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a b s t r a c t

While the availability of large-scale online recipe collections presents opportunities for health con-
sumers to access a wide variety of recipes, it can be challenging for them to discover relevant recipes.
Whereas most recommender systems are designed to offer selections consistent with users’ past
behavior, it remains an open problem to offer selections that can help users’ transition from one type
of behavior to another, intentionally. In this paper, we introduce health-guided recipe recommendation
as a way to incrementally shift users towards healthier recipe options while respecting the preferences
reflected in their past choices. Introducing a knowledge graph (KG) into recommender systems as side
information has attracted great interest, but its use in recipe recommendation has not been studied.
To fill this gap, we consider the task of recipe recommendation over knowledge graphs. In particular,
we jointly learn recipe representations via graph neural networks over two graphs extracted from
a large-scale Food KG, which capture different semantic relationships, namely, user preferences and
recipe healthiness, respectively. To integrate the nutritional aspects into recipe representations and the
recommendation task, instead of simple fusion, we utilize a knowledge transfer scheme to enable the
transfer of useful semantic information across the preferences and healthiness aspects. Experimental
results on two large real-world recipe datasets showcase our model’s ability to recommend tasty as
well as healthy recipes to users.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Food is critical to human beings as it is vital for good health
nd ultimately for life itself. The recording and sharing of recipes
n online repositories has led to fast growth of food computing.
ood recommendation aims to provide a list of ranked food items
or users to meet their personalized needs. In recent years, in-
roducing a knowledge graph (KG) into the recommender system
s side information has attracted great interest since a KG can
rovide extra information and can be used to suggest potential
elations among items [1–4]. We posit that recipe items and
heir attributes (i.e., ingredients and categories) mapped into
he KG can enable a food recommender system to better un-
erstand the latent mutual relations between them and make
he recommendation results more explainable. For example, a
ser who loves Tom Yum Soup may have interest in Tom Kha
oup since the distance of the two items is quite close in a food
G, given that they have similar ingredients and both are Thai-
tyle, whereas the suggestion is hard to extract from the user’s
reference list if only one of the recipes is logged. However, KG-
ased recipe recommendation has not been widely studied. To
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fill this gap, we utilize a public user–item interaction dataset
[5] scraped from (comprising 180K+ recipes and 700K+ recipe
reviews) along with the FoodKG knowledge graph [6] (comprising
around 67 million triples spanning a food ontology and recipes
with multiple attributes, including nutrition). In addition, we
create a new recipe recommendation dataset generated from
user records in MyFitnessPal [7]. In our KG-based recommen-
dation, the recipe representations are enriched by aggregating
embeddings of multi-hop neighbors in the recipe KG to predict
the user’s preference via the refined user and candidate recipe
representations. To guide the information flow in the KG, we
adopt a graph neural network (GNN) based approach to adjust
the weights between different neighbors during the propagation
process.

Compared to other recommender systems applied in general
domains such as movies, music, or products, food recommenda-
tion is highly relevant to human health and thus plays a critical
role in human dietary choice [8]. Food recommendation involves
more complex and multi-faceted information. In addition to
matching user preferences, it is therefore equally important to
include healthiness scores. Due to unhealthy eating habits, such
as increased intake of food containing high energy or fat, a grow-
ing proportion of the global population is becoming overweight or
obese [9]. Without considering the health aspect, a recommender

system will keep suggesting calorie-rich foods for someone with
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unhealthy eating habits. Studies in nutrition science have shown
that proper nutrition and health labels help people to make better
food choice [10]. An ideal food recommendation system should
offer a trade-off between user preferences and nutrition require-
ments, recommending both ‘‘healthy’’ and ‘‘tasty’’ foods. Existing
health-guided food recommendation methods balance user’s food
preference and the health goal via simple fusion [11,12] or by
adding nutrition constraints referring to particular health guide-
lines [13,14]. In contrast, while extracting a user’s interest from
real-world user–item interaction datasets (here item refers to
a recipe), we also consider the health aspects using an item’s
nutrition information. To make the health aspect more adaptable
in recommendation, we learn two different item representations
through two special graphs extracted from a KG. In these two
graphs, items/recipes have different semantics with regards to
similarity and healthiness. In order to integrate the health aspect
into the final recipe representation and the following recom-
mendation, we utilize a knowledge transfer scheme, that enables
useful semantic information to be exchanged across the two rep-
resentations. Therefore, the nutrition information is incorporated
into the food recommender system for constraint optimization
and computing. To fairly evaluate the recommendation results,
we design new criteria to consider both the healthiness and
preferences. Our main contributions are:

• We highlight the importance of recommending food con-
sidering the health aspects and incorporating knowledge
graphs as side information to enrich the item representation.
To the best of our knowledge, this is the first work to do
health-based recipe recommendation over KGs.
• We separately model user preference and food healthiness

in two differently structured graphs obtained from a large-
scale Food KG where items have varied semantics represent-
ing similarities and healthiness. Furthermore, a knowledge
transfer mechanism is adopted to let the two aspects share
useful information and thus to benefit each other. The final
item representations are enriched by the knowledge from
the health aspects.
• We examine our model on two real-world recipe datasets.

We also design a new criterion to evaluate the healthiness
of the recommended results. Our experiments demonstrate
the effectiveness of our model and its interpretability in
recommending both ‘‘healthy’’ and ‘‘tasty’’ recipes.

2. Related work

2.1. Health-guided food recommendation

Because of the overload of information with the rapid devel-
pment of the internet, it has become hard for users to pick
ut what interests them among a lot of choices. Recommender
ystems have been applied in many scenarios to improve the user
xperience. Among the multiple applications of recommender
ystems, food recommendation is special since the health aspect
erves a crucial role. Previous methods have tried to incorpo-
ate healthiness into the recommendation process by substituting
ealthier ingredients [15,16], adding calorie counts as a manually
djusted feature [12], and incorporating nutritional facts directly
s linear constraints [11,13]. Trattner and Elsweiler [17] proposed
straightforward post-filtering approach which re-weights the

cores of recommended recipes for a particular user based on
ecipe healthiness score. However, these methods balance a user’s
ood preference and the health aspects via simple combination
perations, such as summation [12] and multiplication [17]. It
s hard to optimize the trade-off between the two aspects. We
rgue that there is a need for more effective fusion methods.
2

Our model jointly trains two representations with regards to user
preference and food healthiness, and then adopts a knowledge
transfer scheme to integrate the two aspects.

There are other studies targeting personalized recipe recom-
mendation with specific health goals: Yang et al. [18] proposed a
nutrient-based recipe recommender system to meet individuals’
nutritional expectations and specific dietary restrictions refer-
ring to user profiles and visual food image features. Chen et al.
[14] modeled food recommendation as a constrained question
answering task over a food knowledge graph. They did person-
alized recommendation by adding users’ dietary preferences and
health guidelines as additional constraints. Our method has a
different task setting, we recommend recipes directly over the
KGs utilizing user–item (i.e., user–recipe) interactions.

2.2. KG-based recommender systems

Generating recommendations from a KG has attracted interest
recently since KGs can improve the recommendation results as
well as provide interpretability. Compared to traditional recom-
mendation methods like collaborative filtering and content-based
filtering, KG-based recommender systems can further alleviate
the data sparsity and cold-start problems by incorporating exter-
nal knowledge. Guo et al. [4] grouped KG-based recommendation
methods into three categories: embedding-based methods that
mphasize how KG embeddings are learned, connection-based

methods that focus on the connection patterns in the KG, and
propagation-based methods that address how item representations
are refined in the propagation process. In particular, connection-
and propagation-based methods can provide interpretability by
examining the semantic and structural information in a KG.

Our work falls within the propagation-based paradigm, where
the aim is to capture high-order relations between items in
the KG by aggregating representations of their multi-hop neigh-
bors [1,2,19–21]. Specifically, a graph is often extracted from the
original KG by mapping the items in a users–items interaction
dataset to their associated entities in the KG and selecting their
multi-hops neighbors as related entities. The extracted graph
then serves as an input for KG-based recommendation, where
the aggregation function is usually implemented using various
graph neural networks. For example, Wang et al. [19] proposed
a measure to make the weight of each neighbor be user-specific
by considering both the user representation and the item relation.
As a follow-up approach, Wang et al. [3] added label smoothness
regularization to solve the overfitting problem in [19]. Among
recent works, Ma et al. [22] proposes a new model for recommen-
dation in hyperbolic space that facilitates learning of hierarchical
structure in KGs, Chen et al. [23] proposes a non-sampling based
approach to KG learning, and Mu et al. [24] does disentangled
learning (i.e., multi-aspect representations of users and items)
of latent factors in KGs. Unlike these models that unify all the
item attributes in a single graph extracted from the KG, we
employ two different graphs constructed from the KG that refer
to different semantics: the user preferences and the recipe/item
healthiness. We then jointly learn these aspects via a unified
model using graph neural networks. We show that our model
that fuses both user preference and food healthiness outperforms
state-of-the-art KG-based recommender systems.

3. Background

3.1. Food knowledge graph

A knowledge graph is a directed graph comprising subject–
property–object triples (edges) that specify different types of
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Table 1
List of key notations.
Notations Descriptions

G = (V, E) Knowledge graph
vi Item i
vi ∈ Rd×1 Representation of item i
Ni Neighbors of item i
σ Nonlinear transformation
∥ Vector concatenation
⊙ Element-wise product

relationships (properties or predicates) between the nodes (sub-
jects and objects). The KG can be represented as G = (V, E),
here V = {v1, v2, . . . , vn} is the set of n (heterogeneous) entities
e.g., recipes, ingredients, meals, etc.). Entities are associated with
ttributes X = {x1, x2, . . . , xn}, where xi represents the attributes
f entity vi. For example, recipes contain attributes like recipe
ategory, nutrition, cook time, serving size, and so on. The edges
represent relationships between entities; each edge of the form

vh, r, vt⟩ ∈ E indicates a relationship r , from head entity vh to tail
ntity vt . For instance, ⟨banana bread, consist_of, all purpose flour⟩
tates the fact that banana bread consists of all purpose flour.
Entities in G can be connected with a multi-hop relation path:

0
r1
−→ v1

r2
−→ · · ·

rL
−→ vL

here vi ∈ V and ⟨vi, ri+1, vi+1⟩ ∈ E . In this case, vL is the L-hop
eighbor of v0, which is denoted as vL ∈ N L

v0
.

.2. Food recommendation task

A typical recommendation task is to suggest a list of ranked
nobserved items based on a user’s preference to meet the user’s
eeds. The final recommendation is generated by sorting the
reference scores of items (i.e., recipes). We have a set of M users
= {u1, u2, . . . , uM}, a set of N items V ′ = {v1, v2, . . . , vN},

nd the user–item interaction matrix Y ∈ RM×N . The user–item
nteraction matrix is defined according to users’ implicit feedback,
here yuv = 1 indicates that user u has interest in item v;
therwise yuv = 0. Given the user–item interaction matrix Y as
ell as the corresponding knowledge graph G where items in V ′

re mapped to nodes in G (so that V ′ ⊆ V), the recommender
ystem first learns the representations of the user, denoted u ∈
d, and candidate item, denoted v ∈ Rd, based on G. Then, a
rediction function

ˆu,v = F
(
u, v| Y, G

)
s learnt to model the preference of u for v. Health-guided rec-
mmendation has to further model and incorporate nutritional
nformation into the final recommendations. We list the key
otations used in this paper in Table 1.

. Health-guided food recommendation

The overall schematic of our health-guided recipe recommen-
ation framework is shown in Fig. 1. Two special graphs – prefer-
nce graph and health graph – are generated from the large-scale
oodKG knowledge graph [6], with respect to user preference and
ealthiness. Then two types of item representations are learned
ia two different graph neural networks. Finally, we adopt a
nowledge transfer mechanism to share useful information be-
ween the preference and health representations for the items.
etails are given next.
 e

3

.1. Preference and health graphs

For KG-based recommendation, the first step is to extract a
elevant graph from a large KG. Recipes appearing in the user–
tem interaction dataset are first mapped to an external KG to find
heir associated entities. For recommendation in general domains
ike suggesting movies, books, or products, the relations between
ntities are usually predefined in their associated KGs, which
llows one to extract multi-hop neighbors of related entities from
he KG to create a graph for the recommendation method. How-
ver, in the food KG is there are no direct edges between recipes.
herefore, for each item vi ∈ V ′ in the user–item interaction
atrix, we perform random walks with restart to find the k
ost related recipe entities in the KG G = (V, E). The k most

elated entities can be denoted as Vi = {vi1, vi2, . . . , vik}. Thus,
the final set of relevant vertices in the KG is the set of all such
items from the user-interaction items (recipes) and their related
entities, i.e., V =

⋃
vi
Vi (where vi ∈ V ′).

Preference graph: To perform a random walk among recipes in
the food KG, we first define a potential edge between recipes vh
nd vt if the number of undirected paths between them is larger
han θp, with the length of undirected paths restricted to l hops
(in practice, we set θp = 3 and l ≤ 3). The length constraint, l ≤ 3
allows three conditions for determining an undirected path p: (i)
recipe vh and vt have one common ingredient; (ii) ingredient ih
in recipe vh is relevant to ingredient it in vt ; (iii) recipe vh and vt
are recommended for the same meal type.

For condition (i), we have a 2-hop relation path between vh
and vt as:

vh
r
−→ i

r
←− vt

where r is the consist_of relation and i is a common ingredient
between recipes vh and vt .1 For condition (ii), we get a 3-hop
relational path between vh and vt as:

vh
r
−→ ih

r ′
−→ it

r
←− vt

where relation r ′ is the substitutes_for relation in the food KG.
For condition (iii), the 2-hop relation path is similar to condition
(i), except that r is the is_recommended_for_meal relation and i
is their common meal type. For instance, the recipe cream cheese
apple pie and apple pie coffee cake have one common ingredient
apple and they are both suggested to serve as snack. In addition,
the cream cheese in cream cheese apple pie can be substituted
with sour cream, which is contained in apple pie coffee cake with
reference to the food KG. Thus, we put a potential edge between
the two recipes.

After constructing direct potential edge among recipes, to per-
form a random walk over the recipes, the next step is to consider
the edge weight with regards to recipe semantics in the KG. As
a structured data type, the recipes consist of a list of ingredients,
titles, cooking instructions, nutrition content, and category infor-
mation. The edge weight for a random walk between recipes vh
and vt is calculated as the overlap ratio in the recipe title and
ingredients, since the two components can adequately represent
the recipe itself. The recipe title and ingredients are collected
by querying triples in KG. Specifically, the transition probability
P(p)(vh, vt ) between item vh and vt can be formulated as:

P(p)(vh, vt ) = λ cos(vtitleh , vtitlet )

+ (1− λ) cos(vingreh , vingret )
(1)

where vtitlea is the tf-idf vector of the title, and vingrea is a binary
vector of ingredients for an item (a ∈ {h, t}); and λ ∈ [0, 1] is

1 We discard high frequency seasoning ingredients like salt, sugar, and oil to
liminate redundant edges.
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Fig. 1. The framework of our proposed model. Two graphs (preference graph and health graph) are generated from the FoodKG. Then two types of item representations
are learnt through GCN and GAT. Finally, a knowledge transfer mechanism is adopted to enable the transfer of useful semantic information across the preferences
and healthiness aspects.
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a scalar factor. Since the entries of v are non-negative for both
title and ingredients the cosine similarity cos(·) ∈ [0, 1]. Titles
are preprocessed by lemmatization. Finally, related recipes are
extracted from food KG and form a graph for the recommendation
system. The construction of the graph filters out less related
entities in the graph, facilitating mining high-order item relations
for recommendation. The graph is built with regards to recipe
similarities; we term it as the preference graph because gen-
eral food recommendation is based on user preferences, which
mainly tends to recommend similar foods. The preference graph
is denoted as G(p)

= (V, E (p)).

ealth graph: Based on the chosen related entities, V =

v1, v2, . . . , vk}, we construct the health-based graph for health-
uided recommendations. We conduct a second random walk on
he chosen entities, where the edge weight between two recipes
s based on the title similarity and their nutrition content. Each
ecipe contains nutritional information in terms of macronutri-
nts (e.g., fat, saturated fat, sugar, salt). The nutrition information
s obtained from the food KG by inquiring the has_nutrition rela-
ion. To incorporate the numeric value of the macronutrients into
epresentations, a nutritional quality rating is used, based on the
nternational standards introduced in 2007 by the Food Standards
gency (FSA) (food.gov.uk). For each recipe, an FSA color-coded
ating (red-bad, amber-caution or green-good) is computed for
ach of the macronutrients, proving a clear and understandable
ndication of how healthful the recipe is. Following previous
ork [25], we then map the FSA color ratings to numeric values
red-bad:1, amber-caution:2, green-good:3), on a discrete scale,
s healthiness scores. We let Av = {av

1, . . . , a
v
N} be N category

alues denoting the healthiness score of item v, where N is the
umber of nutrients. Based on the motivation that, in addition to
imilarity, a recipe should have a higher edge weight towards a
ealthier recipe, the edge weight from recipe vh to vt is regulated
y their healthiness scores. The edge weight from recipe vh to vt

is increased if vt is healthier than vh, and vice versa. The health-
based edge transition probability P(h)(vh, vt ) between item vh and
t can be calculated as:

= cos(vtitleh , vtitlet ) (2)

P(h)(vh, vt ) = max
(
0, δ · Γ

+ (1− δ)
∑

Avt−
∑

Avh
2N

) (3)

where δ ∈ [0, 1] is a scalar parameter, and
∑

Ava is the sum-
mation of healthiness scores of an item (a ∈ {h, t}). Note that
4

the maximum difference in health score over N nutrients is 2N
(for good:3 - bad:1). Thus, we build a new graph where healthy
recipes are clustered and have more connections in this graph.
We term this graph as the health graph and denote it as G(h)

=

V, E (h)). Note that the preference graph, G(p), and the health
graph, G(h), share the same entity set while having different edges
representing different semantics. As illustrated in Fig. 1, v1 and v2
are one hop and two hops away from item vi in the preference
graph, respectively. However, v2 is pulled closer to vi in the health
G as it is healthier than v1.

.2 Refinement of item representations

After obtaining the preference graph and the health graph,
very entity in the two graphs can be regarded as a candidate
tem vi for recommendation. The next step is to learn a higher
rder representation of the candidate item, denoted as vi ∈ Rd,
y aggregating embeddings of item vi’s multi-hop neighbors N l

vi
(l = 1, 2, . . . , L) in both graphs. Here d represents the dimen-
sion of the latent representation. The graph convolution network
(GCN) proposed by Kipf and Welling [26] is a widely adopted
choice as the kernel for propagation [3,19,27]. With the usage of
GCN, during the aggregation process, non-parametric weights are
assigned to different neighbors to make the propagation relation-
specific. Such mechanisms have been widely used in KG-based
recommendation due to the motivation that a user will have
distinct preferences for different relations.

4.2.1 Learning in the preference graph
We formulate the representation of item vi from its l-hop

neighbors in the preference graph as:

vl−1Ni
= γ

({
vl−1j , j ∈ Ni

})
(4)

vli = g
(
vl−1i , vl−1Ni

)
(5)

where Ni denotes the neighbors of item vi, vl−1Ni
denotes the

aggregated feature vector of Ni, γ (·) is the GCN aggregation
function (over a node’s neighbors), g(·) is the final aggregation
function. There are many ways to aggregate vl−1i and vl−1Ni

, such
as summation [26], concatenation [28], or a hybrid operation [2].
Here we implement g(·) in three different ways:

vl = σ

(
W

(
vl−1 + vl−1

))
(6)
i i Ni

https://www.food.gov.uk/


D. Li, M.J. Zaki and C. Chen Web Semantics: Science, Services and Agents on the World Wide Web 75 (2023) 100743

v

w
σ
c
s
e
1

F

v

w
i
t
R
d
o
a

4

t
s
t
e
m
t
n
K
f

v

w
v
α
n

α

w
W
t
v
t
o

v

w
t
t
(

f
(

s
f
f
t
d
G
i
h

4

m
p
m

r
t

vli = σ

(
W

(
vl−1i ∥ vl−1Ni

))
(7)

l
i = σ

(
W1

(
vl−1i + vl−1Ni

))
+σ

(
W2

(
vl−1i ⊙ vl−1Ni

)) (8)

here W, W1 and W2 represent trainable weight matrices and
(·) is a ReLU activation function. The additional term in Eq. (8)
ompared to Eq. (6) makes the information being propagated sen-
itive to the affinity between vl−1i and vl−1Ni

. Typically, for GCN, it
xplicitly assigns a non-parametric weight wj =

/
√
deg(vi) · deg(vj) to the neighbor vj of vi during the aggrega-

tion process γ (·), where deg(vi) denotes the degree of item vi.
or recommendation, to make the weight of each neighbor j ∈ Ni

user-specific, we note the trainable user representation as u ∈ Rd

and define γ (·) as:

wj = uTxj (9)

w̃j =
exp(wj)∑

k∈Ni
exp(wk)

(10)

l−1
Ni
= γ

({
vl−1j , j ∈ Ni

})
=

∑
j∈Ni

w̃jvl−1j (11)

here xj ∈ Rd is a trainable item attribute representation for
tem vj, w̃j is a normalized (softmax) weight. We select the recipe
itle, ingredients, and category information as key item attributes.
ecipe title and ingredients are embedded in the same way as
escribed in Section 4.1. The category information is encoded as
ne-hot vectors. We concatenate the above embedded attributes
s the initial input for the item attribute representation.

.2.2 Learning in the health graph
For the information aggregation on the health graph, G(h), since

he relation between recipe items is regulated by healthiness
cores, we adopt a graph attention network (GAT) [29] approach
o implicitly capture the different weights of neighbors via an
nd-to-end network architecture. GAT introduces the attention
echanism as a substitute for the statically normalized convolu-

ion operation in GCN. A GAT assigns larger weights to important
eighbors, thus automatically guiding the information flow in the
G. Formally, the propagation procedure of GAT in the lth layer
or vi can be formulated as:

l
i = σ

( ∑
j∈Ni∪{i}

αl
ij W

l vl−1j

)
(12)

here σ is a non-linear activation function (e.g., ReLU), and v0i =
i is the initial representation of item vi. The attention weight
l
ij measures the connective strength between the item vi and its
eighbor vj and it is calculated as:

l
ij = softmax

(
φ

(
aT

[
Wlvl−1i ∥ Wlvl−1j

]))
(13)

here φ(·) is a LeakyReLU activation function, and both a and
l are learnable parameters. The softmax function ensures that

he attention weights sum up to one over all neighbors of item
i. We further use multi-head attention with K heads to increase
he model’s expressive capability, obtaining vli as a concatenation
f the K heads:

l
i =

K

k=1
σ

( ∑
j∈Ni∪{i}

αl(k)
ij Wl(k) vl−1

(k)

i

)
(14)

here (k) denotes the kth head. Under the umbrella of convolu-
ional graph neural networks, a GAT model usually stacks mul-
iple convolutional layers over the shallow feature embeddings

0
i.e., vi ), which extract high level information of both the item

5

eatures and graph structure into the final-layer item embedding
i.e., vLi ).

Note that the two GNNs (GCN and GAT) take different graph
tructures (G(p) and G(h)) and item attributes X as inputs. There-
ore, for the same recipe item vi in G(p) and G(h), we get the
inal preference-aspect representation v(p)i ∈ Rd via GCN and
he health-aspect representation v(h)i ∈ Rd via GAT, capturing
ifferent semantics, and obtained from the last layer of GCN and
AT, respectively. Our method encodes different item semantics
n different latent spaces, and thus is more flexible for modeling
ealth-guided recommendation.

.3 Fusion between preference and healthiness

We observe that existing health-guided food recommendation
ethods balance user’s food preference and healthiness via sim-
le fusion. Therefore, we explore an effective non-linear fusion
ethod between these two factors.
We extend the work in [27] where they integrate two types of

epresentations from different neural networks via a knowledge
ransfer mechanism. Two knowledge transfer functions fp→h(·)
and fh→p(·) are designed to allow the semantics of items in
the preference and health graphs to influence each other. The
knowledge transfer between v(p)i and v(h)i can be formulated as:

v̂(p)i = (1− α) v(p)i + α fh→p(v
(h)
i ) (15)

v̂(h)i = (1− α) v(h)i + α fp→h(v
(p)
i ) (16)

where v̂(p)i and v̂(h)i represent the augmented preference and
health representations of item vi and α is the weight of the inte-
gration. The knowledge transfer networks fp→h(·) and fh→p(·) are
implemented by fully-connected neural network layers. It allows
useful knowledge to be extracted and transferred between differ-
ent item semantics. In addition, we apply the back-transfer Zhu
et al. [30] to further improve the quality of augmented represen-
tations:

v̂(p)i = (1− µ− β) v(p)i + µ fh→p(v
(h)
i )

+β fh→p(v̂
(h)
i )

(17)

v̂(h)i = (1− µ− β) v(h)i + µ fp→h(v
(p)
i )

+β fp→h(v̂
(p)
i )

(18)

where µ and β are weights for the combination. Because the
knowledge transfer between preference and health aspects is
highly under-constrained, back-transfer serves as a cycle consis-
tency constraint to force fh→p(·) and fp→h(·) to be inverse of each
other.

4.4 Model optimization

For each node v ∈ V , we obtain its final L-order preference
representation, denoted v(p), and its health representation, de-
noted v(h), from the preference and health graphs, respectively.
To predict the probability ŷuv , v(p) is fed into the prediction
function f (·) together with the final user representation u learnt
from Eq. (9): ŷuv = f (u, v(p)) = σ (uTv(p)), where σ is the sigmoid
function. The loss function for the preference graph learning is
defined as:

Lp =
∑
u∈U

⎛⎝ ∑
u:yuv=1

J (yuv, ŷuv)

−

Q∑
i=1

Evi∼P(vi)J (yuvi , ŷuvi )

) (19)

where J is cross-entropy loss.
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To make the computation more efficient, we use a negative
ampling strategy during training. P is a negative sampling dis-
ribution over V with yuvi = 0, and Q is the number of negative
samples. P follows a uniform distribution. For the health graph,
we do not use the user representation for training. Rather, we
use a commonly-used graph-based loss, which encourages nearby
nodes in graph to v(h) have similar representations:

Lh = −log
(
σ (v(h)

T
v(h)j )

)
−

Q∑
j′=1

Evj′∼P(vj′ )log
(
σ
(
−v(h)

T
v(h)j′

)) (20)

here j is a sampled nearby item, j′ is a sampled negative (far-
away) item, and σ is the sigmoid function.

To balance the different losses, the final loss

L = (1− η) Lp + η T u Lh

is a weighted linear combination of these two, with

T u
=

⏐⏐{u ∈ U}
⏐⏐

ote that losses will be summed over all nodes across the batches
nd the weight determined by a scalar η > 0.

Experiments

Here, we evaluate our health-guided recommendation model
nd present its performance on two user–item interaction
atasets derived from two different real-world food data col-
ections. The code and dataset are publicly available at: https:
/github.com/DiyaLI916/recipe_recommendation. In this section,
e aim to answer the following research questions:

• RQ1: How does our model perform compared with other
state-of-the-art KG-based recommendation and recipe rec-
ommendation methods?
• RQ2: How do different components (i.e., propagation mod-

els, aggregation methods, and fusion mechanism) and com-
ponent parameters (e.g., layers in GNNs) affect our model?
• RQ3: Can our model provide reasonable explanations about

user preferences towards items with appropriate health
guidance, and what are some of the typical error cases for
our model?

.1 Datasets

Most of previous research for recommending recipes relies on
eb resources, e.g., Allrecipe,2 Cookpad,3 and Yummly,4 but they

re not sufficient to develop advanced food recommender sys-
ems, which require large-scale user–item interaction datasets.
large-scale dataset with rich user-food interaction and multi-
odal content (e.g., ingredients, nutrition information and user

eviews) is crucial for recipe recommendation, though there are
nly a few public large-scale datasets which comprise rich at-
ributes for recommendation [5,31].

Majumder et al. [5] provides a user–item interaction dataset5
hich is scraped from the Food.com website consisting of 180K+
ecipes and 700K+ recipe reviews covering 18 years of user in-
eractions from 2000 to 2018. The FoodKG [6]6 knowledge graph
s a large-scale KG that integrates recipes, food ontologies and

2 www.allrecipes.com.
3 www.cookpad.com.
4 www.yummly.com.
5 www.kaggle.com/shuyangli94/food-com-recipes-and-user-interactions.
6 foodkg.github.io/.
6

Table 2
Statistics Food.com and MyFitnessPal Datasets.
User–Item Interaction #users #recipes #interactions

Food.com 24,957 102,717 673,321
MyFitnessPal 9897 23,341 156,322

Knowledge Graphs #entities #triplets in Gp #triplets in Gh

Food.com 213,746 613,395 579,317
MyFitnessPal 58,962 127,423 99,768

nutritional data. It comprises about one million recipes (sourced
from [32]), 7.7 thousand nutrient records (sourced from the
USDA: www.usda.gov), and 7.3 thousand types of food (sourced
from [33]). Overall, it has over 67 million triples. It is a great
resource for KG-based recipe recommendation, and we there-
fore use FoodKG as the underlying food KG. Considering the
scale of the user–item dataset and the direct mapping with the
FoodKG [6], we do recipe recommendation based on the Food.com
dataset. We map the recipes in Food.com interaction dataset to the
FoodKG, since over 500K recipes in the KG are from Food.com, and
thus we construct the two graphs – preference and health graphs
– for health-guided recipe recommendation.

To show the generality of our model, we construct another
dataset from MyFitnessPal,7 which contains 587K+ food log
records for 9K+ MyFitnessPal users from September 2014
through April 2015 [7]. Different from the direct mapping be-
tween Food.com and FoodKG, the food intake records in My-
FitnessPal are not all recipes. For example, records can refer
to snacks like ‘‘Quest Bar Cookies & Cream’’. We therefore do
approximate matching between the food items in MyFitnessPal
and FoodKG by calculating the similarities of their titles and
nutritional content. To increase the quality of the final user–item
interaction datasets and the associated graphs, we leave out users
having less than 5 records for food preferences, and infrequent
items with frequency lower than 10. The statistics of the two
preprocessed datasets are listed in Table 2.

For each dataset, we randomly select 90% of interaction history
of each user to build the training set, and treat the remaining as
the test set. We then randomly select 10% of interaction history
from the training set as validation set for hyper-parameter tuning.
For each record in the user–item interaction dataset, we treat it as
a positive sample, and then we sample negative interactions for
each user, indicating that the user has no interest in these items.
The food.com dataset has been used for recipe generation [5,34]
and the MyFitnessPal dataset has been used for dietary predic-
tion [7]. To the best of our knowledge, we are the first to use
these two datasets for KG-based recipe recommendation.

5.2 Experimental settings

5.2.1 Baselines
Existing works in food recommendation have very different

task settings like recommendation via Q&A [14], substituting food
with healthier choices [16], or recommending food to specific
users [18]. However, we cannot directly compare our model
with them due the differences in the task settings (e.g., with
respect to [14]) or unavailability of the source code (for [16,
18]). Instead, to demonstrate the effectiveness, we compare our
proposed model with state-of-the-art KG-based recommendation
methods and several competitive baselines as follows:

• KGNN [19]: This model is representative of propagation-
based methods for KG-based recommendation. It focuses on
representation enrichment of item KG by transforming the

7 www.kaggle.com/zvikinozadze/myfitnesspal-dataset.

https://github.com/DiyaLI916/recipe_recommendation
https://github.com/DiyaLI916/recipe_recommendation
https://github.com/DiyaLI916/recipe_recommendation
http://www.allrecipes.com
http://www.cookpad.com
http://www.yummly.com
http://www.kaggle.com/shuyangli94/food-com-recipes-and-user-interactions
https://foodkg.github.io/
http://www.usda.gov
http://www.kaggle.com/zvikinozadze/myfitnesspal-dataset
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KG into a user-specific weighted graph and then applying
a GCN to compute the item embeddings. Note that the KG
used in this work is simplified as a graph input for GCN.
• KGNN-LS [3]: As an extension of Wang et al. [19], this is a

state-of-the-art model for the refinement of item represen-
tations. It additionally adds a label smoothness loss relying
on the assumption that adjacent items in the KG are likely
to have similar user relevance labels.
• GCN: This is a plain GCN model for item embeddings. To

allow health-guided recommendation, FSA health ratings
are incorporated as an important attribute during the propa-
gation process. An additional loss to measure the healthiness
aspect is considered by maximizing the health scores of
predicted recommendations.
• GAT: This baseline has the same setting as the GCN baseline,

but the propagation method uses GAT.
• GAT + Post-filtering: This baseline uses a GAT model for

item embeddings. To be comparable with previous works
in heath-guided food recommendation, we adopt a straight
forward post-filtering procedure [17] which re-weights the
final item prediction probability ŷuv by health scores to al-
low health-guided recommendation. We set the re-
weighted prediction probability ŷ′uv = ŷuv ·

∑
Av

3N (note that
maximum nutrition score can be 3N). The post-filtering
method is widely used in food recommendation to achieve
health goals.
• Content-based filtering + Post-filtering: This baseline is

chosen as a traditional non-graph-based food recommenda-
tion model. Content-based filtering uses recipe attributes to
recommend other recipes similar to what the user likes. To
address the healthiness aspect, the recommendation results
are re-ranked via the same post-filtering procedure used in
the GAT + Post-filtering baseline.
• GCN + GCN: This combined model can be treated as an

ablated version of our proposed model by replacing GAT
with GCN for the health graph.
• GCN + GAT w/o back-transfer: This combination is an

ablated version of our model without back-transfer during
knowledge fusion by removing Eqs. (17), (18).

We chose the above baselines with regards to four aspects:
i). Our main focus is on the health aspect in KG-based food
ecommendation. However, to see how general domain KG-based
ecommendation methods perform on our task, we use two state-
f-the-art KG-based recommendation methods, namely KGNN
nd KGNN-LS. (ii). We study two popular GNN baselines modeling
he user preference and health aspects in one GNN, namely GCN
nd GAT. We compare with these models to demonstrate that
eparately modeling the two aspects (preferences and health) as
one in our approach can yield better recommendations. Inciden-
ally, both the GCN and GAT baselines are also KG-based since
he input graph structures are generated from KGs. (iii). To study
he effect of post-processing, as done in some previous works, we
nclude a post-filtering method, namely GAT + Post-filtering, as a
ompetitive baseline representative of previous work on health-
uided recipe recommendation. (iv). We include two baselines for
ur ablation study, namely GCN+ GCN and GCN+ GAT w/o back-
ransfer. These show the effectiveness of our proposed GCN (for
reference graph) plus GAT (for health graph) approach. As such
hese baselines are representative of both KG and non-KG based
tate-of-the-art recommendation approaches.
 g

7

Table 3
Hyper-parameters settings.
Parameter name Values

Food.com

λ 0.5
δ 0.5
N 5
d 128
L 2
α 0.5
µ, β 0.1
η 0.5

MyfitnessPal

λ 0.3
δ 0.5
N 5
d 128
L 2
α 0.4
µ, β 0.1
η 0.3

5.2.2 Evaluation metrics
We evaluate our method via three metrics described below:

• Click-through rate (CTR) prediction [35]: We apply our model
to predict each user–item pair in the test set including
positive items and randomly selected negative items. We
adopt AUC (Area Under The Curve) as the evaluation metric
in CTR prediction.
• Top-K recommendation [36]: We use the trained model to

select K items with highest prediction score for each user in
the test set, and choose Recall@K (or R@K ) to evaluate the
recommended results.
• Health-guided top-K recommendation: Additionally, in or-

der to measure the healthiness of the top-K recommenda-
tions, we design a revised top-K score where the health
scores of the top-K recommendations are considered. The
health-revised recall at top-K (HR@K ) is calculated as:

HR@K =

⎛⎝ ∑
v∈VK

hv/h

⎞⎠ /N, (21)

where VK denotes the collection of relevant recommended
items at top-K , hv is the health score of the relevant recom-
mended item v, h is the average health score of all relevant
items, and N is the total number of relevant items.

The motivation for designing health-revised recall is that we
want to measure not only the proportion of relevant items found
in the top-K recommendations, but also the healthiness degree
of the relevant items in the top-K compared to all relevant items.
Essentially, HR@K is a variant of Recall@K weighted by recipe
health scores. We have HR@K = R@K = 1 if all relevant items
are hit in the top-K recommendations since

∑
v∈VK hv = N · h.

.2.3 Parameter settings
We implemented our model in Tensorflow 1.12.0 and all ex-

eriments are conducted an Intel i7-2700K CPU and an Nvidia
itan Xp GPU with 16 GB of memory. For each dataset, the ratio
f training, validation, and test set is 8:1:1. Each experiment
s repeated 5 times, and the average performance is reported.
ll trainable parameters are optimized using Adam [37], where
he batch size is fixed at 256. We set the dimension the item
mbedding d as 128.
The main hyper-parameters for our model are listed in Table 3.

he random walk restart probability is 0.2 for constructing sub-
raphs. λ is the edge weight for preference graph and δ is the
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Table 4
Overall Performance. R@K and HR@K are the recall score and the health-revised recall score at top-K , respectively. All scores are statistically significant at p < .001
mploying a two-sample t-test.
Model Food.com MyFitnessPal

AUC R@10 R@50 HR@10 HR@50 AUC R@10 R@50 HR@10 HR@50

KGNN 0.653 0.024 0.067 0.026 0.068 0.535 0.013 0.078 0.012 0.071
KGNN-LS 0.670 0.023 0.065 0.021 0.067 0.553 0.018 0.097 0.018 0.100

GCN 0.664 0.022 0.059 0.032 0.096 0.536 0.015 0.080 0.022 0.143
GAT 0.691 0.028 0.071 0.038 0.102 0.541 0.021 0.113 0.027 0.186
GAT + Post-filtering 0.604 0.020 0.058 0.030 0.068 0.492 0.010 0.066 0.021 0.113
Content-based + Post-filtering 0.550 0.013 0.048 0.022 0.060 0.451 0.008 0.061 0.017 0.069

GCN + GCN 0.716 0.034 0.074 0.053 0.117 0.575 0.025 0.126 0.030 0.249
Ours w/o back transfer 0.728 0.036 0.081 0.052 0.120 0.579 0.024 0.129 0.029 0.250
Ours 0.724 0.034 0.072 0.061 0.132 0.572 0.021 0.119 0.032 0.258
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edge weight for health graph construction. N denotes number
f sampled neighbors for each entity. d is the dimension of user
nd item embeddings and L represents number of GCN and GAT
ayers. α is knowledge transfer weight; µ and β are back transfer
eights. Lastly, η is the scalar for the weighted loss function.
yper-parameter settings were determined by optimizing R@10
n the corresponding validation sets.

.3 Performance comparison (RQ1)

We first examine how our model performs compared with
ther state-of-the-art KG-based and recipe recommendation
ethods. The comparative performance results are presented in
able 4. We make the following observations:

• Existing KG-based recommender systems (KGNN, KGNN-LS)
give reasonable recommendations to some degree. How-
ever, the effectiveness of these methods is limited as they
mostly model the message propagation over different edge
relations, whereas the edge relations in FoodKG are scarce.
• Compared to baselines modeling the user preference and

health aspects together in one GNN (GCN and GAT), our
proposed model outperforms them by a huge margin. It
reveals that separately training these two aspects in differ-
ent graphs, then fusing them with smart knowledge trans-
fer mechanism can better capture different item semantics,
resulting in better recommendation.
• The GAT with post-filtering procedure is not very effective.

It is hard to optimize the trade-off between user preference
and healthiness since the achievement in health-revised
recall is not particularly high and results in poor recommen-
dation accuracy.
• Content-based filtering with post-filtering performs the

worst, highlighting the power of KG-based recommenda-
tion. Furthermore, comparing the performance of non-graph
model (content-based post-filtering) and graph model (GAT
with post-filtering) on the Food.com and MyFitnessPal
datasets, we observe that the graph-based model can
achieve better performance when items are largely mapped
into external KG and thus lead to better graph structures.
• The AUC score on Food.com is much higher thanMyFitnessPal

across the board, which makes sense as we perform approxi-
mate matching to build the user–item interaction dataset for
MyFitnessPal. There might be some inappropriate mappings
between MyFitnessPal and FoodKG; more effective measures
can be explored to improve the quality of the dataset in
the future. In contrast, the recall scores at the top-50 in
MyFitnessPal is greater than Food.com, since the data scale
of MyFitnessPal is small and the retrieval space is largely

reduced. r

8

• With regards to the health-revised recall HR@K , our model
consistently yields the best performance by a significant
margin on all the datasets (along with high scores in AUC
and regular recall too). This demonstrates that our proposed
model can recommend ‘‘tasty’’ as well as ‘‘healthy’’ food to
users.

.4 Component analysis (RQ2)

We first examine how the different components affect our
odel.8 To answer this question, we have two ablated versions
f the propagation method and fusion mechanism. As shown in
able 4, compared to our final model (Ours; last row), the GCN
GCN baseline gets relatively high scores in AUC and Recall@K ,

ut has worse performance for HR@K . GAT plays an important
ole in the propagation process over the health graph, since the
elation between recipes in the health graph is implicit and GAT
an automatically assign weights to neighbors via the attention
echanism. The GCN + GAT w/o back transfer model obtains the
ighest scores in AUC and Recall@K . One potential reason might
e that the constraint between the user preference and food
ealth is relaxed without the back-transfer, thus encouraging
he item representation learning towards the user preference.
ompared to this ablated version, our final model gets the highest
R@K scores with a very slight sacrifice on the traditional evalua-
ion metrics. As our goal is to do health-guided recommendation,
ur fusion-based approach has a much higher HR@K score. It
s reasonable to accept a minor decrease in the user preference
spect, but with a better HR@K score.
The ablation study also justifies our choice of GCN for the

reference graph and GAT for the health graph. Using GCN for
he preference graph allows for non-parametric weights to be
ssigned to different neighbors to make the propagation relation-
pecific. The GCN model is further improved by adding a user-
pecific weight (achieved by Eq. (9)). For learning in health graph,
he relation between items becomes implicit since it is regulated
y health scores. The assumption of ‘‘a user will have distinct
references for different relations’’ does not hold in this case.
herefore, we use GAT instead of GCN for information aggrega-
ion. This choice is proved to be effective in the ablation study
eferring to the GCN + GCN baseline.

Furthermore, to analyze the sensitivity of our proposed model
o the number of GNN propagation layers L, we vary L from
to 3 and try different combinations for GCN and GAT. The

esults are listed in Table 5. GCN-2 + GAT-2 achieves the best
erformance on AUC and Recall@K , indicating that increasing the
epth of GNNs can boost performance. The results in Table 2 for

8 We have conducted experiments on different aggregators for GCN (Eqs. (6),
7), (8)), but the performance differences are minor; thus, the results are not
eported here.
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Fig. 2. Illustration of a case study from the Food.com dataset.
Table 5
Effect of GNN Propagation Layer Numbers (L).
Model Food.com MyFitnessPal

AUC R@10 R@50 HR@10 HR@50 AUC R@10 R@50 HR@10 HR@50

GCN-1 + GAT-1 0.712 0.027 0.069 0.050 0.123 0.569 0.020 0.114 0.027 0.247
GCN-1 + GAT-2 0.714 0.027 0.071 0.053 0.126 0.570 0.022 0.117 0.029 0.248
GCN-2 + GAT-1 0.724 0.034 0.072 0.061 0.132 0.572 0.021 0.119 0.032 0.258
GCN-2 + GAT-2 0.725 0.035 0.074 0.058 0.130 0.572 0.021 0.121 0.030 0.255
GCN-2 + GAT-3 0.724 0.033 0.073 0.052 0.124 0.571 0.020 0.119 0.027 0.250
GCN-3 + GAT-2 0.720 0.031 0.071 0.055 0.127 0.571 0.020 0.119 0.029 0.255
GCN-3 + GAT-3 0.718 0.029 0.070 0.048 0.122 0.568 0.019 0.117 0.026 0.248
N
i
A
v

our method match this configuration. However, the performance
drops when GNN layers increase to 3. Another interesting finding
is that for health-guided recommendation GCN-2 + GAT-1 gets
the highest scores. This suggests that incorporating too many
neighbors may gather the features of less informative items in
the health graph, and makes the learnt item representation be
too generic. Gathering only the first layer neighbor information
in the health graph is sufficient to bring desirable insights to
health-regulated recommendation.

5.5 Case study: Explanation of recommendation and error analysis
(RQ3)

We now present a case study to showcase that our model can
recommend healthy and appropriate food items. One advantage
of KG-based recommender system is that it makes recommenda-
tion explainable to some extent by offering reasoning along paths
in the graphs. To this end, we randomly select one user–item pair
(u, v) from the test set.

As shown in Fig. 2, for the user u, who loves Classic New York
Cheesecake (v), Rosie’s New York Cheesecake Brownies (v5) with
desirable health score (amber means neutral) is recommended
for him based on our model. Without considering the healthiness,
general recommendation suggests items like v1, v2, v3, and v4
which are different types of cheesecakes, since they are closer to v

in the preference graph, whereas they are unhealthy recording to

the FSA ratings (red denotes unhealthy). Taking the health aspect

9

Table 6
Case Study 1 from the Food.com dataset. The top-5 recommendation results with
and without considering healthiness.
User preference: FSA rating

v: Classic New York Cheesecake red

top-5 results without health aspect

v1: New York Cheesecake red
v2: Orange New York Cheesecake red
v3: New York Cheesecake Square red
v4: Classic New York Cheesecake Square red
v5: Rosie’s New York Cheesecake Brownies amber

top-5 results with health aspect

v5: Rosie’s New York Cheesecake Brownies amber
v1: New York Cheesecake red
v4: Classic New York Cheesecake Square red
v3: New York Cheesecake Square red
v6: Sugarless New York Cheesecake green

into consideration, our model jointly learns item representations
via the health graph where Rosie’s New York Cheesecake Brown-
ies is close to Classic New York Cheesecake. The item v, Classic
ew York Cheesecake and its neighbors in the two graphs are
llustrated in Fig. 2. Their health scores are represented in color.
fter the knowledge transfer process, the representation of item
is further enriched by item v5. In the end, v5 gets a higher

prediction score for recommending to u. Table 6 summarizes
these results; it shows the top-5 recommendations both without
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and with health aspect ranking for the given query v: Classic New
ork Cheesecake. We can clearly observe that when we do not
ake the health graph into account, the recommended items are
ostly unhealthy. On the other hand, taking health graph into
ccount, our approach can recommend a healthier alternative. It
lso suggests an even more healthy sugarless alternative, but it
s ranked lower given the user preferences. Our model can thus
ecommend food that both meets the user’s preferences and also
onsiders the healthiness, offering potential explanations as to
hy a healthier food is suggested by checking against the health
raph generated from the KG.
Moreover, we aim to examine the quality of the recommenda-

ion results generated from different types of systems. The top-5
ecommendation results generated from the content-based post-
iltering baseline, the KGNN-LS baseline and our health-aware
G-based model are listed in Table 7. The content-based filtering
pproach tends to suggest simple recipes covering key words
n the user preferences and it is prone to producing redundant
esults. The KGNN-LS method can provide relevant and diver-
ified results compared to the non-graph model by leveraging
emantic and structural information from the external KG. Our
odel shows evenly matched results with KGNN-LS, while yield-

ng healthier recommendations (see the healthiness color codes
n the bullets). As shown in Table 7, in contrast to the unhealthy
arl’s mango margarita suggested by KGNN-LS, a healthier bev-
rage peach mango tea sangria is selected by our system with a
igher rank.
To further examine the interpretability of these recommended

esults, we selected some matching pairs (a, b) where a is an item
from the user’s preference, and b is the recommended item with
regards to a. For instance, (tomato phyllo pizza, margarita pizza)
marked in blue and (lemon raspberry tiramisu, cranberry tiramisu
(gluten-free)) marked in brown are two matching pairs in Table 7.
By mapping these pairs back to the food KG, we can find relevant
KG triples that connect them. We list some of the representative
triples t1, . . . , t8 in Table 7. The triples that are related to the rec-
ommended recipes are listed along with that item in Table 7. The
relevant KG triples offer some intuition about how the graphs are
constructed from the original KG and thus implicitly helping item
representation learning. For instance, tomato phyllo pizza is linked
with margarita pizza during our graph construction procedure.
According to KG triples t1−5, tomato is the common ingredients
in tomato phyllo pizza and margarita pizza. Fat free mozzarella
cheese is a subclass of mozzarella cheese according to the food KG,
thusmozzarella cheese is another common ingredient in these two
pizzas. The item margarita pizza remains as a neighbor of tomato
phyllo pizza both in preference and health graphs after random
walks and learns similar representations. The margarita pizza is
finally recommended for tomato phyllo pizza. Similarly, lemon
raspberry tiramisu and cranberry tiramisu (gluten-free) are close;
one clue we can draw from the KG is that this is due to the fact
that cranberry can be substituted for raspberry. These examples
illustrate the power of KGs, not only in improving the quality
of retrieval, but also in interpretation of the recommendation
results.

To gain more insight, we analyze error cases and show two
typical cases in Table 8. Case 1 highlights the limitation of using
exact match when computing the recall score metric, whereas
Case 2 shows the issue of highly diversified user preferences.
For Case 1, the top-5 recommended results generated from our
model obtain a recall score of zero when compared with ground
truth since we the recommended items do not have an exact
match with the ground truth recipe ids. However, we can see
that grilled salmon and creamy cajun chicken pasta with bacon
can be treated as approximate matches for honey ginger grilled
almon and creamy cajun chicken pasta in ground truth. The rec-
mmended recipes can thus obtain a higher match score with
 a
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Table 7
Case Study 2 from the Food.com dataset. The top-5 recommendation results
are generated by three recommender systems. The colored dots indicate the
FSA ratings. Recipes appear in the same matched pair are denoted in the same
color.
User Preference

• mango sangria
• tomato phyllo pizza
• lemon raspberry tiramisu

Top-5 Recommended Results

Content-based

• lemon tiramisu
• tomato pizza
• tomato pizza
• tiramisu
• sangria

KGNN-LS

• summer phyllo pizza
• mango shake
• mango tiramisu with raspberry sauce
• margarita pizza (t1 , t2 , t3 , t4 , t5)
• Carl’s mango margarita

Ours

• margarita pizza (t1 , t2 , t3 , t4 , t5)
• Greek phyllo pizza
• cranberry tiramisu (gluten-free) (t6 , t7 , t8)
• peach mango tea sangria
• spiced lemon and lime ade

Relevant KG Triples

t1: ⟨ tomato phyllo pizza, consist_of, fat free mozzarella cheese ⟩
t2: ⟨ margarita pizza, consist_of, mozzarella cheese ⟩
t3: ⟨ fat free mozzarella cheese, subclass_of, mozzarella cheese ⟩
t4: ⟨ tomato phyllo pizza, consist_of, tomato ⟩
t5: ⟨ margarita pizza, consist_of, tomato ⟩
t6: ⟨ lemon raspberry tiramisu, consist_of, raspberry ⟩
t7: ⟨ cranberry tiramisu (gluten-free), consist_of, cranberry ⟩
t8: ⟨ cranberry, substitutes_for, raspberry ⟩

the ground truth if we were to measure the similarities of recipe
titles. We have observed that many recipes in food.com have the
same titles with minor differences in their ingredients; and even
users cannot tell the differences apart. This indicates that we can
achieve considerable user satisfaction in practice. As for Case 2,
we can see that the user items (recipes) in the ground truth
are quite varied. When the user preferences are so diversified,
it is hard for our model to capture user intent and recommend
appropriate dishes.9 Thus, the top-5 results have no overlap with
any items in the ground truth. Moreover, we notice that there
are two duplicate recommendations, properly prepared spaghetti
squash. These are distinct recipes with unique recipe ids, but
with the same title. This suggests a re-ranking strategy to avoid
redundancy in final recommendation.

6 Conclusion

We note that there are only a few food recommendation
works that utilize knowledge graphs, and that the health as-
pect is crucial for good dietary choice. To fill this gap, we pro-
pose a framework to do health-based recipe recommendation
over KGs. Our novel contribution is thus the application of KG-
based recommendation in a real-world recipe application that
also considers healthiness scores in a effective joint model. To
our knowledge this is the first work on the important task of
KG-based recipe recommendation. We jointly train two types of

9 Though it may sound strange, there is in fact a recipe called ‘‘yes, Virginia
here is a great meatloaf’’ – https://www.food.com/recipe/yes-virginia-there-is-
-great-meatloaf-54257.

https://www.food.com/recipe/yes-virginia-there-is-a-great-meatloaf-54257
https://www.food.com/recipe/yes-virginia-there-is-a-great-meatloaf-54257
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Table 8
Error Cases from the Food.com dataset. The top-5 recommendation results with considering healthiness are compared to ground
truth (only partial results are listed). The colored dots indicate the FSA ratings.

Ground truth Top-5 recommended results considered healthiness

• Honey ginger grilled salmon • Chicken noodle soup
• Creamy cajun chicken pasta • Cauliflower quot steaks quot with olive relish

case 1 • Apricot honey grilled chicken • Grilled salmon
• Crock pot whole chicken • Chicken pear salad
• Chocolate toffee candy cookies saltine candy • Creamy cajun chicken pasta with bacon
• Fannie farmer’s classic baked macaroni cheese

...

• Yes, Virginia there is a great meatloaf • Oven crisp chicken wings
• The best chili you will ever taste • Properly prepared spaghetti squash

case 2 • Cheesy shrimp grits casserole • Properly prepared spaghetti squash
• Sausage gravy • Olive garden copycat zuppa toscana
• Do at home onion rings • Old fashioned vegetable beef soup
• Southern sweet iced tea

...
recipe representations over two graphs containing different item
semantics with regards to user preferences and food healthiness.
A knowledge transfer scheme is further adopted to fuse the two
important aspects, thus achieving the goal of recommending food
that is both ‘‘tasty’’ and ‘‘healthy’’. That is, since we explicitly
consider a recipe’s health aspects during training, we are thus
able to recommend healthier food. That is, if there are similar
recipes, recommendation based purely on preference may return
an unhealthy one, but our method will recommend the more
healthy one (but still similar). We use a large real-world KG, and
experiments on two real-world datasets demonstrate the effec-
tiveness and interpretability of our model. Compared to ad-hoc
or post-hoc incorporation of health-aspects in previous works,
our approach considers health scores to be equally important
compared to user preferences, which is more systematic and is
handled more effectively in our joint end-to-end model.

This work opens up several directions for future research.
irstly, we can improve the recommendation scores by consid-
ring approximate matching instead of exact matching of the
ecipe titles, as highlighted in the error case analysis. Likewise,
e can re-rank results to avoid duplicate titles (but distinct
ecipes). Future work also needs to improve on the case where
he user preferences are very diverse, perhaps by grouping them
nto similar clusters, and by considering user intent. The current
ealthiness based recommender results are derived from the
tems without considering user profile information such as di-
tary restrictions or other constraints. There are also many other
seful modalities in recipes that can be incorporated into food
ecommendation such as the recipe images, cooking instructions,
ser defined tags, and so on. In the future, we plan to explore
ore recipe modalities and to do personalized health-guided

ood recommendation by focusing on the user profile for specific
ealth goals.
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