
PSIST: A Scalable Approach to Indexing1

Protein Structures using Suffix Trees2

Feng Gao, Mohammed J. Zaki ∗3

Department of Computer Science, Rensselaer Polytechnic Institute, 110 8th Street,4

Troy, NY, 121805

Abstract6

Approaches for indexing proteins, and for fast and scalable searching for struc-7

tures similar to a query structure have important applications such as protein struc-8

ture and function prediction, protein classification and drug discovery. In this paper,9

we develop a new method for extracting local structural (or geometric) features from10

protein structures. These feature vectors are in turn converted into a set of symbols,11

which are then indexed using a suffix tree. For a given query, the suffix tree index12

can be used effectively to retrieve the maximal matches, which are then chained to13

obtain the local alignments. Finally, similar proteins are retrieved by their align-14

ment score against the query. Our results show classification accuracy up to 50%15

and 92.9% at the topology and class level according to the CATH classification.16

These results outperform the best previous methods. We also show that PSIST is17

highly scalable due to the external suffix tree indexing approach it uses; it is able18

to index about 70,500 domains from SCOP in under an hour.19

Key words:20

Protein Structure Indexing, External Suffix Trees, Bioinformatics21

Preprint submitted to Elsevier 13 July 2007

1 Introduction22

Proteins are composed of chains of basic building blocks called amino acids.23

Traditionally the problem of determining similar proteins was approached by24

finding the amount of similarity in their amino acid sequences. However bi-25

ologists have determined that even proteins which are remotely homologous26

in their sequence similarities can perform surprisingly very similar functions27

in living organisms [37]. This fact has been attributed to the dependency of28

the functional role of proteins on their actual three-dimensional (3D) struc-29

ture. That is, two proteins with remote sequence homology can be functionally30

classified as being similar if they exhibit structural homology.31

Searching the growing database of protein structures for structural homologues32

is a difficult and time-consuming task. For example, we may want to retrieve33

all structures that contain sub-structures similar to the query, a specific 3D34

arrangement of surface residues, etc. Searches such as these are the first step35

towards building a systems level model for protein interactions. In fact, high36

throughput proteomics methods are already accumulating the protein inter-37

action data that we would wish to model, but fast computational methods for38

structural database searching lag far behind; biologists are in need of a means39

to search the protein structure databases rapidly, similar to the way BLAST40

[1] rapidly searches the sequence databases.41

In this paper, we present a fast, novel protein structure indexing method called42

PSIST (which stands for Protein Structure Indexing using Suffix Trees; note43

∗ Corresponding author.
Email addresses: gaof@cs.rpi.edu (Feng Gao), zaki@cs.rpi.edu (Mohammed

J. Zaki).

2

that a preliminary version of this paper has appeared in [15]). As the name44

implies, our new approach transforms the local structural information of a45

protein into a “sequence” on which a suffix tree is built for fast matches. We46

first extract local structural feature vectors using a sliding window along the47

protein backbone. For a pair of residues, the distance between their Cα atoms48

and the angle between the planes formed by the Cα, N and C atoms of each49

residue are calculated. The feature vectors for a given window include all the50

distances and angles between the first residue and the rest of the residues51

within the window. Compared with the local features from a single residue,52

our feature vectors contain both translational and rotational information. Af-53

ter normalizing the feature vectors, the protein structure is converted to a54

sequence (called the structure-feature sequence or SF-sequence) of discretized55

symbols.56

We use external suffix trees to index the protein SF-sequences. For a given57

query, all the maximal matches are retrieved from the suffix tree and chained58

into alignments using dynamic programming. The top proteins with the high-59

est alignment scores are finally selected. Our results shows classification ac-60

curacy up to 50.0% and 92.9% at the topology and class level according to61

the CATH [33,34] classification. These results outperform the best previous62

method. We also show that PSIST is highly scalable due to the external suffix63

tree indexing approach it uses; it is able to index about 70,500 domains from64

SCOP [30] in under an hour!65

3

2 Related Work66

2.1 Structural Similarity Search67

Protein structural similarity determination can be classified into three ap-68

proaches: pairwise alignment, multiple structure alignment, and database in-69

dexing.70

Pair-wise structure alignment methods can be classified into three classes [13].71

The first class works at the residue level [20,40]. The second class focuses on72

using secondary structure elements (SSEs) such as α-helices and β-strands73

to align two proteins approximately [26,29,32]. The third approach is to use74

geometric hashing, which can be applied at both the residue [25] and SSE75

level [21].76

Previous work has also looked at multiple structure alignment. These meth-77

ods are based on geometric hashing [31], or SSE information [12]. A recent78

method [39] aims to solve the multiple structural alignment problem with79

detection of partial solutions; it computes the best scoring structural align-80

ments, which can be either sequential or sequence-order independent [44], if81

one seeks geometric patterns which do not follow the sequence order. Due82

to their time complexity, the pairwise and multiple structure alignment ap-83

proaches are not suitable for searching for similarity over thousands of protein84

structures. Database indexing and scalable searching approaches satisfy this85

requirement.86

There are two classes of protein structure indexing approaches according to87

the representation of the local features. The first class focuses on indexing the88

4

local features at the residue level directly, and the other class uses SSEs to89

approximate the local features of the proteins.90

CTSS [6] approximates the protein Cα backbone with a smooth spline with91

minimum curvature. The method then stores the curvature, torsion angle and92

the secondary structure that each Cα atom in the backbone belongs to, in a93

hash-based index. ProGreSS [3] is a recent method, which extracts the fea-94

tures for both the structure and sequence, within a sliding window over the95

backbone. Its structure features are the same as the CTSS features (curvature,96

torsion angles, and SSE information); its sequence features are derived using97

scoring matrices like PAM [9] or BLOSUM [19].98

The LFF profile algorithm [7] first extracts some representative local features99

from the distance matrix of all the proteins, and then each protein’s distance100

matrix is encoded by the indices of the nearest representative features. Each101

structure is represented by a vector of the frequency of the representative102

local features. The structural similarity between two proteins is the Euclidean103

distance between their LFF profile vectors. This method is more suitable for104

global rather than local similarity between the query and database proteins.105

There are also some methods that index the protein structures using SSEs.106

For each protein, PSI [5] uses a R∗-tree to index a nine-dimensional feature107

vector, a representation of all the triplet SSEs within a range. After retriev-108

ing the matching triplet pairs, a graph-based algorithm is used to compute109

the alignment of the matching SSE pairs. Another SSE-based method, Prot-110

Dex [2], obtains the sub-matrices of the SSE contact patterns from the dis-111

tance matrix of a protein structure. The grand sum of the sub-matrices and the112

contact-pattern type are indexed by an inverted file index. By their nature,113

5

SSEs model the protein only approximately, and therefore these SSE-based114

approaches suffer in retrieval accuracy and as such are not very useful for115

small query proteins with few SSEs.116

2.2 Suffix Trees117

A suffix tree is a versatile data structure for substring problems [18], and it118

has been used for various problems such as protein sequence indexing [23,28],119

genome alignment [10,11] and structural motif detection [42]. Suffix trees can120

be constructed in O(n) time and space [27,43], and thus are an effective choice121

for indexing sequences.122

Most suffix tree algorithms are not designed to scale as efficiently when the123

input sequence is extremely large. Also, the use of suffix links, which are a key124

feature in obtaining the linear construction time, can result in poor locality125

of reference [14,22,41]. To address these issues, several disk-based suffix tree126

algorithms have been proposed in the last few years. Some of the approaches127

[22,24,38,41] completely abandon the use of suffix links and sacrifice the theo-128

retically superior linear construction time in exchange for a better locality of129

reference. A linear algorithm to construct distributed suffix trees (DST) was130

proposed in [8]. DST introduces a new notion of sparse suffix links and uses131

different rules to follow a sparse suffix link to the tree root. The suffix tree132

can be distributed over a number of computing nodes. It can handle larger133

data than existing suffix trees, but it does assume that the input data cannot134

exceed the size of real memory.135

6

3 The PSIST Approach to Protein Structure Indexing136

3.1 Indexing Proteins137

3.1.1 Local Feature Extraction138

A protein is composed of an ordered sequence of residues linked by peptide139

bonds. Each residue has Cα, N and C atoms, which constitute the backbone of140

the protein. Although the backbone is linear topologically, it is very complex141

geometrically. The bond lengths, bond angles and torsion angles completely142

define the conformation and geometry of the protein.143

The bond length is the distance between the bonded atoms, and the bond144

angle is the angle between any two covalent bonds that include a common145

atom (see Figure 1). For instance, the bond length of N -C is 1.32Å (Å denotes146

distance in angstroms), and the bond angle between the bonds Cα-N and N -C147

is 123◦. Torsion angles are used to describe conformations around rotatable148

bonds (see Figure 2). Assume four consecutive atoms are connected by the149

three bonds bi−1, bi and bi+1. The torsion angle of bi is defined as the smallest150

angle between the projections of bi−1 and bi+1 on the plane perpendicular to151

bond bi. In Figure 2, φ, ψ and ω are the torsion angles on the bonds N -Cα,152

Cα-C and C-N , respectively.153

To capture the local structural features more accurately, we need to extract the154

features from a set of local residues. To obtain the local feature vector, we first155

represent each residue individually, and then consider the relationship between156

a pair of residues and a set of residues. For each residue, the length of Cα-N157

bond is 1.47Å and that of the Cα-C bond is 1.53Å, and the angle between Cα-158

7

N and Cα-C bonds is 110◦. Thus all the triangles formed by N -Cα-C atoms in159

each residue are equivalent, and each residue can be represented by a triangle160

of the same size. The relationship between a pair of residues in 3D (three-161

dimensional) space can be fully described by the rigid transformation between162

two residues, which is a vector of 6 dimensions, containing 3 translational and163

3 rotational degrees of freedoms. To reduce the dimension of the vector, we164

use a distance and an angle to describe the transformation features between165

two residues.166

We define the distance d between a pair of residues as the Euclidean distance

between their Cα atoms. The angle θ between a pair of residues is defined as

the angle between the planes that contain N -Cα-C triangles representing each

residue (see Figure 3). The distance and angle are invariant to displacement

and rotation of the protein. The Euclidean distance between two Cα atoms is

calculated by their 3D coordinates directly. The angle between the two planes

defined by the N -Cα-C triangles, is calculated between their normals having

Cα as the origin. The normal of the plane defined by the triangle N -Cα-C is

given as

−→n =

−−→
NCα ×

−−→
CαC

‖
−−→
NCα ×

−−→
CαC‖

The angle between the two normals
−→
n1 and

−→
n2 is then calculated as

cos θ =
‖
−→
n1‖2 + ‖

−→
n2‖2 − ‖

−→
n2 −

−→
n1‖2

2‖
−→
n1‖‖

−→
n2‖

To describe the local structural features between a set of residues, we slide167

a window of length w along the backbone of the protein. The distances and168

angles between the first residue i and all the other residues j (with j ∈ [i +169

1, i+w− 1]) within the window are computed and added to a feature vector.170

8

Each window is associated with one feature vector.171

Let P = {p1, p2, . . . , pn} represent a protein, where pi is the ith-residue along

the backbone. The set of feature vectors of the protein is given as P v =

{pv
1, p

v
2, . . . , p

v
n−w+1}, where w is the sliding window size, and pv

i is a feature

vector

(d(pi, pi+1), cos θ(pi, pi+1), . . . , d(pi, pi+w−1), cos θ(pi, pi+w−1))

where d(pi, pj) is the distance between the residues pi and pj, and cos θ(pi, pj)172

gives the cosine of the angle between the residues pi and pj. With window size173

w, the dimension of each feature vector pv
i is 2(w − 1).174

3.2 Feature Normalization175

Each structural feature vector is a combination of distances and angles, which176

have different measures. A normalization procedure is performed after the177

feature vectors are extracted. The angle θ is in the range [0, π], so cos θ ∈178

[−1, 1].179

For normalizing the distances, we need to know the upper-bound on the dis-180

tance between the i-th and (i + w − 1)-th residue in the protein. From Fig-181

ure 1, the average distance between Cα1-N atoms is d1 = 1.47Å, the average182

distance between N -C atoms is d2 = 1.32Å, and the angle α between Cα1-183

N and N -C bonds is 123◦. The distance between Cα1-C atoms is therefore184

d(Cα1, C) =
√

d2
1 + d2

2 − 2d1d2 cosα = 2.453. The distance between C-Cα2185

atoms is d(C,Cα2) = 1.53, so the average distance between two Cα atoms is:186

d(Cα1, Cα2) <= d(Cα1, C) + d(C,Cα2) = 2.453 + 1.57 = 4.023. If the distance187

9

between two atoms is greater than 4.023, it is trimmed to 4.023. For a sliding188

window of size w, the lower bound of the distance between any two atoms is189

0, and the upper bound is 4.023(w − 1), so the distance between any pair of190

residues within a w length window is in the range [0, 4.023(w − 1)].191

All the distances and angles are normalized and binned into an integer within192

the range [0, b− 1]. We use the equation ⌊ d×b
4.023(w−1)

⌋ to normalize and bin the193

distances and ⌊ (cos θ+1)b
2

⌋ to normalize and bin the angles. Table 1 shows 3194

examples of normalized and binned feature vectors for w = 3 and b = 10. The195

size of each feature vector is 2(w− 1) = 4, and the normalized value is within196

[0, 9].197

After normalization and binning, each feature vector is defined as ps = {ps
0, p

s
1,-198

. . . , ps
2(w−1)−1}, where ps

i is an integer within the range [0, b − 1]. Thus, the199

structure of each protein P is converted into a structure-feature sequence P s =200

{P s
0 , P

s
1 . . . P

s
n−w+1}, called the SF-sequence, where P s

i is the i-th normalized201

feature vector (ps) along the backbone. Note that each symbol within an SF-202

sequence is a vector of length 2(w − 1), to which we assign a unique integer203

identifier as its label. Thus the SF-sequences are over an alphabet of size204

b2(w−1).205

3.3 Generalized Suffix Tree Index Construction206

After obtaining the SF-sequences for all proteins in the database, we use a207

generalized suffix tree (GST) as the indexing structure. A GST is a compact208

representation of the suffixes of multiple sequences in a single tree, and can be209

constructed in linear time [43]. A suffix can be located by following an unique210

10

path from the root to a leaf.211

To save the storage space of the suffix tree, we map each structure feature212

vector ps to an unique key or symbol for the suffix tree construction, and213

map it back to the normalized vector when we need to compute the distance214

between two feature vectors. For instance, the three feature vectors in Table215

1 could be mapped to the symbols a, b and x respectively.216

Let GST be a generalized suffix tree, we use the following notation in the rest217

of the paper. We use N for a node in the suffix tree, E for an edge, C(E)218

for a child node of the edge E, L(E) for the label on edge E, L(E[i]) for the219

ith symbol of the edge label L(E), P (N) for the path-label of the node N220

(formed by concatenating all the edge labels from the root node to N), and221

P (E[i]) for the path-label of L(E[i]). Further, each leaf node in GST contains222

a sequence-position pair (x, p), where x is a sequence identifier, and p is the223

start position of the suffix within sequence x. For any node N , we use the224

notation sp − list(N) for the collection of the sequence-position pairs for all225

the leaves under N .226

Figure 4 shows an example of GST for two SF-sequences S1 = xabxa and227

S2 = babxba, over the alphabet {a, b, x}, obtained by mapping each normalized228

feature vectors in Table 1 to a unique letter symbol. Node 0 is the root node,229

node 1 to 7 are internal nodes, and the rest are leaves. ‘$’ is the unique230

termination character. The path label of node 7 is xa. The edge label L(E)231

of the edge out of node 7 is bxa, so its second character L(E[2]) is x, and232

its path-label P (E[2]) is xabx. The sequence-position identifier (1, 0) of the233

node 7 stands for xabxa, the suffix of sequence S1 that starts at position234

0. Thus sp-list(7) = {(1, 3), (1, 0)}, and the sp-list for node 6 is sp-list(6) =235

11

{(2, 3), (1, 3), (1, 0)}.236

3.4 Parallel/Distributed External-Memory Suffix Tree Construction237

During construction of a typical in-memory suffix tree, a large amount of238

memory would be required to store the input strings and possibly some other239

bookkeeping information for large databases. This amount is normally too240

large for a typical computer; hence a disk-based suffix tree was selected as the241

method of indexing instead of an in-memory suffix tree.242

In our experiments, TRELLIS [36] was applied to create the disk-based suf-243

fix tree from all of the sequences in the database. TRELLIS is an effective244

algorithm that builds the disk-based suffix tree based on a partitioning and245

merging method. It creates suffix trees for smaller substrings of the input se-246

quence(s), and stores the suffix trees according to their common prefixes. Then,247

it merges the subtrees of the same prefix together, and stores the subtrees sep-248

arately on disk. Let S denote the input sequence obtained by concatenating249

all sequences in the database. Our external-memory suffix indexing approach250

has three main steps:251

(1) Prefix Creation Phase: The first step creates a list of variable-length pre-252

fixes {P0, P1, · · · , Pm−1}. Each prefix Pi is chosen so that its frequency in253

the input string S does not exceed a maximum frequency threshold (de-254

termined by the main-memory limit). This also means that the number255

of suffixes beginning with Pi as a prefix will fit in the main-memory.256

(2) Partitioning Phase: In the second phase, the input string S is partitioned257

into segments Ri (Figure 5, step a). The segment size is chosen such that258

12

the resulting suffix tree TRi
from each segment (Figure 5, step b) fits259

in main-memory. Each resulting suffix tree is further split into smaller260

subtrees TRi,Pj
(Figure 5, step c), that share a common prefix Pj, which261

are then stored on the disk.262

(3) Merging Phase: After processing all segments Ri, we merge all the sub-263

trees TRi,Pj
for each prefix Pj from the different partitions Ri into a264

merged suffix subtree TPj
(Figure 5, step d). The prefixes Pj were chosen265

so that their suffix subtrees also fit entirely in memory. As each merged266

subtree TPj
is constructed, it is written to disk. The complete suffix tree267

is simply a forest of these prefix-based subtrees (TPj
).268

Parallel/Distributed Suffix Tree Indexing: The idea of prefix partition-269

ing and merging is very suitable for parallel or distributed suffix tree con-270

struction. For the prefix creation phase, let’s assume initially that the set of271

variable-length prefixes is known. In this case, the concatenated input sequence272

S can be partitioned among the available processors, and each processor can273

obtain the local frequency of each prefix in its assigned segment (note that274

some overlap has to be allowed among the sequence segments to take care275

of boundary conditions). A summation over the processors yields the global276

frequencies for the set of prefixes. Since the prefix set is, in fact, not known277

a priori, the parallel prefix frequency computations can be done in multiple278

count-reduce iterations. In each iteration, prefixes up to a given length are279

counted (only those that exceed the frequency threshold in the last iteration),280

and a reduction is done to obtain the global frequencies.281

The partitioning phase is straightforward to parallelize, since each partition282

is independent. Essentially, each processor builds the complete suffix tree TRi
283

for partition Ri and splits them into the prefix-based suffix subtrees TRi,Pj
,284

13

and stores them on disk. Since the partitions are all of the same size (with285

the exception of the last partition), a simple round-robin partition assignment286

scheme is sufficient to ensure good load balancing among the processors.287

For the merging phase, we assign the variable-length prefixes among the pro-288

cessors. Each processor is responsible for merging the subtrees TRi,Pj
from all289

the partitions R0, R1, · · · , Rr−1, for a given prefix Pj . The main complication290

here is that prefix-based suffix subtrees for partitions assigned to other proces-291

sors in the second phase, may not be available locally. Thus before the merge292

phase, each processor communicates its prefixed-based suffix subtrees for pre-293

fix Pj to the processor responsible for constructing the merged suffix tree TPj
.294

Note that for the merging phase also a simple round-robin prefix assignment295

scheme suffices to achieve good a load balance, since each prefix yields suffix296

subtrees of approximately the same size.297

4 Querying298

Given a query Q, we first extract its feature vectors and convert it into a SF-299

sequence Qs as described above. Then two phases are performed: searching and300

ranking. The searching phase retrieves all the matching segments/subsequences301

from the database within a distance threshold ǫ (on a per symbol basis), and302

the ranking phase ranks all the proteins by chaining the matching segments.303

4.1 Searching304

For a given query SF-sequence Qs = {Qs
1Q

s
2 . . . Q

s
n}, maximum feature dis-305

tance threshold ǫ, and a minimum match length threshold l, the search algo-306

14

rithm finds all maximal matching SF-subsequences P s = {P s
1 , P

s
2 . . . P

s
m} that307

occur in both the query SF-sequence and a database protein SF-sequence. A308

maximal match has the following properties:309

(1) There exists a matching SF-subsequence Qs
i+1 . . . Q

s
i+m of Qs, such that310

dist(Qs
i+j , P

s
j) < ǫ, where j = 1, 2 . . .m, Qs

i+j and P s
j are the normalized311

and binned feature vectors of length 2(w−1). The distance function used312

in our algorithm is Euclidean distance.313

(2) The length of the match is at least as long as the length threshold, i.e.,314

m ≥ l.315

(3) For any SF-subsequence P s of protein Rs neither P sv nor vP s is a match-316

ing SF-subsequence of Qs and Rs for any feature vector v (this ensures317

maximality).318

For instance, abx is a maximal match between the SF-sequences xabxa and319

babxba in Figure 4. Note that our approach differs from MUMmer genome320

alignment method presented in [10] which finds exact maximal unique matches321

between two genomes.322

To find all maximal matches within ǫ between the query Qs and suffix tree323

GSTd built from the database proteins, one solution is to trace every SF-324

subsequence of Qs from the root of GSTd. However in this approach, if there325

are common prefixes among the suffixes, they will be searched multiple times,326

leading to more comparisons than necessary. To reduce the number of compar-327

isons, we build another suffix tree GSTq for Qs, and then traverse two suffix328

trees simultaneously to retrieve all the maximal matches. This way, each com-329

mon prefix is searched only once. In the discussion below, we use the subscript330

q for the query, and d for the database. For instance, Nq stands for a query331

15

suffix tree node, while Nd stands for a database suffix tree node.332

The matching algorithm starts with theMMS procedure as shown in Figure 6,333

and its inputs are the root node (Nq) of the query suffix tree GSTq, the root334

node (Nd) of the database suffix tree GSTd, the distance tolerance ǫ and the335

minimum length of the maximal match l. For every edge out of the query node336

and the database node, MMS calls the NodeSearch procedure (see Figure 7)337

to match their labels and follow the path to find all the matching nodes.338

In the NodeSearch procedure (Figure 7), for two edges from different suffix339

trees, the distance between the corresponding pair of label symbols (L(E[i]q)340

and L(E[j]d) is computed in step 2. If the distance is larger than ǫ, which341

implies a mismatch, the procedure updates the MMSet and proceeds to the342

next branch. If there is no mismatch, the short edge will reach the end first. If343

the child node of the short edge is a leaf, we need to update the MMSet. If the344

child node is an internal node, two different procedures are called recursively.345

1) If the lengths of two edge labels are the same, thenMMS procedure is called346

for two child nodes in step 3. 2) If one of the edge has a shorter label, the347

algorithm NodeSearch will be called recursively with the new input composed348

of all the edges out of the child node of the short edge (see steps 4 and 5).349

Each matching SF-subsequence s is defined by two triplets (x, p, l) and (y, q, l),350

where p and q are the start positions of s in the query sequence Qx and the351

protein sequence Py respectively, and l is the length. If s is a maximal match,352

it will be added to the MMSet in the updateMMS procedure. To identify353

a maximal match, we need to compare whether any extension of the match354

will result in a mismatch. In our algorithm, each common subsequence s is355

obtained either from a character mismatch or a leaf node, so we just need356

16

to compare the characters before the common subsequence (Qx[p − 1] and357

Py[q − 1]) to identify the maximal matches.358

We can also process multiple query SF-sequences at the same time by inserting359

them to the query suffix tree GSTq, so the nodes with the same path-label are360

visited only once and the performance will be improved.361

4.2 Ranking362

The maximal matches are obtained for the query sequence and reference se-363

quences in the database. Every maximal match is a diagonal run in the matrix364

formed by a query and reference sequence. We use the best diagonal runs de-365

scribed in the FASTA algorithm [35] as our ranking scheme. We calculate the366

alignment as a combination of the maximal matches with the highest score.367

The score of the alignment is the sum of the scores of the maximal matches368

minus the gap penalty. The length of a maximal match and a gap are used369

as the match score and gap penalty, respectively. Two maximal matches can370

be chained together if there is no overlap between them. We use a fast greedy371

algorithm to find the chains of maximal alignments. At first, the maximal372

matches are sorted by their length. The longest maximal match is chosen373

first, and we remove all other overlapping matches. Then we choose the next374

longest maximal match, remove its overlapping matches and repeat the above375

steps until no maximal matches are left. This way we find the longest chained376

maximal matches between the query and each retrieved database SF-sequence.377

Finally all the candidates with small alignment scores are screened out and378

only the top similar proteins are selected.379

17

5 Results and Discussion380

To evaluate the performance of our algorithm we conduct an extensive set of381

experiments. The first test compares the performance of PSIST with ProGreSS [3],382

a state-of-the-art protein indexing method. The second test compares the re-383

sults of suffix tree indexing using different pieces of information: sequence or384

structure. The third test shows the performance of indexing the whole set385

of proteins in SCOP [30], a database of proteins classified according to their386

structure. Our algorithm was implemented in C++ and all experiments re-387

ported below were done on a Power Mac G5 with 2.7GHz CPU, and 4GB388

Memory, running Darwin Kernel Version 8.0.0.389

5.1 Comparison with ProGreSS390

The CATH [33,34] database gives a hierarchical classification of protein do-391

main structures based on sequence and structure similarity. It operates on do-392

mains because domains are likely to be the fundamental evolutionary building393

blocks. CATH has four major levels of classification, namely Class, Archi-394

tecture, Topology and Homologous family. Homologous family is the lowest395

level; it contains either proteins having significant sequence similarity (35%)396

or high structural similarity and some sequence identity (20%). The sequences397

are aligned using dynamic programming and the structures are aligned using398

SSAP [32]. Protein domains that share a significant structure similarity but399

low sequence similarity are grouped into the same Topology. Architecture is400

assigned manually according to the gross arrangement of secondary structures401

in 3D space. At the top of the hierarchy, domains are clustered into four classes402

18

automatically by the percentage of α-helices or β-strands. The latest version403

(2.6.0) of the CATH database contains more than 67,000 domains classified404

into 6,003 homologous families.405

We compare our approach with one of the best previous indexing approaches,406

ProGreSS [3], using the Java-based code provided by its authors. We choose407

the 35% representative dataset, consisting of 6003 domains from CATH, where408

sequence pairs have at most 35% amino acid sequence identity. Since ProGreSS409

can not handle a large dataset, we selected 2000 domains randomly out of the410

35% representative set of CATH as our dataset D. From topologies with least411

8 proteins, one protein is chosen randomly as the query, resulting in a query412

set Dq, having 42 proteins.413

To evaluate our algorithm we perform three different tests: The retrieval test414

finds the number of correct matching structures from the same topology as415

the query among the top k scoring proteins, and the classification test tries416

to classify the query at the topology and class levels. The performance test417

compares the algorithms in terms of the total running time.418

5.1.1 Retrieval Test419

We ran the experiments using PSIST and ProGreSS to obtain the number of420

proteins found from the same topology for each of the 42 queries. There are421

five parameters used in our approach: w is the size of the window used to422

index the local features, b is the range used to normalize the feature vectors,423

ǫ is the distance threshold based on the normalized feature vectors, l is the424

minimum length of the maximal matches, and k is the number of top scoring425

proteins reported. Based on our tuning experiments for PSIST we set w = 3,426

19

b = 2, ǫ = 0 and l = 10. For fair comparison, we tuned the parameter settings427

for ProGreSS to report its best results (we use sequence distance threshold428

ǫt = 0.05, the structure distance threshold ǫq = 0.01 and window size w = 3).429

Figure 9 and Table 2 show the number of proteins found from the same topol-430

ogy for different top-k cutoffs. Note that the number of correct matches is an431

average over all 42 CATH topologies used in our test. We find that on average432

PSIST returns more correct matches; for example in the top 20 results, PSIST433

has 4 correct matches, whereas ProGreSS returns only 2 correct matches. For434

the top k = 100, PSIST returns around 10 matches, whereas ProGreSS returns435

only 7.3 correct matches.436

5.1.2 Classification Test437

In the classification test, we assume we do not know the topology or the class438

to which a query protein belongs. For each query we then classify it into one of439

the 42 CATH topologies and one of the four CATH classes (all α, all β, α+ β440

and α/β) as follows. For each query, the top k similar proteins are selected441

from the database. The query itself is not counted in the top k matches.442

Each protein among the top k matches is assigned a score, a topology id,443

and a class id. The scores of the top k proteins from the same topology or444

class are accumulated. The query is assigned to the topology or class with445

the highest score. This classification approach can thus be thought of as k446

nearest neighbor classification. Below we tabulate the results separately for447

the topology-level and class-level classification, and we report the percentage448

of correctly classified query proteins (out of the 42 queries). For PSIST and449

ProGreSS we use the best parameter settings reported in the last section.450

20

Table 3 shows the CATH classification comparison at the topology and class451

level respectively. ProGreSS uses both the structure and sequence features to452

classify the proteins, and its accuracy is 7.14% and 57.1% at the topology453

and class levels. Without considering the sequence features, PSIST has much454

better performance than ProGreSS; its accuracy is 50.0% and 92.9% at the455

topology and class levels.456

5.1.3 Performance Test457

We compare the running time of different approaches in this section. Suppose458

a protein has n residues, the window size is w, then the number of feature459

vectors is n−w+1, so the complexity of our approach is O(n−w−1) = O(n)460

per protein.461

Both ProGreSS and PSIST provide a trade-off between the running time and462

the accuracy performance by adjusting the parameters such as window size463

and distance. Table 4 shows the running time for ProGreSS and PSIST. For464

ProGreSS, we choose the best sequence and structure distance thresholds and465

set window size w = 3. For PSIST, we set the same parameters w = 3, b = 2,466

ǫ = 0 for all three cases, but different length of maximal matches: l = 18467

for the first case, l = 14 for the second case and l = 10 for the third case.468

All three cases have better retrieval and classification performances compared469

to ProGreSS. The first case is 2.75 times faster than ProGreSS, the second470

case is 1.57 times faster, and the third case is the slowest, but it has the best471

performance.472

21

5.2 Sequence and Structure Comparison473

In this test, we choose the same 35% representative set as our database, which474

has 6003 domains. However, we select the queries from CATH using a different475

method. We choose all of the singletons from the 35% representative set of476

CATH domains. If one domain is the only member in a homology family, it is477

called a singleton. If a topology has only one homology family, it is impossible478

to obtain homologous proteins of the singleton in that homology family, so479

we need to prune out these impossible singletons. After pruning, there are480

370 singletons out of 6003 domains in the 35% representative set. These 370481

singletons comprise the query set. For any of these singletons it is very hard482

to obtain similar proteins from other homologue families.483

To evaluate the performance of our algorithm, we use Receiver Operating484

Characteristic (ROC) [17] score as our measurement. The ROC score is the485

area under the ROC curve, which plots true positives versus true negatives in486

the retrieved set of proteins. It combines measures of sensitivity and specificity.487

A score of 1 indicates perfect separation of positives from negatives, while a488

score of 0 means that none of the selected proteins are in the same topology489

as the query.490

Two approaches are considered, one using the amino acid sequences, the other491

using the structures. The average ROC score for sequences was 26%, while492

the average the ROC score for structures was 30%. Figure 10 shows the total493

number of queries whose ROC score exceeds a given ROC score threshold (on494

the x-axis). Not surprisingly, using the structural information leads to better495

retrieval quality.496

22

5.3 Indexing the SCOP Database497

The SCOP database [30] classifies proteins according to a four level hierarchi-498

cal classification, namely, family, super-family, fold and class. SCOP release499

1.69 (from July 2005) contains a total of 25973 proteins and 70859 domains,500

spanning 2845 families, 1539 super-families, and 945 folds. Since the SCOP501

database is curated by visual inspection it is considered to be extremely accu-502

rate. For our tests the target has all the proteins from four classes of SCOP:503

all α, all β, α+β and α/β. Our dataset D contains a total of 70, 500 ASTRAL504

SCOP 1.69 genetic domains [4]. ProGreSS ran out of memory when building505

the index. For PSIST, the indexing time was 3184.4 seconds and the average506

running time for each query was about 104.7 seconds with the parameters507

w = 3, b = 2, ǫ = 0 and l = 15.508

6 Conclusion509

In this paper, we presented a new local feature representation for protein struc-510

tures. We transform the structure indexing problem into a sequence indexing511

problem by directly indexing the structure-feature sequences using suffix trees.512

The suffix trees enable rapid retrieval of maximal matching segments, which513

are chained into longer local structural alignments. Finally the matches are514

ranked according to their alignment scores. Compared to ProGreSS, our ap-515

proach can index much larger databases, and at the same time it obtains516

higher retrieval accuracy. We also show that PSIST is highly scalable due to517

the distributed, and external suffix tree indexing approach it uses; it is able518

to index about 70,500 domains from SCOP [30] in under an hour!519

23

Acknowledgment520

This work was supported in part by NSF CAREER Award IIS-0092978, DOE521

Career Award DE-FG02-02ER25538, NSF grant EIA-0103708, and NSF grant522

EMT-0432098. We thank Benjarath Phoophakdee for her help in integrating523

the TRELLIS external suffix tree method with PSIST. We also thank Tolga524

Can, Arnab Bhattacharya and Ambuj Singh for providing us the ProGreSS525

code and other assistance. Finally we thank Chris Bystroff for the many helpful526

suggestions.527

References528

[1] S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang, W. Miller, D. Lipman,529

Gapped BLAST and PSI-BLAST: a new generation of protein database search530

programs, Nucleic Acids Research, 25(17), 1997, pp. 3389-3402.531

[2] Z. Aung, W. Fu, K.L. Tan, An efficient index-based protein structure database532

searching method, Int’l Conf. on Database Systems for Advanced Applications533

(DASFAA), 2003, pp. 311-318.534

[3] A. Bhattacharya, T. Can, T. Kahveci, A.K. Singh, Y.F. Wang, ProGreSS:535

Simultaneous Searching of Protein Databases by Sequence and Structure, Pacific536

Symp. on Bioinformatics, 2004, pp. 264-275.537

[4] S.E. Brenner, P. Koehl, M. Levitt, The ASTRAL compendium for sequence and538

structure analysis, Nucleic Acids Research, 28, 2000, pp. 254-256.539

[5] O. Çamoğlu, T. Kahveci, A.K. Singh, Towards index-based similarity search for540

protein structure databases, IEEE Computer Society Bioinformatics Conference541

(CSB), 2003, pp. 148-158.542

[6] T. Can, Y.F. Wang, CTSS: a robust and efficient method for protein structure543

alignment based on local geometrical and biological features, IEEE Computer544

24

Society Bioinformatics Conference (CSB), 2003, pp. 169-179.545

[7] I. Choi, J. Kwon, S. Kim, Local feature frequency profile: A method to measure546

structural similarity in proteins, Proc. Nat’l Acad. Sci. USA, 101(11), 2004, pp.547

3797-3802.548

[8] R. Clifford, Distributed Suffix Trees, Journal of Discrete Algorithms, 3(2-4), June549

2005, pp. 176-197.550

[9] M.O. Dayhoff, R.M. Schwartz, B.C. Orcutt, A model of evolutionary change in551

proteins. In Atlas of Protein Sequence and Structure, M.O. Dayhoff (ed.), pp.552

345-352, 1978.553

[10] A.L. Delcher , S. Kasif, R.D. Fleischmann, J. Peterson, O. White, S.L. Salzberg,554

Alignment of whole genomes, Nucleic Acid Research, 27(11), 1999, pp. 2369-2376.555

[11] A.L. Delcher, A. Phillippy, J. Carlton, S.L. Salzberg, Fast algorithms for large-556

scale genome alignment and comparison, Nucleic Acid Research, 30(11), 2002, pp.557

2478-2483.558

[12] O. Dror, H.Benyamini, R. Nussinov, H. Wolfson, MASS: Multiple structural559

alignment by secondary structures, Bioinformatics, 19(12), 2003, pp. 95-104.560

[13] I. Eidhammer, I. Jonassen, W.R. Taylor, Structure comparison and structure561

patterns, Journal of Computational Biology, 7(5), 2000, pp. 685-716.562

[14] M. Farach-Colton, P. Ferragina, S. Muthukrishnan, On the sorting-complexity563

of suffix tree construction, Journal of the ACM, 47(6), 2000, pp. 987-1011.564

[15] F. Gao, M.J. Zaki, PSIST: Indexing Protein Structures using Suffix Trees, IEEE565

Computational Systems Bioinformatics Conference, 2005.566

[16] A. Godzik, The structural alignment between two proteins: is there a unique567

answer? Protein Science, 5, 1996, pp. 1325-1338.568

[17] M. Gribskov, N. Robinson, Use of receiver operating characteristic (ROC)569

analysis to evaluate sequence matching, Comput. Chem., 20, 1996, pp. 25-33.570

[18] D. Gusfield, Algorithms on strings, trees, and sequences: Computer science and571

computational biology, Cambridge University Press, New York, 1997.572

25

[19] S. Henikoff, J.G. Henikoff, Amino acid substitution matrices from protein573

blocks, Proc. Nat’l. Acad. Sci. USA, 89(22), 1992, pp. 10915-9.574

[20] L. Holm, C. Sander, Protein structure comparison by alignment of distance575

matrices, J. Mol. Biol, 233, 1993, pp. 123-138.576

[21] L. Holm, C. Sander, 3-D lookup: fast protein structure database searches at577

90% reliability, Int’l Conf. on Intelligent Systems for Molecular Biology (ISMB),578

1995, pp. 179-187.579

[22] E. Hunt, M. Atkinson, R. Irving. A database index to large biological sequences,580

Int’l Conf. on Very Large Data Bases (VLDB), 2001.581

[23] E. Hunt, M. Atkinson, R. Irving, Database indexing for large DNA and protein582

sequence collections, Int’l Conf. on Very Large Data Bases (VLDB), 2002, pp.583

256-271.584

[24] R. Japp, The top-compressed suffix tree, 21st Annual British Nat’l Conf. on585

Databases, 2004.586

[25] Y. Lamdan, H.J. Wolfson, Geometric hashing: a general and efficient model-587

based recognition scheme, Int’l Conf. on Computer Vision (ICCV), 1988, pp. 238-588

249.589

[26] T. Madej, J.F. Gibrat, S.H. Bryant, Threading a database of protein cores,590

Proteins, 23, 1995, pp. 356-369.591

[27] E.M. McCreight, A space-economic suffix tree construction algorithm, Journal592

of the Association for Computing machinery, 23(2), 1976, pp. 262-272.593

[28] C. Meek, J.M. Patel, S. Kasetty, OASIS: An online and accurate Technique for594

local-alignment searches on biological sequences, Int’l Conf. on Very Large Data595

Bases (VLDB), pp. 910-923.596

[29] K. Mizoguchi, N. Go, Comparison of spatial arrangements of secondary597

structural elements in proteins, Protein Engineering, 8, 1995, pp. 353-362.598

[30] A.G. Murzin, S.E. Brenner, T. Hubbard, C. Chothia, SCOP: a structural599

classification of proteins database for the investigation of sequences and structures,600

J. Mol. Biol., 247, 1995, pp. 536-540.601

26

[31] R. Nussinov, N. Leibowit, H.J. Wolfson, MUSTA: a general, efficient, automated602

method for multiple structure alignment and detection of common motifs:603

Application to proteins, J. Comp. Bio., 8(2), 2001, pp. 93-121.604

[32] C.A. Orengo, W.R. Taylor, SSAP: Sequential structure alignment program for605

protein structure comparisons. Methods in Enzymology, 266, 1996, pp. 617-634.606

[33] C. Orengo, A. Michie, S. Jones, D. Jones, M. Swindells, J. Thornton, CATH -607

a hierarchic classification of protein domain structures. Structure, 5(8), 1997, pp.608

1093-1108.609

[34] F. Pearl, I. Todd, A. Sillitoe, M. Dibley, O. Redfern, T. Lewis, C. Bennett, R.610

Marsden, A. Grant, D. Lee, A. Akpor, M. Maibaum, A. Harrison, T. Dallman, G.611

Reeves, I. Diboun, S. Addou, S. Lise, C. Johnston, A. Sillero, J. Thornton, and612

C. Orengo, The CATH domain structure database and related resources gene3d613

and DHS provide comprehensive domain family information for genome analysis,614

Nucleic Acids Research, 33, 2005, pp. 247-251.615

[35] W.R. Pearson, D.J. Lipman, Improved tools for biological sequence comparison,616

Proc. Nat’l Acad. Sci. USA, 85, 1988, pp. 2444-2448.617

[36] B. Phoophakdee, M. J. Zaki, TRELLIS: Genome-scale Disk-based Suffix Tree618

Indexing, ACM SIGMOD International Conference on Management of Data, June619

2007.620

[37] B. Rost, Twilight zone of protein sequence alignments, Protein Engineering,621

12(2), 1999, pp. 85-94.622

[38] K.B. Schürmann, J. Stoye, Suffix tree construction and storage with limited623

main memory, Tech. Report 0946-7831, Universität Bielefeld, 2003.624

[39] M. Shatsky, R. Nussinov, H.J. Wolfson, Multiprot - a multiple protein structural625

alignment algorithm, Proteins, 56, 2004, pp. 143-156.626

[40] I.N. Shindyalov, P.E. Bourne, Protein structure alignment by incremental627

combinatorial extension (CE) of the optimal path, Protein Engineering, 11(9),628

1998, pp. 739-747.629

27

[41] S. Tata, R. Hankins, J. Patel, Practical suffix tree construction, Int’l Conf. on630

Very Large Data Bases (VLDB), 2004, pp. 36-47.631

[42] H. Taubig, A. Buchner, J. Griebsch, A method for fast approximate searching of632

polypeptide structures in the PDB, German Conference on Bioinformatics (GCB),633

2004.634

[43] E. Ukkonen, On-line construction of suffix trees, Algorithmica 14(3), 1995, pp.635

249-260.636

[44] X. Yuan, C. Bystroff, Non-sequential Structure-based Alignments Reveal637

Topology-independent Core Packing Arrangements in Proteins, Bioinformatics,638

21(7), 2005, pp. 1010-1019.639

Author Biographies640

Feng Gao received his B.E. degree from Shandong University of Technology641

in 1995 and the M.E. degree from Harbin Institute of Technology in 1997.642

He received his Ph.D. degree in computer science from Rensselaer Polytechnic643

Institute in December, 2006. His research interests are in data mining and644

bioinformatics.645

Mohammed J. Zaki is an Associate Professor of Computer Science at RPI.646

He received his Ph.D. degree in computer science from the University of647

Rochester in 1998. His research interests focus on developing novel data mining648

techniques and their applications, especially for bioinformatics. He has pub-649

lished over 160 papers on data mining, and co-edited several books (including650

”Data Mining in Bioinformatics, Springer-London, 2005). He is currently an651

associate editor for IEEE Transactions on Knowledge and Data Engineering,652

action editor for Data Mining and Knowledge Discovery, and is on the edito-653

28

rial boards of Statistical Analysis and Data Mining, Scientific Programming,654

International Journal of Data Mining and Bioinformatics, International Jour-655

nal of Data warehousing and Mining, International Journal of Business and656

Systems Research, and The Open Artificial Intelligence Journal. He is a re-657

cipient of the NSF CAREER Award (2001) and DOE Early Career Award658

(2002). He received the ACM Recognition of Service Award in 2003, and an659

IEEE Certificate of Appreciation in 2005.660

29

Tables661

Table 1
Examples of normalized feature vectors for w = 3 and b = 10

Feature vector

d cos θ d cos θ

original 3.55 0.29 5.4 −0.23

normalized 4 6 6 3

original 4.04 0.11 5.75 −0.25

normalized 5 5 7 3

original 3.60 0.45 5.29 0.21

normalized 4 7 6 6

30

Table 2
Overall comparison of the number of proteins found from the same topology among
the top k candidates

Algorithm top4 top10 top50 top100

ProGreSS 1.17 1.52 3.81 7.33

PSIST 2.02 3.17 6.29 10.02

31

Table 3
CATH classification accuracy comparison at the topology (TO) and class (CL) level

Algorithm Topology Class

ProGreSS 7.14 % 57.1%

PSIST 50.0% 92.9 %

32

Table 4
Running time comparison

Algorithm TO% CL% top10 time(s)

ProGreSS 7.14% 57.1% 1.52 1.57

PSIST-1 33.3% 64.3% 2.57 0.57

PSIST-2 47.6% 88.0% 2.93 0.95

PSIST-3 50.0% 92.9 % 3.17 2.08

33

Figures662

O

H

Cα 1

Cα 2

A
o

A
o

A
o

R

R

C

N

N

H

123 110
o o

H

1.47

1.32

1.53
o

114

Fig. 1. Bond length and bond angles

O R

Cα

Cα
C

R

N

N

H

H

H

φ ωϕ

Fig. 2. Torsion angles

Cα

Cα

C

N

CN

θ

dp pi i+1

Fig. 3. The distance and angle between two residues

34

(2,5)

11

15

0

1

2

8 9

3

10 13 14 16 17

7
512

4 6

bxba
$

x
a

a
ba ba

a

bx
$

a
xb

ba
a

bxa
$

(1,1) (1,3) (1,0)(1,2) (2,2) (2,4) (2,0) (2,1)

(2,3)(1,4)

Fig. 4. GST for sequences S1 = xabxa and S2 = babxba

r−1

R0
TR1

TRr−1

TR0,P0
TR1,Pm−1

TR0,P

S

DISK

R0 R

TRr−1,P

T

j j

Pj

for Ri

prefix Pj in Ri

a) Sequence Partitioning

b) Suffix trees

c) Sub−trees for d) Merging

R1

T

Fig. 5. Overview of External-Memory Suffix Tree

35

Input : query Node Nq, database
Node Nd, distance ǫ,
length threshold l

Output : maximal matches set
(MMSet)

Initialization: MMSet = ∅

Procedure: MMS(Nq,Nd,ǫ,l)
foreach edge Eq out of Nq do

foreach edge Ed out of Nd do
NodeSearch(Eq, 0, Ed, 0, ǫ, l).

Fig. 6. Maximal Match Search (MMS) Algorithm

36

Input : query Edge Eq, query Edge iterator i,
database Edge Ed, database Edge iter-
ator j, distance ǫ, length threshold l

Output : maximal matches set (MMSet)

Procedure: NodeSearch(Eq,i,Ed,j,ǫ,l)
1 while i < L(Eq).len and j < L(Ed).len) do
2 if dist(L(E[i]q), L(E[j]d)) > ǫ then

updateMMS(C(Eq), C(Ed), P (E[i]q).len− 1, l).
return;

else
i=i+1, j=j+1

3 if i = L(Eq).len and j = L(Ed).len then
if isleaf(C(Eq)) or isleaf(C(Ed)) then

updateMMS(C(Eq), C(Ed), P (E[i]q).len− 1, l)).
else

MMS(C(Eq), C(Ed), ǫ, l).

4 if i = L(Eq).len and j < L(Ed).len then
if isleaf(C(Eq)) then

updateMMS(C(Eq), C(Ed), P (E[i]q).len− 1, l).
else

foreach edge EC out of C(Eq) do
NodeSearch(EC ,0,Ed,j,ǫ,l).

5 if i < L(Eq).len and j = L(Ed).len then
if isleaf(C(Ed)) then

updateMMS(C(Eq), C(Ed), P (E[j]d).len− 1, l).
else

foreach edge EC out of C(Ed) do
NodeSearch(Eq , i, EC , 0, ǫ, l).

Fig. 7. Node Search Algorithm

37

Input : query Node Nq, database Node Nd, match length m,
length threshold l

Output : maximal matches set (MMSet)

Procedure: UpdateMMS(Nq, Nd, m, l)
if m >= l then

foreach (x, a) ∈ sp-list(Nq) do
foreach (y, b) ∈ sp-list(Nd) do

if dist(Qx[a− 1], Py[b− 1]) > ǫ then
add ((x, a, a+m− 1), (y, b, b+m− 1)) to MMSet

Fig. 8. Update Maximal Match Set Algorithm

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 p

ro
te

in
s

cutoff k

PSIST
ProGreSS

Fig. 9. Number of proteins found from the same topology for different top-k value
(w = 3, b = 2, ǫ = 0 and l = 10).

38

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.2 0.4 0.6 0.8 1

nu
m

be
r

of
 q

ue
rie

s

ROC

sequence
structure

Fig. 10. Relative performance

39

