
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING43, 156–162 (1997)
ARTICLE NO. PC971339

Customized Dynamic Load Balancing for a Network of Workstations1

Mohammed Javeed Zaki, Wei Li, and Srinivasan Parthasarathy2

Computer Science Department, University of Rochester, Rochester, New York 14627

Load balancing involves assigning to each processor work pro-
portional to its performance, thereby minimizing the execution
time of a program. Although static load balancing can solve
many problems (e.g., those caused by processor heterogeneity and
nonuniform loops) for most regular applications, the transient ex-
ternal load due to multiple users on a network of workstations
necessitates a dynamic approach to load balancing. In this paper
we show that different load balancing schemes are best for differ-
ent applications under varying program and system parameters.
Therefore, application-driven customized dynamic load balanc-
ing becomes essential for good performance. We present a hybrid
compile-time and run-time modeling and decision process which
selects (customizes) the best scheme, along with automatic gen-
eration of parallel code with calls to a run-time library for load
balancing. © 1997 Academic Press

1. INTRODUCTION

Networks of workstations (NOWs) provide attractive scala-
bility in terms of computation power and memory size. With
the rapid advances in new high speed computer network tech-
nologies (e.g., ATMs), NOWs are becoming increasingly com-
petitive compared to expensive parallel machines. However,
NOWs are much harder to program than dedicated parallel
machines. For example, a multiuser environment with sharing
of CPU and network may contribute to varying performance.
Heterogeneity in processors, memory, and network are also
contributing factors.

Efficient scheduling of loops on a NOW requires finding
the appropriate granularity of tasks and partitioning them
so that each processor is assigned work in proportion to
its performance. This load balancing assignment can be
static—done at compile-time—or it may bedynamic—done
at run-time. The distribution of tasks is further complicated
if processors have differing speeds and memory resources,
or due to transient external load and nonuniform iteration
execution times. While static scheduling avoids the run-time
scheduling overhead, in a multiuser environment with load
changes on the nodes, a more dynamic approach is warranted.

1This work was supported in part by NSF Research Initiation Award (CCR-
9409120), and ARPA contract F19628-94-C-0057.

2E-mail: {zaki, wei, srini}@cs.rochester.edu.

Moreover, different schemes are best for different applications
under varying program and system parameters. Application-
driven customized load balancing thus becomes essential for
good performance. This paper addresses the above problem.
In particular we make the following contributions: (1) We
compare different strategies for dynamic load balancing in the
presence of transient external load. We examine both global vs
local and centralized vs distributed schemes. (2) We present a
hybrid compile and run-time system that automatically selects
the best load balancing scheme for a loop/task. We also
automatically transform an annotated sequential program into
a parallel program with appropriate calls to our run-time load
balancing library. (3) We present experimental results to
substantiate our approach.

The rest of the paper is organized as follows. We first
present related work (Section 2), which is followed by a
description of the load balancing schemes (Section 3). We
then present the compile-time model and decision methodol-
ogy (Section 4) and describe the hybrid compile and run-time
system (Section 5). Finally, we present the modeling and ex-
perimental results (Section 6) and our conclusions (Section 7).

2. RELATED WORK

Compile-timestatic loop scheduling has been well studied
[9, 14]. Static scheduling for heterogeneous NOWs was
proposed in [4, 5, 7]. Thetask queue modelfor dynamic
loop scheduling has targeted shared-memory machines [11,
14], while thediffusion modelhas been used for distributed-
memory machines [10]. A method for task-level scheduling in
heterogeneous programs was proposed in [13], and [2] presents
an application-specific approach to schedule individual parallel
applications.

A common approach taken for dynamic load balancing on
a workstation network is to predict future performance based
on past information. For example, [12] presents a global
distributed scheme, Dome [1] implements a global central
and a local distributed scheme, and Siegell [16] presents
a global centralized scheme with automatic generation of
parallel programs with dynamic load balancing. In all cases
the load balancing involves periodic exchanges. Both Phish
[3] and CHARM [15] implement a local distributed receiver-
initiated scheme, but they use different performance metrics.
Our approach also falls under this model. Instead of periodic

156

0743-7315/97 $25.00
Copyright © 1997 by Academic Press
All rights of reproduction in any form reserved.

CUSTOMIZED DYNAMIC LOAD BALANCING 157

exchanges of information, we have interrupt-based receiver-
initiated schemes. Moreover, we look at both central vs
distributed and local vs global approaches. Our work differs
from the above approaches in that our goal is to provide
compile and run-time support to automatically select the best
load balancing scheme for a given loop/task from among a
repertoire of different strategies.

3. DYNAMIC LOAD BALANCING (DLB)

After the initial assignment of work (the iterations of
the loop) to each processor, dynamic load balancing is
done in four basic steps: monitoring processor performance,
exchanging this information between processors, calculating
new distributions and making the work movement decision,
and actually moving the data. The data is moved directly
between the slaves, and the load balancing decisions are made
by the load balancer.

Synchronization. In our approach, a synchronization is
triggered by the first processor that finishes its portion of the
work. This processor then sends an interrupt to all the other
active slaves, which then send their performance profiles to
the load balancer.

Performance Metric. We try to predict the future perfor-
mance based on past information, which depends on the past
load function. We can use the whole past history or a portion
of it. Usually, the most recent window is used as an indication
of the future. The metric we use is the number of iterations
done per second since the last synchronization point.

Work and Data Movement.Once the load balancer has all
the profile information, it calculates a new distribution. If
the amount of work to be moved is below a threshold, then
work is not moved, since this may indicate that the system
is almost balanced, or that only a small portion of the work
still remains to be done. If there is a sufficient amount of
work that needs to be moved, we invoke aprofitability analysis
routine. This is required since work redistribution also entails
the movement of the data, and there is a trade-off between the
benefits of moving work to balance load and the cost of data
movement. We thus redistribute work as long as the potential
benefit of the new assignment results in an improvement. If it
is profitable to move work, then the load balancer broadcasts
the new distribution information to the processors. The work
and data are then redistributed between the slaves.

3.1. Load Balancing Strategies

We chose four different strategies differing along two
axes. The techniques are eitherglobal or local, based on
the information they use to make load balancing decisions,
and they are eithercentralizedor distributed, depending on
whether the load balancer is located at one master processor
(which also takes part in computation) or is distributed among
the processors, respectively. For all the strategies, the compiler

initially distributes the iterations of the loop equally among all
the processors.

Global Strategies. In the global schemes, the load balanc-
ing decision is made using global knowledge; i.e., all the pro-
cessors take part in the synchronization and send their per-
formance profiles to the load balancer. The global schemes
we consider are (1)Global Centralized DLB(GCDLB)—the
load balancer is located on a master processor (centralized).
After calculating the new distribution, the load balancer sends
instructions to the processors who have to send work to oth-
ers, indicating the recipient and the amount of work to be
moved. The receiving processors just wait till they have col-
lected the amount of work they need. (2)Global Distributed
DLB (GDDLB)—the load balancer is replicated on all the pro-
cessors. The profile information is broadcast to all the pro-
cessors, eliminating the need to send out instructions. The
receiving processors wait for work, while the sending proces-
sors ship the data.

Local Strategies. In the local schemes, the processors are
partitioned into different groups of sizeK. We used theK-
block static partitioning approach, where the load balancing
decisions are only done within a group (other approaches
such asK-nearest-neighborsor dynamic partitioning are also
possible). If processors have different speeds, we can do the
static partitioning so that each group has nearly equal aggregate
computational power. The local schemes are the same as
their global counterparts, except that profile information is
only exchanged within a group. The two local strategies we
look at are (1)Local Centralized DLB(LCDLB) and (2)Local
Distributed DLB(LDDLB).

These strategies were chosen to lie at the four extreme points
on the two axes. In the local approach, there is no exchange of
work between different groups. For LCDLB, we have only one
master load balancer, instead of one per group. Furthermore,
in the distributed strategies we have full replication of the load
balancer. Exploring the behavior of other hybrid schemes is
part of future work. We now look at the major differences
among the different strategies:

Global vs Local. For the global schemes, since global in-
formation is available at a synchronization point, the work dis-
tribution is near-optimal, and convergence is faster compared
to the local strategies. However, the amount of communica-
tion or synchronization cost is lower in the local case. For
the local case, difference in performance among the different
groups can also have a significant impact. For example, if one
group has processors with poor performance (high load), and
the other group has very fast processors (little or no load), the
latter will finish quite early and remain idle, while the former
group is overloaded. This could be remedied by providing a
mechanism for exchange of data between groups or by having
dynamic group membership.

Centralized vs Distributed.In the centralized schemes,
the central point of control could limit the scalability. The

158 ZAKI, LI, AND PARTHASARATHY

distributed schemes help solve this problem. However, in these
schemes the synchronization involves an all-to-all broadcast,
while the centralized ones require an all-to-one profile send,
followed by an one-to-all instruction send. There is also a
tradeoff between sequential load balancing decision making in
the centralized approach and the parallel (replicated) decision
making in the distributed schemes.

4. DLB MODELING AND DECISION PROCESS

We now describe our compile and run-time modeling
and decision process for choosing among the different load
balancing strategies. We present the different parameters that
may influence the performance of these schemes, followed by
the derivation of the total cost function. Finally we show how
this modeling is used.

4.1. Modeling Parameters

Processors Parameters.These give information about the
different processors available to the application. These
include: (1) number of processors (P), (2) processor speeds
(Si), the ratio of processori’s performance w.r.t. a base
processor [18], and (3) number of neighbors (K).

Program Parameters.These parameters give information
about the application. These include: (1) data size (N), (2)
number of loop iterations (), (3) work per iteration (), (4)
data communication (), indicating the aggregate number of
bytes that need to be communicated per iteration, and (5) time
per iteration () on the base processor. The time to execute
an iteration on processork is simply /Sk.

Network Parameters.These specify the properties of the
interconnection network, and include (1) network latency (),
(2) network bandwidth (), and (3) network topology. In this
paper, we assume full connectivity among the processors, with
uniform latency and bandwidth.

External Load Modeling. To evaluate our schemes, we
had to model the external load. In our approach, each
processor has an independent load function, denoted as`i .
The two parameters for generating the load function are: (1)
maximum load (m), specifying the maximum amount of load
per processor (in our experiments we setm = 5), and (2)
duration of persistence (d), indicating the amount of time
before the next load change (a uniformly generated random
number in the range [0,m]); i.e., we have a discrete random
load function, with a maximum amplitude given bym, and the
discrete block size given byd. A small value ford implies a
rapidly changing load, while a large value indicates a relatively
stable load. We usèi (k) to denote the load on processori
during thekth duration of persistence.

4.2. Modeling—Total DLB Cost

We now present the cost model for the various strategies.
The cost of a scheme can be broken into the following
categories: cost of synchronization, cost of calculating new

distribution, cost of sending instructions, and cost of data
movement (see [19] for a more detailed study).

Cost of Synchronization.The synchronization involves the
sending of interrupt from the fastest processor to the other
processors, which then send their performance profile to the
load balancer. The cost for the different strategies is given
below (for the local caseP = K): (1) GCDLB: ξ = one-to-
all(P) + all-to-one(P), and (2) GDDLB:ξ = one-to-all(P) +
all-to-all(P2).

Cost of Distribution Calculation. This cost is usually quite
small, and we denote it asδ.

Cost of Data Movement.Let χ i(j) denote the iteration
assignment after thejth synchronization, andσ i(j) theaverage
effective speed[19], for processori during the jth and the
previous synchronization. Let be the time for one iteration.
The time taken by the fastest processorf to complete its work
is, t = (χ f (j − 1) ·)/σ f (j). The number of iterations
remaining on processori is simply its old distribution minus
the iterations done in timet; i.e., γi (j) = χi (j − 1)− χ f (j −
1) · (σi (j)/σ f (j)). The total amount of work left among all
the processors is then given as�(j) = � γ i(j). We distribute
this work proportionally to the average effective speed of the
processors to getχi (j) = (σi (j)/

∑P
k=1 σk(j)) · 0(j).

The initial valuesχ i(0) = /P, and γ i(0) = χ i(0), ∀ i ∈
1, · · · , P, give us recurrence functions which can be solved
to obtain the new distribution at each synchronization point.
The termination condition occurs when there is no more
work left to be done. Along with the number of iterations
moved (α(j) = 1

2 (
∑P

i=1 |γi (j) − χi (j)|)), and the number
of messages required to do this (β(j)), the total cost of data
movement is thenκ(j) = β(j) · + α(j) · (/).

Cost of Sending Instructions.This applies only to the
centralized schemes, since the load balancer sends the work
and data movement instructions to the processors. This cost
is simplyψ(j) = β(j) .

Using the above analysis, the per group cost isg =
ηg(ξ + δ) +∑ηg

j=1[κg(j) + ψg(j)], where η is the number
of synchronizations andg the group number. The total cost
for the DLB schemes is simply the maximum group cost,=
MAX g{ g} (for global schemesg = 1).

4.3. Decision Process—Using the Model

Initially at run-time, no strategy is chosen for the applica-
tion. Work is partitioned equally among all the processors, and
the program is run till the first synchronization point. During
this time a significant amount of work has been accomplished;
namely, at least 1/P of the work has been done. At this time
we also know the load function seen on all the processors so
far and the average effective speed of the processors. This
load function, combined with all the other parameters, can be
plugged into the model to obtain quantitative information on
the behavior of the different schemes. This information is then
used to commit to the best strategy after this stage. This also

CUSTOMIZED DYNAMIC LOAD BALANCING 159

suggests a more adaptive method for selecting the scheme,
where we refine our decision as more information on the load
is obtained at later points. This is part of future work.

5. COMPILER AND RUN-TIME SYSTEMS

Since all the information used by the modeling process,
such as the number of processors, processor speeds, data
size, number of iterations, and iteration cost, and particularly
the load function, may not be known at compile time, we
propose a hybrid compile and run-time modeling and decision
process. The compiler collects all necessary information and
may also help to generate symbolic cost functions for the
iteration cost and communication cost (some of the parameter
values can also be obtained by performance prediction [17]).
The actual decision making for committing to a scheme is
deferred until run-time when we have complete information
about the system.

Run-Time System.The run-time system consists of a uni-
form interface to the DLB library for all the strategies, the ac-
tual decision process for choosing among the schemes using
the above model, and it consists of data movement routines to
handle redistribution. Load balancing is achieved by placing
appropriate calls to the DLB library to exchange information
and redistribute work. The compiler, however, generates code
to handle this at run-time.

Code Generation. For the source-to-source code transla-
tion from a sequential program to a parallel program using
PVM [6] for message passing, with DLB library calls, we use
the SUIF compiler from Stanford University. The input to the
compiler consists of the sequential version of the code, with
annotations to indicate the data decomposition for the shared
arrays, and to indicate the loops which have to be load bal-
anced. The compiler generates code for setting up the master
processor. This involves broadcasting initial configuration in-
formation parameters, such as number of processors, size of
arrays, and task IDs, calls to the DLB library for the initial
partitioning of shared arrays, final collection of results and
DLB statistics (such as number of redistributions, number of
synchronizations, and amount of work moved), and a call to a
special routine which handles the first synchronization, along
with the modeling and strategy selection. It also handles sub-
sequent synchronizations for the centralized schemes. The
arrays are initially partitioned equally based on the data dis-
tribution specification (BLOCK, CYCLIC, or WHOLE). We
currently supportdo-all loops only, with data distribution along
one dimension (row or column). The compiler must also gen-
erate code for the slave processors, which perform the actual
computation. This step includes changing the loop bounds to
iterate over the local assignment, and inserting calls to the
DLB library checking for interrupts, for sending profile in-
formation to the load balancer (protocol dependent), for data
redistribution, and if local work stack has run out, for issuing
an interrupt to synchronize.

6. EXPERIMENTAL RESULTS

All the experiments were performed on a network of
homogeneous Sun (Sparc LX) workstations interconnected via
an Ethernet LAN (our model, however, can easily handle
processor heterogeneity). External load was simulated as
described in Section 4. PVM [6] was used to parallelize
the following applications: (1)Matrix Multiplication (MXM)
and (2) TRFD, from the Perfect Benchmark suite [8]. The
overhead of the DLB schemes is almost negligible, since
they are receiver-initiated, and in the absence of external
load, all processors finish work at roughly the same time,
usually requiring only one synchronization. The network
characterization under PVM was done off-line. We obtained
the latency (2414.5µs), the bandwidth (0.96 MB/s), and
models for the different communication patterns (e.g., all-to-
one, one-to-all, all-to-all). The experiments were run withP
= 4, 16, and withK = 2, 8, respectively. For more detailed
results, see [19].

6.1. MXM: Matrix Multiplication

Matrix multiplication is given asZ = X · Y (X is a n × r
and Y an r × m matrix). We parallelize the outermost loop
by distributing the rows ofZ and X and replicatingY on the
processors. Only the rows ofX need to be communicated
when we redistribute work (= r). The work per iteration is
uniform and quadratic. We ran experiments withm = 400 for
different values ofr andn.

Figure 1 shows the execution time for the different DLB
schemes, normalized against the case with no dynamic load
balancing (with iterations equally partitioned among the pro-
cessors). We observe that the global distributed (GDDLB)
strategy is the best, followed closely by the global central-
ized (GCDLB) scheme. Local distributed (LDDLB) also does
better than local centralized (LCDLB). Moreover, the global
schemes are better than the local schemes. However, on 16
processors the gap between the globals and locals becomes
smaller. From our earlier discussion (Section 3.1), local strate-
gies incur less communication overhead than global strategies,
but the redistribution is not optimal. From the results, it can
be observed that if the computation cost (work per iteration)
versus the communication cost (synchronization cost, redistri-
bution cost) ratio is large, global strategies are favored. This
tilts toward the local strategies as this ratio decreases. The
factors that influence this ratio are the work per iteration, the
number of iterations, and the number of processors. More pro-
cessors increase the synchronization cost and should favor the
local schemes. However, in the above experiment there is suf-
ficient work to outweigh this trend, and globals are still better
for 16 processors. Comparing across distributed and central
schemes, the centralized master, and sequential redistribution
and instruction send, add sufficient overhead to the centralized
schemes to make the distributed schemes better. LCDLB in-
curs additional overhead due to a delay factor [19], and also
due to context switching between the load balancer and the
computation slave.

160 ZAKI, LI, AND PARTHASARATHY

FIG. 1. Matrix multiplication (P = 4, 16).

FIG. 2. TRFD (P = 4, 16).

CUSTOMIZED DYNAMIC LOAD BALANCING 161

6.2. TRFD

TRFD has two main computation loops, which are load bal-
anced independently, and an intervening sequential transpose.
We parallelized the outermost loop of both the loop nests.
There is only one major array of size [n(n + 1)/2] · [n(n +
1)/2], used in both the loops. The loop iterations operate on
different columns of the array (thus = [n(n + 1)/2], the row
size). The first loop nest (L1) is uniform, withn(n + 1)/2 it-
erations, and work linear in the array size. The second loop
nest has triangular work per iteration, which is made uniform
using thebitonic schedulingtechnique [5]. The resulting loop
(L2) hasn(n + 1)/4 iterations, with linear work. We ran ex-
periments withn = 30, 40, 50 (i.e., for array sizes of 465, 820,
and 1275, respectively).

On four processors, as the data size increases we tend
to shift from LDDLB to GDDLB (see Fig. 2). Since the
amount of work per iteration is small, the computation vs
communication ratio is small, favoring the local distributed
scheme on small data sizes. With increasing data size,
this ratio increases, and GDDLB does better. Among the
centralized schemes GCDLB is better than LCDLB. On

16 processors, however, we find that LDDLB is the best,
followed by GDDLB. Among the centralized strategies also
LCDLB does better than GCDLB, since the computation vs
communication ratio is small. The distributed schemes are
thus better than the centralized ones.

6.3. Modeling Results: MXM & TRFD

Table I shows the actual and the predicted best strategy
under varying parameters for MXM and TRFD. We observe
that the experimental and the predicted best strategy match in
most of the cases. For the cases where our prediction differs,
the predicted scheme is the second best in the actual run. We
present the difference between the two strategies (in terms of
time, and as a percentage) in the actual run for these cases. It
can be seen that the differences in execution time between the
two schemes are quite small at these points. While the table
presents the best scheme over several runs, in actuality, one
or the other scheme may do better from one run to another,
which makes the prediction task extremely difficult. Moreover,
this usually happens at the crossover point along the two axes
under consideration (local↔ global or central↔ distributed).

TABLE I
MXM and TRFD: Actual vs Predicted Best DLB Scheme

Parameters Difference

Program P Data size Actual best Predicted best Time(s) % Diff

M×M 4 n = 400, r = 400,m = 400 GD GD

4 n = 400, r = 800,m = 400 GD GD

4 n = 800, r = 400,m = 400 GD GD

4 n = 800, r = 800,m = 400 GD GD

16 n = 1600,r = 400,m = 400 GD GC 1.2 s 0.7%

16 n = 1600,r = 800,m = 400 GC GD 3.7 s 1.1%

16 n = 3200,r = 400,m = 400 GD GD

16 n = 3200,r = 800,m = 400 GD GD

TRFD 4 n = 30(465), L1 LD GD 0.9 s 8.2%

4 n = 40(820), L1 LD LD

4 n = 50(1275), L1 LD LD

4 n = 30(465), L2 LD GD 0.2 s 3.5%

4 n = 40(820), L2 GD LD 1.5 s 6.2%

4 n = 50(1275), L2 GD GD

16 n = 30(465), L1 LD LD

16 n = 40(820), L1 LD LD

16 n = 50(1275), L1 LD LD

16 n = 30(465), L2 LD LD

16 n = 40(820), L2 LD LD

16 n = 50(1275), L2 LD LD

162 ZAKI, LI, AND PARTHASARATHY

For example, for loop2 (L2) in TRFD onP = 4, as the data size
increases the trend starts shifting from LDDLB to GDDLB.

7. CONCLUSIONS

In this paper we analyzed bothglobalandlocal, andcentral-
izedanddistributedinterrupt-based receiver-initiated dynamic
load balancing strategies on a network of workstations with
transient external load per processor. We showed that differ-
ent strategies are best for different applications under varying
parameters, such as the number of processors, data size, it-
eration cost, and communication cost. Presenting a hybrid
compile and run-time process, we showed that it is possible to
customize the dynamic load balancing scheme for a program.
Given the host of dynamic scheduling strategies proposed in
the literature, such analysis would be useful to a parallelizing
compiler. To take the complexity away from the programmer,
we also automatically transform an annotated sequential pro-
gram to a parallel program with the appropriate calls to the
run-time dynamic load balancing library.

REFERENCES

1. Arabe, J.,et al. Dome: Parallel programming in a heterogeneous multi-
user environment. CMU-CS-95-137 30786, Carnegie Mellon University,
Apr. 1995.

2. Berman, F.,et al. Application-level scheduling on distributed heteroge-
neous networks.Supercomputing(Nov. 1996).

3. Blumofe, R. D., and Park, D. S. Scheduling large-scale parallel
computations on network of workstations.3rd IEEE International
Symposium on High-Performance Distributed Computing.Aug. 1994.

4. Cheung, A. L., and Reeves, A. P. High performance computing on a
cluster of workstations.1st IEEE International Symposium on High-
Performance Distributed Computing.July 1992.

5. Cierniak, M., Li, W., and Zaki, M. J. Loop schedulng for heterogeneity.
In 4th IEEE International Symposium on High-Performance Distributed
Computing[also TR 540], U. Rochester. Aug. 1995.

6. Geist, A.et al. PVM user guide and reference manual. TM12187, Oak
Ridge National Laboratory, May 1993.

7. Grimshaw, A. S.,et al. Metasystems: An approach combining parallel
processing and heterogeneous distributed computing systems.J. Parallel
Distrib. Comput.21, 3 (1994).

8. Kipp, L. Perfect Benchmarks Doc. Suite 1.CSRD, Univ. Illinois,
Urbana–Champaign, Oct. 1993.

9. Li, W., and Pingali, K. Access normalization: Loop restructuring for
NUMA compilers. ACM Trans. Comput. Systems11, 4 (Nov. 1993).

10. Lin, F., and Keller, R. The gradient model load balancing method.IEEE
Trans. Software Engng.13 (Jan. 1987).

11. Markatos, E., and LeBlanc, T. Using processor affinity in loop
scheduling on shared-memory multiprocessors.IEEE Trans. Parallel
Distrib. Systems5, 4 (Apr. 1994).

12. Nedeljkovic, N., and Quinn, M. J. Data-parallel programming on
a network of heterogeneous workstations.1st IEEE International
Symposium High Performance Distributed Computing.1992.

13. Nishikawa, H., and Steenkiste, P. A general architecture for load bal-
ancing in a distributed-memory environment.13th IEEE International
Conference on Distributed Computing.May, 1993.

14. Polychronopoulos, C. D.Parallel Programming and Compilers.Kluwer
Academic, 1988.

15. Saletore, V. A., Jacob, J., and Padala, M. Parallel computations on
the charm heterogeneous workstation clusters.3rd IEEE International
Symposium on High-Performance Distributed Computing.1994.

16. Siegell, B. Automatic generation of parallel programs with dynamic
load balancing for a network of workstations. CMU-CS-95-168 30880,
Carnegie Mellon Univ., May 1995.

17. Yan, Y., Zhang, X., and Song. Y. An effective and practical performance
prediction model for parallel computing on non-dedicated heterogeneous
NOW. J. Parallel Distrib. Comput.38, 1 (1996).

18. Zaki, M., Li, W., and Cierniak, M. Performance impact of processor
and memory heterogeneity in a NOM.4th Heterogeneous Computing
Wkshp[also TR574], Univ. Rochester, 1995.

19. Zaki, M., Li, W., and Parthasarathy, S. Customized dynamic load
balancing for a NOW.5th IEEE International Symposium on High-
Performance Distributed Computing[also TR 602], Univ. Rochester,
1996.

MOHAMMED JAVEED ZAKI is a Ph.D. candidate in computer science at
the University of Rochester. He received his M.S. in computer science from
the University of Rochester in 1995. His research interests include parallel
data mining, heterogeneous computing, and parallelizing compilers.

WEI LI has been an assistant professor in computer science at the
University of Rochester since he received his Ph.D. in computer science
from Cornell University in 1993. His research interests include compilers for
parallel architectures, programming languages, distributed systems, parallel
data mining, and scientific computing. He receivd a NSF Research Initiation
Award in 1994 and a best paper award in ASPLOS’92.

SRINIVASAN PARTHASARATHY is a Ph.D. candidate in computer
science at the University of Rochester. He received an M.S. in electrical
engineering from the University of Cincinnati in 1994. He also recevied
an M.S. in computer science from the University of Rochester in 1996.
His research interests include compilers for parallel and distributed systems,
distributed shared memory architectures, and data-mining.

Received March 1, 1996; revised April 1, 1997; accepted April 30, 1997

