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Multispectral three-dimensional (3D) imaging provides spatial information for biological structures that cannot be measured by
traditional methods. This work presents a method of tracking 3D biological structures to quantify changes over time using graph
theory. Cell-graphs were generated based on the pairwise distances, in 3D-Euclidean space, between nuclei during collagen I gel
compaction. From these graphs quantitative features are extracted that measure both the global topography and the frequently
occurring local structures of the “tissue constructs.” The feature trends can be controlled by manipulating compaction through
cell density and are significant when compared to random graphs. This work presents a novel methodology to track a simple 3D
biological event and quantitatively analyze the underlying structural change. Further application of this method will allow for the
study of complex biological problems that require the quantification of temporal-spatial information in 3D and establish a new
paradigm in understanding structure-function relationships.
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1. Introduction

Traditional reductionist biology has developed a wealth of
knowledge concerning individual molecules and their func-
tion. This data set, however, has exceeded our capabilities
for integration and analysis. Attempts to step outside these
subcellular networks, into the equally complex world of three
dimensional (3D) tissue development, are limited by our
ability to deal with the spatial and temporal information that
can be gathered in such studies [1]. Multispectral imaging
has the potential to provide insight into the spatial orien-
tation and dynamic organization of biological structures;
however, we are still not equipped to quantitatively analyze
and use all the data that is present in such images.

Graph theory has emerged as a method to characterize
the structure of large complex networks leading to a better
understanding of the dynamic interactions that exist between
their components. A graph is a mathematical structure that
represents the relationships between members of a given
set and is depicted as discrete points (nodes) connected by

interactive links (edges) [2]. These graphs define pairwise
interactions which can be either directed or undirected
[1]. Both local and global topographical characteristics
extracted from these graphs can define the network structure
(topology) and relationships that exist within the node
population [3]. Nodes with similar characteristics tend to
cluster together and the pattern of this clustering provides
information as to the shared properties, and therefore the
function, of those individual nodes [4]. The graph theory
approach permits users to test hypotheses that define the
characteristics of node interaction, regardless of whether the
relationships between nodes are well defined or not.

Graph theory has been applied to a variety of real
networks from biology to social networking the internet
and literature citations. Biological networks have common
designs that are governed by simple and quantifiable orga-
nizing principles [1]. These principles are not random:
evolution by natural evolution has consistently repeated
efficient and functional patterns of organization. We can use
our understanding of these principles to extract information
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about the function of complex biological networks, from
protein-protein interactions, cell signaling cascades, disease
networks [5], transcriptional, metabolic [6, 7], and genetic
regulatory systems [8], and brain connectivity [9–11]. These
studies highlight the ability of graph theory to capture the
modularity of biological networks and provide important
insight into the function of these networks on a global
level. Researchers have recently used graph theory to extract
topological features from neural networks and compare
connectivity between young and old patients. They were able
to extract information from these graphs that suggest that
the process of aging that occurs in the brain may actually
be due to changes that are occurring in the modularity
of their sparse networks [11]. While significant steps have
been made, the key challenge still remains to understand
the structure and dynamic interactions of living cells within
the context of their physical environment including matrix
architecture, cellular compartmentalization, and cytoskeletal
affects that may restrict these subcellular interactions [1].
If we can understand the design principles that govern
biological organization, then we can use those principles
to inform and accelerate studies of tissue morphogenesis,
development, differentiation, and organogenesis.

Natural and engineered tissues are a collection of cells
arranged within a structural scaffold of extracellular matrix
(ECM) proteins that provide biochemical and mechanical
cues to direct the function of those cells. Tissue function
is therefore dependent upon the spatiotemporal resolution
of matrix proteins, cells, and signaling molecules. Under-
standing the interactions of this complex set of components
over time requires novel techniques of extracting data
from the intact tissue. In fact, the three dimensionality
of tissue itself is critical for the maintenance of normal
cellular function [12, 13]. Changes in cell shape [14], ECM
organization [15], tissue geometry [16], and mechanics
[17] affect gene expression profiles [18], differentiation
[19], and cancer progression [20]. It is therefore critical to
probe cellular function within native-like environments and
treat these “tissues” as multiscale networks of interacting
units.

This paper presents a novel application of graph the-
ory to extract and quantify the tissue structure/function
relationship. We construct cell-graphs that place cell nuclei
as the nodes of the graphs and link those nuclei as a
function of their pairwise distance based on the assumption
that cells that are in physical contact (i.e., membrane
proximity) interact. Previous work demonstrates that graph
theory-based analysis of the locations of cell nuclei pro-
vides important information concerning the (dys)functional
states of the tissue [21–23]. Cell-graphs and their variants
(Hierarchal Cell-graphs and ECM-aware cell-graphs) based
on pathological images of brain, breast, and bone cancer,
respectively, model tissue structure to provide quantitative
metrics that enhance diagnostic accuracy over that of other
automated methods [24]. These results arose from graphs
of 2D cell nuclei in histological images, suggesting that a
wealth of knowledge has yet to be exploited in higher-
resolution images. Here we extend graph-based analysis of
3D fluorescent images to track biological structures in a

dynamic fashion and extract data reflecting fundamental
changes in tissue organization and structure.

2. Materials and Methods

2.1. Cell Culture. Cryopreserved hMSCs (Lonza) were
grown according to manufacturer’s instructions. hMSCs
were cultured in Dulbecco’s Modification of Eagle’s
Medium 1x (DMEM) supplemented with 10% fetal bovine
serum (FBS) and fungizone/penicillin/streptomycin (FPS)
(10,000 units/mL). Medium was changed every three days
and cultures were incubated at 37◦C in a humidified
atmosphere containing 95% air and 5% CO2. Cells were
detached using trypsin-EDTA and passaged into fresh
culture flasks upon reaching confluence. hMSCs were used
between passages 6 and 8. In preparation for incorporation
into 3D constructs, cells were washed with PBS, detached
with trypsin-EDTA, collected, and counted. All reagents
were purchased from Fisher Scientific unless otherwise
noted.

2.2. 3D Collagen I Culture. Three-dimensional collagen I gels
were prepared by mixing cells with the following reagents:
DMEM (14%), FBS (10%), 5× Conc. DMEM (16%),
0.1N NaOH (10%), and 4 mg·mL collagen I (50%) (MP
Biomedicals). The final collagen concentration is 2 mg/mL
within each construct. Constructs of a volume of 1.0 mL were
made in 12-well plates and the cellular density was kept at
1.0 × 106 cells per mL ECM and 3.0 × 105 cells per mL,
for their respective experimental sets. The constructs were
incubated at 37◦C for 30 minutes, released from the wells,
and incubated in DMEM for 24 hours. The floating gels
were removed at from culture at each time point and imaged
using a Nikon digital camera for compaction. Gel images
were analyzed using Image J (NIH) and the percent change
in volume was calculated. Triplicates of each sample were
analyzed. Statistical analysis was performed using the student
t-test; a P value less that .05 was considered significant.

2.3. Fluorescence Imaging. Collagen I constructs were pre-
pared for fluorescence staining at hours 0, 1, 2, 4, 6, 10,
16, and 24. Constructs were washed with PBS followed by a
30-minute incubation at 4◦C in 3% paraformaldehyde. The
constructs were then washed with PBS and incubated at 4◦C
for 30 minutes in cell blocking solution (0.25% Tween20,
1% BSA in PBS). Collagen constructs were incubated for
10 minutes at room temperature in SYTOX Green Dye
(Invitrogen) at a final concentration of 50 nM in cell blocking
solution. The samples were stored at 4◦C in PBS until
imaging. 3D confocal images were taken using a Zeiss LSM
51 and Image J (NIH) was used to convert the files into .tiff
format for segmentation.

2.4. Image Segmentation Node Identification. The 3D con-
focal images were segmented using the Otsu Thresholding
algorithm [25]. The Otsu Thresholding algorithm assumes
that there are two classes of pixels in the observed image
and finds a threshold value that will automatically separate
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Table 1: Description of graph metrics.

Number of nodes The number of vertices in the graph, in this case cell nuclei as defined by image segmentation.

Number of edges
The number of links between the vertices of the graph, in this case the probability of cellular interaction based
on distance.

Average degree The number of neighbors/connections that a given node has averaged over all the nodes in the graph.

Clustering coefficient
(C)

Is defined as Ci = (2Ei)/(k(k + 1)), where k is the number of neighbors of node vi and Ei is the number of
existing links between v′i s neighbors. C measures the ratio of existing links to possible links for each node.

Path length or hop
count:

The shortest distance between two nodes reflective of the weight of each link.

Number of nodes The number of vertices in the graph, in this case cell nuclei as defined by image segmentation.

Eccentricity and
closeness

The maximum and average of the shortest lengths, respectively. The average of these two features provides
global measure of average eccentricity and average closeness.

Diameter Defined as the maximum eccentricity, greatest distance between two nodes in the graph.

Central points Defined as nodes that have an eccentricity equal to the average eccentricity.

Hop plot value Reflects the size of a neighborhood between any two nodes with a “hop”, a single edge.

Hop plot exponent Slope of the hop plot values as a function of h in log-log scale.

Effective diameter
Defined as ε = N2/(N + 2E)1/H , where N and E are the number of nodes and edges, and H is the hop plot
exponent.

Giant connected
component

Defined as the largest set of nodes that are reachable from each other.

Giant connected ratio The ratio of the size of the giant connected component to the number of nodes in the graph.

Isolated node A node with no edges and therefore a degree of 0.

End node A node with one edge.

Table 2: Labeling scheme to capture local degree of subgraph
networks.

Degree range Label

0 0

1-2 1

3-4 2

5-6 3

7-8 4

9-10 5

13-14 7

15-16 8

17–19 9

20–22 10

23–26 11

More than 26 12

the foreground pixels from the background. The algorithm
searches for the threshold value that minimizes the intraclass
variance. After finding this optimal threshold, the intensity
values of each pixel are compared against the threshold and
the pixels with intensity values higher than the threshold
assigned as foreground pixels. The foreground pixels that are
touching each other are connected, and the center of mass
of these nuclei is calculated to identify node (vertex) set for
cell-graph generation.

2.5. Cell-Graph Generation. A graph is given by G = (V ,E)
where V is the vertex set of the graph and E is the edge (link)
set of the graph. Cell-graphs are constructed for structural

modeling of tissue organization. The vertex set contains
the nuclei, obtained from image segmentation as explained
above. The edge set represents pairwise relationships between
cells. We assume that a pair of cells interacts if they are in
physical contact (e.g., cell membranes are touching or very
close to each other). Thus, we define a distance-based edge
function to model this hypothesis, and a link between a pair
of two nodes is established when the Euclidean distance d
between them is defined as

d(u, v) =
√

(ux − vx)2 +
(
uy − vy

)2
+ (uz − vz)2, (1)

where ux, uy , and uz are x, y, z coordinates of node u,
respectively.

For each pair of vertices the pairwise Euclidean distance
is calculated and a link is set when that distance is smaller
than the linking (edge) threshold. This threshold value is
determined by considering the nucleus-membrane ratio and
estimating cell diameter. We have identified thresholds, cor-
responding to the approximate radii of spread mammalian
cells, of 65, 70, and 75 microns (from a distortion free
sphere representation of the cell membrane to observable
distortion) and executed our algorithms for each.

2.6. Cell-Graph Features. Topographical properties for each
cell graph were extracted and averaged over the entire
graph to represent global measures of “tissue organization”;
see Table 1. These computed properties or cell-graph met-
rics are well accepted in the internet topology generator
and simulation literature (see http://cat.inist.fr/?aModele=
afficheN&cpsidt=14492873 and references therein) and used
to (i) characterize graph topography and (ii) verify if two
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graphs come from the same distribution. A rigorous expla-
nation of these metrics and their significance is provided in
our previous publications [23, 24].

2.7. Computing Randomness of Tissue Organization. The
Cumulative Nearest Neighborhood Distribution (CNND)
function [26] was used to generate random positions of
nuclei and compared to experimental nuclei locations. The
CNND function was calculated from the 3D geometry in
our tissue samples defined by a 3D bounding box B that
includes all the cells in a sample. For each cell we chose
a uniformly random x, y, z coordinate in B. Given B the
function takes distance threshold t as the input parameter,
defined as follows:

G(t) = 1
n

n∑
i=1

I
(
γi ≤ t

)
, (2)

where I(·) is an indicator function, γi is the distance of cell i
from its nearest neighbor, and n is the total number of cells
segmented in the image.

This function value represents the fraction of the cell
counts for which their nearest neighbor falls within the
threshold distance t, and as the threshold t increases, more
cells include their nearest neighbor within the threshold.
Thus, this function value always increases from 0 to 1.

The randomness of cell-cell relationships was tested by
defining an edge function according to the Erdos-Renyi
model, calculating the same set of features on our random
graphs, and comparing the random graph metrics to that
of the cell-graphs: G(N , p) where N nodes are linked by a
probability of p [27]. Here the edge definition is independent
of node location. A variation of the G(N , p) model, the
G(N ,M) model, chooses a graph at random from the set of
all possible graphs with N nodes and M links. For each time
point and cell density, we generated a cell-graph, calculated
the number of nodes and links in that cell-graph, and then
generated a random graph using the G(N ,M) model. We
generated 10 random graphs, calculated the metrics, and
then averaged them. We compared the average values of these
metrics to the cell-graph metrics.

2.8. Voronoi-Delaunay Graph Modeling of Samples. We com-
pared the cell-graph technique to Voronoi diagrams and the
Delaunay triangulation method [28–30]. On a sample tissue
image, the Voronoi diagram partitions the image into convex
polytopes (i.e., polygons in 2D and polyhedrons in 3D)
such that each polytope contains exactly one cell (generating
point) and every point in a given polytope is closer to its
generating point than to any other generating point in the
tissue (Voronoi cell). Delaunay triangulations were built by
linking the generating points of neighboring Voronoi cells.
We built Delaunay triangulations on cells identified in the
segmentation step, then calculated the same set of metrics,
and observed their changes over time.

2.9. Subgraph Pattern Mining. Classical graph mining [31]
finds frequent subgraphs from a graph database, D. The

support of a subgraph g is defined as
∑

d∈D l(g,d), where
l(g,d) = 1 if g is a subgraph of d and 0 otherwise. A
subgraph is considered frequent if its support across the
graph database is equal or higher than a user-defined support
threshold.

For the cell graphs we sought subgraphs that are frequent
with respect to their embedding count in one large graph.
Support of a subgraph, g, is equal to its embedding count
in one large graph, G, which is provided as input. We
considered each cell graph in a separate graph mining
session to find its frequent subgraphs. In each session, we
used a common support threshold value [20] and used
only the edge-disjoint embeddings (explained below) while
counting the embedding. Frequent subgraphs for different
cell graphs were processed further to find those with high
support at one time point, but not in others. To do so, we
modified the support count method of the graph mining
algorithm in a DMTL library [32] which provides modular
design and therefore simpler modification. In our support
count subroutine, we used Ullman’s algorithm [33] which
returns the decision that a graph, g, is a subgraph of G
and also provides all possible embeddings of g in G. Since
subgraph mining is very costly (subgraph isomorphism test
is NP-Hard), we restricted our mining process to consider
subgraphs that have at most four edges.

For each subgraph we detected the frequency of its
occurrence at each time point and for each cell density
using edge-disjoint embeddings. Subgraph pattern size was
restricted to an upper limit of four edges, and each vertex
is labeled by an integer number corresponding to the
proportional degree of that vertex to capture local network
information. The labeling scheme is shown in Table 2. If
every vertex in a graph has a unique label, the embedding
count of a graph, g, in a larger graph, G, can be at most
one. However, in our samples, multiple vertices may have
the same label (Table 2); so the embedding count for a
subgraph may be greater than one. To avoid unfairly elevated
embedding counts caused by a subgraph where many of
its vertices share the same labels we only considered edge-
disjoint embeddings while counting the support of a pattern.
Because finding the maximum value for the edge-disjoint
embedding count from the total embedding count is NP-
Hard, we used simple smallest degree heuristics to find an
independent set [25] to obtain the edge-disjoint embedding
support of a subgraph pattern. All the subgraphs that have
an edge-disjoint embedding count more than the threshold
value of 20 were returned by the algorithm.

3. Results

3.1. Macro- and Microscale Compaction Occurs in the First
24 Hours of Collagen I Culture. To provide proof of concept
for our cell-graph method we encapsulated hMSC in 3D
collagen I hydrogels at a concentration of 3.0 × 105 cells/mL
of collagen I. A hallmark of hMSC hydrogel culture is the cell
dependent compaction event that begins immediately fol-
lowing encapsulation. Triplicate samples were fixed at hours:
0, 1, 2, 4, 6, 10, 16, and 24 postencapsulation. We imaged
the entire collagen I gel after fixing, as shown in Figure 1(a).
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Table 3: Quantitative metrics for 3.0 × 105 cells/mL collagen I hydrogel 24-hour timecourse.

Time (hours)

0 1 2 6 10 16 24

Average degree 1.18 1.53 2.45 3.62 5.56 9.40 14.40

Clustering Coefficient 0.26 0.37 0.47 0.56 0.63 0.59 0.61

Average eccentricity 1.11 2.08 2.16 4.27 13.52 14.38 14.24

Maximum eccentricity (diameter) 5.00 8.00 7.00 9.00 23.00 20.00 19.00

Minimum eccentricity (radius) 0.00 0.00 0.00 0.00 1.00 10.00 10.00

Average eccentricity 90 1.11 1.89 2.16 3.77 11.28 10.97 11.28

Maximum eccentricity 90 5.00 7.00 7.00 8.00 20.00 16.00 17.00

Minimum eccentricity 90 0.00 0.00 0.00 0.00 1.00 8.00 8.00

Average path length (closeness) 0.84 1.31 1.41 2.39 6.97 7.07 7.36

Hop plot exponent 0.20 0.49 0.41 0.70 1.08 1.51 1.46

Effective hop diameter 14410546.75 961.44 3191.99 164.88 26.67 10.34 11.29

Giant connected ratio 0.13 0.22 0.20 0.20 0.68 0.99 1.00

Number of connected components 35.00 34.00 35.00 26.00 12.00 3.00 1.00

Percentage of isolated points 0.38 0.32 0.22 0.05 0.02 0.01 0.00

Percentage of end points 0.28 0.19 0.17 0.12 0.05 0.02 0.01

Number of central points 23.00 23.00 21.00 9.00 11.00 1.00 14.00

Percentage of central points 0.38 0.32 0.22 0.05 0.05 0.00 0.03

Table 4: Quantitative metric statistics for different link thresholds for 3.0 × 105 cells/mL collagen I hydrogel 24-hour timecourse.

Time (hours)

0 1 2 6 10 16 24

Average degree 1± 0.21 0.9± 0.19 1.05± 0.18 1.54± 0.31 1.85± 0.35 2.6± 0.46 4.15± 0.67

Clustering coefficient 0.14± 0.07 0.12± 0.05 0.12± 0.04 0.18± 0.06 0.29± 0.05 0.32± 0.04 0.44± 0.03

Average eccentricity 1.62± 0.28 1.21± 0.26 1.39± 0.1 2.51± 0.7 3.11± 0.59 8.93± 2.21 19.85± 7.61

Maximum eccentricity
(diameter)

7± 0.64 5± 0.05 5.33± 0.64 7.78± 1.69 10± 1.26 15.44± 2.36 29.58± 7.93

Minimum eccentricity
(radius)

0± 0 0.33± 0 0.33± 0 0.11± 0.19 1± 0 1± 0 4.25± 2.47

Average eccentricity 90 1.57± 0.29 1.17± 0.25 1.37± 0.12 2.39± 0.59 2.87± 0.48 7.57± 1.8 16.64± 6.55

Maximum eccentricity
90

6.78± 0.67 4.78± 0.63 5.22± 0.5 7.55± 1.32 9.11± 0.96 14± 2.06 27± 7.12

Minimum eccentricity
90

0± 0 0.33± 0 0.33± 0 0.11± 0.19 1± 0 1± 0 3.5± 1.89

Average path length
(closeness)

1.07± 0.17 0.85± 0.15 0.97± 0.09 1.56± 0.34 1.82± 0.29 4.35± 0.84 10.22± 3.81

Hop plot exponent 0.33± 0.06 NAN± 0.36± 0.03 0.49± 0.08 0.52± 0.09 0.7± 0.08 1.15± 0.11

Effective hop diameter 1.2E10 2.1E15 1.4E6± 2E6 1.2E8± 1E8 2E4± 2.1E4 7E5± 7.7E5 46.52± 26.71

Giant connected ratio 0.15± 0.03 0.11± 0.02 0.11± 0 0.11± 0.03 0.12± 0.02 0.35± 0.06 0.68± 0.29

Number of Connected
Components

45.78± 4.88 43.67± 4.59 47.33± 4.91 54.55± 11.21 46.78± 10.36 37.56± 7.63 19.75± 12.82

Percentage of isolated
points

0.42± 0.04 0.45± 0.06 0.39± 0.08 0.23± 0.07 0.2± 0.06 0.16± 0.03 0.04± 0.02

Percentage of end points 0.28± 0.04 0.32± 0.02 0.32± 0.02 0.34± 0.04 0.25± 0.02 0.22± 0.04 0.1± 0.04

Number of central
points

31.55± 4.12 26.67± 2.9 28.22± 3.15 31.11± 7.42 25± 5.56 24.78± 4.25 10.84± 6.92

Percentage of central
points

0.42± 0.04 0.41± 0.03 0.34± 0.04 0.24± 0.06 0.18± 0.03 0.19± 0.03 0.04± 0.02

Number of nodes 83.33± 28.87 74.33± 30.01 85.33± 13.43 140.67± 42.19 144± 42.51 174± 99.8 307± 57.03

Number of edges 48.75± 10.22 40.25± 8.66 47.84± 7.61 121.75± 22.6 146.92± 26.65 297.34± 49.57 659.33± 106.32
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Figure 1: Macro- and micro scale compaction occurs over 24 hours of 3.0 × 105 cell/mL gels. hMSCs at a cell density of 3.0 × 105 cells/mL
were embedded in 2 mg/mL collagen I gels. Collagen I gels were fixed and stained for nuclei with SYTOX Green (a) Macroscale images of
hydrogel compaction (Scale bar = 1 cm). (b) Fluorescent image cross section of hMSC nuclei in collagen I gel (Scale bar = 100 μm).

Table 5: Quantitative metrics for 1 × 106 cells/mL collagen I hydrogel 24-hour timecourse.

Time (hours)

0 1 2 6 10 16 24

Average degree 12.47 6.30 7.05 11.47 14.70 22.68 50.07

Clustering Coefficient 0.71 0.64 0.67 0.67 0.65 0.62 0.66

Average eccentricity 15.93 10.66 12.90 15.59 13.41 11.68 11.29

Maximum eccentricity (diameter) 21.67 18.33 21.00 21.67 17.33 15.00 14.67

Minimum eccentricity (radius) 1.00 0.67 1.00 8.00 6.33 8.00 7.67

Average eccentricity 90 12.28 8.56 11.08 12.51 10.82 9.35 9.02

Maximum eccentricity 90 19.33 16.33 18.67 18.67 14.67 12.67 12.33

Minimum eccentricity 90 1.00 0.67 1.00 6.33 5.00 7.00 6.00

Average path length (closeness) 7.84 5.23 6.65 7.58 7.00 6.11 5.85

Hop plot exponent 1.33 1.01 1.07 1.24 1.39 1.54 1.52

Effective hop diameter 12.47 35.15 22.77 16.26 10.99 9.44 9.12

Giant connected ratio 0.98 0.65 0.73 0.88 0.99 1.00 1.00

Number of connected components 4.00 14.67 11.33 3.33 3.00 1.00 1.00

Percentage of isolated points 0.00 0.02 0.02 0.00 0.01 0.00 0.00

Percentage of end points 0.01 0.09 0.04 0.01 0.01 0.00 0.00

Number of central points 4.67 10.33 10.33 5.33 9.67 13.33 34.67

Percentage of central points 0.01 0.06 0.05 0.02 0.02 0.02 0.02

Number of nodes 380.33 190.00 218.33 350.33 440.00 743.33 1458.67

Number of edges 2378.67 604.33 769.00 2049.33 3339.00 8454.33 36770.33

The collagen I hydrogels compacted to approximately 15%
of their original volume over the 24-hour time course, with
the largest change in volume occurring within the first six
hours. At each time point the nuclei were imaged by confocal
microscopy (10×) to reflect cellular organization within the
3D space of each hydrogel; see Figure 1(b). The number of
nuclei captured within the 10× field of vision increased over
time as the hydrogels compacted.

3.2. Graph Theory Applied to 3D Confocal Images Generates
Distance-Dependent Cell-Graphs. Cell-graphs, Figure 2(b),
were generated from the 3D reconstruction of the fluorescent
image z-stacks; see Figure 2(a). The 3D images were seg-
mented, nodes identified, and links formed based upon their
Euclidean distance as described in the methods. This method
was able to successfully segment the 3D nuclear images and
form cell-graphs that demonstrate the relationships between
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Figure 2: Graph theory applied to fluorescent confocal z-stack images to generate distance dependent cell-graphs for 3.0 × 105 cell/mL gels.
(a) 3D representation of fluorescent image z-stack. (b) 3D cell-graph generated from fluorescent image z-stack.

nodes over time. The number of edges, links, between cell
nuclei increased throughout the time course; see Figure 2(b).
This is consistent with the increased nuclear density observed
in the fluorescent images.

3.3. Quantitative Metrics Can Be Extracted from Cell-Graphs
That Characterize 3D Organization Over Time. The utility
of these cell-graphs comes from the ability to extract mean-
ingful and quantitative metrics to describe the relationships
between nodes. The metrics (Table 1) were computed for the
generated cell-graph of each z-stack over the time course.
These metrics quantitatively provide information as to the
3D orientation and potential interactions of cells in culture;
see Table 3. The metrics were dependent on the location
of the cells relative to one another. The number of nodes
increased with time which represents the number of nuclei
and is again consistent with the visual data. The number of
edges increased as the hydrogels underwent compaction and
the distance between cells decreased. The giant connected
ratio reached one by 16 hours in our collagen I hydrogel
time course. The percent of isolated points and end point
metrics both reached a value of zero by 16 hours. The average
degree increased over the 24-hour period while the clustering
coefficient had a sharp increase between 1 to 2 hours and
leveled off by 10 hours. The diameter peaked at 10 hours
and the number of connected components decreased to zero
by 16 hours into the time course. Our results are stable
for link thresholds between 65 to 75 microns as shown in
Table 4.

3.4. An Increased Cellular Density Increases the Rate of Hydro-
gel Compaction during the First 24 Hours. To demonstrate
the metrics’ sensitivity to perturbations in the biological

system we repeated the experiment using a higher cell
concentration (1.0 × 106 cell/mL of ECM). The 1.0 ×
106 cells/mL gels compacted to less than 10% of their original
volume by hour 16; see Figure 3(a). These observations are
reflected in the fluorescent images of nuclei over time; see
Figure 3(b).

Cell-graphs, Figure 4(b), generated based upon the new
3D images, Figure 4(a), showed an increased connectivity,
expressed as visible links at earlier time points. The transition
to high connectivity occurred at six hours in the high cell
density gels, while the low cell density samples transitioned
at ten hours. Quantitative metrics from the high cell density
gels are listed in Table 5. In the 1.0 × 106 cell/mL gels the
number of edges between the nodes increased over time, with
the largest increase occurring between 10 and 16 hours. The
giant connected ratio approached one beginning at 10 hours.
The percent of isolated points and percent of end points
reached zero at 10 hours. The average degree underwent the
largest increase from 10 to 16 hours and peaked at 16 hours
followed by a decrease of approximately 20% by 24 hours.
The diameter peaked at 2 hours and decreased by hour 10.
The number of connected components also reached one by
hour 16.

3.5. Increasing Cellular Density Leads to a Shift in the Metrics
Transition over Time. The sensitivity of our metrics to
gross changes in biological function is a prerequisite to
the extension of this method into more complex problems.
Quantification of gel compaction revealed a relationship
between collagen I compaction and cell density; see Figure 5.
The 1.0 × 106 cell/mL gels showed significant compaction
within the first hour while the 3.0× 105 cell/mL samples did
not significantly compact until the second hour (P < .05).
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Figure 3: Changes in cell density alter compaction and nuclear organization. hMSC at a cell density of 1 × 106 cells/mL embedded in
2 mg/mL collagen I gel. Collagen I gels were fixed and then stained for nuclei with SYTOX Green. (a) Macroscale images of hydrogel
compaction (Scale bar = 1 cm). (b) Fluorescent image cross section of hMSC nuclei (Scale bar = 100 μm).
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Figure 4: Graph theory applied to fluorescent confocal z-stacks from the 1 × 106 cells/mL time course to generate distance dependent cell-
graphs. (a) 3D representations of fluorescent image z-stacks of 1 × 106 cell densities. (b) 3D cell-graph generated from fluorescent image
z-stacks of 1 × 106 cell density.

After 24 hours of culture the 1.0 × 106 cell/mL gels reached
a final volume of 5.27% ± 0.76 of the original while the
3.0× 105 cell/mL gels reached 11.92%± 2.86.

Figure 6 graphically represents the relationship between
some of graph features in the two experimental sets. The
average degree reached its maximum at an earlier time (16
hours) in the 1.0× 106 cell density gels than in the 3.0× 105

cell density gels (24 hours); see Figure 6(a). The clustering

coefficient also differed; see Figure 6(b). The diameter or
maximum eccentricity had a large shift in its peak to an
earlier time point (2 hours) in high density gels compared
to low-density gels (10 hours); see Figure 6(c). The 3.0 ×
105 cell/mL graphs had a continuous increase in the number
of edges during the 24 hours. The 1.0 × 106 cell/mL graphs
peak at an earlier time point of 16 hours with a large
increase occurring between 10 and 16 hours; see Figure 6(d).
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Figure 5: Collagen I hydrogels compact as a function of cellular
density. The diameter of the collagen I gels at each time point
was measured using Image J and plotted as a percentage of the
original volume. Changes in cellular density resulted in significant
changes in compaction over the observed 24 hours time course,
where an increase in cell density correlated with an increase in gel
compaction.

The giant connected ratio reached a value of one at an
earlier time point when the cell density was increased to
1.0×106 cell/mL from 3.0×105 cell/mL; see Figure 6(e). The
number of connected components decreased at a faster rate
when the cell density was increased to 1.0 × 106 cell/mL; see
Figure 6(f).

3.6. Cell-Graph Features Significantly Diverge from Those
Extracted from Random Graphs. To show that tissue has a
structure which is different from the random organization
of the same number of cells, we established two properties:
(i) cells are not randomly scattered in 3D space, and (ii)
cells interact in a nonrandom fashion. For the first property,
we randomly distributed points representing the cells within
3D space with the same density and geometry seen in the
images. The CNND function was implemented explained for
both random scattering and for actual cell locations obtained
from image segmentation. The results, Figure 7, indicate that
cells in the compacting gels were not randomly scattered
in the gels. Note that parameter t is a measure of distance
and defines the neighborhood size such that as farther
nodes are included to the neighborhood, the difference from
random scattering diminishes. Similarly, small values of t
are not informative since neighborhoods become sparse.
However, Figure 8 demonstrates that for a wide range of t
values the difference is significant and more importantly such
difference is observed for smaller t values as time progresses
and the gels compact.

To show that cell-cell interactions cannot be modeled
by randomly picking pairwise interactions between cells, we
defined an edge function according to Erdos-Renyi (ER)
model and generated random graphs to distinguish their

features from those extracted from our cell-graphs. Consider
three cases for generating random graphs: (i) cell locations
are chosen randomly and the ER edge function is used, (ii)
cell locations, obtained from image segmentation, are taken
as node locations and ER edge function is used, and (iii)
node locations are randomly chosen but the cell-graph edge
function is used. Since case (ii) is subsumed in (i) (recall
that ER model takes number of nodes n and edge probability
p as its only parameters), we only analyzed case (i) and
case (iii).

For case (i) random graphs were generated with equal
numbers of nodes and edges as found in the cell-graphs
at each given time point. We extracted the same features
calculated for our cell-graphs from these random graphs.
Some of the metrics are defined by the number of nodes and
links present in the tissue (i.e., average degree) and therefore
must be consistent between the cell and random graphs.
The remaining values in our cell-graphs were significantly
different from those found in the random graphs, indicating
that the cell-graph metrics and random metrics did not
come from the same distribution; see Figure 8. For example,
the clustering coefficient of the random graphs for 3.0 ×
105 cell/mL samples fluctuated between 0.02 and 0.03, but
gradually increased from 0.35 to 0.62 for the cell-graphs
over the 24-hour time period. This difference captures the
compaction of the tissue samples as the value gradually
increases. Also, the giant connected component of the high
density random graphs maintained a value of 1 throughout
the 24 hour period, whereas the values for the cell-graphs
steadily increased to 1, matching the compaction of the tissue
samples. The average eccentricity increased throughout
compaction in cell-graphs whereas in random graphs this
metric was almost constant.

For case (iii) we also randomly distributed cells in a
3D space with the same density and geometry of the cor-
responding samples and used the cell-graph edge function
to construct the cell-graphs. We compared the graph metrics
on these random-cell-graphs with graphs from the 3D image
segmentation. The cell-graphs defined a relationship (edge)
between the nearest random nodes and the graph features
correlated with many of the tissue cell-graph features.
However, certain graph metrics such as the graph radius
were different. In Figure 9, we plotted the Kolmogorov-
Smirnov test for “radius” which indicates the distance
of nodes to the central points. The red curve represents
tissue cell-graphs while the blue curve corresponds to the
random-cell-graphs.

3.7. Cell-Graphs Outperform Voronoi Graphs in Modeling Gel
Compaction. In order to determine the relevance of our
approach we assessed the performance of our cell graph
method to the more traditional Delaunay triangulation
model. The tissue was partitioned into Voronoi cells and
the corresponding Delaunay graph was generated for each
set of images. Graph features were extracted from these
Delaunay graphs as shown in Table 6. These results suggested
that Delaunay graphs did not exhibit the patterns that we
observed with the cell-graph technique. For example, the
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Figure 6: Cell-graph mining extracts metrics which represent the topological changes in 3D cell culture as a function of cell density. The
effect of change in cell density from 3.0 × 105 to 1.0 × 106 on our graph features was plotted. (a) Average degree. (b) Clustering coefficient.
(c) Diameter. (d) Number of edges. (e) Giant connected ratio. (f) Number of connected components over the 24-hour time course. The
extracted metrics have been normalized from [0, 1].

average degree of the Delaunay graphs over time deviated
between 13.17 and 14.33 and average clustering coefficient
varied between 0.45 and 0.49. The giant connected compo-
nent ratio was 1 at all times and the diameter of the network
stayed almost constant, deviating between 5.2 and 7.

3.8. Significant Subgraphs Extracted from Cell-Graphs Deter-
mine Local Structural Motifs. The features extracted from the
tissue cell-graphs were representative of the global (average)
structure of our “tissues.” To extract meaningful local
structures and motifs we used subgraph mining techniques
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Figure 7: Point Pattern Analysis indicates that cells do not pick random locations. In order to show that cell locations obtained from
segmented images are different from random scattering, we implemented CNND function G. The function G is plotted such that G(t)
represents the fraction of the cell counts for which their nearest neighbor falls within the threshold distance t. The x-axis is the threshold
value t in the distance unit and the y-axis is the value of G(t). As the threshold t increases, more and more cells have their nearest neighbor
within the threshold. So, this function value always increases from 0 and finally reaches 1. The black line is a random distribution and the
red line is the location of the segmented, experimental nuclei. Note that the difference between random scattering and actual cell locations
becomes clearer for smaller and smaller t values as the gels compact over time.

that identify patterns of node interaction and measure their
frequency of occurrence over time. Thousands of subgraph
patterns were generated that represent repeated local motifs.
The frequency of common subgraphs was also measured
in random graphs, to eliminate the possibility that the
local structures extracted were simply structures present in
any random organization of nodes and links. Distinguish-
able patterns were extracted that existed only in the cell-
graphs, Figure 10(a), or existed only in the random graphs,
Figure 10(b), indicating a significant difference in the under-
lying topography of the cell-graphs from that of the random
graphs. The distribution of the differences between the
frequencies at which the patterns were found in the random
and cell-graphs is shown in Figure 10(c). The distribution
of the histogram to the extremes indicated a significant

divergence from the patterns extracted from random
graphs.

3.9. Subgraph Mining Reveals Temporal Changes in Graph Pat-
terning. The appearance of specific subgraphs was observed
at distinct time points and cellular densities. To reveal the
time evolution of the significant subgraphs we calculated
the number of patterns that first appeared in the 3.0 ×
105 cell/mL graphs at each time point as a function of their
frequency at a given time point in the 1.0 × 106 cell/mL
graphs; see Table 7. Consistently, the first appearance of
certain patterns at late time points in the 3.0 × 105 cell/mL
time series correlated with patterns frequently found at early
time points in the 1.0 × 106 cell/mL series. Some time points
showed a very strong correlation, with a high number of
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Table 6: Quantitative delaunay graph metrics for 1 × 106 cells/mL collagen I hydrogel 24-hour timecourse.

Time (hours)

0 1 2 6 10 16 24

Average degree 13.55 13.24 13.17 13.9 13.93 14.3 14.33

Clustering Coefficient 0.48 0.49 0.49 0.47 0.47 0.45 0.45

Average eccentricity 4.7 4.4 4.45 5.23 5.44 5.92 5.85

Maximum eccentricity (diameter) 5.8 5.4 5.2 6.4 6.8 7 7

Minimum eccentricity (radius) 0 0 0 0 0 0 0

Average eccentricity 90 4.04 3.85 3.88 4.45 4.71 5.03 5.01

Maximum eccentricity 90 5 4.6 4.6 5.4 5.8 6 6

Minimum eccentricity 90 0 0 0 0 0 0 0

Average path length (closeness) 3.01 2.85 2.89 3.38 3.58 3.9 3.93

Hop plot exponent 2.03 1.83 1.91 2.16 2.26 2.46 2.54

Effective hop diameter 3.94 4.02 3.91 4.43 4.71 4.84 4.83

Giant connected ratio 1 1 1 1 1 1 1

Number of connected components 2 2 2 2 2 2 2

Percentage of isolated points 0 0.01 0.01 0 0 0 0

Percentage of end points 0 0 0 0 0 0 0

Number of central points 1 1 1 1 1 1 1

Percentage of central points 0 0.01 0.01 0 0 0 0

Number of nodes 239.8 204 205 396 493.6 748.2 849.6

Number of edges 1628.6 1375.6 1371.2 2770 3438.4 5352.2 6100.8

Table 7: Time evolution of subgraphs.

1.0× 106 cells/mL

time (hrs) 0 1 2 6 10 16 24

3.0× 105 cells/mL

0 7 1 0 0 0 0 0

1 3 0 0 0 0 0 0

2 9 0 0 18 3 0 0

6 26 0 10 5 42 0 0

10 122 3 0 19 76 1 36

16 143 2 9 46 1868 1303 1274

24 8 0 0 0 457 842 515

similar patterns, specifically time 10 hours in the 1.0 × 106

series and time 16 hours in the 3.0 × 105 series (bold value
in Table 7). Additionally, a transition was observed after this
time point, indicated by the presence of 3.0 × 105 subgraphs
that appeared before, after and during respective 1.0 × 106

subgraphs.

4. Discussion

The extraction of nonrandom repeating motifs in biolog-
ical structures presents a significant opportunity to define
organizing design principles and use those principles to
inform and accelerate natural and synthetic processes of
tissue development. Here we present the spatial and temporal
analysis of a simple biological observation, the compaction
of collagen I hydrogels by hMSC. The progression of this
event over time was dependent upon the cellular density of
the starting material and represents a direct, cell-mediated

organizational event that can be observed through time and
space. We observed that an increase in cell density caused an
accelerated compaction event that resulted in a decrease in
the final volume as compared to the original samples. We
tracked this organization event using confocal microscopy
and employed graph theory as a method to extract the 3D
topography of our “tissue constructs” over the time course
of the compaction event. As the hMSCs interact with and
organize the naı̈ve collagen matrix, we hypothesized that
structural motifs would appear frequently and be evident
at earlier time points in the dense samples. This predicts
that cells interact with one another and their extracellular
environment in nonrandom, defined patterns that we can
quantify, and that these patterns are consistent in terms of
their temporal organization.

To address this hypothesis we constructed cell-graphs
from our 3D micrographs and extracted topographical
features that assess the global 3D structure of the “tissue
constructs” as they organize over time. Such techniques have
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Figure 8: Cell-graph features are distinct from random graphs.
Random graphs were generated keeping the number of nodes and
links constant. Features were extracted from the random graphs and
compared to features from cell-graphs to determine significance.
(a) Clustering Coefficient. (b) Giant Connected Component. (c)
Average Eccentricity.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

0 2 4 6 8 10 12 14 16 18

x

Empirical CDF

Figure 9: Kolmogorov-Smirnov test for graph radius. The plot
(although the sample size is small) shows the difference between a
cell graph with randomly scattered nodes and one with segmented
nodes.

previously been reported to extract meaningful information
concerning the (dys)functional state of 2D tissue and can
play a significant role in diagnosis of cancer pathologies [21–
24]. In addition, past and current work on the nature of
complex biological networks has consistently benefited from
the use of graph theory as a means of extracted underlying
relationships between system components [1, 2, 5, 6, 8–11,
34, 35]. We employed this technique here to define distance-
based 3D graphs of cell nuclei and found that significant
trends do exist in the extracted features over time and that
these features represent the connectivity, modularity, and
relationships that exist within our tissue. We conclude that
the cells within our tissue exist in dense communities that
steadily converge over time and that each cell has a high
interaction with an increasing number of neighbors as the
tissues organize and compact. In addition, a decrease in
cellular density resulted in a delay or shift in these feature
trends that is consistent with visual observation of construct
compaction over time.

The use of random graphs as a negative control was crit-
ical to ensure the extraction of meaningful and nonrandom
metrics. The divergence of features extracted from our cell-
graphs from those found in random graphs indicates that
there exists structure within our “tissue” that is different
from a random organization of the same number of cells
and links. This is consistent with the theory that random
networks do not accurately describe real networks, that
networks are highly ordered structures, and that keys to their
function lie within that inherent structure [36]. In fact, as
the density of the experimental samples increases over time,
the difference between the random graphs and cell-graphs
becomes more and more remarkable. In a random graph at
a density of 1.0 × 106 cell/mL the graph is connected, and as
the density increases, the diameter decreases as more links are
added to the graph. Within our cell-graphs, however, at this
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Figure 10: Common cell subgraph patterns are distinct from patterns extracted from random graphs. Subgraph patterns were identified
that represented local graph topologies and compared to their frequency in random graphs. (a) Significant cell-graph patterns not found
in random graphs. (b) Patterns found equally in random and cell-graphs and are therefore not significant. (c) Histogram of all patterns
common among cell-graphs plotted as the absolute difference between frequencies in random versus cell-graphs. Patterns at the extremes
indicate significant patterns.

same cell density, we see a steadily increasing diameter. This
increase in diameter is due to the fact that the connectivity
at time zero is sufficiently low to observe increases as the
gels condense over time, unlike randomly generated graphs,
and therefore the diameter of the entire graph responds by
growing as the giant connected component size grows as
well. The random graph is connected as a function of the
number of nodes and links incorporated into its generation,
but there is no true structural relationship evident, as there is
no change observed in eccentricity or clustering coefficient.
Instead what we see in our cell-graphs is a steadily emerging
structural relationship between nodes that is quantified by
changes in eccentricity and the clustering of the nodes.

We also used subgraph mining to extract a finer picture of
the local structure present within our cell-graphs. Through
a multilevel analysis of the cell-graphs we can project a
quantitative, sensitive, and rigorous fine structure on the
global features extracted above. Searching the micro level

space of the graph we find local structures that are not
represented equally over the whole of the graph. In this
way, functional components of the tissue, or modules,
are identified. For example, a sample in which only a
portion represents cancerous tissue might be averaged out
and classified as inflamed or normal. However, through
the use of subgraph mining, and local feature analysis,
an area of densely connected cells would be identified as
a specific tissue compartment with unique properties and
lead to reclassification as cancer [23, 24, 37]. We identified
subgraphs or motifs from the cell-graphs that were signif-
icantly different from those that were frequently extracted
from random graphs. Again, this indicates that there is an
inherent structure that is specific to our cell-graphs and
is not characterized by a random distribution of nodes in
space.

Over time these subgraphs became increasingly complex
and incorporated nodes with higher degrees and therefore
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more interaction with neighboring cells, consistent with the
conclusion from the global features. In addition, the frequent
subgraphs appeared at specific points in time, and not all
subgraphs were present at all time points for all densities
examined in this study. We hypothesize that the formation
of distinct local structures occurs in a specific temporal
order. The time evolution of our subgraphs indicates that
there is a “route” that a population of cells takes while
interacting with and organizing a naı̈ve matrix, and if we
change a fundamental property of that population, then we
change the rate at which the “tissue” is able to complete
that “route.” This hypothesis was confirmed by quantifying
the frequency of subgraph occurrence as a function of time.
When compared across the two densities, we observed that
the appearance of new subgraphs in the less dense sample at
late time points consistently correlated with high frequencies
of those same patterns at earlier time points in the dense
sample. We conclude that a population of cells follows a
consistent organizing pattern over time, and while the rate
of that organization can be altered by changes in the cell
population, the route or order in which that organization
takes place remains constant.

Point pattern analysis and its variants [31, 38] focus
on spatial analysis of points (cells in our case), whereas to
define the “tissue structure” one needs to model cell-cell
(point-to-point) relationships. The most relevant work to
the cell-graph approach is a Delaunay graph of cells obtained
from a processed tissue image to compute graph-theoretical
features for tissue quantification [28–30]. In this approach,
nuclei are the vertices, the Voronoi diagram of the image
is constituted, and its Delaunay triangulation is built. The
Delaunay triangulation allows the existence of edges between
only the adjacent vertices, such that only the relationships
between closely located nuclei are represented. There are
two main limitations of Delaunay graphs that cell-graphs
successfully remedy. First, Delaunay graphs are restricted
to planar graphs which are very limited in their structure
and do not allow crossing of edges. There is no evidence to
justify such a limitation in 3D tissue structural organization.
Second, a Delaunay graph has a single connected component
(i.e., the tissue is represented by a connected graph) which
may not be a valid assumption for sparse tissues. Third,
the girth of a Delaunay graph is always a triangle which is
also a special case. Thus, the cell-graphs are a generalization
of Delaunay graphs to arbitrary edge functions that can
provide formulation of different cell-cell interactions and
eliminate such constraints. Furthermore, our previous work
[39] reports on a comprehensive comparison between graph-
based metrics and spatial distribution-based approaches,
showing that the former has greater predictive power when
coupled to machine learning approaches.

Therefore, there are several advantages of our cell-graph
approach to tissue modeling: First, cell-graphs enable us
to benefit from well established principles of graph theory
and provide a rich set of features defined precisely by these
principles to be used as quantitative descriptor features.
These features could be defined and computed locally from
a single node’s point of view (e.g., number of its neighbors)
or globally for the entire tissue sample (i.e., the shortest or

longest distance in the cell-graph between any two nodes).
Second, cell-graphs benefit from sophisticated segmentation
algorithms that can provide cell level attributes such as
convexity, size, physical contact, and shape. to establish
links between a pair of nodes. Furthermore, molecular
details of a particular cell type (e.g., is it diseased?) do
not need to be resolved, and a specific textural change
in the image is not required. Third, cell-graphs provide a
precise mathematical representation of cellular organization
and the ECM that surrounds cells. If the images carry
multichannel information by applying more sophisticated
staining techniques (e.g., multispectral fluorescence imag-
ing), it is possible to build cell-graphs that have different
types of nodes corresponding to different types of cells that
coexist (e.g., epithelial versus fibroblast) and other ECM
entities (e.g., basement membrane underlying epithelial cell
layers and blood vessels). With 3D images and 3D cell-
graphs, such representation becomes more accurate and
powerful.

5. Conclusions

The demonstration of higher order in biological structures
is evidence of recurring principles that govern the design
and therefore development of metabolic networks, protein-
interactions, neural circuitry, and tissue. Cells interact with
one another and their extracellular environment in non-
random, defined patterns, and these patterns are consistent
in terms of their spatial and temporal organization. Under-
standing the temporal order of this patterning provides
organizing principles that can be used to help biologists and
tissue engineers understand or optimize processes of natural
and synthetic tissue development.
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