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Structural similarity between proteins gives us insights into their evolutionary rela-

tionships when there is low sequence similarity. In this paper, we present a novel ap-
proach called SNAP for non-sequential pair-wise structural alignment. Starting from
an initial alignment, our approach iterates over a two-step process consisting of a su-
perposition step and an alignment step, until convergence. We propose a novel greedy

algorithm to construct both sequential and non-sequential alignments. The quality of
SNAP alignments were assessed by comparing against the manually curated reference
alignments in the challenging SISY and RIPC datasets. Moreover, when applied to a

dataset of 4410 protein pairs selected from the CATH database, SNAP produced longer
alignments with lower rmsd than several state-of-the-art alignment methods. Classi-
fication of folds using SNAP alignments was both highly sensitive and highly selec-
tive. The SNAP software along with the datasets will be made available online at

http://www.cs.rpi.edu/~zaki/software/SNAP.
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1. INTRODUCTION

Over the past years, the number of known protein structures has been increasing

at a relatively fast pace, thanks to advancement in NMR spectroscopy and X-ray

crystallography. Recently (as of June 2008) the number of protein structures in

the Protein Data Bank(PDB) [1] has reached 47526. Despite having the structural

information about so many proteins, the function of a lot of these proteins is still un-

known. Structural similarity highlights the functional relationship between proteins.

Moreover, structural similarity between proteins allows us to study evolutionary re-

lationship between remotely homologous proteins (with sequence similarity in the
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twilight-zone), thus allowing us to look farther in evolutionary time [2]. The goal of

protein structural alignment is to find maximal substructures of proteins A and B,

such that the similarity score is maximized. The two most commonly used similarity

measures are: The coordinate distance-based root mean squared deviation (rmsd),

which measures the spatial euclidean distance between aligned residues; and the dis-

tance matrix based measure that computes the similarity based on intra-molecular

distances representing protein structures.

The complexity of protein structural alignment depends on how the similarity is

assessed. Kolodny and Linial [3] showed that the problem is NP-hard if the similarity

score is distance matrix based. Moreover, they presented an approximate polynomial

time solution by discretizing the rigid-body transformation space. In a more recent

work, Xu et al. [4] proposed an approximate polynomial time solution, when the

contact map based similarity score is used, using similar discretization techniques.

Despite the polynomial time approximate algorithms and as their authors noted,

these methods are still too slow to be used in search tools.

There is no current algorithm that guarantees an optimal answer for the pair-

wise structural alignment problem. Over the years, a number of heuristic approaches

have been proposed, which can mainly be classified into two main categories, dy-

namic programming and clustering.

1.1. Dynamic Programming Approach

Dynamic Programming (DP) is a general paradigm to solve problems that exhibit

the optimal substructure property [5]. DP-based methods [6, 7, 8, 9, 10] construct

a scoring matrix S, where each entry SOJ corresponds to the score of matching

the i-Th residue in protein A and the j-Th residue in protein B. Given a scor-

ing scheme between residues in the two proteins, dynamic programming finds the

global alignment that maximizes the score. Once the best equivalence is found, a

superposition step is performed to find the transformation that minimizes the rmsd

between the corresponding residues. In STRUCTAL [7], the structures are first su-

perimposed onto each other using initial seeds (random or sequence-based). The

similarity score SOJ of matching the residues is a function of the spatial displace-

ment between the residue pairs in the superimposed structures. DP is applied on

the scoring matrix to get an alignment. The alignment obtained is an initial seed

and the process of superposition and alignment is repeated till convergence.

Other methods employed local geometrical features to calculate the similarity

score. CTSS [11] used a smooth spline with minimum curvature to define a feature

vector of the protein backbone which is used to calculate the similarity score. Tyagi

et al. [10] proposed a DP-based method where the similarity is the substitution

value obtained from a substitution matrix for a set of 16 structural symbols. DP-

based methods suffer from two main limitations: first, the alignment is sequential

and thus non-topological similarity cannot be detected, and second, it is difficult to

design a scoring function that is globally optimal [3].
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1.2. Clustering Approach

Clustering-based methods [12, 13, 14, 15, 16, 17] seek to assemble the alignment out

of smaller compatible (similar) element pairs such that the score of the alignment

is as high as possible [18]. Two compatible element pairs are consistent (can be as-

sembled together) if the substructures obtained by elements of the pairs are similar.

The clustering problem is NP-hard [19], thus several heuristics have been proposed.

The approaches differ in how the set of compatible element pairs is constructed and

how the consistency is measured.

In [20], initial compatible triplets are found using geometric hashing. Two com-

patible triplets are consistent if they have similar transformations, where the trans-

formation is defined such that it can transform one triplet onto the other with

minimum distance. DALI [12] finds gapless fragment compatible pairs, which are

similar hexa-peptide fragments. It then uses a Monte Carlo procedure to combine

consistent fragments into a larger set of pairs. The optimization starts from different

seeds and the best alignment is reported. Compatible elements in SARF2 [13] are

similar secondary structure elements (SSEs) which are obtained by sliding a typical

α-helix or β-strand over the Cα trace of the protein. The set of the compatible

pairs of the SSEs are filtered based on some distance and angle constraints; the

final alignment is obtained by finding the largest set of mutually consistent frag-

ment pairs. In an effort to reduce the search space in clustering methods, CE w

[14] starts with an initial fragment pair and the alignment is extended by the best

fragment that satisfies a similarity criteria. In FATCAT [17], DP is used to chain

the fragment pairs.

1.3. Our Contributions

We present SNAPa, an efficient non-sequential pair-wise structural alignment al-

gorithm. SNAP is an iterative algorithm similar in spirit to the iterative Dynamic

Programming(DP)-based methods, yet it employs a different technique in construct-

ing the alignment. Specifically, we propose a greedy chaining approach to construct

the alignment for a pair of superposed structures. One limitation of DP-based meth-

ods is that they only generate sequential alignments. Another limitation is the fact

that we do not yet know how to design a scoring function that is globally optimal [3].

Our approach addresses these challenges by looking directly at the superposed struc-

tures and assembles the alignment from small closely superposed fragments. Unlike

DP, our greedy approach allows for non-topological (non-sequential) similarity to

be extracted.

The SNAP approach is a two-step process. First, we compile a list of alignment

seeds, also called aligned fragment pairs (AFPs) in some methods. After extracting

seeds, we generate an alignment for each seed and report the alignment which has

the best score. For the first step, we use two sources for the seeds. We employ

aa non-sequential permutation of the bold letters in Non-sequential Protein Structure Alignment
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PSIST [21] to generate a list of similar substructures. A second source of seeds is

the HMMSTR method [22]. We discuss in details how these two methods work in

the next section.

To assess the quality of the SNAP alignments, we tested it on the recently

published hard-to-align SISY, and RIPC sets [23]. SNAP alignments have higher

agreement (accuracy) with the reference alignments than the agreements of the

state-of-the-art methods like CE, DALI, FATCAT, MATRAS, CA, SHEBA, SARF,

LGA, and SCALI, on the RIPC dataset, and it has the second best accuracy (after

DALI) on the SISY dataset.

Yuan and Bystroff [16] have pointed out that an increased length and lower

rmsd does not necessarily signal a more biologically meaningful alignment. Errors

such as disjoint subgraphs, local structural mismatches, and aligning paired beta

strands to unpaired strands, were commonly found in automated alignments, except

SCALI. To avoid this problem, we have made all our comparisons with a gold

standard that is manually curated. Unlike for SCALI, no measures were taken to

avoid specific types of alignment error in SNAP. Nonetheless, the results with

respect to the curated reference alignments suggest that non-biological errors have

been minimized.

We also compiled a dataset of 4410 protein pairs from the CATH [24] to asses

how SNAP performs as a classifier of protein topology. To predict whether two

proteins have the same topology classification, we simply aligned the structures and

applied a cutoff on the alignment score. Results from the CATH dataset indicate

that SNAP achieves high sensitivity and selectivity levels and is competitive to well

established structure comparison methods like DALI, STRUCTAL, and FAST, as

judged by their ROC curves. Moreover, we show that SNAP alignments which are

labeled as true positives have a better average geometric score than alignments of

an equally sized set of alignments produced by the different methods.

2. ALIGNMENT SEEDS

Our approach is based on finding an alignment using initial seeds. In this section

we discuss two methods for getting the initial alignment seeds and we present our

greedy chaining algorithm in the next section.

2.1. PSIST seeds

The initial alignment seeds are similar substructures between protein A and protein

B. An initial seed is an equivalence between a set of residue pairs. We obtain the

seeds from our previous work PSIST [21]. PSIST converts each protein structure

into a Structure-Feature (SF) sequence and then uses suffix tree indexing to find

the set of maximal matching segments (initial seeds).
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2.1.1. Mapping protein structure to a sequence of structural alphabet

Let P = {a1, a2, . . . , an} represent a protein, where ai is the ith-residue, along the

backbone, represented by the coordinates of the Cα atoms. The structure-feature

sequence (SF-sequence) of the protein P is defined as P s = {ps
1, p

s
2 . . . ps

n−w+1},

where ps
i is the i-th normalized feature vector representing the i-th residue and w

is the window size.

Each feature vector captures the local geometry of the corresponding residue

within a sliding window of size w along the backbone of the protein. The feature

vector pv
i is composed of the distances and the dihedral angles between the first

residue i and all the other residues j (j ∈ [i + 1, i + w − 1]) within the window:

pv
i = {di,i+1, cos(θi,i+1), . . . , di,i+w−1, cos(θi,i+w−1)}

where di,j is the distance between the Cα atoms of residues pi and pj , and θi,j

gives the dihedral angle between the two planes defined over the C,N,Cα atoms of

residues ai and aj , respectively. With a window of size w, the dimension of pv
i is

k = 2 ∗ (w − 1). To reduce the number of possible feature vectors, we normalize pv
i

to get the normalized feature vector ps
i = {n1, n2, . . . , nk}, where ni is an integer

within the range [0, b − 1].

For simplicity of representation, we treat each ps
i as base-b number (or symbol)

with k digits, giving us at most bk different symbols comprising the new structural

alphabet Σ. For a given protein P = {a1, a2, . . . , an}, the structure-feature sequence

SF-sequence of the protein is defined as P s = {ps
1, p

s
2 . . . ps

n−w+1}, where ps
i is the

alphabet representing the normalized feature vector of the i-th residue. To sum-

marize, the SF-sequence P s is a sequence of size n − (w + 1) over the structural

alphabet Σ [21].

2.1.2. Finding maximal similar subsequences

The problem of finding similar substructures is mapped to finding similar SF-

subsequences, by virtue of the structural alphabets. We use suffix tree indexing

for finding the maximal subsequences [25]. Suffix trees can be constructed in linear

time and once constructed many string problems can be solved in linear or constant

time [26].

To find all maximal matches between the query SF-sequence Qs and the template

SF-sequence P s we build two suffix trees, GSTq and GSTd. We then traverse the

two suffix trees simultaneously to retrieve all the maximal matches. The result is the

set of maximal matching segments (MMSs) for proteins A and B, S = {FA
i FB

j (l)},

where each MMS is composed of a fragment of protein A starting at residue i and

a fragment of protein B starting at residue j and the two fragment have the same

length, l. For the full algorithm, please refer to [21].
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2.2. HMMSTR seeds

We used the HMMSTR [22] method to identify the alignment seeds following the

same approach used in SCALI [16]. This allows us to compare our proposed method

for alignment propagation directly with the fragment assembly method proposed in

SCALI which uses the same set of HMMSTR fragments. Each seed is an ungapped

alignment of two segments of any length greater than 4, as long as they have no

backbone angle deviations greater than 120◦. These fragments are scored according

to sequence similarity as measured using HMMSTR, a hidden Markov model for

local sequence/structure correlations in proteins.

The sequence score is the sum over the aligned positions of the joint probabilities

of HMMSTR Markov states, as follows: g =
∑

i=1,L(
∑

q=1,282(γ
A
qi ×γB

qi)), where γA
qi

is the a posterior probability of HMMSTR state q at position i in the fragment, given

the sequence of the protein A. HMMSTR predicts local structure, thus g measures

the similarity between structure predictions. But g also enforces the alignment of

similar sequence patterns. For example, two helices may not align with the polar

side of one helix aligned with the non-polar side of the other, even though the local

structure may align perfectly. The SCALI method [16] constructs the alignment

by clustering the fragments using a near-greedy approach. An assembly of aligned

fragment is scored using g plus a contact map alignment score plus a score penalizing

non-sequential breaks in the alignment. There is no penalty for sequential gaps. The

100 best alignments are kept at each stage. In a final refinement step, the fragments

are shortened or extended based on rmsd. The set of HMMSTR seeds consists of

fragments, S = {FA
i FB

j (l)}, as in the case of PSIST seeds.

3. SNAP ALIGNMENT

3.1. Iterative Superposition-Alignment Approach

Each alignment seed (FA
i FB

j (l)) is treated as an initial equivalence, E0, be-

tween a set of residues from protein A and a set of residues from protein B.

The correspondence between the residues in the equivalence is linear, i.e. E =

{(ai, bj), · · · , (ai+l−1, bj+l−1)}. Given an equivalence E, we construct an alignment

of the two structures as follows.

3.1.1. Finding Optimal Transformation

We first find a transformation matrix Topt that optimally superposes the set of

pairs of residues in the equivalence E such that the rmsd between the superposed

substructures of A and B is minimized:

Topt = argmin(T ) RMSDT (E) ,

where RMSDT (E) = 1
|E|

∑
(i,j)∈E d(T [ai], bj). We find the optimal transformation

Topt using the Singular Value Decomposition [27, 28].
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3.1.2. Constructing Scoring Matrix

We next apply the optimal transformation Topt obtained in the previous step to

protein A to obtain A∗. We then construct a n×m binary scoring matrix S, where

n and m denote the number of residues in proteins A and B, respectively and Sij =

score(dist(a∗
i , bj)); the score is 1 if the distance between corresponding elements,

a∗
i and bj is less than a threshold δ, and 0 otherwise.

3.1.3. Finding an Alignment

An alignment is a set of pair of residues {(ai, bj)}, ai in A, and bj in B. Based on

the scoring matrix S we find the maximum correspondence by finding the maximum

cardinality matching in the bipartite graph G(U, V,E) where U is the set of residues

in protein A, V is the set of residues in proteins B, and there is an edge (ai, bj) ∈ E

if Sij = 1. However, the problem with the maximum matching approach is that it

may yield several short, disjoint and even arbitrary matching pairs that may not

be biologically very meaningful. Our goal is to find an alignment composed of a set

of segments such that each segment has at least r residue pairs.

A run, Rk, is a set of consecutive diagonal 1’s in the scoring matrix S. A run

constitutes an equivalence, between a substructure in A and another in B, that

can be superposed with a small rmsd. Specifically, a run Rk is a triplet (ai, bj , l),

where ai is the starting residue for the run in A (similarly bj for B), and the

length of the run is l. The correspondence between residues in the run is as follows:

{(ai, bj), · · · , (ai+l−1, bj+l−1)}.

The matrix S has a set of runs R = {R1, R2, · · · , R|R|} such that |Ri| ≥ r, where

r is the minimum threshold length for a run. We are interested in finding a subset

of runs C ⊆ R such that all the runs in C are mutually non-overlapping and the

length of the runs in C, L(C) =
∑

i∈C |Ri| is as large as possible.

Two runs Ri and Rj can be joined if Ri ≺ Rj (Ri precedes Rj) or Rj ≺ Ri in

the scoring matrix S. For strictly sequential alignment, the precedence relation is

transitive which means that if Ri ≺ Rj and Rj ≺ Rk, then Ri ≺ Rk. Constructing

the optimal (longest) sequential chain of runs C ⊆ R can be solved efficiently [26].

Unfortunately, the case is not the same for non-sequential alignment. The main

reason is that the precedence relation is not transitive which means that if Ri ≺ Rj

and Rj ≺ Rk, then it is not guaranteed that Ri ≺ Rk. For the general problem of

selecting the longest chain of runs, which can have runs chained non-sequentially, we

have to ensure that every pair of runs chosen in C are non-overlapping. Therefore,

the general problem of finding the subset of runs with the largest length is essentially

the same as finding the maximum weighted clique in a graph G = (V,E,w) where

the set of vertices V represents the set of runs, each vertex vi has a weight given as

w(vi) = |Ri|, and there is an edge (vi, vj) ∈ E if the runs Ri and Rj do not overlap

(can be joined together).

The problem of selecting the maximum non-overlapping runs maps to finding

the maximum weighted clique in a graph because we have to ensure that every pair
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of runs do not overlap. The problem of finding the maximum weighted clique is NP-

hard [19], therefore we use greedy algorithms to find an approximate solution. Note

that we can construct the longest sequential chain of runs in an efficient way [26].

However, since we are interested in non-sequential alignments whose solution is

computationally expensive, we adopt the greedy approach for finding the maximum

weighted clique.

The simplest greedy algorithm chooses the longest run Ri ∈ R to be included in

C, and then removes from R all the runs Rj that overlap with Ri. It then chooses

the longest remaining run in R, and iterates this process until R is empty. We also

implemented an enhanced greedy algorithm that differs in how it chooses the run to

include in C. It chooses the run Ri ∈ R that has the highest weight w where w(Ri)

is the length of Ri plus the lengths of all the remaining non-overlapping runs. In

other words, this approach not only favors the longest run, but also favors those

runs that do not preclude many other (long) runs.

Through our experiments, we found that the simple greedy algorithm gives sim-

ilar alignments in terms of the length and rmsd as the enhanced one. Moreover,

it is faster since we do not have to calculate the weights every time we choose a

run to include to C. Therefore, we adopt the first heuristic as our basic approach.

Note that it is also possible to use other recently proposed segment chaining al-

gorithms [29]. The subset of runs in C makes up a new equivalence E1 between

residues in proteins A and B. The length of the alignment is the length of the

equivalence |E1| =
∑

i∈C |Ri| and the rmsd of the alignment is the rmsd of the

optimal superposition of the residue pairs in E1.

3.1.4. Refining the Alignment

To further improve the structural alignment we treat the newly found equivalence E1

as an initial alignment and repeat the previous steps all over again. The algorithm

alternates between the superposition step and the alignment step until convergence

(score does not improve) or until a maximum number of iterations has been reached.

Figure 1 shows the pseudo-code for our iterative superposition-alignment structural

alignment algorithm. The method accepts the set of maximal matching segments

M = {FA
i FB

j (l)} as initial seeds. It also uses three threshold values: δ for creating

the scoring matrix, r for the minimum run length in S, and L for the maximum rmsd

allowed for an equivalence. For every initial seed we find the optimal transformation

(lines 4-5), create a scoring matrix (line 6), and derive a new alignment E1 via

chaining (line 7). If the rmsd of the alignment is above the threshold L we move on

to the next seed, or else we repeat the steps (lines 3-10) until the score no longer

improves or we exceed the maximum number of iterations. The best alignment found

for each seed is stored in the set of potential alignments E (line 11). Once all seeds

are processed, we output the best alignment found (line 13). We use the SASk [6]

geometric match measure (explained in the next section) to score the alignments.

We noticed that typically three iterations were enough for the convergence of the
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algorithm.

3.2. Scoring the alignments

We assess the significance of SNAP alignments by using the geometric match mea-

sure, SASk, introduced in [6], defined as follows:

SASk = rmsd · (100/Nmat)
k

where rmsd is the coordinate root mean square deviation, Nmat is the length of the

alignment, and k is the degree to which the score favors longer alignments at the

expense of rmsd values. In our implementation, we use k = 1, k = 2 and k = 3

to score the alignments to study the effect of the scoring function on the quality

of the alignment. For each of the three scoring schemes SAS1, SAS2 and SAS3, a

lower score indicates a better alignment, since we desire lower rmsd and longer

alignment lengths. Kolodny et al. [30] recently contended that for some alignment

methods, scoring the alignment by geometric measures yields better specificity and

sensitivity; we observe consistent behavior in our results.

3.3. Handling reverse alignments

Reverse alignments capture the cases where helices or beta strands reverse direction.

Both secondary structure types can pack well and make the right types of energetic

interactions when the chain direction is reversed, so for the purposes of structure

prediction a reverse alignment might be biologically relevant.

If we consider anti-diagonal runs in our scoring matrix, then the SNAP al-

gorithm will find alignments that have reverse segments. An anti-diagonal run

is a triplet ((ai, bj , l), where the correspondence between residues is as follows:

{(ai, bj), (ai+1, bj−1), · · · , (ai+l−1, bj−l+1)}.

3.4. Initial Seeds Pruning

Since the quality of the alignment depends on the initial alignment (seed), we start

with different initial seeds in an attempt to reach a global optimum alignment. This,

however, results in a slow algorithm since we could potentially have a large number

of initial seeds. Let the size of protein A be n and of B be m, respectively and n ≤ m.

The number of maximal matching segments can be as large as nm/lmin, where lmin

is the length threshold. Most of these seeds do not constitute good initial seeds as

judged by their final global alignments. In order to circumvent this problem, for

PSIST seeds we select the most promising seeds based on two heuristics: first, the

length of the seed; second, the DALI rigid similarity score [12]. For the HMMSTR

seeds, we select the seeds based on HMMSTR sequence score. In the results section,

we study the effect of these pruning heuristics on the quality of the alignments and

the improvement in the running time that we gain by selecting fewer seeds.
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3.5. Computational Complexity

The worst case complexity of finding the maximal matching segments using PSIST

is O(nm), where m and n denote the lengths of proteins A and B [21]. Assuming

m ≤ n, the complexity of constructing the full set of runs R is O(nm), since we have

to visit every entry of the scoring matrix. Since we use a threshold of δ = 5Å to set

Sij = 1 in the scoring matrix, each residue, due to distance geometry, in A can be

close to only a few residues in B (after superposition). Therefore, there are O(n)

1’s in the matrix S. And thus, we have dO(n) diagonal runs, and sorting these runs

takes O(n log n) time. In the greedy chaining approach, for every run we choose,

we have to eliminate other overlapping runs, which can be done in O(n) time per

check, for a total time of O(n2). Over all the steps, the complexity of our approach

is therefore O(n2).

3.6. An Alignment example

Before we go into the results section, we want to show an example of how the algo-

rithm finds the alignment given an alignment seed. Figure 2 shows the alignment be-

tween the SH3 domain (PDB code 1aww , 67 residues) and PsaE subunit (PDB code

1gxiE, 73 residues). Superposing the structures based on the transformation ob-

tained by optimally superposing the initial seed, E0 = {(11, 8), (12, 9), · · · , (16, 13)},

we get the set of runs shown in Figure 2(a), from which we select the set of the

runs, shown in bold. The selected set of runs makes up the alignment which we

use to find a superposition and get a new alignment. This process of superposition

and alignment is repeated until a maximum number of iterations is reached or the

alignment can not be refined, i.e. the score does not improve. The final alignment

E3 has a 100% agreement with the reference manually curated alignment provided

in the SISY dataset [23].

4. RESULTS & DISCUSSION

To assess the quality of SNAP alignments compared to other structural alignment

methods, we tested our method on the hard-to-align SISY and RIPC sets [23]. To

evaluate the overall sensitivity and specificity of SNAP compared to other align-

ment methods, we looked at 4410 alignment pairs from the CATH [24] as a gold

standard for classification.

The criteria on which we selected the other algorithms to compare with were: the

availability of the program so that we could run it in-house, and the running time

of the algorithm. We compared our approach against DALI [12], STRUCTAL [6],

SARF2 [13], LGA [31], SCALI [16], and FAST [15]. For the SISY and RIPC datasets,

we used the published results for CE [14], FATCAT [17], CA [32], MATRAS [33],

and SHEBA [34].

All the experiments were run on a 1.66 GHz Intel Core Duo machine with 1 GB

of main memory running Ubuntu Linux. The default parameters for SNAP were

r = 3, δ = 4.5Å and using top 200 initial seeds (see Section 4.4 for more details).
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4.1. SISY set

The SISY dataset is a subset of SISYPHUS, a database of non-trivial structural

alignments that include proteins with circular permutations, segment-swapping,

context-dependent folding or chameleon sequences that can adopt alternative sec-

ondary structures [35]. For each multiple structure alignment in SISYPHUS, the

pair with the lowest identity was included in the SISY dataset. The selected pairs

were later pruned such that no pair has a sequence identity more than 40% and

that no structure has more than one chain. The reference alignments for the SISY

dataset were extracted from the SISYPHUS database as well. The final set of align-

ments in the SISY dataset included 69 structure pairs. Among them, 52 structure

pairs are categorized as homologous in SISYPHUS, while the remaining 17 pairs

are related through a common fold or a fragment definition.

We measured the agreements of the alignments of different methods with the

reference alignments provided in the SISYPHUS database, which are manually cu-

rated. The agreement of a given alignment with the reference alignment is defined as

the percentage of the residue pairs aligned identically to the reference alignment(Is)

relative to the reference alignment’s length (Lref ).

Figure 3 shows the distribution of the percentage of agreement for different

alignment methods on the SISY dataset. DALI has the highest mean accuracy of

76% followed by SNAP with mean accuracy of 73%; all the remaining methods

have a mean accuracy less than 68%, with the CA method having the lowest mean

accuracy of 51%. For the alignment pairs defined as fragment in SISYPHS, it was

hard to get a high accuracy all the time since SISYPHUS defines a short reference

alignment and the methods seek a larger global alignment. Both DALI and SNAP

had high accuracy on some of these pairs, while all the other methods had zero

agreement.

4.2. RIPC set

The RIPC set contains 40 structurally related protein pairs which are problem-

atic to align. Reference alignments for 23 (out of the 40) structure pairs have

been derived based on sequence and function conservation. We measure the agree-

ment of our alignments with the reference alignments provided in the RIPC set.

As suggested in [23], we compute the agreement between an alignment s and

the reference alignment ref as the percentage of the residues aligned identically

to the reference alignment(Is) relative to the reference alignment’s length (Lref ),

agreement(s, ref) = Is/Lref .

As shown in Figure 4, while all the methods (except SCALI) have mean agree-

ments equal to 60 percent or lower, the mean agreement of SNAP alignments is

71%, and 64% for SCALI. As for the median, all the methods except FATCAT (63%)

and SCALI (69%) have median agreements less than 60%, while SNAP alignments

have a median agreement of 67% .

As Mayr et al. [23] noted, there are seven challenging protein pairs which reveal



July 26, 2009 18:42 WSPC/INSTRUCTION FILE jbcb

how repetition, extensive indels, circular permutation, and conformational changes

result in low agreements with the reference alignments. We found two protein pairs

particularly problematic to align for all the sequential methods and sometimes the

non-sequential ones, except SNAP. First, for alignment of L-2-Haloacid dehaloge-

nase (PDB code 1qq5, chain A, 245 residues) with CheY protein (3chy, 128 residues),

all the methods except SARF (33%), and SCALI (66%) returned zero agreement

with the reference alignment while SNAP returned 100% agreement. This pair is

hard to align because it has a circular permutation and an insertion. The second

problematic pair was of the alignment of NK-lysin (1nkl, 78 residues) with pro-

phytepsin (1qdm, chain A, 77 residues) and it has a circular permutation. For the

second pair, most methods (except CA returned 41%, SARF returned 92%, and

SCALI returned 69%) returned zero agreement with the reference alignment while

SNAP returned 99 percent agreement. In this pair the N-terminal region of domain

1nkl has to be aligned with the C-terminal region of domain 1qdm to produce an

alignment that matches the reference alignment (see Figure 5). By design, sequen-

tial alignment methods cannot produce such an alignment, and therefore fail to

capture the true alignment. Among the non-sequential methods, the agreement of

SNAP alignments with the reference alignments are higher than the agreements of

CA, SARF, and SCALI. As shown in Figure 5, all the last five methods (DALI,

MATRAS, SHEBA, FATCAT, and LGA) have their alignment paths along the di-

agonal and do not agree with with the reference alignment (shown as circles). The

CA method reports a non-sequential alignment that partially agrees with the ref-

erence alignment but it misses 59% of the reference alignment pairs. SCALI also

misses 31% of the reference alignment pairs. One the other hand, both SARF and

SNAP alignments have excellent agreement with the reference alignment, 92%,

99%, respectively.

Our proposed approach is not designed to handle flexible alignments and thus its

agreements with the reference alignments for the pairs which have conformational

change are not high, compared to the methods which can handle flexible alignments.

FATCAT has the best agreements on the pairs with conformational change since

it allows for flexible alignments by introducing twists in the structures. However,

FATCAT has an inherent limitation of producing only sequential alignments due to

the way it chains the set of alignment fragment pairs (AFPs) and thus has lower

agreements on the pairs with circular permutation.

4.3. Evaluation of classification of the CATH

Gerstein and Levitt [36] emphasized the importance of assessing the quality and

significance of structural alignment methods using an objective approach. They used

the SCOP database [37] as a gold standard to assess the sensitivity of the structural

alignment program against a set of 2107 pairs that have the same SCOP superfamily.

In a more recent work, Kolodny et al. [30] presented a comprehensive comparison of

six protein structural alignment methods. They used the CATH classification [24]
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as a gold standard to compare the rate of true and false positives of the methods.

Moreover, they showed that the geometric match measures like SASk can better

assess the quality of the structural alignment methods. We adopt a similar approach

to assess the significance of our approach by comparing the true and false positive

rates of SNAP alignments to those of other three methods: DALI, STRUCTAL,

and FAST. Since the other methods report only sequential alignments, for SNAP

we restrict the greedy algorithm to report only sequential alignments.

4.3.1. The CATH Singleton Dataset

CATH [24] is a hierarchical classification of protein domain clusters. The CATH

database clusters structures using automatic and manual methods. The CATH

database (version 3.1.0; Jan’07) contains more than 93885 domains (63453 chains,

from 30028 proteins) classified into 4 Classes, 40 Architectures, 1084 Topologies,

and 2091 Homologous Superfamilies. The class level is determined according to the

overall secondary structure content. The architecture level describes the shape of

the domain structure. The topology (fold family) level groups protein domains de-

pending on both the overall shape and connectivity of the secondary structures.

Protein domains from the same homologous superfamily are thought to share a

common ancestor and have high sequence identity or structure similarity.

We define protein domains that belong to homologous superfamilies which have

only one member as singletons. There are 1141 singleton protein domains which

belong to 648 different topologies in CATH. Since singleton domains are unique

in their homologous subfamily, the structurally closest domains to the singleton

domains are the domains in their neighboring H-levels in the same topology. We

selected a set of 21 different topologies such that each topology has a singleton

subfamily and at least ten other superfamilies. There are only 21 such topologies

in CATH, and one domain for each homologous superfamily within a topology

is randomly chosen as a representative. So, we have 21 singleton domains and 210

(10×21) domains selected from the different sibling superfamilies. Our final dataset

thus has 4410 alignment pairs (21 × 210). The set of pairs which have the same

CATH classification are labeled as positive examples, and as negative examples if

they disagree. We have 210 positive pairs and 4200 negative pairs in our dataset.

4.3.2. Alignment Results

We ran all the methods on the 4410 structure pairs. All methods report the number

of residues in the alignment, the rmsd of the alignment, and the native score of the

alignment: STRUCTAL reports a p-value score for the alignment, FAST reports

a normalized score (SN), and DALI reports a z-score. For SNAP, we score the

alignments using the geometric matching score SAS3. For each method, we sort the

alignments by the method’s native score and vary a threshold k. Then we calculate

the true positives (TP), i.e., pairs with same CATH classification, and the false
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positives (FP), i.e., pairs with a different CATH classification in the top k scoring

pairs. Moreover, we compare the quality of the alignments of different methods by

comparing the average SAS3 geometric score for the true positives.

Figure 6(a) shows the Receiver Operating Characteristic (ROC) curves for all

the methods. The ROC graph plots the true positive rate (sensitivity), versus the

false positive rate (1-specificity). Recall that the true positive rate is defined as
TP

TP+FN , and the false positive rate is defined as FP
TN+FP , where TP and TN are

the number of true positives and negatives, whereas FP and FN are the number of

false positives and negatives. The method that has the uppermost ROC (largest area

under the curve) is the one that agrees most with the gold standard. Dali performed

the best with area 0.88; STRUCTAL came second with 0.87, then SNAP with 0.85,

and last comes Fast with 0.80. By zooming in on the ROC curve, Figure 6(b) shows

that SNAP has competitive sensitivities at low false positive rates.

Having the best ROC curve does not imply the best alignments. Kolodny et al.

[30] showed that the best methods, with respect to the ROC curves, do not nec-

essarily have the best average geometric score for the true positives. Two methods

can order the structure pairs similarly while one of the methods reports better

alignments all the time. Our results confirm this observation. Figure 6(c) shows

the average SAS3 measure of the true positives for different sensitivity values. This

figure compares the average score for an equal number of alignments produced by

the different methods involved.

SNAP has a better average SAS3 score for the true positives for the first half

of the graph, then STRUCTAL becomes better. This can be explained by the fact

that we use the SAS3 measure in our algorithm. While it is able to classify as many

true positives as the other methods, FAST has the worst average SAS3 measure.

These results suggest that it is possible to successfully discriminate between

fold classes without getting the alignment right. Although counter-intuitive, it is

a well-known phenomenon in the field of remote homology detection by sequence

alignment that good recognition accuracy does not imply good alignment accu-

racy [38]. Moreover, for structure pairs which are related through a conformational

change, a score that is solely based on rigid body transformation will not be able

to capture all the true positive pairs. Nevertheless, we use the SAS score to assess

the geometric quality of the alignment produced by the different methods.

Figure 6(d) shows the ROC curve of all the methods after sorting the alignments

based on the geometric match score, SAS3. A lower geometric score corresponds to a

better alignment. There is a variation in the performance of the alignment methods

when we use the geometric score to sort the alignments. The area under the ROC

curve for each of the three methods decreases as compared to the area under the

curve produced when the native score is used for sorting the alignments. The area

for STRUCTAL decreases from 0.87 to 0.80, for FAST it decreases from 0.80 to

0.78, for DALI it decreases from 0.88 to 0.81, and for SNAP it stays 0.85. While

the methods seem to agree with the gold standard when the alignments are sorted by
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the native score, their performance slightly decreases when we sort the alignments

by the geometric score. Specifically, the alignments do not have the best geometric

score, and the ROC curve is lower.

4.3.3. Running times

Table 4.3.3 shows the total running time for the alignment methods on all the 4410

pairs in the singleton dataset. FAST is extremely fast but its alignments’ quality is

not so good. SNAP was the second fastest with 1719 seconds, STRUCTAL came

third, and DALI was the slowest. Of the 1719 seconds taken by SNAP, 68 seconds

were taken to get the seeds using PSIST and the remaining 1651 seconds to generate

the alignments. For SNAP alignments, we used only the top (longest) 200 seeds.

4.4. Analysis of SNAP

There are some parameters that affect the quality of the alignment in SNAP,

namely L the maximum rmsd, r the minimum length of the run, δ the threshold

distance which is used to populate the scoring matrix, the number of initial seeds,

and lastly k used in SASk. The optimal values for L = 4.5, r = 3, and δ = 4.5 were

found empirically such that they give the best ROC curve on the CATH dataset.

First we study the effect of seeds pruning by selecting the longest PSIST seeds.

Figure 7(a) shows that as we consider more seeds we get better ROC curves. When

we consider the 200 longest seeds, we get the same area under the curve as the case

when we consider all the seeds. However, by considering all the seeds we get higher

true positive rates for low false positive rates as show in Figure 7(b). Seeds pruning

results in a drastic reduction in the running time of SNAP: it takes 5740 seconds

to run on all the seeds while it takes 1719 second for the 200 seeds and 595 seconds

for the 50 top seeds.

Second, we investigate how the ROC curve changes when we use different k to

calculate the geometric score. Figure 7(c) shows that for k = 1 and k = 2 the

performance of SNAP is drastically affected with areas under the ROC curve 0.49

and 0.77 respectively. On the other hand the area under the curve mostly stays the

same (0.85) for k = 3, 4, and 5. For SAS1 and SAS2, short alignments with small

rmsd will get good score and their ranking will be high and thus will be labeled as

true positives even though they are not and that explains why their ROC curves

are not as good.

Next, we investigate the effect of using different sources for the seeds. Figure 7(d)

shows that using all or the top 200 PSIST seeds gives a similar ROC curve to using

all the HMMSTR seeds. However, in the high selectivity region (low false positive

rates), considering all the HMMSTR seeds results in higher true positive rates. The

quality of HMMSTR seeds comes at a higher running time. HHMMSTR takes 11507

seconds to extract the seeds while PSIST takes only 68 seconds.
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4.5. Two non-sequential alignments

To demonstrate the quality of SNAP in finding non-sequential alignments, we show

SNAP alignments on two non-sequential alignment pairs presented in earlier meth-

ods, SARF2 [13], and SCALI [16].

Figure 8 shows a non-sequential alignment between Leghemoglobin (2LH3:A)

and Cytochrome P450 BM-3 (2HPD:A). SNAP and SARF2 has some common

aligned segments, but SNAP yielded an alignment of length 118 and rmsd = 3.37Å,

whereas SARF2 yielded an alignment with length 108 and rmsd = 3.05Å. The SAS3

score of SNAP is 2.05, which is better than SARF2’s score of 3.84. On this example

both SCALI and FAST failed to return an alignment. Also, as expected, this is a

hard alignment for sequential alignment methods: STRUCTAL aligned 56 residues

with rmsd = 2.27, DALI aligned 87 residues with rmsd = 4.8, and CE aligned 91

residues with rmsd = 4.05.

We took a second non-topological alignment pair from SCALI [16]. Figure 9

shows the non-topological alignment between 1FSF:A, and 1IG0:A. Our alignment

had some common aligned segments with both SCALI and SARF2, but it returns a

longer alignment, length is 127. On the geometric SAS3 measure, the score were 1.7

for SNAP, SARF2 2.51 and SCALI 4.8. Among the sequential methods STRUCTAL

was able to return a fairly good alignment for this pair, with a SAS3 score of 1.6.

5. CONCLUSIONS

We presented SNAP, an efficient algorithm for pair-wise protein structural align-

ment. The SNAP algorithm efficiently constructs an alignment from the superposed

structures based on the spatial relationship between the residues. The algorithm

assembles the alignment from closely superposed fragments, thus allowing for non-

sequential alignments to be discovered. Our approach follows a guided iterative

search that starts from initial alignment seeds. We start the search from different

initial seeds to explore different regions in the transformation search space.

On the challenging-to-align RIPC set [23], SNAP alignments have higher agree-

ments with the reference alignments than the other methods: CE, DALI, FATCAT,

MATRAS, CA, SHEBA, SCALI, and SARF. The results on the RIPC set suggest

that the SNAP approach is effective in finding non-sequential alignments, where the

purely sequential (and in some cases non-sequential) approaches yield low agreement

with the reference alignment. Also on the SISY set [23], SNAP has competitive

agreements with the reference alignments where it comes second after DALI, the

best method on the SISY set. The overall results on classifying the CATH singleton

dataset show that SNAP has high sensitivities for low false positive rates. More-

over, the quality of SNAP alignments, as judged by the SAS3 geometric scores, are

better than the alignments of other methods: DALI, FAST, and STRUCTAL.

One obvious next step is to extend our approach to address the multiple struc-

ture alignment problem. In addition, we plan to add a functionality to handle flexible

alignments.
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M = {FA
i FB

j (l)}, set of seed alignments

L, the rmsd threshold

r, the min threshold for the length of a run in S

δ, the max distance threshold for S

Seed-Based Alignment (M,L, r, δ):

1. for every FA
i FB

j (l) ∈ M

2. E is the equivalence based on FA
i FB

j (l)

3. repeat

4. Topt = RMSDopt(E)

5. A∗ = ToptA

6. Sij = 1 if d(a∗
i , bj) < δ, 0 otherwise

7. E1= chain-segments(S, r)

8. if RMSDopt(E1) ≥ L go to step 2

9. E ←− E1

10. until score does not improve

11. add E to the set of alignments E

12. end for

13. Output best alignment from E

Fig. 1. The SNAP Algorithm

Table 1. Comparison of the running times (in sec-
onds) on the CATH Dataset.

Method DALI STRUCTAL FAST SNAP

Time 5532 3162 224 1719
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Fig. 2. An example to demonstrate the process of finding a global pair-wise structural for the
two proteins, 1aww , 67 residues and 1gxiE, 73 residues, based on the initial equivalence: E0 =
{(11, 8), (12, 9), · · · , (16, 13)}. Only the runs that exceeded the length threshold are shown in the

figure. (a) The initial runs shown here are the runs obtained from the scoring matrix S0 that is
obtained using the optimal superposition of the initial equivalence, E0; using our greedy approach,
we select a set of runs (shown in bold) which make up the alignment E1: 55-64/59-68 8-16/4-12

28-36/17-25 44-49/35-40, runs are sorted by decreasing length; |E1| = 34, rmsd= 2.2, and the
geometric match score SAS3 = 56.13. (b) The two structures are superposed based on E1; the set
of runs are shown here, and the selected runs define the new alignment E2:52-64/56-68 7-18/4-15
27-37/17-27 43-49/35-41; |E2| = 43, rmsd= 2.39, and the geometric match score SAS3 = 30.06.

(c) To refine the alignment further, we use E2 to obtain the runs shown here, from which we select
the runs that make up the refined alignment, E3: 52-64/56-68 7-18/4-15 28-38/17-27 44-50/36-42.
|E3| = 43, rmsd= 1.84, and SAS3 = 23.15. The alignment in E3 can not be refined any further,

thus we stop our iterative process of superposition and alignment.
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Fig. 3. Comparison of the alignments of 10 methods with the reference alignments from the SISY

set. Box-and-whisker plots for the distribution of agreements of the alignments produced by dif-
ferent methods as compared to the true reference alignments. The dark dots indicate the means,
the red horizontal lines indicate the medians, and the box shows the range between the lower and

the upper quartiles. Results for LGA, SARF2, SCALI, and SNAP were obtained in-house while
the results for the remaining methods were taken from [23].
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Fig. 4. Comparison of the alignments of 10 methods with the reference alignments from the RIPC
set. Box-and-whisker plots for the distribution of agreements of the alignments produced by dif-
ferent methods as compared to the true reference alignments. The dark dots indicate the means,
the red horizontal lines indicate the medians, and the box shows the range between the lower and

the upper quartiles. Results for LGA, SARF2, SCALI, and SNAP were obtained in-house while
the results for the remaining methods were taken from [23].
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Fig. 5. Comparison of the agreement with the reference alignment of SNAP alignment and 6 other

alignment methods. Residue positions of d1qdma and d1nkl are plotted on the x-axis and y-axis,
respectively. Note: The reference alignment pairs are shown in circles. The CA, SARF, SCALI,
and SNAP plots overlap with the reference alignment. For this pair, we used the alignment’s server

of the corresponding method to get the alignment, except for DALI and SHEBA which we ran
in-house.
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(d) ROC: Sorting on the SAS3 score

Fig. 6. Receiver Operating Characteristic (ROC) curves for the structural alignment methods
measured over the 4410 CATH pairs. (a) The alignments are sorted based on the native score or

on the geometric match measure SAS3. We tallied the number of true positives and false positives
using CATH as a gold standard. (b) A zoom-in on the range of true positive rates from 0 to 0.1.
(c) The average SAS3 scores versus the true positive rate. (d) For all the methods, the alignments

are sorted using SAS3 scores and we plot the ROC curve showing the true positive rate vs the
false positive rate.
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(a) ROC: Selecting the top seeds
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(b) ROC: Zooming in
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(c) ROC: SNAP using different SASk
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(d) ROC: source of the seeds

Fig. 7. Studying the effect of SNAP parameters on its performance on the CATH dataset. In (a)
and (b) we plot the fractions of FP against the fractions of TP to show the effect of choosing

different number of initial seeds on the performance of the algorithm. In (c) and (d) Comparison
of the performance of SNAP on the CATH dataset for different values of k, used in calculating
SASk.
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(a) (b)

(c)

Fig. 8. A non-sequential alignment between (a) Leghemoglobin (2LH3:A, 153 residues) and (b) Cy-
tochrome P450 BM-3 (2HPD:A, 471 residues). (c) SNAP alignment: Leghemoglobin in red and Cy-
tochrome in blue. The Nmat/rmsd scores were 118/3.37Å for SNAP, and 108/3.05Å for SARF2. For
sequential methods, the scores were 56/2.27Å for STRUCTAL, 87/4.8Å for DALI and 91/4.05Å for CE.
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(c)

Fig. 9. TOPS cartoons [39] showing alignable secondary structure elements (alignable given the align-
ment in (c)) highlighted in red (helices) and yellow (strands) for a difficult non-sequential alignment of
(a) Glucosamine-6-Phosphate Deaminase (1FSF:A, 266 residues) and (b) Thiamin Pyrophosphokinase
(1IG0:A, 317 residues). Strands (triangles) and helices (circles) are numbered sequentially, indepen-
dently. (c) SNAP alignment: 1FSF:A in red and 1IG0:A in cyan. The Nmat/rmsd scores were 127/3.38Å
for SNAP, 104/5.4Å for SCALI, and 105/2.9Å for SARF2. For the sequential methods the scores were
145/4.88Å for STRUCTAL, 106/4.9Å for DALI, and 111/5.1Å for CE.


