar
dbr:Gram,
uo:0000021

Sugar Total (g)

calcium dbr:Calcium uo:0000022 Calcium (mg)

Table 3. Semantic structural representation of a subset of the USDA data.

After these annotations are completed, the semantic data dictionary con-
version script is run to convert the tabular USDA data into quads, which are
triples grouped into named graphs. A small piece of the high level structure of
the resulting graph can be seen in Figure 2.

5 Knowledge Graph Augmentation

With all of the data imported, we are left with a collection of isolated islands
of data. Thus, the second phase of the construction of our knowledge graph is
linkage. We leverage various entity resolution techniques to automatically con-
nect various concepts together. To ensure that the dataset can be practically

8 Pre�xes can be dereferenced via http://prefix.cc or http://www.ontobee.org.
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fat_mono

usda-kb#fat_mono

ss:hasValue "7.778"^^xsd:float

fat_mono
usda-kb#fat_mono

 rdf:type 

id
usda-kb#id

 ss:isAttributeOf 

description
usda-kb#description

ss:hasValue "CHEESE,BLUE"

 ss:isAttributeOf 

energy
usda-kb#energy

ss:hasValue "353"^^xsd:integer

 ss:isAttributeOf 

energy
usda-kb#energy

 rdf:type 

Fig. 2. An example of USDA data, pruned to display a handful of features. The pre�xes
usda-kb and ss refers to custom namespaces within our knowledge graph.

expanded and updated, we make use of well-studied linked data techniques to
establish provenance of these derived relationships.

Entity Resolution Names are the most obvious shared attributes between our
various domains of recipes, nutrients, and foods. For this reason, we have largely
focused on entity resolution techniques that work on strings, such as cosine
similarity, which performs quite well for matching by name, particularly after
normalization. We also examined using word embeddings, such as word2vec [19]
and FastText [15], with a pretrained model to resolve names. However, results
were poor - likely a product of the embedding capturing only the general meaning
of a statement.

Entity Selection We found it bene�cial to limit the domain of concepts to
match against, both for the sake of performance (matching is linearly expensive
with respect to the number of entities) and to maximize accuracy (more spurious
entities to match against cause more false positives). The exact manner in which
this is done depends on the datasets being compared.

For instance, many categories of food are rarely seen as ingredients - but, crit-
ically, have names that are similar to kinds of food that are relevant. The USDA's
Standard Reference contains a large number of entries about baby food, with
names such as `Babyfood, juice, apple' and `Babyfood, meat, lamb, strained'. We
remove such entries, since they cause problems with linkage of ingredients. For
example, the former will match the `apple juice' ingredient in a recipe, but is it
unlikely that the recipe is referring to babyfood. We similarly remove categories
such as fast food and sweets - although even this is not entirely straightforward.
For example, �brown sugar� is lumped in with jelly beans and candy bars, but
it is desirable to retain it in the FoodKG. We also ignore text beyond the third
comma, as we found that the distinctions between entities becomes insigni�cant
at that point; doing so also speeds up the linkage process.

Other sources of data are signi�cantly broader; as an example, we experi-
mented with linking into the DBpedia knowledge graph. Unfortunately, many
entities in the DBpedia dataset are incompletely or inaccurately typed; non-
foods have the Food type, and many edible items lack it. Therefore, we opted to
use heuristics to select for potential ingredients. All DBpedia resources marked
as ingredientOf were included, as was anything with a carbohydrate value. This
tended to produce a subset of actual food items, and whilst it resulted in the
loss of some entities, it also eliminated a large number of erroneous choices.
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Provenance and Publication Information To provide clear provenance for
every claim made in our knowledge graph - including both imported knowledge
and inferred linkages - we have made extensive and consistent use of the RDF
Nanopublication speci�cation [12]. Nanopublications represent atomic units of
publishable information, attaching information about where it came from and
who/what published it. They express this knowledge via linked data, using four
named graphs:

i) The assertions graph contains the claims being made. For a recipe, this
includes a title, tags (if any), and ingredients. Ingredients are described by their
name, unit, and quantity. ii) The provenance graph contains information about
where the assertions were derived from. For a recipe, this could be the URL from
which data was retrieved, or any other reference that points back to the original
data. iii) The publication info graph explains who created the nanopublication.
For example, the linkages we form are collected into a single nanopublication;
the publication info remarks that our linker tool generated the linkages. iv) The
head graph ties the prior three graphs together, making it possible to �nd the
three components.

6 Application of the Food Knowledge Graph

6.1 Answering Competency Questions in SPARQL

In order to evaluate the knowledge graph, we establish several competency ques-
tions that address its possible applications. Our �rst competency question is
�What recipes contain beef?� which would return a list of all recipes in the
knowledge graph that are linked to some entity `beef' in the knowledge graph.
This covers the simple case of understanding what ingredients are found in what
recipes in the knowledge graph. The second competency question, �What recipes
contain beef, carrots, and potatoes?� takes this a step further by asking for
recipes that contain multiple ingredients. This type of question mimics the func-
tionality of traditional recipe sharing websites, where users can look for recipes
containing certain types of ingredients. Our third competency question is �What
recipes contain bananas that do not contain walnuts?� as can be seen in List-
ing 1.1. This evaluates the ability of our knowledge graph to return recipes that,
in addition to containing certain ingredients, do not contain others. This is es-
pecially relevant in cases of allergies or dislikes of certain foods. We can further
extend this kind of thinking to nutritional information, based on the knowledge
graph's health information from the USDA. This brings us to our fourth compe-
tency question, �What recipes that have chicken are low in sugar?� as can be seen
in Listing 1.2. This and similar kinds of questions address the application of the
knowledge graph to assisting with certain health conditions like diabetes or hy-
pertension that place restrictions on nutritional intake. Currently, this question
is answered by using glycemic index information which was manually added by
hand to certain ingredients. This approach clearly has its limitations, however,
since not all ingredients have a glycemic index and ingredient amounts are not
considered in this calculation. Our �nal competency question is �What recipes



FoodKG: A Semantics-Driven Knowledge Graph for Food Recommendation 11

are vegan?� Since the knowledge graph structures its knowledge of ingredients in
a hierarchical way, it can determine whether certain ingredients fall into certain
categories like animal products for vegetarian/vegan diets or pork products for
religious restrictions, as a more speci�c example.

Each of these questions can be answered by querying the underlying ontology
using SPARQL, since information like the relationships between recipes and
ingredients is encoded directly within the ontology. An example query for the
third and fourth competency questions are structured as follows.

@PREFIX food: <http://purl.org/heals/food/>
@PREFIX ingredient: <http://purl.org/heals/ingredient/>
SELECT DISTINCT ?recipe
WHERE {

?recipe food:hasIngredient ingredient:Banana .
FILTER NOT EXISTS {

?recipe food:hasIngredient ingredient:Walnut .}
}

Listing 1.1. SPARQL query for retrieving a food for a person with an allergy

@PREFIX food: <http://purl.org/heals/food/>
@PREFIX ingredient: <http://purl.org/heals/ingredient/>
SELECT distinct ?recipe
WHERE {

?recipe food:hasIngredient ingredient:Chicken .
FILTER NOT EXISTS{

?recipe food:hasIngredient ?ingredient .
?ingredient food:hasGlycemicIndex ?GI .
FILTER (?GI >= 50)}

}

Listing 1.2. SPARQL query for retrieving a food with a low glycemic index

6.2 Answering Competency Questions in Natural Language

We demonstrate another potential use of our FoodKG for answering natural lan-
guage questions over knowledge graphs, aka, knowledge base question answering
(KBQA). Given questions in natural language, our goal here is to automatically
�nd answers from the underlying knowledge graph.

Since there does not exist a Food Q&A dataset related to ingredients, nu-
trients and recipes, we choose to create a synthetic Q&A dataset based on our
FoodKG using a set of manually designed question templates. We create three
types of competency questions with increasing levels of complexity using various
templates. Table 4 shows the question templates and data statistics of the cre-
ated dataset. The simple questions, e.g., �How much sugar is in cheese, cream, fat
free?�, are created based on the USDA data and require only one hop reasoning.
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The comparison questions, e.g., �Salt, table or syrups, table blends, pancake,
which has less energy?�, can be regarded as a composition of two simple ques-
tions. The third type of questions we create are those with constraints, e.g.,
�What Laotian dishes can I make with sugar, water, oranges?�; these queries are
based on the Recipe1M data and are similar to those in Section 6.1. To cre-
ate the dataset, we �rst sample several subgraphs from the FoodKG. For each
subgraph, we then randomly sample a question template from our prede�ned
template pool and �ll the slots with KG entities and relations.

Competency
Questions

Question Template Examples Size Knowledge Source

Simple
How much {nutrient}
is in {ingredient}?

12,661 USDA

Comparison
{ingredient1} or {ingredient2},
which has less {nutrient}?

5,565 USDA

Constraint
What {tag} dishes can I

make with {ingredient_list}?
6,359 Recipe1M

Table 4. Data statistics of the created synthetic Q&A dataset.

Experiments Our Q&A system consists of three components which are the
question type classi�er, topic entity predictor and KBQA model. Given a natural
language question, e.g., �how much sugar is in Cheese, Blue?�, the question type
classi�er is intended to determine the question type which is `simple' in this case.
Then the topic entity predictor is applied to detect the topic entity mentioned
in the question which is `Cheese, Blue' and links it to the FoodKG. Finally, the
KBQA model is called to retrieve answers from the KG subgraph surrounding
the topic entity `Cheese, Blue'.

In our experiments, we only evaluate the KBQA model which is the most cru-
cial component in our Q&A system. We compare a simple Bag-of-Word vectors
based method (BOW) and our state-of-the-art neural network-based method
(BAMnet) [6]. In both methods, we encode the question and each candidate
answer within the KG subgraph surrounding the topic entity into the same em-
bedding space, and then compute the cosine similarity score between them using
a dot product. Candidate answers whose similarity scores are above a certain
threshold are returned as predicted answers. The major di�erence between the
two methods is that in BOW, the question and candidate answers are encoded
independently as the average of the pretrained word embeddings, while in BAM-
net, a more sophisticated neural network module is used to encode them jointly
by considering the two-way �ow of interactions between them. For more details,
please refer to [6]. We split the dataset into training (50%), development (20%)
and test set (30%).

Methods Simple Comparison Constraint Overall

BOW 13.7 49.6 30.0 26.0

BAMnet 99.8 100.0 82.6 95.5

Table 5. Experimental results (F1-scores) on the synthetic Q&A test set.
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Table 5 shows the results of two methods on the synthetic Q&A test set where
we assume that gold topic entities and question types are known beforehand. As
we can observe, even though the questions are created using prede�ned templates
and there is no lexical gap between the questions and the KG (i.e., we use the
exact entity and relation names to �ll the question templates), the BOW method
does not perform well. However, our BAMnet method perform very well on this
dataset. Moreover, among the three types of questions, those with constraints
are the most challenging. Future directions include creating more realistic and
complex questions with more diverse templates and lexical gap.

7 Resource

Our FoodKG resource website at https://foodkg.github.io links to all the
resources, which include the FoodKG knowledge graph, the automated scripts
to construct the KG, the whattomake application, the natural language query-
ing application, and accompanying documentation. Using the FoodKG, we can
answer complex questions related to recipes, ingredients, nutrition and food sub-
stitutions that can power applications that target healthy lifestyle behaviors.
The SPARQL queries and the source code for the two applications illustrated in
Section 6 are also made available.

Maintenance: The FoodKG is part of the RPI-IBMHealth Empowerment through
Analytics Learning and Semantics (HEALS) project (https://idea.tw.rpi.
edu/projects/heals), and we expect to support this project actively for the
next 3-7 years. We anticipate that these public tools will be useful for anyone
aiming to build an integrated knowledge graph for food. As observed in Fig. 3,
our resulting FoodKG spans over 67 million triples (obtained by adding all of
the triples comprising the USDA, Recipe1M and FoodOn KG subsets, and the
linkages between them). Various other statistics are also shown in the �gure.

Fig. 3. An overview of the food knowledge graph (FoodKG).
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Description: An overview of how to construct the FoodKG with provenance
is clearly explained at https://foodkg.github.io/foodkg.html. The FoodKG
github repository (https://github.com/foodkg/foodkg.github.io) contains
step-by-step instructions to generate the entire FoodKG, resulting in serial-
ized RDF triples. As outlined in Section 4, the input data is in various for-
mats (e.g., USDA is in CSV, Recipe1M data is in JSON, and other ontologies
in RDF/OWL), which we map to RDF. The output of the KG construction is
RDF; more speci�cally, the output is in the NanoPublications format [12], which
includes the corresponding assertion, provenance, and publication information,
as outlined in Section 5. The output of the scripts include the following seri-
alized RDF �les (in .trig format) spanning 67 million triples: i) usda-links.trig,
ii) foodon-links.trig, iii) foodkg-core.trig. We do not directly provide the �nal
RDF data, due to the terms of the Recipe1M data. However, our Github code
and step-wise instructions can generate the KG exactly as described herein. We
believe that generating a KG programmatically for a food knowledge graph has
several bene�ts over supporting a public SPARQL endpoint or a compressed
dump of the graph: (1) additional means of enriching the KG programmatically,
(2) possibility to tap into various sources of data, (3) clean handling of intellec-
tual property in the ever-changing and complex rights management landscape.

The whattomake app (https://foodkg.github.io/whattomake.html), de-
scribed in Section 6.1, includes comprehensive documentation, sample SPARQL
queries, and three food resources: i) http://purl.org/heals/foodon (a subset
of the FoodOn we used in our mappings), ii) http://purl.org/heals/food, and
iii) http://purl.org/heals/ingredient.

Finally, the KBQA application (https://foodkg.github.io/kbqa.html) in-
cludes documentation on how to query the FoodKG using natural language ques-
tions. We currently support three types of questions, namely simple, comparison
and constraint-based as described in Section 6.2.

8 Conclusions and Future Work

It is evident that information on food, while readily available on the Web, re-
quires individuals to combine information from various sources in order to decide
what to eat. To address the issue of aggregating all the pertinent information
on food in a manner that is consumable by an individual speci�c to their health
and taste preferences, we have created an integrated knowledge graph for food,
which can be used to suggest healthier food and restaurant menu item alterna-
tives. We model structured sources in terms of a target ontology, and augment
the knowledge graph with other unstructured sources.

More speci�cally, we extract the relevant data on food from authoritative
sources such as the USDA, as well as online recipe sources. We apply a semantics
based extract-transform-load procedure to structure the food knowledge using
our ontology as well as community accepted terminologies, and link to relevant
FoodOn and nutrient resources to support further exploration and augmentation
of the FoodKG. The linkages to these resources are done using techniques involv-
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ing lexical similarity and string matching to �nd non-perfect matches between
sets of data that frequently lack perfect pairings.

Our FoodKG is a valuable resource for the primary task of food recommen-
dation. At the same time, it can also be used as a benchmark dataset to test
various entity resolution and semantic linking methods for recipes, ingredients,
units, and so on. In the future, we plan to further leverage the food knowledge
graph and relationships between ingredients and recipes to develop novel ingre-
dient and recipe embedding models to produce more meaningful representations
for food recommendation. Since our ultimate objective is to provide person-
alized food recommendations to everyday individuals that consider both their
health and lifestyle preferences, we see the need for the food knowledge graph to
support competency questions that involve more subjective concepts like `conve-
nient', `a�ordable', `spicy', and `refreshing'. We also plan to continue to extend
our ontology and knowledge sources, as well as explore novel food embeddings
that leverage the relationships captured in the food knowledge graph. In conclu-
sion, we have presented a reusable methodology that integrates information on
food into a knowledge graph.
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