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We present pSPADE, a parallel algorithm for fast discovery of frequent
sequences in large databases. pSPADE decomposes the original search space
into smaller suffix-based classes. Each class can be solved in main-memory
using efficient search techniques and simple join operations. Furthermore,
each class can be solved independently on each processor requiring no syn-
chronization. However, dynamic interclass and intraclass load balancing
must be exploited to ensure that each processor gets an equal amount of
work. Experiments on a 12 processor SGI Origin 2000 shared memory
system show good speedup and excellent scaleup results. � 2001 Academic Press
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1. INTRODUCTION

The sequence mining task is to discover a sequence of attributes shared across
time among a large number of objects in a given database. For example, consider
a Web access database at a popular site, where an object is a Web user and an
attribute is a Web page. The discovered patterns are the sequences of most fre-
quently accessed pages at that site. This kind of information can be used to restruc-
ture the Website or to dynamically insert relevant links in Web pages based on user
access patterns. There are many other domains where sequence mining has been
applied, which include discovering customer buying patterns in retail stores, iden-
tifying plan failures [17], and finding network alarm patterns [5].

The task of discovering all frequent sequences in large databases is quite
challenging. The search space is extremely large. For example, with m attributes
there are, in the worst case, O(mk) potential sequences of length at most k. For-
tunately, in practice only a small fraction of all potential sequences are shared
among many database objects or transactions, the so-called frequent sequences.
Nevertheless, given the search complexity, serial algorithms cannot provide
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scalability, in terms of the data size and the performance, for large databases.
Because there is always this limit to the performance of a single processor, we must
rely on parallel multiprocessor systems to fill this role.

Two approaches for utilizing multiple processors have emerged: distributed
memory, in which each processor has a private memory; and shared memory, in
which all processors access common memory. A shared-memory architecture has
many desirable properties. Each processor has direct and equal access to all the
memory in the system. Parallel programs are easy to implement on such a system.
A different approach to multiprocessing is to build a system from many units, each
containing a processor and memory. In a distributed memory architecture, each
processor has its own local memory that can only be accessed directly by that pro-
cessor. For a processor to have access to data in the local memory of another pro-
cessor, a copy of the desired data elements must be sent from one processor to the
other, utilizing the message passing programming paradigm. Although a shared
memory architecture offers programming simplicity, the finite bandwidth of a com-
mon bus can limit scalability. A distributed memory architecture cures the
scalability problem by eliminating the bus, but at the cost of programming sim-
plicity. It is possible to combine the best of both worlds by providing a shared
global address space abstraction over physically distributed memory. Such an
architecture is called a distributed-shared memory (DSM) system. It provides ease
of programming, yet retains scalability at the same time. The shared-memory
abstraction can be provided in hardware or software.

The target architecture we use in this paper is hardware distributed-shared
memory (HDSM). Our HDSM platform is a 12 processor SGI Origin 2000 system,
which is a cache-coherent nonuniform memory access (CC-NUMA) machine. For
cache coherence the hardware ensures that locally cached data always reflect the
latest modification by any processor. It is NUMA because reads and writes to local
memory are cheaper than reads and writes to a remote processor's memory. The
main challenge in obtaining high performance on these systems is to ensure good
data locality, making sure that most reads and writes are to local memory, and
reducing or eliminating false sharing, which occurs when two different shared
variables are (coincidentally) located in the same cache block, causing the block to
be exchanged between the processors due to coherence maintenance operations,
even though the processors are accessing different variables. Of course, the other
factor influencing parallel performance for any system is to ensure good load
balance, i.e., making sure that each processor gets an equal amount of work.

In this paper we present pSPADE, a parallel algorithm for discovering the set of
all frequent sequences, targeting shared-memory systems. pSPADE is an asyn-
chronous algorithm in that it requires no synchronization among processors, except
when a load imbalance is detected. For sequence mining on large databases with
millions of transactions the problem of I�O minimization becomes paramount.
However, most current algorithms are iterative in nature, requiring as many full
database scans as the longest frequent sequence, which is clearly very expensive.
Some of the methods, especially those using some form of sampling, can be sensitive
to the data-skew, which can adversely affect performance. Most approaches also use
very complicated internal data structures which have poor locality [11] and add
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additional space and computation overheads. pSPADE has been designed in such
a way that it has good locality and has little false sharing.

The key features of our approach are as follows:

1. We use a vertical idlist database format, where we associate with each
sequence a list of objects in which it occurs, along with the time-stamps. We show
that all frequent sequences can be enumerated via simple temporal idlist intersec-
tions.

2. We use a lattice-theoretic approach to decompose the original search space
into smaller pieces��the suffix-based classes��which can be processed independently
in main memory. This decomposition is recursively applied within each parent class
to produce even smaller classes at the next level,

3. We propose an asynchronous algorithm, where processors work on
separate classes at the first level, without any need for sharing or synchronization.
To ensure good load balance, we propose a dynamic load balancing scheme, where
any free processors join a busy processor in solving newly formed classes at higher
levels.

pSPADE is based on SPADE [16], a sequential algorithm for efficient enumera-
tion of frequent sequences, and thus shares many of its performance features.
pSPADE not only minimizes I�O costs by reducing database scans, but also mini-
mizes computational costs by using efficient search schemes. The vertical idlist
based approach is also relatively insensitive to data-skew. In fact, idlist skew leads
to faster support counting, since the result of an intersection of two lists is always
bounded by the size of the smaller idlist. An extensive set of experiments is per-
formed on a 12 processor SGI Origin 2000. pSPADE delivers reasonably good
speedup and scales linearly in the database size and a number of other database
parameters.

The rest of the paper is organized as follows: We describe the sequence discovery
problem in Section 2 and discuss related work in Section 3. Section 4 describes the
serial algorithm, while the design and implementation issues for pSPADE are
presented in Section 5. An experimental study is presented in Section 6, and we
conclude in Section 7.

2. SEQUENCE MINING

The problem of mining sequential patterns can be stated as follows: Let
I=[i1 , i2 , ..., im] be a set of m distinct attributes, also called items. An itemset is
a nonempty unordered collection of items (without loss of generality, we assume
that items of an item set are sorted in increasing order). All items in an item set are
assumed to occur at the same time. A sequence is an ordered list of item sets. The
item sets in a sequence are ordered according to their associated time-stamp. An
item set i is denoted as (i1 i2 } } } ik), where i j is an item. An item set with k items is
called a k-item set. A sequence : is denoted as (:1 [ :2 [ } } } [ :q), where the
sequence element :j is an item set. A sequence with k items (k=�j |:j | ) is called
a k-sequence. For example, (B [ AC) is a 3-sequence. An item can occur only once
in an item set, but it can occur multiple times in different item sets of a sequence.
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A sequence :=(:1 [ :2 [ } } } [ :n) is a subsequence of another sequence
;=(;1 [ ;2 [ } } } [ ;m), denoted as :P;, if there exist integers i1<i2< } } } <in

such that :j �;ij for all :j . For example the sequence (B [ AC) is a subsequence
of (AB [ E [ ACD), since the sequence elements B�AB, and AC�ACD. On the
other hand the sequence (AB [ E ) is not a subsequence of (ABE), and vice versa.
We say that : is a proper subsequence of ;, denoted :O;, if :P; and ;P� :.

A transaction T has a unique identifier and contains a set of items, i.e., T�I.
A customer, C, has a unique identifier and has associated with it a list of transac-
tions [T1 , T2 , ..., Tn]. Without loss of generality, we assume that no customer has
more than one transaction with the same time-stamp, so that we can use the trans-
action time as the transaction identifier. We also assume that the list of customer
transactions is sorted by the transaction time. Thus the list of transactions of a
customer is itself a sequence T1 [ T2 [ } } } [ Tn , called the customer sequence.
The database, D, consists of a number of such customer sequences.

A customer sequence, C, is said to contain a sequence :, if :PC, i.e., if : is a sub-
sequence of the customer-sequence C. The support or frequency of a sequence,
denoted _(:), is the the total number of customers that contain this sequence.
Given a user-specified threshold called the minimum support (denoted min�sup), we
say that a sequence is frequent if it occurs more than min�sup times. The set of fre-
quent k-sequences is denoted as Fk . A frequent sequence is maximal if it is not a
subsequence of any other frequent sequence.

Given a database D of customer sequences and min�sup, the problem of mining
sequential patterns is to find all frequent sequences in the database. For example,
consider the customer database shown in Fig. 1. The database has three items
(A, B, C), four customers, and twelve transactions in all. The figure also shows all
the frequent sequences with a minimum support of 750 or three customers.

FIG. 1. Original database.
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3. RELATED WORK

3.1. Serial Algorithms

The problem of mining sequential patterns was introduced in [2]. They also
presented three algorithms for solving this problem. The AprioriAll algorithm was
shown to perform equal to or better than the other two approaches. In subsequent
work [14], the same authors proposed the GSP algorithm that outperformed
AprioriAll by up to 20 times. They also introduced maximum gap, minimum gap,
and sliding window constraints on the discovered sequences. Recently, SPADE [16]
was shown to outperform GSP by a factor of two in the general case and by a fac-
tor of ten with a preprocessing step. We therefore based pSPADE on our sequential
SPADE method.

The problem of finding frequent episodes in a sequence of events was presented
in [8]. An episode consists of a set of events and an associated partial order over
the events. Our definition of a sequence can be expressed as an episode, however,
their work is targeted to discover the frequent episodes in a single long event
sequence, while we are interested in finding frequent sequences across many dif-
ferent customer sequences. They further extended their framework in [7] to dis-
cover generalized episodes, which allows one to express arbitrary unary conditions
on individual episode events or binary conditions on event pairs. The MEDD and
MSDD algorithms [9] discover patterns in multiple event sequences; they explore
the rule space directly instead of the sequence space.

3.1.1. The GSP Algorithm

Before we proceed further, we need to give some more details on GSP, since it
forms the core of the previous work on parallel sequence mining.

GSP makes multiple passes over the database. In the first pass, all single items
(1-sequences) are counted. From the frequent items a set of candidate 2-sequences
are formed. Another pass is made to gather their support. The frequent 2-sequences
are used to generate the candidate 3-sequences, and this process is repeated until no
more frequent sequences are found. There are two main steps in the algorithm.

1. Candidate generation: Given the set of frequent (k&1)-sequences Fk&1 ,
the candidates for the next pass are generated by joining Fk&1 with itself. A pruning
phase eliminates any sequence at least one of whose subsequences is not frequent.
For fast counting, the candidate sequences are stored in a hash-tree.

2. Support counting: To find all candidates contained in a customer
sequence E, all k-subsequences of E are generated. For each such subsequence a
search is made in the hash-tree. If a candidate in the hash-tree matches the sub-
sequence, its count is incremented.

The GSP algorithm is shown in Fig. 2. For more details on the specific mechanisms
for constructing and searching hash-trees, please refer to [14] (note that the
second iteration is optimized to directly use arrays for counting the support of
2-sequences, instead of using hash trees).
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FIG. 2. The GSP algorithm.

3.2. Parallel Algorithms

While parallel association mining has attracted wide attention [1, 3, 4, 10, 12, 18,
19], there has been relatively less work on parallel mining of sequential patterns.
Three parallel algorithms based on GSP were presented in [13]. All three
approaches partition the datasets into equal sized blocks among the nodes. In
NPSPM, the candidate sequences are replicated on all the processors, and each
processor gathers local support using its local database block. A reduction is per-
formed after each iteration to get the global supports. Since NPSPM replicates the
entire candidate set on each node, it can run into memory overflow problems for
large databases. SPSPM partitions the candidate set into equal-sized blocks and
assigns each block to a separate processor. While SPSPM utilizes the aggregate
memory of the system, it suffers from excessive communication, since each pro-
cessor's local database has to be broadcast to all other processors to get the global
support. HPSPM uses a more intelligent strategy to partition the candidate
sequences using a hashing mechanism. It also reduces the amount of communica-
tion needed to count the global support. Experiments were performed on an IBM
SP2 distributed memory machine. HPSPM was shown to be the best approach.

The main limitation of all these parallel algorithms is that they make repeated
passes over the disk-resident database partition, incurring high I�O overheads.
Furthermore, the schemes involve exchanging the remote database partitions dur-
ing each iteration, resulting in high communication and synchronization overhead.
They also use complicated hash structures, which entail additional overhead in
maintenance and search and typically also have poor cache locality [11]. As we
shall show in the experimental section, pSPADE is successful in overcoming all
these problems.

pSPADE bears similarity to our previous parallel association mining work [19],
but it differs in three important respects. First, the item set search space forms a
very small subset of the sequence search space. Many of the optimizations proposed
for generating clique-based partitions of the search space no longer work. The
temporal idlist intersections also differ significantly from the nontemporal joins
in associations. Second, the association work presented distributed memory
algorithms, while pSPADE targets shared-memory systems, the first such study
for parallel sequence mining. Finally, pSPADE uses a recursive dynamic load
balancing scheme, in contrast to the purely static load balancing scheme used for
association mining in [19].
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4. THE SERIAL SPADE ALGORITHM

In this section we describe SPADE [16], a serial algorithm for fast discovery of
frequent sequences, which forms the basis for the parallel pSPADE algorithm.

Sequence lattice. SPADE uses the observation that the subsequence relation P
defines a partial order on the set of sequences, also called a specialization relation.
If :P;, we say that : is more general than ; or ; is more specific than :. The
second observation used is that the relation P is a monotone specialization relation
with respect to the frequency _(:); i.e., if ; is a frequent sequence, then all sub-
sequences :P; are also frequent. The algorithm systematically searches the
sequence lattice spanned by the subsequence relation, from the most general to the
maximally specific frequent sequences in a breadth�depth-first manner. For
example, Fig. 3A) shows the lattice of frequent sequences for our example database.

Support counting. Most of the current sequence mining algorithms [14] assume
a horizontal database layout such as the one shown in Fig. 1. In the horizontal for-
mat the database consists of a set of customers (cid 's). Each customer has a set of
transactions (tid 's), along with the items contained in the transaction. In contrast,
we use a vertical database layout, where we associate with each item X in the
sequence lattice its idlist, denoted L(X ), which is a list of all customer (cid) and
transaction identifier (tid ) pairs containing the atom. Figure 3B) shows the idlists
for all the frequent items.

Given the sequence idlists, we can determine the support of any k-sequence by
simply intersecting the idlists of any two of its (k&1) length subsequences. In par-
ticular, we use the two (k&1) length subsequences that share a common suffix (the
generating sequences) to compute the support of a new k length sequence. A simple
check on the cardinality of the resulting idlist (actually, the number of distinct cids)
tells us whether the new sequence is frequent or not. Figure 3C) shows this process
pictorially. It shows the initial vertical database with the idlist for each item. The

FIG. 3. (A) Frequent sequence lattice; (B) initial idlist database; (C) temporal idlist intersections.
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intermediate idlist for A [ B is obtained by intersecting the lists of A and B; i.e.,
L(A [ B)=L(A) & L(B). Similarly, L(AB [ B)=L(A [ B) & L(B [ B). The
temporal intersection is more involved; exact details will be discussed below.

Lattice decomposition�Suffix-based classes. If we had enough main memory, we
could enumerate all the frequent sequences by traversing the lattice and performing
temporal intersections to obtain sequence supports. In practice, however, we only
have a limited amount of main memory, and all the intermediate idlists will not fit
in memory. SPADE breaks up this large search space into small, independent,
manageable chunks which can be processed in memory. This is accomplished via
suffix-based equivalence classes. We say that two k length sequences are in the same
class if they share a common k&1 length suffix. The key observation is that each
class is a sublattice of the original sequence lattice and can be processed inde-
pendently. For example, Fig. 4A) shows the effect of decomposing the frequent
sequence lattice for our example database by collapsing all sequences with the same
1-length suffix into a single class. There are two resulting suffix classes, namely
[[A], [B]], which are referred to as parent classes. Each class is independent in
the sense that it has complete information for generating all frequent sequences that
share the same suffix. For example, if a class [X] has the elements Y [ X and
Z [ X, the only possible frequent sequences at the next step can be Y [ Z [ X,
Z [ Y [ X, and (YZ ) [ X. It should be obvious that no other item Q can lead to
a frequent sequence with the suffix X, unless (QX ) or Q [ X is also in [X].

SPADE recursively decomposes the sequences at each new level into even smaller
independent classes. Figure 4B shows the effect of using 2-length suffixes. If we do
this at all levels we obtain a tree of independent classes as shown in Fig. 4C. This
computation tree is processed in a breadth-first manner, within each parent class.
In other words, parent classes are processed one-by-one, but within a parent class
we process the new classes in a breadth-first search (BFS). Figure 5 shows the
pseudo-code for the breadth-first search in SPADE. The input to the procedure is
a list of classes PrevL, along with the idlist for each of their elements. Frequent

FIG. 4. (A) Initial decomposition; suffix length 1; (B) Level 2 decomposition; suffix length 2;
(C) recursive decomposition; class tree.
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FIG. 5. Pseudo-code for SPADE.

sequences are generated by intersecting the idlists of all pairs of sequences in each
class and checking the cardinality of the resulting idlist against min�sup. The
sequences found to be frequent at the current level form classes for the next level
NewL. This level-wise process is repeated until all frequent sequences have been
enumerated. In terms of memory management it is easy to see that we need
memory to store intermediate idlists for at most two consecutive levels within a
parent class. Once all the frequent sequences for the next level have been generated,
the sequences at the current level can be deleted.

Constructing parent classes. The SPADE algorithm performs BFS for each
parent class. Each parent class is constructed from the set of frequent 2-sequences.
A sequence of the form Y [ X or YX is added to the suffix class [X]. Let N=|I|
be the number of frequent items and A the average idlist size in bytes. A naive
implementation for computing the frequent 2-sequences requires ( N

2 ) idlist intersec-
tions for all pairs of items. The amount of data read is A } N } (N&1)�2, which
corresponds to around N�2 data scans. This is clearly inefficient. Instead of the
naive method, we use a preprocessing step to gather the counts of all 2-sequences
above a user specified lower bound. Since this information is invariant, it has to be
computed once, and the cost can be amortized over the number of times the data
is mined. For another method that does not require preprocessing, and for addi-
tional details on the SPADE algorithm, we refer the reader to [16].

Disk scans. Before processing each of the parent classes from the initial decom-
position, all the relevant item idlists for that class are scanned from disk into
memory. All other frequent sequences are enumerated using temporal joins. If all
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the initial classes have a disjoint set of items, then each item's idlist is scanned from
disk only once during the entire frequent sequence enumeration process over all
sublattices. In the general case there will be some degree of overlap of items among
the different sublattices. However, only the database portion corresponding to the
frequent items will need to be scanned, which can be a lot smaller than the entire
database. Furthermore, sublattices sharing many common items can be processed
in a batch mode to minimize disk access. Thus, our algorithm will usually require
only a few database scans, in contrast to the current approaches which require as
many scans as the longest frequent sequence (this can be reduced somewhat by
combining candidates of multiple lengths in later passes).

Temporal idlist intersection. We now describe how we perform the temporal
idlist intersections for two sequences, since this forms the heart of the computation
of SPADE and is crucial in understanding the parallelization strategies.

Given a suffix equivalence class [S], it can contain two kinds of elements: an
item set of the form XS or a sequence of the form Y [ S, where X and Y are items
and S is some (suffix) sequence. Let us assume without loss of generality that the
item sets of a class always precede its sequences. To extend the class for the next
level it is sufficient to intersect the idlists of all pairs of elements. However, depend-
ing on the pairs being intersected, there can be up to three possible resulting
frequent sequences:

1. Item set vs Item set: If we are intersecting XS with YS, then we get a new
item set XYS.

2. Item set vs Sequence: If we are intersecting XS with Y [ S, then the only
possible outcome is a new sequence Y [ XS.

3. Sequence vs Sequence: If we are intersecting X [ S with Y [ S, then
there are three possible outcomes: a new item set XY [ S, and two new sequences
X [ Y [ S and Y [ X [ S. A special case arises when we intersect X [ S with
itself, which can only produce the new sequence X [ X [ S.

Consider the idlist for the items A and B shown in Fig. 3B. These are taken to
be sequence elements A [ < and B [ < for the class [<]. To get the idlist for
the resultant item set AB, we need to check for equality of cid�tid pairs. In our
example, L(AB)=[(1, 10), (1, 30), (2, 20), (4, 30)]. It is frequent at 750 mini-
mum support level (i.e., three out of four customers). Note that support is
incremented only once per customer.

To compute the idlist for the sequence A [ B, we need to check for a follows
temporal relationship, i.e., for a given pair (c, t1) in L(A), we check whether there
exists a pair (c, t2) in L(B) with the same cid c, but with t2>t1 . If this is true, it
means that the item B follows the item A for customer c. The resultant idlist for
A [ B is shown in Fig. 3C. We call A [ B the forward follows intersection. The
idlist of B [ A is obtained by reversing the roles of A and B. We call B [ A the
reverse follows intersection. As a further optimization, we generate the idlists of
the (up to) three possible new sequences in just one join.
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5. THE PARALLEL PSPADE ALGORITHM

In this section we describe the design and implementation of the parallel
pSPADE algorithm. We begin with a brief review of the SGI Origin architecture.

5.1. SGI Origin 2000

The SGI Origin 2000 machine is a hardware distributed shared memory CC-
NUMA machine, in which shared main memory is distributed amongst the nodes.
This shared memory is accessible to every processor in the system. It is also
modular and scalable; that is, the system can be increased in size (scaled) by adding
node boards in a hypercube topology and connected by the CrayLink interconnect.
Figure 6 shows the configuration of our 12 processor Origin. It also shows what a
full 16-processor system would look like. A P denotes a processor; N a node board,
containing two processors and some amount of memory; and R a router that routes
data between nodes.

5.2. pSPADE: Design and Implementation.

pSPADE will be best understood when we imagine the computation as a
dynamically expanding irregular tree of independent suffix-based classes, as shown
in Fig. 7. This example tree represents the search space for the algorithm, with a
maximum of five levels. There are three independent parent suffix-based equivalence
classes. These are the only classes visible at the beginning of computation. Since we
have a shared-memory machine, there is only one copy on disk of the database in
the vertical idlist format. It can be accessed by any processor via a local file descrip-
tor. Given that each class in the tree can be solved independently the crucial issue
is how to achieve a good load balance so that each processor gets an equal amount
of work. We would also like to maximize locality and minimize or eliminate cache
contention.

There are two main paradigms that may be utilized in the implementation of
parallel sequence mining: a data parallel approach or a task parallel approach. In
data parallelism P processors work on distinct portions of the database, but syn-
chronously process the global computation tree. It essentially exploits intraclass

FIG. 6. Twelve processor SGI Origin 2000.
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FIG. 7. Dynamic and irregular computation tree of classes.

parallelism, i.e., the parallelism available within a class. In task parallelism, the pro-
cessors share the database, but work on different classes in parallel, asynchronously
processing the computation tree. This scheme is thus based on interclass
parallelism.

5.2.1. Data Parallelism

As mentioned above, in a data parallelism approach, P processors work on dis-
tinct partitions of the database (i.e., idlists), but synchronously process the global
computation tree. In other words, we only need to describe how the work of a
single node of the computation tree is performed in parallel among all the available
processors. Each node corresponds to an equivalence class of frequent sequences,
which needs to be expanded to the next level. The main computation within each
class is simply the temporal idlist intersections that are performed for all pairs of
elements in the class.

Data parallelism can come in two flavors, since we can partition the idlists
horizontally or vertically. In horizontal partitioning we split each idlist into blocks
and assign these horizontal blocks to processors, while in a vertical partitioning we
assign a separate idlist to each processor. The first case corresponds to what we call
idlist parallelism, in which we partition each idlist into P ranges over the customer
sequence cids (for example, processor 0 is responsible for the cid range 0 } } } l, pro-
cessor 1 for range l+1 } } } 2l, and so on). Each processor is responsible for 1�P of
the cids. The other case corresponds to what we call join parallelism, where each
processor picks a sequence (along with its idlist) and performs intersections with
the other sequence idlists in the same class, generating new classes for the next level.

Idlist parallelism. There are two ways of implementing the idlist parallelism.
In the first method a single intersection is performed in parallel among the P
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processors. Each processor performs the intersection over its cid range and
increments support in a shared variable. A barrier synchronization must be per-
formed to make sure that all processors have finished their intersection for the
candidate. Finally, based on the support this candidate may be discarded if
infrequent or added to the new class if frequent. This scheme suffers from massive
synchronization overheads. As we shall see in Section 6, for some values of
minimum support we performed around 0.4 million intersections. This scheme will
require as many barrier synchronizations.

The other way of implementing idlist parallelism is to use a level-wise approach.
In other words, at each new level of the computation tree (within a parent class),
each processor processes all the new classes at that level, performing intersections
for each candidate, but only over its local block. The local supports are stored in
a local array to prevent false sharing among processors. After a barrier syn-
chronization signals that all processors have finished processing the current level, a
sum-reduction is performed in parallel to determine the global support of each
candidate. The frequent sequences are then retained for the next level, and the same
process is repeated for other levels until no more frequent sequences are found.

Figure 8 shows the pseudo-code for the single and level-wise idlist data
parallelism. The single idlist data parallelism requires modification to the Get-New-
Classes routine in the SPADE algorithm, by performing each intersection in
parallel followed by a barrier (we prefix the modified routine with SID��Single
IDlist). The level-wise idlist data parallelism requires modification to the
Enumerate-Frequent-Seq routine in the SPADE algorithm by performing local
intersection for all classes at the current level, followed by a barrier before the next
level can begin (we prefix the modified routine with LID��level-wise IDlist).
Figure 9 depicts the two methods pictorially. For example, in the single idlist
method we perform a single intersection, say between items A and B, in parallel;
processor P0 performs intersections on the cid range 1 to 500, while P1 performs the
joins over the cid range 501�1000. Note that even though the ranges are equal, the
actual cid's falling in those blocks may be skewed. Figure 9 also shows the level-
wise idlist parallelism. In this approach, all processors perform the ( 5

2)+5=15
possible intersections (i.e., for AA, AB, AC, AD, AE, BB, BC, ..., DE ) in parallel
over their cid block, which is then followed by a sum-reduction to get global
support.

We implemented the level-wise idlist parallelism and found that it performed very
poorly. In fact, we got a speed-down as we increased the number of processors (see

FIG. 8. Single vs level-wise idlist data parallelism.
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FIG. 9. Idlist (single and level-wise) vs join data parallelism (2 processors, cid range 1�1000).

Section 6). Even though we tried to minimize the synchronization as much as
possible, performance was still unacceptable. Since a candidate's memory cannot be
freed until the end of a level, the memory consumption of this approach is also
extremely high. We need to keep the temporary idlists of all newly generated
candidates (both infrequent and frequent) since we cannot say if a candidate is fre-
quent until all processors have finished the current level. We were thus unable to
run this algorithm for low values of minimum support. Also, when the local
memory is not sufficient the Origin allocates remote memory for the intermediate
idlists, causing a performance hit due to the NUMA architecture.

Join parallelism. Join parallelism is based on the vertical partitioning of the
idlists among processors. Each processor performs intersections for different
sequences within the same class. Once the current class has been expanded by one
level, the processors must synchronize, before moving on to the next class. Figure 9
shows how join parallelism works. P0 gets the items A, C, and E and is responsible
for generating and testing all candidates which have those items as a prefix (i.e., the
candidates AA, AB, AC, AD, AE, CC, CD, CE, and EE ). P1 on the other hand is
responsible for all candidates with the prefix B or D (i.e., BB, BC, BD, BE, DD, and
DE ). While we have not implemented this approach, we believe that it will fare no
better than idlist parallelism. The reason is that it requires one synchronization per
class, which is better than the single candidate idlist parallelism, but still much
worse than the level-wise idlist parallelism, since there can be many classes.

5.2.2. Task Parallelism

In task parallelism all processors have access to one copy of the database, but
they work on separate classes. We present a number of load balancing approaches
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starting with a static load balancing scheme and moving on to a more sophisticated
dynamic load balancing strategy. It is important to note that we use a breadth-first
search for frequent sequence enumeration within each parent class, but the parent
classes themselves are scheduled independently for good load balance.

Static load balancing (SLB). Let C=[C1 , C2 , C3] represent the set of the
parent classes at level 1 as shown in Fig. 7. We need to schedule the parent classes
among the processors in a manner minimizing load imbalance. In our approach an
entire parent class is scheduled on one processor. Load balancing is achieved by
assigning a weight to each parent equivalence class based on the number of
elements in the class. Since we have to consider all pairs of items for the next itera-
tion, we assign the weight W 1

i =( |Ci |
2 ) to the class Ci . Once the weights are assigned

we generate a schedule using a greedy heuristic. We sort the classes on the weights
(in decreasing order) and assign each class in turn to the least loaded processor, i.e.,
one having the least total weight at that point. Ties are broken by selecting the
processor with the smaller identifier. These steps are done concurrently on all the
processors since all of them have access to C. We also studied the effect of other
heuristics for assigning class weights, such as W 2

i =�j |L(Aj)| for all items Aj in
the class Ci . This cost function gives each class a weight proportional to the sum
of the supports of all the items. We also tried a cost function that combines the
above two; i.e., W 3

i =( |Ci |
2 ) } �j |L(Aj)|. We did not observe any significant benefit

of one weight function over the other and decided to use W1.
Figure 10 shows the pseudo-code for the SLB algorithm. We schedule the parent

classes on different processors based on the class weights. Once the parent classes
have been scheduled, the computation proceeds in a purely asynchronous manner
since there is never any need to synchronize or share information among the pro-
cessors. If we apply W1 to the class tree shown in Fig. 7, we get W 1

1=W 1
2=W 1

3=3.
Using the greedy scheduling scheme on two processors, P0 gets the parent classes
C1 and C3 , and P1 gets the parent class C2 . The two nodes process these classes
in a BFS manner. We immediately see that SLB suffers from load imbalance, since
after processing C1 , P0 will be busy working on C3 , while after processing C2 , P1

has no more work. The main problem with SLB is that, given the irregular nature
of the computation tree there is no way of accurately determining the amount of
work (i.e., the number of frequent sequences that might be generated from it) per
class statically.

FIG. 10. The SLB (Static Load Balancing) Algorithm.
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FIG. 11. The dynamic load balancing algorithm.

Inter-class dynamic load balancing (CDLB). To get better load balancing we can
utilize interclass dynamic load balancing. Instead of a static or fixed class assign-
ment of SLB, we would like each processor to dynamically pick a new parent class
to work on from the list of parent classes not yet processed.

We also make use of the class weights in the CDLB approach. First, we sort the
parent classes in decreasing order of their weight. This forms a logical central task
queue of independent classes. Each processor atomically grabs one class from this
logical queue. It processes the class completely and then grabs the next available
class. This is essentially a self-scheduling scheme [15]. Note that each class usually
has a nontrivial or coarse amount of work, so we do not have to worry about con-
tention among processors to acquire new tasks. Since classes are sorted on their
weights, processors first work on large classes before tackling smaller ones, which
helps to achieve a greater degree of load balance. The pseudo-code for CDLB algo-
rithm appears in Fig. 11. The compare-and-swap (CAS) is an atomic primitive on
the Origin. It compares classid with i. If they are equal it replaces classid with i+1,
returning a 1, else it returns a 0. The use of CAS ensures that processors acquire
separate classes to work on.

If we apply CDLB to our example computation tree in Fig. 7, we might expect
a scenario as follows: In the beginning P1 grabs C1 , and P0 acquires C2 . Since C2

has less work, P0 will grab the next class C3 and work on it. Then P1 becomes free
and finds that there is no more work, while P0 is still busy. For this example,
CDLB did not buy us anything over SLB. However, when we have a large number
of parent classes CDLB has a clear advantage over SLB, since a processor grabs
a new class only when it has processed its current class. This way only the free pro-
cessors will acquire new classes, while others continue to process their current class,
delivering good processor utilization. We shall see in Section 6 that CDLB can
provide up to 400 improvement over SLB. We should reiterate that the processing
of classes is still asynchronous. For both SLB and CDLB, false sharing does not
arise, and all work is performed on local memory, resulting in good locality.

Recursive dynamic load balancing (RDLB). While CDLB improves over SLB by
exploiting dynamic load balancing, it does so only at the interclass level, which may
be too coarse-grained to achieve a good workload balance. RDLB addresses this by
exploiting both interclass and intraclass parallelism.

To see where the intraclass parallelism can be exploited, let us examine the
behavior of CDLB. As long as there are more parent classes remaining, each
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processor acquires a new class and processes it completely using BFS. If there are
no more parent classes left, the free processors are forced to idle. The worst case
happens when P&1 processors are free and only one is busy, especially if the last
class has a deep computation tree (although we try to prevent this case from hap-
pening by sorting the classes, so that the classes predicted to be small are at the
end, it can still happen). We can fix this problem if we provide a mechanism for the
free processors to join the busy ones. We accomplish this by recursively applying
the CDLB strategy at each new level, but only if there is some free processor wait-
ing for more work. Since each class is independent, we can treat each class at the
new level in the same way we treated the parent classes, so that different processors
can work on different classes at the new level.

Figure 12 shows the pseudo-code for the final pSPADE algorithm, which uses the
RDLB scheme. We start with the parent classes and insert them in the global class
list, GlobalQ. Each processor atomically acquires classes from this list until all
parent classes have been taken, similar to the CDLB approach (Process-GlobalQ()

on line 6 is the same as the main loop in CDLB). Note that each parent class is
processed in a BFS manner.

As each processor finishes its portion of the parent classes, and no more parent
classes are left, it increments the shared variable FreeCnt and waits for more work.

FIG. 12. The pSPADE algorithm (using RDLB).
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When a processor is processing the classes at some level, it periodically checks if
there are any free processors (line 17). If so, it keeps one class for itself and inserts
the remaining classes at that level (PrevL) in GlobalQ, emptying PrevL in the pro-
cess, and sets GlobalFlg. This processor continues working on the classes (NewL)
generated before a free processor was detected. Note that all idlist intersections are
performed in the routine Get-New-Classes() (as shown in Fig. 5).

When a waiting processor sees that there is more work (i.e., GlobalFlg=1), it
starts working on the classes in GlobalQ. Finally, when there is no more work in
the global queue, FreeCnt equals the number of processors P, and the computation
stops. To reiterate, any class inserted into the global queue is treated as a parent
class and is processed in a purely breadth-first manner. If and when a free processor
is detected, a busy processor adds all classes on its current level into the global
queue for shared processing.

Let us illustrate the above algorithm by looking at the computation tree in Fig. 7.
The nodes are marked by the processors that work on them. First, at the parent
class level, P0 acquires C1 , and P1 acquires C2 . Since C2 is smaller, P1 grabs class
C3 and starts processing it. It generates three new classes at the next level,
NewL=[X1 , X2 , X3], which becomes PrevL when P1 starts the next level. Let us
assume that P1 finishes processing X1 and inserts classes Z1 , Z2 in the new NewL.

In the meantime, P0 becomes free. Before processing X2 , P1 notices in line 17
that there is a free processor. At this point P1 inserts X3 in GlobalQ and empties
PrevL. It then continues to work on X2 , inserting Y1 , Y2 , Y3 in NewL. P0 sees the
new insertion in GlobalQ and starts working on X3 in its entirety. P0 meanwhile
starts processing the next level classes, [Z1 , Z2 , Y1 , Y2 , Y3]. If at any stage it
detects a free processor, it will repeat the procedure described above recursively
(i.e., inserting remaining classes in GlobalQ). Figure 7 shows a possible execution
sequence for the class C3 . It can be seen that RDLB tries to achieve as good a load
balance as possible by keeping all processors busy.

The RDLB scheme of pSPADE preserves the good features of CDLB; i.e., it
dynamically schedules entire parent classes on separate processors, for which the
work is purely local, requiring no synchronization, and exploiting only interclass
parallelism so far. Intraclass parallelism is required only for a few (hopefully) small
classes toward the end of the computation. We simply treat these as new parent
classes and schedule each class on a separate processor. Again no synchronization
is required except for insertions and deletions from GlobalQ. In summary, computa-
tion is kept local to the extent possible, and synchronization is done only if a load
imbalance is detected.

6. EXPERIMENTAL RESULTS

In this section we present the parallel performance of pSPADE. Experiments
were performed on a 12 processor SGI Origin 2000 machine at RPI, with 195 MHz
R10000 MIPS processors, 4 Mbyte of secondary cache per processor, 2 Gbyte of
main memory, and running IRIX 6.5. The databases were stored on an attached
7 Gbyte disk in flat-files. Since there is only one I�O node in our setup, all disk I�O
are serial.
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TABLE 1

Synthetic Datasets

Dataset C T S I D Size

C10T5S4I1.25D1M 10 5 4 1.25 1M 320 Mbyte
C10T5S4I2.5D1M 10 5 4 2.5 1M 320 Mbyte
C20T2.5S4I1.25D1M 20 2.5 4 1.25 1M 440 Mbyte
C20T2.5S4I2.5D1M 20 2.5 4 2.5 1M 440 Mbyte
C20T2.5S8I1.25D1M 20 5 8 1.25 1M 640 Mbyte
C20T5S8I2D1M 20 5 8 2 1M 640 Mbyte
C5T2.5S4I1.25DxM 5 2.5 4 1.25 1M�10M 110 Mbyte�1.1 Gbyte

Synthetic datasets. We used the publicly available dataset generation code from
the IBM Quest data mining project [6]. These datasets mimic real-world transac-
tions, where people buy a sequence of sets of items. Some customers may buy only
some items from the sequences, or they may buy items from multiple sequences.
The customer sequence size and transaction size are clustered around a mean and
a few of them may have many elements. The datasets are generated using the
following process. First NI maximal itemsets of average size I are generated by
choosing from N items. Then NS maximal sequences of average size S are created
by assigning itemsets from NI to each sequence. Next a customer of average C
transactions is created, and sequences in NS are assigned to different customer
elements, respecting the average transaction size of T. The generation stops when
D customers have been generated. Like [14] we set NS=5000, NI=25000, and
N=10000. Table 1 shows the datasets with their parameter settings. We refer the
reader to [2] for additional details on the dataset generation.

Table 2 shows, for the different datasets, the minimum support used in the
experiments reported below, the total number of frequent sequences found, the
serial time, and the number of frequent sequences enumerated per second (note that
the number of intersections performed is 2�3 times higher). The distribution of fre-
quent sequences as a function of length is plotted in Fig. 13. The figure also shows
the total number of frequent sequences obtained and the total number of joins per-
formed. The number of joins corresponds to the total number of candidates
evaluated during the course of the algorithm.

TABLE 2

Sequential Time and Number of Frequent Sequences

Dataset MinSup *FreqSeq Time(P=1) *Seq�Time

C10T5S4I1.25D1M 0.250 96344 379.7 s 254
C10T5S4I2.5D1M 0.330 180381 625.5 s 289
C20T2.5S4I1.25D1M 0.250 67291 270.3 s 249
C20T2.5S4I2.5D1M 0.250 80648 240.4 s 335
C20T2.5S8I1.25D1M 0.330 55484 236.9 s 234
C20T5S8I2D1M 0.50 179999 1200.8 s 150
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FIG. 13. Number of frequent sequences and candidate joins.

6.1. Serial Performance

The performance of SPADE, the serial version of pSPADE, was studied in [16],
and it was compared against GSP [14]. It was shown that SPADE outperforms
GSP by more than an order of magnitude if we preprocess the data and store the
supports of all frequent 2-sequences above a minimum threshold. The performance
comparison of SPADE vs GSP is shown in Fig. 14.

There are several reasons why SPADE outperforms GSP:

1. SPADE uses only simple temporal join operation on idlists. As the length
of a frequent sequence increases, the size of its idlist decreases, resulting in very fast
joins.

2. No complicated hash-tree structure is used, and no overhead of generating
and searching of customer subsequences is incurred. These structures typically have
very poor locality [11]. On the other hand SPADE has good locality, since a join
requires only a linear scan of two lists.

FIG. 14. Serial performance: SPADE vs GSP (0.250 minimum support; D200K).
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3. As the minimum support is lowered, more and larger frequent sequences
are found. GSP makes a complete dataset scan for each iteration. SPADE on the
other hand restricts itself to only a few scans. It thus cuts down the I�O costs.

These benefits of SPADE carry over to pSPADE. For these reasons we chose not
to parallelize GSP for comparison against pSPADE. It should be noted that it is
possible to optimize GSP further to reduce the number of database scans by
generating candidates of multiple lengths at the same time (if memory permits).
However, the base GSP, as described in [14] does not do this.

6.2. Parallel Performance

Data vs task parallelism. We first present the results for the level-wise idlist data
parallel algorithm we described in Section 5.2.1. Figure 15A shows the results for
four databases on one, two, and four processors. We find that the data parallel
algorithm performs very poorly, resulting in a speed-down with more processors.
The level-wise approach does well initially when the number of tree nodes or classes
is relatively few. However, as computation progresses more and more classes are
generated and consequently more and more barriers are performed. In fact there are
almost as many classes as there are frequent item sets, requiring as many barriers.
For example, for the C20T2.5S4I2.5D1M dataset, the data parallel approach may
have performed around 80,648 barriers. Since data parallel approach does not per-
form well, we only concentrate on task parallelism in the remainder of this section.

Static vs dynamic load balancing. We now present results on the effect of
dynamic load balancing on the parallel performance. Figure 15B shows the perfor-
mance of pSPADE using eight processors on the different databases under static
load balancing, interclass dynamic load balancing, and the recursive dynamic load
balancing. We find that CDLB delivers more than 220 improvement over SLB in
most cases, and ranges from 7.50 to 380 improvement. RDLB delivers an addi-
tional 100 improvement over CDLB in most cases, ranging from 20 to 120. The
overall improvement of using RDLB over SLB ranges from 160 to as high as
440. Thus our load balancing scheme is extremely effective. All results reported
below use the recursive dynamic load balancing scheme.

FIG. 15. (A) Level-Wise Idlist data parallelism, (B) effect of load balancing.
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FIG. 16. pSPADE parallel performance.

Parallel time and speedup. Figure 16 shows the total execution time and the
speedup charts for each database using the minimum support values shown in
Table 1. We obtain near perfect speedup for two processors, ranging as high as 1.91.
On four processors, we obtained a maximum of 3.2, on eight processors the maxi-
mum was 5.6, and on 12 the maximum speedup was 7.2. As these charts indicate,
pSPADE achieves relatively good speedup performance. However, the speedup on
C20T5S8I2D1M was not as good. If one looks at the distribution of the frequent
sequence lengths for C20T5S8I2D1M in Fig. 13 we see that it has many more large
frequent sequences compared to other datasets and has longer idlist sizes as well.
Many frequent items imply that there is more overlap of items among the classes,
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and along with longer idlists this causes more disk reads. In itself this is not a
problem, but since our SGI Origin system only supports serial I�O, this results in
increased disk contention, which in turn limits the speedup possible for this dataset.
The serial I�O is also one of the causes preventing us from achieving better
speedups on other datasets. The other reason is that beyond eight processors, there
is not enough work for 12 processors; i.e., the computation to overhead (class parti-
tioning, disk contention, etc.) ratio is small. Furthermore, while we do try to
schedule disjoint classes on different processors, we have made no attempt to fine-
tune the affinity scheduling of threads and the idlists accessed. Since the Origin has
NUMA architecture, there is further scope for performance tuning by allocating
groups of related classes to processors that are topologically close or at least among
the two processors on the same node board (see Fig. 6).

6.3. Scaleup

Figure 17 shows how pSPADE scales up as the number of customers is increased
ten-fold, from 1 million to 10 million (the number of transactions is increased from
5 million to 50 million, respectively). The database size goes from 110 Mbyte to
1.1 Gbyte. All the experiments were performed on the C5T2.5S4I1.25 dataset with
a minimum support of 0.0250. Both the total execution time and the normalized
time (with respect to 1M) are shown. It can be seen that while the number of
customers increases ten-fold, the execution time goes up by a factor of less than 4.5,
displaying superlinear scaleup.

Finally, we study the effect of changing minimum support on the parallel perfor-
mance, shown in Fig. 18 We used eight processors on the C5T2.5S4I1.25D1M
dataset. The minimum support was varied from a high of 0.250 to a low of 0.010.
Figure 18 shows the number of frequent sequences discovered and the number of
joins performed (candidate sequences) at the different minimum support levels. It
also shows the number of frequent sequences enumerated per second. Running time
goes from 6.8 s at 0.10 support to 88 s at 0.010 support, a time ratio of 1:13 vs
a support ratio of 1:10. At the same time the number of frequent sequences goes
from 15,454 to 365,132 (1:24) and the number of joins from 22,973 to 653,596

FIG. 17. Sizeup.
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FIG. 18. Effect of minimum support (C5T2.5S4I1.25D1M).

(1:29). The number of frequent sequences are, in general, not linear with respect to
the minimum support. In the worst case, the number of sequences increases
exponentially with decreasing support. However, it appears that for the range of
support values we looked at the execution time is near-linear. It is interesting to
note that the efficiency of pSPADE increases with decreasing support; i.e., it lists
more frequent sequences per second on lower support values.

7. CONCLUSIONS

In this paper we presented pSPADE, a new parallel algorithm for fast mining of
sequential patterns in large databases. We carefully considered the various parallel
design alternatives before choosing the best strategy for pSPADE. These included
data parallel approaches such as idlist parallelism (single vs level-wise) and join
parallelism. In the task parallel approach we considered different load balancing
schemes such as static, dynamic, and recursive dynamic. We adopted the recursive
dynamic load balancing scheme for pSPADE, which was designed to maximize
data locality and minimize synchronization, by allowing each processor to work on
disjoint classes. Finally, the scheme minimizes load imbalance by exploiting both
interclass and intraclass parallelism. An extensive set of experiments was conducted
on the SGI Origin CC-NUMA shared memory system to show that pSPADE has
good speedup and excellent scaleup properties.

This work opens several research opportunities, which we plan to address in
future work:

1. pSPADE works on the assumption that each class and its intermediate
idlists fit in main memory. The mean memory utilization of pSPADE is less than
10 of the database size, but the maximum usage may be as high as 100 [19].
This means that on our Origin system, we can handle around 20 Gbytes datasets.
One solution for handling larger datasets is to write intermediate idlists to disk
when we exceed memory. This requires minimal modification to the pSPADE.
However, we need to consider the case where even a single idlist may not fit in
memory. In this case we bring in the portion of the two idlists that fits in memory
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and perform joins on the memory-resident portions, repeating the process until the
two list have been joined completely. We plan to implement these techniques in the
future.

2. Extending pSPADE to run on CLUMPS or clusters of SMP machines,
which are becoming increasingly popular. We could utilize pSPADE on each SMP
node, while message passing would be required for load balancing among nodes.

3. pSPADE uses only simple intersection operations and is thus ideally suited
for direct integration with a DBMS. We plan to implement pSPADE directly on
top of a parallel DBMS.

4. Extending pSPADE for parallel discovery of quantitative and generalized
sequences, where the quantity of items bought is also considered, and where we
introduce time gap constraints and sliding windows and impose a taxonomy on the
items, respectively.
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