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Abstract Clustering is one of the fundamental data mining tasks. Many different clustering
paradigms have been developed over the years, which include partitional, hierarchical, mix-
ture model based, density-based, spectral, subspace, and so on. The focus of this paper is on
full-dimensional, arbitrary shaped clusters. Existing methods for this problem suffer either
in terms of the memory or time complexity (quadratic or even cubic). This shortcoming has
restricted these algorithms to datasets of moderate sizes. In this paper we propose SPARCL,
a simple and scalable algorithm for finding clusters with arbitrary shapes and sizes, and it
has linear space and time complexity. SPARCL consists of two stages—the first stage runs a
carefully initialized version of the Kmeans algorithm to generate many small seed clusters.
The second stage iteratively merges the generated clusters to obtain the final shape-based
clusters. Experiments were conducted on a variety of datasets to highlight the effectiveness,
efficiency, and scalability of our approach. On the large datasets SPARCL is an order of
magnitude faster than the best existing approaches.

Keywords Clustering · Spatial · Kmeans · Hierarchical · Linear time

1 Introduction

Given a set of n objects in d-dimensional space, cluster analysis assigns the objects into k
groups such that each object in a group is more similar to other objects in its group as com-
pared to objects in other groups. This notion of capturing similarity between objects lends
itself to a variety of applications. As a result, cluster analysis plays an important role in almost
every area of science and engineering, including bioinformatics [21], market research [34],
privacy and security [23], image analysis [38], web search [43] and so on.
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Due to the large number of potential application domains, many flavors of clustering
algorithms have been proposed [22,31]. Based on the mode of operation, they can be
broadly categorized as variance-based, hierarchical, partitional, spectral, probabilistic/fuzzy
and density-based. However, the common task among all algorithms is that they compute the
similarities (distances) among the data points to solve the clustering problem. The definition
of similarity or distance varies based on the application domain. For instance, if the data
instance is modeled as a point in d-dimensional linear subspace, Euclidean distance gener-
ally works well. However, in applications like image segmentation or spatial data mining,
Euclidean distance based measure does not generate the desired clustering solution. Clusters
in these applications generally are dense set of points that can represent (physical) objects of
arbitrary shapes. The Euclidean distance measure fails to isolate those objects since it favors
compact and spherical shaped clusters. In this paper, our focus is on this arbitrary-shape
clustering task.

Shape-based clustering remains of active interest, and several previous approaches have
been proposed; spectral [38], density-based (DBSCAN [13]), and nearest-neighbor graph
based (Chameleon [24]) approaches are the most successful among the many shape-based
clustering methods. However, they either suffer from poor scalability or are very sensitive
to the choice of the parameter values. On the one hand, simple and efficient algorithms
like Kmeans are unable to mine arbitrary-shaped clusters, and on the other hand, clustering
methods that can cluster such datasets are not very efficient. Considering the data gener-
ated by current sources (e.g., geo-spatial satellites) there is a need for efficient algorithms in
shape-based clustering domain that can scale to much larger datasets.

In this paper, we propose a simple, yet highly scalable algorithm for mining clusters of
arbitrary shapes, sizes and densities. We call our new algorithm SPARCL (which is an ana-
gram of the bold letters in ShAPe-based CLusteRing). In order to achieve this we exploit
the linear (in the number of objects) runtime of Kmeans based algorithms while avoiding
its drawbacks. Recall that Kmeans based algorithms assign all points to the nearest cluster
center; thus the center represents a set of objects that collectively approximates the shape of
a d dimensional hypersphere. When the number of centers are few, each such hypersphere
covers a larger region, thus leading to incorrect partitioning of a dataset with arbitrary shapes.
Increasing the number of centers reduces the region covered by each center. SPARCL exploits
this observation by first using a smart strategy for sampling objects from the entire dataset.
These objects are used as initial seeds of the Kmeans algorithm. On termination, Kmeans
algorithm yields a set of centers. In the second step, a similarity metric for each pair of cen-
ters is computed. The similarity graph representing pairwise similarity between the centers
is partitioned to generate the desired final number of clusters. To summarize we made the
following key contributions in this work:

1. We define a new function that captures similarity between a pair of cluster centers, which
is suitable for arbitrary shaped clusters.

2. We propose a new, highly scalable algorithm, SPARCL, for arbitrary shaped clusters,
that combines partitional and hierarchical clustering in the two phases of its operation.
The overall complexity of the algorithm is linear in the number of objects in the dataset.

3. SPARCL takes only two parameters—number of initial centers and the number of final
clusters expected from the dataset. Note that the number of final clusters to find is typi-
cally a hyper-parameter of most clustering algorithms.

4. We perform a variety of experiments on both real and synthetic shape clustering datasets
to show the strengths and weaknesses of our approach. We show that our method is an
order of magnitude faster than the best current approaches.
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The rest of the paper is organized as follows. The next section provides a comprehensive
outline of related work. Section 3 describes the SPARCL approach followed by an experi-
mental evaluation of our proposed method in Sect. 4.

2 Related work

A comprehensive survey of arbitrary shape clustering with a focus toward spatial clustering
is provided in [31]. Here we review some of the pioneer methods.

DBSCAN [13] was one of the earliest algorithms that addressed arbitrary shape cluster-
ing. It defines two parameters—eps which is the radius of the neighborhood of a point, and
MinPts which is the minimum threshold for the number of points within eps radius of a point.
A point is labeled as a core point if the number of points within its eps neighborhood is at
least MinPts. Based on the notion of density-based reachability, a cluster can be defined as
the maximal set of reachable core points, i.e., such that each core point is within the eps
neighborhood of at least one other core point in the cluster. Other (border) points that are
with the neighborhood of core points are also added to the same cluster (ties are broken arbi-
trarily or in the order of visitation). Points that are not core and not reachable from a core are
labeled as noise. The main advantages of DBSCAN are that is does not require the number
of desired clusters as an input, and it explicitly identifies outliers. On the flip side, DBSCAN
can be quite sensitive to the values of eps and MinPts, and choosing correct values for these
parameters is not that easy. DBSCAN is also an expensive method, since in general it needs
to compute the eps neighborhood for each point, which takes O(n2) time, especially with
increasing dimensions; this time can be brought down to O(n log n) in lower dimensional
spaces, via the use of spatial index structures like R∗-trees.

DENCLUE [19,20] is a density based clustering algorithm based on kernel density
estimation. DENCLUE models the impact of a data point within its neighborhood as an
influence function. The influence function is defined in terms of the distance between the two
points. The density function at a point in the data space is expressed in terms of the influence
functions acting on that point. Clusters are determined by identifying density attractors which
are local maximas of the density function. The density attractors are identified by performing
a gradient ascent type algorithm over the space of influence functions. Both center-defined
and arbitrary-shaped clusters can be identified by finding the set of points that are density
attracted by a density attractor. DENCLUE shares some of the same limitations of DBSCAN,
namely, sensitivity to parameter values, and its complexity is O(n log m + m2), where n is
the number of points, and m is the number of populated cells. In the worst case m = O(n),
and thus its complexity is also O(n2). The recent DENCLUE2.0 [18] method practically
speeds up the time by adjusting the step size in the hill climbing approach. An extension [11]
of DENCLUE, proposes a grid approximation to deal with large datasets.

The arbitrary shape clustering problem has also been modeled as a hierarchical clustering
task. For example, Kaufman and Rousseeuw [26] proposed one of the earliest agglomerative
method that can handle arbitrary shape clusters, which they termed as elongated clusters.
They compute the similarity between two clusters A and B as the smallest distance between
a pair of objects from A and B, respectively. This method is computationally very expensive
due to the expensive similarity computations, with a complexity of O(n2 log n). Moreover,
presence of outlier points between the boundary region of two distinct clusters can cause
wrong merging decisions. In a recent work [27], the authors propose a hierarchical clustering
algorithm based on an approximate nearest neighbor search—Locality-Sensitive Hashing.
This approach considerably improves the time complexity of the algorithm.
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CURE [16] is another hierarchical agglomerative clustering algorithm that handles
shape-based clusters. It follows the nearest neighbor distance to measure the similarity
between two clusters as in [26], but reduces the computational cost significantly. The reduc-
tion is achieved by taking a set of representative points from each cluster and engaging only
these points in similarity computations. To ensure that the representative points are not out-
lier points, the representatives are pulled in, by a predetermined factor, toward the mean of
the cluster. CURE is still expensive with its quadratic complexity, and more importantly, the
quality of clustering depends enormously on the sampling quality. In [24], the authors show
several examples where CURE failed to obtain the desired shape-based clusters.

CHAMELEON [24] also formulates the shape-based clusters as a hierarchical clustering
problem over a graph partitioning algorithm. A m nearest neighbor graph is generated for the
input dataset, for a given number of neighbors m. This graph is partitioned into a predefined
number of sub-graphs (also referred as sub-clusters). The partitioned sub-graphs are then
merged to obtain the desired number of final k clusters. CHAMELEON introduces two mea-
sures—relative inter-connectivity and relative closeness—that determine if a pair of clusters
can be merged. Relative interconnectivity is defined as ratio of the total edge cut between
the two sub-clusters and the mean internal connectivity of the sub-clusters. The internal con-
nectivity is defined as the weight of the cut that divides a sub-cluster into equal parts. The
relative interconnectivity measure ensures that sub-clusters having a small bridge connecting
them are not merged together. Relative closeness is the ratio of the absolute closeness to the
internal closeness of the two sub-clusters, where absolute closeness is the mean edge cut
between the two clusters, and the internal closeness of a cluster is the average edge cut that
splits it into two equal parts. Relative closeness ensures that the two merged sub-clusters
have the same density. Moreover, this measure ensures that the distance between the two
sub-clusters is comparable with their internal densities. Sub-clusters having high relative
closeness and relative interconnectivity are merged. CHAMELEON is robust to the presence
of outliers, partly due to the m-nearest neighbor graph which eliminates these noise points.
This very advantage, turns into an overhead when the dataset size becomes considerably
large, since computing the nearest neighbor graph can take O(n2) time as the dimensions
increase. BIRCH [44] is another hierarchical clustering algorithm that can identify clusters
with arbitrary shapes.

Proposed in the pattern recognition community, the spectral clustering approach of Shi and
Malik [38] is also capable of handling arbitrary shaped clusters. They represent the data points
as a weighted undirected graph, where the weights denote the similarities. They formulate
the arbitrary shape clustering problem as a normalized min-cut problem, and approximate it
by computing the eigen-vectors of the graph Laplacian matrix. The basic idea is to partition
the similarity graph based on the second largest eigenvector of the Laplacian matrix. If the
desired number of clusters are not obtained the subgraphs are further partitioned using the
lower eigenvectors as approximations for the second eigenvector of the subgraphs. The intu-
itive reason of its success is its alternate similarity measure which is shape-insensitive. Meila
and Shi [30] shows that the similarity between two data points in the normalized-cut frame-
work is equivalent to their connectedness with respect to the random walks in graph, where
the transition probability between nodes is inversely proportional to the distance between the
pair of points. Although, based on strong theoretical foundation, this method, unfortunately,
is not scalable, due to its high computational time and space complexity. It requires O(n3)

time to solve the Eigensystem of the symmetric Laplacian matrix, and storing the matrix also
requires at least �(n2) memory. There are some variations of this general approach [42], but
all suffer from the poor scalability problem.
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A wavelet based shape clustering method was also proposed by Sheikholeslami et al.
[37]. In [9], the authors propose a two stage EM algorithm wherein a larger set of parameters
l (l > k) is initialized, then subsequently pruned before a second round of EM is run on
the remaining set. Their approach though different, comes close in essence to our proposed
method. Note that our focus in this paper is on full-space shape-based clusters. However,
when low dimension data with specific shapes are embedded in a high dimensional space as
manifolds, subspace shape clustering can be useful. The current approaches to handle such
cases is to unfold the manifold to reduce the dimensionality and then to apply clustering
algorithms on the new representation [39]. We refer the reader to Lee and Verleysen [28] for
more details on nonlinear dimensionality reduction.

Another line of research from the neural networks community has a distant resemblance
with our work. In [2,29], the authors propose a method for representing the topology of a
manifold by a grid network.

Our proposed method SPARCL is based on the well known family of Kmeans based
algorithms, which are widely popular for their simplicity and efficiency [41]. Kmeans based
algorithms operate in an iterative fashion. From an initial set of k selected objects, the algo-
rithm iteratively refines the set of representatives with the objective of minimizing the mean
squared distance (also known as distortion) from each object to its nearest representative.
Kmeans based methods are characterized by O(n d k e) time complexity, where e repre-
sents the number of iterations the algorithm runs before convergence. They are related to
Voronoi tessellation, which leads to convex polytopes in metric spaces [33]. As a conse-
quence, Kmeans based algorithms are unable to partition spaces with non-spherical clusters
or in general arbitrary shapes. However, in this paper we show that one can use Kmeans type
algorithms to obtain a set of seed representatives, which in turn can be used to obtain the final
arbitrary shaped clusters. In this way, SPARCL retains the linear time complexity in terms
of the data points, and is surprisingly effective as well, as we discuss next.

3 The SPARCL approach

In this work we focus on a scalable algorithm for obtaining clusters with arbitrary shapes.
In order to capture arbitrary shapes, we want to divide such shapes into convex pieces. This
approach is motivated by the concept of convex decomposition [35] from computational
geometry.

Convex decomposition Due to the simplicity of dealing with convex shapes, the problem
of decomposing non-convex shapes into a set of convex shapes has been of great interest
in the area of computational geometry. A convex decomposition is a partition, if the poly-
hedron is decomposed into disjoint pieces, and it is a cover, if the pieces are overlapping.
While algorithms for convex decomposition are well understood in 2-dimensional space,
the same cannot be said about higher dimensions [7]. In this work, we approximate the
convex decomposition of an arbitrary shape cluster by the convex polytopes generated by
the Kmeans centers that are within that cluster. Depending on the complexity of the shape,
higher number of centers may be required to obtain a good approximation of that shape.
Essentially, we can reformulate the original problem of identifying arbitrary shaped clusters
in terms of a sampling problem. Ideally, we want to minimize the number of centers, with the
constraint that the space covered by each center is a convex polytope. One can immediately
identify this optimization problem as a modified version of the facility location problem. In
fact, this optimization problem is exactly the Minimum Consistent Subset Cover Problem
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Fig. 1 The SPARCL algorithm

(MCSC) [15]. Given a finite set S and a constraint, the MCSC problem considers finding a
minimal collection T of subsets such that

⋃
C∈T C = S, where C ⊂ S, and each C satisfies

the given constraint. In our case, S is the set of points and c the convex polytope constraint.
The MCSC problem is NP-hard, and thus finding the optimal centers is hard. We thus rely
on the iterative Kmeans type method to approximate the centers.

3.1 The SPARCL algorithm

The pseudo-code for the SPARCL algorithm is given in Fig. 1. The algorithm takes two
input parameters. The first one k is the final number of clusters desired. We refer to these
as the natural clusters in the dataset, and like most other methods, we assume that the user
has a good guess for k. In addition SPARCL requires another parameter K , which gives the
number of seed centers to consider to approximate a good convex decomposition; we also
refer to these seed centers as pseudo-centers. Note that k < K � n = |D|. Depending on
the variant of Kmeans used to obtain the seeds centers, SPARCL uses a third parameter mp,
denoting the number of nearest neighbors to consider during a smart initialization of Kmeans
that avoids outliers as centers. The random initialization based Kmeans does not require the
mp parameter.

SPARCL operates in two stages. In the first stage we run the Kmeans algorithm on the
entire dataset to obtain K convex clusters. The initial set of centers for the Kmeans algorithm
may be chosen randomly, or in such a manner that they are not outlier points. Following the
Kmeans run, the second stage of the algorithm computes a similarity metric between every
seed cluster pair. The resulting similarity matrix can act as input either for a hierarchical or
a spectral clustering algorithm. It is easy to observe that this two-stage refinement employs a
cheaper (first stage) algorithm to obtain a course grained clustering. The first phase has com-
plexity O(ndKe), where d is the data dimensionality and e is the number of iterations Kmeans
takes to converge, which is linear in n. This approach considerably reduces the problem space
as we only have to compute O(K 2) similarity values in the second phase. For the second
phase we can use a more expensive algorithm to obtain the final set of k natural clusters.

3.1.1 Phase 1: Kmeans algorithm

The first stage SPARCL is shown in steps 1–2 of Fig. 1. This stage involves running the
Kmeans algorithm with a set of initial centers Cinit (line 1), until convergence, at which point
we obtain the final seed clusters Cseed. There is one subtlety in this step; instead of using the
mean point in each iteration of Kmeans, we actually use an actual data point in the cluster that
is closest to the center mean. We do this for two reasons. First, if the cluster centers are not
actual points in the dataset, chances are higher that points from two different natural clusters
would belong to a seed cluster, considering that the clusters are arbitrarily shaped. When this
happens, the hierarchical clustering in the second phase would merge parts of two different
natural clusters. Second, our approach is more robust to outliers, since the mean point can
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Fig. 2 Effect of choosing mean
or actual data point. a Using mean
point, b Using actual data point
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get easily influenced by outliers. Figure 2a outlines an example. There are two natural clus-
ters in the form of the two rings. When we run a regular Kmeans, using the mean point as
the center representative, we obtain some seed centers that lie in empty space, between the
two ring-shaped clusters (e.g., 4, 5, and 7). By choosing an actual data point, we avoid the
“dangling” means problem, and are more robust to outliers, as shown in Fig. 2b.

This phase starts by selecting the initial set of centers for the Kmeans algorithm. In order
for the second stage to capture the natural clusters in the datasets, it is important that the
final set of seed centers, Cseed, generated by the Kmeans algorithm satisfy the following
properties:

1. Points in Cseeds are not outlier points,
2. Representatives in Cseed are spread evenly over the natural clusters.

In general, random initialization is fast, and works well. However, selecting the centers
randomly can violate either of the above properties, which can lead to ill-formed clusters
for the second phase. Figure 3 shows an example of such a case. In Fig. 3a seed center 1 is
almost an outlier point. As a result the members belonging to seed center 1 come from two
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Fig. 3 Bad choice of cluster centers. a Randomly selected centers, b Natural cluster split by bad center
assignment

different natural clusters. This results in the small (middle) cluster merging with the larger
cluster to its right.

In order to avoid such cases and to achieve both the properties mentioned above we utilize
our recently proposed outlier and density insensitive based selection of initial centers [17].
Let us take a quick look at other initialization methods before discussing our Local Outlier
Factor based initialization technique.

Kmeans initialization methods Although there are numerous initialization methods, we
briefly discuss some of the key ones. One of the first schemes of center initialization was
proposed by Ball and Hall [4]. They suggested use of a user defined threshold, d , to ensure
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that the seed points are well apart from each others. The first point is chosen as a seed, and
for any subsequent point considered, it is selected as a seed if it is at least d distance apart
from already chosen seeds, until k seeds are found. With a right choice of the value of d , this
approach can restrict the splitting of natural clusters, but guessing a right value of d is very
difficult and the quality of seeds depends on the order in which the data points are considered.

Astrahan [1] suggested using two distance parameters, d1 and d2. The method first com-
putes the density of each point in the dataset, which is given as the number of neighboring
points within the distance d1, and it then sorts the data points according to decreasing value
of density. The highest density point is chosen as the first seed. Subsequent seed point are
chosen in order of decreasing density subject to the condition that each new seed point be at
least at a distance of d2 from all other previously chosen seed points. This step is continued
until no more seed points can be chosen. Finally, if more than k seeds are generated from
the above approach, hierarchical clustering is used to group the seed points into the final k
seeds. The main problem with this approach is that it is very sensitive to the values of d1

and d2. Furthermore, users have very little knowledge regarding the good choices of these
parameters, and the method is computationally very expensive. A range search query needs
to be made for every data point followed by a hierarchical clustering of a set of points. Small
values of d1 and d2 may produces enormously large number of seeds, and hierarchical clus-
tering of those seeds can be very expensive (O(n2 log n) in the worst case). This method also
performs poorly when there exist different clusters in the dataset with variable density and
size.

Katsavounidis et al. [25] suggested a parameterless approach, which we call the KKZ
method based on the initials of all the authors. KKZ chooses the first centers near the “edge”
of the data, by choosing the vector with the highest norm as the first center. Then, it chooses
the next center to be the point that is farthest from the nearest seed in the set chosen so far.
This method is very inexpensive (O(kn)) and is easy to implement. It does not depend on
the order of points and is deterministic by nature; as single run suffices to obtain the seeds.
However, KKZ is sensitive to outliers, since the presence of noise at the edge of the dataset
may cause a small set of outlier/noise points to make up a cluster.

Bradley and Fayyad [5] proposed an initialization method that is suitable for large data-
sets. We call their approach Subsample, since they take a small subsample (less than 5%) of
the dataset and use k-means clustering on the subsample and record the cluster centers. This
process is repeated and cluster centers from all the different iterations are accumulated in a
dataset. Finally, a last round of k-means is performed on this dataset and the cluster centers
of this round are returned as the initial seeds for the entire dataset. This method generally
performs better than k-means and converges to the local optimal faster. However, it still
depends on the random choice of the subsamples and hence, can obtain a poor clustering in
an unlucky session.

More recently, Arthur and Vassilvitskii [3] proposed the k-means++ approach, which is
similar to the KKZ method. However, when choosing the seeds, they do not choose the far-
thest point from the already chosen seeds, but choose a point with a probability proportional
to its distance from the already chosen seeds.

Initialization using local outlier factor We chose the local outlier factor (LOF) criterion
for selecting the initial set of cluster centers. LOF was proposed in [6] as a measure for
determining the degree to which a point is an outlier. For a point x ∈ D, define the local
neighborhood of x , given the minimum points threshold mp as follows:

N (x, mp) = {y ∈ D | dist(x, y) ≤ dist(x, xmp)}

123



210 V. Chaoji et al.

where xmp is the mpth nearest neighbor of x . Thus N (x, mp) contains at least mp points.
The density of x is then computed as follows:

densi ty(x, mp) =
(∑

y∈N (x,mp) distance(x, y)

| N (x, mp) |

)−1

Essentially, the lower the distance between x and neighboring points, the higher the density
of x . The average relative density (ard) of x , is then computed as the ratio of the density of
x and the average density of its nearest neighbors, given as follows:

ard(x, mp) = densi ty(x, mp)
(∑

y∈N (x,mp) densi ty(y,mp)

|N (x,mp)|
)

Finally the LOF score of x is just the inverse of the average relative density of x :

LOF(x, mp) = ard(x, mp)−1

If a point is in a low density neighborhood compared to all its neighbors, then its ard score is
low and hence its LOF value is high. Thus LOF value represents the extent to which a point
is an outlier. A point that belongs to a cluster has an LOF value approximately equal to 1,
since its density and the density of its neighbors is approximately the same.

LOF has three excellent properties: (1) It is very robust when the dataset has clusters with
different sizes and densities. (2) Even though the LOF value may vary somewhat with mp,
it is generally robust in making the decision whether a point is an outlier or not. That is, for
a large range of values of mp, the outlier points will have LOF value well above 1, whereas
points belonging to a cluster will assume an LOF value close to 1. (3) It leads to practically
faster convergence of the Kmeans algorithm, i.e., fewer iterations.

As we reported in [17], to select the initial seeds, we use the following approach. Assume
that i initial centers have been chosen. To choose the i + 1th center, we first compute the
distance of each point to each of the i chosen centers, and sort them in decreasing order
of distance. Next, in that sorted order, we pick the first point that is not an outlier as the
next seed. We repeat until K initial seeds have been chosen, and then run the Kmeans
algorithm to converge with those initial starting centers, to obtain the final set of seed
centers Cseed.

Complexity analysis of LOF based initialization The overall complexity of this approach can
be analyzed in terms of the steps involved. Let us assume that t � n is the number of outliers
in the data. While choosing the i + 1th center, the minimum distance of each of the n − i
non-center points from the i centers is computed. Aggregated over the K centers, the total
computational cost of this step amounts to O(nK d), where d is the dimensionality of the data.
Once the minimum distances are computed, the i +1th center is chosen by examining points
in descending order of minimum distance and selecting the point that has an LOF value close
to 1. The linear-time partition-based selection algorithm [8] for computing the pth largest
number can be used to find the points in descending order. In the worst case, the selection
algorithm has to be invoked t times (with p = 1, . . . , t) for the i + 1th center selection. If t
is a small constant, the selection based approach can be much more efficient as compared to
the O(n log n) sorting based selection algorithm. The aggregated computational cost for the
selection phase of K centers is given by O(tnK ). The LOF value for each examined point
is computed during the selection stage. The cost of computing the LOF value of a point is

given by O(n1− 1
d × mp). In the worst case, for each center t LOF computations need to
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Fig. 4 Local outlier based center selection. Selected centers on D1 dataset

be performed. As the result, the LOF computation aggregated over K centers comes out to

O(n1− 1
d × mp × t × K ). Finally, adding up the costs of the above steps, the complexity of

the entire process is given by O(nK d + tnK + n1− 1
d × mp × t × K ). As seen from the

previous expression, the overall time complexity is linear in the number of points in the data.
As an example of LOF-based seed selection, Fig. 4 shows the initial set of centers for

one of the shape-based datasets. Section 4.2 provides an empirical comparison of LOF based
initialization with other initialization methods.

3.1.2 Phase 2: merging neighboring clusters

As the output of the first phase of the algorithm, we have a relatively small number K of
seed cluster centers (compared to the size of the dataset) along with the point assignments
for each cluster. During the second phase of the algorithm, a similarity measure for each pair
of seed clusters is computed (see lines 3–4 in Fig. 1). The similarity between clusters is then
used to drive any clustering algorithm that can use the similarity function to merge the K
seed clusters in the final set of k natural clusters. We applied both hierarchical as well as
spectral methods on the similarity matrix. Since the size of the similarity matrix is O(K 2),
as opposed to O(n2) even spectral methods can be conveniently applied.

Cluster similarity Let us consider that the d-dimensional points belonging to a cluster X
are denoted by PX and similarly points belonging to cluster Y are denoted by PY . The cor-
responding centers are denoted by cX and cY , respectively. A similarity score is assigned to
each cluster pair. Conceptually, each cluster can be considered to represent a Gaussian and
the similarity captures the overlap between the Gaussians. Intuitively, two clusters should
have a high similarity score if they satisfy the following conditions:

1. The clusters are close to each other in the Euclidean space.
2. The densities of the two clusters are comparable, which implies that one cluster is an

extension of the other.
3. The face (hyperplane) at which the clusters meet is wide.
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Fig. 5 Projection of points onto the vector connecting the centers

The compute_similarity function in Fig. 1 computes the similarity for a given pair of centers.
For computing the similarity, points belonging to the two clusters are projected on the vector
connecting the two centers as shown in Fig. 5. Even though the figure just shows points above
the vector being projected, this is merely for the convenience of exposition and illustration.
fx represents the distance from the center X to the farthest projected image Ii of a point pi

belonging to X . Hi is the horizontal (along the vector joining the two centers) distance of
the projection of point pi from the center, and Vi is the perpendicular (vertical) distance of
the point from its projection. The means (m HX and m HY ) and standard deviations (sHX and
sHY ) of the horizontal distances for points belonging to the clusters are computed. Similarly,
means and standard deviations for perpendicular distances are computed. A histogram with
bin size of si

2 (i ∈ {HX , HY }) is constructed for the projected points. The bins are numbered
starting from the farthest projected point fi (i ∈ X, Y ), i.e., bin BX0 is the first bin for the
histogram constructed on points in cluster X . The number of bins for cluster X is given by
|BX |. Then, we compute the average of horizontal distances for points in each bin; di j denotes
the average distance for bin j in cluster i . max _bini = arg max j di j represents the bin with
the largest number of projected points in cluster i . The number of points in bin Xi is given
by N [Xi ]. The ratio N [Xi ]

N [Xmax _binX ] is denoted by sz_ratioXi .

Now, the size based similarity between two bins in clusters X and Y is given by the
equation:

si ze_sim(BXi , BY j ) = sz_ratio(BXi ) × sz_ratio(BY j ) (1)

The distance-based similarity between two bins in clusters X and Y is given by the following
equation, where dist (BXi , BY j ) is the horizontal distance between the bins Xi and Y j :

dist_sim(BXi , BY j ) = 2 × dist(BXi , BY j )

sHX + sHY

(2)

The overall similarity between the clusters X and Y is then given as

S(X, Y ) =
t∑

i=0

si ze_sim(BXi , BYi ) × exp−dist_sim(BXi ,BYi ) (3)
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where t = min(|BX |, |BY |). Also, while projecting the points onto the vector, we discarded
points that had a vertical distance greater than twice the vertical standard deviation, consid-
ering them as noise points.

Let us look closely at the above similarity metric to understand how it satisfies the above
mentioned three conditions for good cluster similarity. Since the bins start from the farthest
projected points, for bordering clusters the distance between X0 and Y0 will be very less. This
gives a small value to dist_sim(BX0 , BY0). As a result, the exponential function gets a high
value due to the exponent taking a low value. This causes the first term of the summation
in Equation 3 to be high, especially if the si ze_sim score is also high. A high value for
the first term indicates that the two clusters are close by and that there are a large number
of points along the surface of intersection of the two clusters. If the si ze_sim(BX0 , BY0) is
small, which can happen when the two clusters meet at a tangent point, the first term in the
summation will be small. This is exactly as expected intuitively and captures conditions 1
and 3 mentioned above. Both the si ze_sim and dist_sim measures are averse to outliers and
would give a low score for bins containing outlier points. For outlier bins, the sz_ratio will
have a low score, resulting in a lower score for si ze_sim. Similarly, clusters having outlier
points would tend to have a high standard deviation, which would result in a low score for
dist_sim.

We considered the possibility of extending the histogram to multiple dimensions, along
the lines of grid-based algorithms [14], but the additional computational cost does not justify
the improvement in the quality of the results.

Finally, once the similarity between pairs of seed has been computed, we can use spectral
or hierarchical agglomerative clustering to obtain the final set of k natural clusters. For our
experiments, we used the agglomerative clustering algorithm provided with CLUTO.

Our similarity metric S(X, Y ) can be shown to be a kernel. The following lemmas regard-
ing kernels allow us to prove that the similarity function is a kernel.

Lemma 3.1 [36] Let κ1 and κ2 be kernels over X×X, X ⊆ R
n, and let f (.) be a real-valued

function on X. Then the following functions are kernels:

i. κ(x, z) = κ1(x, z) + κ2(x, z),
ii. κ(x, z) = f (x)f (z),

iii. κ(x, z) = κ1(x, z)κ2(x, z),

Lemma 3.2 [36] Let κ1(x, z) be a kernel over X × X, where x, z ∈ X. Then the function
κ(x, z) = exp(κ1(x, z)) is also a kernel.

Theorem 3.3 Function S(X, Y ) in Equation 3 is a kernel function.

Proof Since dist and sz_ratio are real valued functions, dist_sim and si ze_sim are kernels
by Lemma 3.1(ii). This makes exp(−dist_sim(., .)) a kernel by Lemma 3.2. Product of
si ze_sim and exp(−dist_sim(., .)) is a kernel by Lemma 3.1(iii). And finally, S(X, Y ) is a
kernel since the sum of kernels is also a kernel by Lemma 3.1(i). ��
The matrix obtained by computing S(X, Y ) for all pairs of clusters turns out to be a kernel
matrix. This nice property provides the flexibility to utilize any kernel based method, such
as spectral clustering [32] or kernel k-means [10], for the second phase of SPARCL.

3.2 Complexity analysis

The first stage of SPARCL starts with computing initial K centers randomly or based on
the local outlier factor. If we use random initialization phase 1 takes O(K nde) time, where
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e is the number of Kmeans iterations. The time for computing the LOF-based seeds is
O(mp K 2 n t) [17], where t is the number of outliers in the dataset, followed by the O(K nde)
time of Kmeans. The second phase of the algorithm projects points belonging to every cluster
pair on the vector connecting the centers of the two clusters. The projected points are placed
in appropriate bins of the histogram. The projection and the histogram creation requires time
linear in the number of points in the seed cluster. For the sake of simplifying the analy-
sis, let us assume that each seed cluster has the same number of points, n

K . Projection and
histogram construction requires O( n

K ) time. In practice only points from a cluster that lie
between the two centers are processed, reducing the computation by half on an average.
Since there are O(K 2) pairs of centers, the total complexity for generating the similarity
map is K 2 × O( n

K ) = O(K n). The final stage applies a hierarchical or spectral algorithm
to find the final set of k clusters. Spectral approach will take O(K 3) time in the worst case,
whereas agglomerative clustering will take time O(K 2 log K ). Overall, the time for SPARCL
is O(K nd) (ignoring the small number of iterations it takes Kmeans to converge) if using
the random initialization, or O(K 3mnd), assuming mp = O(K ), and using the LOF-based
initialization. In our experiment evaluation, we obtained comparable results using random
initialization for datasets with uniform density of clusters. With random initialization, the
algorithm runs in time linear in the number of points as well as the dimensionality of the
dataset.

3.3 Estimating the value of K

As discussed in Sect. 3.1.2, neighboring clusters are merged to obtain the final set of k natural
clusters. A “good” clustering is guaranteed if the following conditions are satisfied:

1. Merging Condition: Only the pseudo-centers belonging to a single natural cluster are
merged together,

2. Pseudo-center Condition: No pseudo-center exists such that it is a representative for
points belonging to more than one natural cluster.

Although, the effectiveness of the similarity measure and the merging process influence
the Merging Condition, the similarity measure computation relies on the existence of the
Pseudo-center Condition. Hence, satisfying the second condition is crucial for obtaining a
good clustering result. The value of K can adversely influence the Pseudo-center condition.
Underestimating K can result in points from two or more natural clusters being assigned to
the same pseudo-center, since each center has to now account for a larger number of points.
This is emphasized by our results (Sect. 4.3.5) in Fig. 13b, which shows a lower clustering
quality score for smaller values of K . Hence, having a good estimate of K can considerably
improve the clustering quality. At the same time, the clustering outcome is not sensitive to
small changes in the value of K , which implies that a rough estimate suffices.

In many application domains the expert has an insight into approximate distances
between natural clusters. For instance, cell biologists might have an estimate of the dis-
tance between nearby chromosomes; a radiologist might have an intuition regarding average
distance between bones in an X-ray image; or distance between regions of interest on a
weather forecast map might be known a priori. Let us assume that an expert can estimate the
minimum distance between any true clusters, denoted by cdistmin. Given cdistmin, we can
estimate the value of K such that the Pseudo-center Condition is satisfied. Figure 6a shows
the true clusters for an illustrative dataset, with the noise points removed. The figure also
shows the cdistmin for this dataset.
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Fig. 6 Estimating K . a Estimating K from cdistmin, b Seed centers with cdistmin = 20, c Members of each
seed cluster with cdistmin = 20

Fig. 7 Generating seed representatives with cdistmin

Assume point A is selected as one of the pseudo-centers. In order to assign point B to a
center other than A, there has to be another center closer than cdistmin to point B. Any point
closer than cdistmin to B has to belong to Cluster 1. In other words, if the nearest center
for each point is at a distance less than cdistmin, condition two is satisfied. If the dataset
is scattered over a 2-dimensional region with area (volume for higher dimensions) A, then
the value of K is given by 	 A

2πcdistmin

. The 2πcdistmin expression is an approximation for

the area of a convex polyhedron around a center point. The above expression can be sim-
ilarly generalized for higher dimensional datasets to 	 V ol. occupied by cluster shape

V ol. of polyhedron wi th radius cdistmin

.

The area or volume occupied by the clusters does not have to be computed explicitly. Based
on the above idea, the LOF based algorithm (Sect. 3.1.1) for obtaining initial seeds can be
modified to automatically select the required number of seeds. Figure 7 shows the modified
LOF initialization algorithm. The algorithm seed_center_initialization takes as input the
dataset of points D, cdistmin and a parameter for LOF computation. The algorithm returns
the set of seed pseudo-centers. In the LOF based initialization, it can be shown that each
subsequently selected seed representative results in a monotonic decrease in the minimum
distance (min_dist). As a result, the condition on Line 13 is violated after a finite number
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of points. At the time the condition in the while loop is violated, the maximum distance
of a point to its nearest seed representative is less than cdistmin. As a result of which, no
pseudo-cluster has points from more than one natural cluster. The LOF function on Line 7
computes the Local Outlier Factor for a point. Recall that the LOF value is an indicator of
the degree to which a point is an outlier. A value close to 1 signifies a point is not an outlier.

We would like to point out that this is a worst case analysis which guarantees the exis-
tence of the Pseudo-center Condition. On the downside, for pathological datasets much larger
number of seed representatives could be selected as compared to what might suffice for a
good clustering. This can be seen in the results for dataset DS2 wherein a good clustering
is obtained with K = 60 (as shown in Fig. 9b). Applying the algorithm in Fig. 7 generates
K = 287 seed representatives with cdistmin = 20. For the dataset in Fig. 6a, the seed cen-
ters and the points assigned to them are shown in Fig. 6b, c, respectively. As one can see in
Fig. 6b, the LOF based initialization generates centers that are uniformly distributed. For reg-
ular shaped clusters, the Pseudo-center Condition can be preserved even with a non-uniform
distribution of the centers as long as points such as A and B are not assigned to the same
seed-cluster. This approach could result in a reduced number of seed centers and a faster
overall computation time. In this work, we do not address the non-uniform selection of seed
centers.

4 Experiments and results

Experiments were performed to compare the performance of our algorithm with
Chameleon [24], DBSCAN [13] and spectral clustering [38]. The Chameleon code was
obtained as a part of the CLUTO [45]1 package. The DBSCAN implementation in Weka was
used for the sake of comparison. Similarly, for spectral clustering the SpectraLIB Matlab
implementation2 based on the Shi–Malik algorithm [38] was used initially. Since this imple-
mentation could not scale to larger datasets, we implemented the algorithm in C++ using the
GNU Scientific Library3 and SVDLIBC.4 Even this implementation would not scale to very
large datasets since the entire affinity matrix would not fit in memory. The results in Table 2
for spectral clustering are based on this implementation.

Even though the implementations are in different languages, some of which might be
inherently slower than others, the speedup due to our algorithm far surpasses any imple-
mentation biases. All the experiments were performed on Mac G5 machine with a 2.66 GHz
processor, running the Mac 10.4 OS X. Our code is written in C++ using the Computational
Geometry Algorithms Library (CGAL). We show results for both LOF based as well as
random initialization of seed clusters.

4.1 Datasets

4.1.1 Synthetic datasets

We used a variety of synthetic and real datasets to test the different methods. DS1, DS2, DS3,
and DS4, shown in Fig. 9a–d, are those that have been used in previous studies including

1 http://glaros.dtc.umn.edu/gkhome/cluto/.
2 http://www.stat.washington.edu/spectral/.
3 http://www.gnu.org/software/gsl/.
4 http://tedlab.mit.edu/~dr/svdlibc/.

123

http://glaros.dtc.umn.edu/gkhome/cluto/
http://www.stat.washington.edu/spectral/
http://www.gnu.org/software/gsl/
http://tedlab.mit.edu/~dr/svdlibc/


SPARCL: an effective and efficient algorithm 217

Chameleon and CURE. These are all 2d datasets with points ranging from 8000 to 100,000.
The Swiss-roll dataset in Fig. 9 is the classic non-linear manifold using in non-linear dimen-
sionality reduction [28]. We simply split the manifold into four clusters to see how our
methods handle this case.

For the scalability tests, and for generating 3d datasets, we wrote our own shape-based
cluster generator. To generate a shape in 2d, we randomly choose points in the drawing can-
vas and accept the points which lie in our desired shape. All the shapes are generated with
point (0, 0) as the origin. To get complex shapes, we combine rotated and translated basic
shapes (circle, rectangle, ellipse, circular strip, etc.). Our 3d shape generation is built on the
2d shapes. We randomly choose points in the 3 coordinates, if the x and y coordinates satisfy
the shape, we randomly choose the z-axis from a given range. This approach generates true
3d shapes, and not only layers of 2d shapes. Similar to the case for 2d, we combine rotated
and translated basic 3d shapes to get more sophisticated shapes. Once we generate all the
shapes, we randomly add noise (1–2%) to the drawing frame. An example of a synthetic 3d
dataset is shown in Fig. 12b. This 3d dataset has 100,000 points, and 10 clusters.

4.1.2 Real datasets

We used two real shape-based datasets: cancer images and protein structures. The first is a
set of 2d images from benign breast cancer.5 The actual images are divided into 2d grid cells
(80 × 80) and the intensity level is used to assign each grid to either a cell or background.
The final dataset contains only the actual cells, along with their x and y co-ordinates.

Proteins are 3d objects where the coordinates of the atoms represent points. Since proteins
are deposited in the protein data bank (PDB) in different reference frames, the coordinates
of the protein need to be centered such that the minimum point (atom) is above the (0, 0, 0)
origin. We translate the proteins to get separated clusters. Once the translation is done, we
add the noise points. Our protein dataset has 15,000 3d points obtained from the following
proteins: 1A1T (865 atoms), 1B24 (619 atoms), 1DWK (11,843 atoms), 1B25 (1,342 atoms),
and 331 noise points.

4.2 Comparison of Kmeans initialization methods

We compared different initialization methods on a set of synthetic datasets. These datasets
contain regular shaped clusters of varying sizes and densities. The exact details of the datasets
are omitted as they do not influence the comparative results. Since the clusters generated by
Kmeans are hyperspheres, distortion score is used as the evaluation metric for comparing
the initialization methods. Distortion Score is defined as the sum of the distance between
each point and its closest center. Smaller value of distortion implies a better clustering.

Multiple runs are performed for algorithms that depend either on the order of objects in
the dataset or on randomization. For those algorithms, the minimum and average distortion
values are shown. Results for different dimensions (d) and number of natural clusters (k) are
shown in Table 1. The optimal distortion measure is also shown since the datasets are syn-
thetically generated. The bold number in each row of Table 1 indicates the lowest distortion
score for that dataset. The results show that the LOF based initialization performs better
on most of the datasets. Results in Fig. 8 highlight the robustness of LOF-based initializa-
tion as compared to random initialization. In Fig. 8a, the distortion score is computed for
varying percentage of random noise in the dataset. Again, a lower distortion score indicates

5 These were obtained from Prof. Bulet Yener at RPI.
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Table 1 Comparison on synthetic datasets

d k Optimal LOF Random Subsample k-means++ KKZ

Min Avg Min Avg Min Avg

8 10 7,738 7,755 7,904 8,421 7,887 8,092 8,008 8,508 9,204

25 9,365 9,382 9,774 10,185 9,639 10,044 9,641 9,951 10,743

50 8,694 8,754 9,244 9,565 9,136 9,407 9,289 9,598 17,042

16 10 16,865 16,882 17,406 18,496 17,356 18,314 16,870 17,951 19,346

25 17,241 17,261 18,298 19,219 17,647 18,812 17,732 18,550 20,567

50 17,580 17,622 18,866 19,507 18,469 19,084 18,974 19,661 21,632

24 10 26,149 26,150 26,706 28,733 26,150 28,340 26,755 28,860 29,413

25 22,233 22,261 23,241 24,582 23,034 23,942 22,803 23,787 27,052

50 21,453 21,467 22,838 23,818 22,477 23,387 23,003 23,762 26,599

The distortion scores are shown for each method
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Fig. 8 Sensitivity comparison: LOF versus random. a Random noise, b d = 8, k = 15

robustness to random noise. Similarly, Fig. 8b shows that the LOF based initialization is
robust to small changes in the parameter (mp) value.

4.3 Results on synthetic datasets

Results of SPARCL on the synthetic datasets are shown in Table 2, and in Fig. 9a–e. We refer
the reader to Karypis et al. [24] for the clustering results of Chameleon and DBSCAN on data-
sets DS1-4. In essence, Chameleon is able to perfectly cluster these datasets, whereas both
DBSCAN and CURE make mistakes, or are very dependent on the right parameter values
to find the clusters. As we can see SPARCL had no difficulty in identifying the shape-based
clusters in these datasets. However, SPARCL does make minor mistakes at the boundaries
in the Swiss-roll dataset (Fig. 9). The reason for this is that SPARCL is designed mainly for
full-space clusters, whereas this is a 2d manifold embedded in a 3d space. In other words, it
is a nonlinear subspace cluster. What is remarkable is that SPARCL can actually find a fairly
good clustering even in this case.

Table 2 shows the characteristics of the synthetic datasets along with their running times.
The default parameters for running Chameleon in CLUTO were retained (number of neigh-
bors was set at 40). Parameters that were set for Chameleon include the use of graph clustering
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Table 2 Runtime performance on synthetic datasets

Name |D|(d) k SPARCL Chameleon DBSCAN Spectral
(LOF/Random)

DS1 8,000(2) 6 5.74/1.277 4.02 14.16 199

DS2 10,000(2) 9 8.6/1.386 5.72 24.2 380

DS3 8,000(2) 8 6.88/1.388 4.24 14.52 239

DS4 100,000(2) 5 35.24/20.15 280.47 –

Swiss-roll 19,200(3) 4 23.92/17.89 19.38 –

All times are reported in seconds. “–” for Spectral method denotes the fact that it ran out of memory for all
these cases

method (clmethod=graph) with similarity set to inverse of Euclidean distance (sim=dist) and
the use of agglomeration (agglofrom=30), as suggested by the authors. Results for both the
LOF and random initialization are presented for SPARCL. Also, we used K = 50, 60, 70, 50
for each of the datasets DS1-4, respectively. For Swiss-roll we use K = 530.

We can see that DBSCAN is 2–3 times slower than both SPARCL and Chameleon on
smaller datasets. However, even for these small datasets, the spectral approach ran out of
memory. The times for SPARCL (with LOF) and Chameleon are comparable for the smaller
datasets, though the random initialization gives the same results and can be 3–4 times faster.
For the larger DS4 dataset SPARCL shows an order of magnitude faster performance, show-
ing the real strength of our approach. For DBSCAN we do not show the results for DS4 and
Swiss-roll since it returned only one cluster, even when we played with different parameter
settings.

4.3.1 Scalability experiments

Using our synthetic dataset generator, we generated DS5, in order to perform experiments
on varying number of points, varying densities and varying noise levels. For studying the
scalability of our approach, different versions of DS5 were generated with different num-
ber of points, but keeping the number of clusters constant at 13. The noise level was
kept at 1% of the dataset size. Figure 10 compares the runtime performance of Chame-
leon, DBScan and our approach for dataset sizes ranging from 100,000 points to 1 mil-
lion points. We chose not to go beyond 1 million as the time taken by Chameleon and
DBSCAN was quite large. In fact, we had to terminate DBSCAN beyond 100 K points.
Figure 10 shows that our approach, with random initialization, is around 22 times faster
than Chameleon while it is around 12 time faster when LOF based initialization is con-
sidered. Note that the time for LOF also increases with increase in the size of the dataset.
For Chameleon, the parameters agglofrom, sim, clmethod were set to 30, dist and graph,
respectively. For DBSCAN the eps was set at 0.05 and MinPts was set at 150 for the
smallest dataset. MinPts was increased linearly with the size of the dataset. In our case,
for all datasets, K = 100 seed centers were selected for the first phase and mp was
set to 15.

Figure 11 shows the clusters obtained as a result of executing our algorithm, DBSCAN
and Chameleon on the dataset DS5 of size 50 K points. We can see that DBSCAN makes the
most mistakes, whereas both SPARCL and Chameleon do well.

Scalability experiments were performed on 3d datasets as well. Result for one of
those datasets is shown in Fig. 12b. The 3d dataset consists of shapes in full 3d space
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Fig. 9 a Results on DS1, b Results on DS2, c Results on DS3, d Results on DS4, e Results on Swiss-roll
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Fig. 11 Clustering quality on dataset DS5. a SPARCL (K = 100), b DBSCAN (min Pts = 150, eps = 0.05),
c Chameleon (agglo f rom = 30, sim = dist, clmethods = graph)
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(and not 2d shapes embedded in 3d space). The dataset contained random noise too (2% of
the dataset size). As seen in Fig. 12a, SPARCL (with random initialization) can be more than
four times as fast as Chameleon.
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Fig. 13 Cluster quality. a Varying dataset size, b Varying # of seed-clusters

4.3.2 Clustering quality

Since two points in the same cluster can be very far apart, traditional metrics such as cluster
diameter, Kmeans/Kmedoid objective function (sum of squared errors), compactness (avg.
intra-cluster distance over the avg. inter-cluster distance), etc. are generally not appropriate
for shape-based clustering. We apply supervised metrics, wherein the true clustering is known
a priori, to evaluate clustering quality. Popular supervised metrics include purity, Normalized
Mutual Information, rank index, etc. In this work, we use purity as the metric of choice due
to its intuitive interpretation. Given the true set of clusters (referred to as classes hence-
forth to avoid confusion), CT = {c1, c2, . . . , cL } and the clusters obtained from SPARCL
CS = {s1, s2, . . . , sM }, purity is given by the expression:

puri ty(CS, CT ) = 1

N

∑

k

max
j

‖sk ∩ c j‖ (4)

where N is the number of points in the dataset. Purity lies in the range [0, 1], with a perfect
clustering corresponding to purity value of 1.

Since DS1-DS4 and the real datasets do not provide the class information, experiments
were conducted on varying sizes of the DS5 dataset. The class information was recorded
during the dataset generation. Figure 13a shows the purity score for clusters generated by
SPARCL and CHAMELEON (parameters agglofrom = 100, sim = dist, clmethod = graph).
Since these algorithms cluster noise points differently, for fair comparison they are ignored
while computing the purity, although the noise points are retained during the algorithm exe-
cution. Note that for datasets larger than 600 K, CHAMELEON did not finish in reasonable
time. When CHAMELEON was run with the default parameters, which runs much faster,
the purity score lowered to 0.6, whereas SPARCL’s purity score is more than 0.9.

4.3.3 Varying number of clusters

Experiments were conducted to see the impact of varying the number of natural clusters k.
To achieve this, the DS5 dataset was replicated by tiling the dataset in a grid form. Since
the DS5 dataset contains 13 natural clusters, a 1 × 3 tiling contains 39 natural clusters
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Fig. 14 Varying number of natural clusters. a 1 × 3 grid tiling. Results of SPARCL, b Varying number of
natural clusters

(see Fig. 14a). The number of points are held constant at 180 K. The number of natural
clusters are varied from 13 to 117. The number of seed-clusters are set at 5 times number
of natural clusters, i.e., K = 5 K. We see that SPARCL finds most of the clusters correctly,
but it does make one mistake, i.e., the center ring has been split into two. Here we find that
since there are many more clusters, the time to compute the LOF goes up. In order to obtain
each additional center the LOF method examines a constant number of points, resulting in
a linear relation between the number of clusters and the runtime. Thus we prefer to use the
random initialization approach when the number of clusters are large. With that SPARCL is
still 4 times faster than Chameleon (see Fig. 14b).

Even though Chameleon produces results competent with that of SPARCL, it requires
tuning the parameters to obtain these results. Especially when the nearest neighbor graph
contains disconnected components CHAMELEON tends to break natural clusters in an effort
to return the desired number of clusters. Hence CHAMELEON expects the user to have a
certain degree of intuition regarding the dataset in order to set parameters that would yield
the expected results.

4.3.4 Varying number of dimensions

Synthetic data generator SynDECA [40] (http://cde.iiit.ac.in/~soujanya/syndeca/) was used
to generate higher dimensional datasets. The number of points and clusters were set to 500 K
and 10, respectively. 5% of the points were uniformly distributed as noise points. SynDECA
can generate regular (circle, ellipse, square and rectangle) as well as random/irregular shapes.
Although SynDECA can generate subspace clusters, for our experiments full dimensional
clusters were generated. Figure 15b shows the runtime for both LOF based and random ini-
tialization of seed clusters. With increasing number of dimensions, LOF computation takes
substantial time. This effect can be attributed to a combination of two effects. First, since a
kd-tree is used for nearest-neighbor queries the performance degrades with increasing dimen-
sionality. Second, since we keep the number of points constant in this experiment, the sparsity
of the input space increases for higher dimensions. On the other hand, random initialization
is computationally inexpensive. Figure 15a shows the purity for higher dimensions. Both
SPARCL and CHAMELEON perform well on this measure.
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Fig. 15 Varying number of dimensions. a Purity, b Runtime

Fig. 16 Ten dimensional dataset (size = 500 K, k = 10) projected onto a 3D subspace

The quality of the clustering can also be visually inspected. The points in the high dimen-
sional space can be projected onto a lower dimensional space. For our experiments, we use
Principal Component Analysis [12] (PCA) as the dimensionality reduction technique. PCA
has the distinction of being a linear transformation that is optimal for preserving the subspace
with the largest variance in the data. Figure 16 shows the above dataset with 10 dimensions
projected onto a 3-dimensional subspace. The noise points have been purposely suppressed
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Fig. 17 Protein dataset
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in order to view the projected clusters clearly. As seen in Fig. 16, the compact regions rep-
resenting the clusters contain points from the same natural clusters. Projecting points on a
lower dimensional sub-space, results in small overlap of some of the clusters.

4.3.5 Varying number of seed-clusters (K)

SPARCL has a single parameter, K. Figure 13b shows the effect of changing K on the quality
of the clustering. The dataset used is same as in Fig. 14a, with 300 K points. As seen in the
figure, the purity stabilizes around K = 180 and remains almost constant till K = 450. As K
is increased further, a significant number of seed-centers lie between two clusters. As a result
SPARCL tends to merge parts of one cluster with the other, leading to a gradual decline in
the purity. Overall, the figure shows that SPARCL is fairly insensitive to the K value.

4.4 Results on real datasets

We applied SPARCL on the protein dataset. As shown in Fig. 17 SPARCL is able to perfectly
identify the four proteins. The largest doughnut-shaped is the 1DWK protein while the other
smaller ones are amoeba like irregular shaped. The K value for the protein dataset is 30. On
this dataset, Chameleon returns similar results. The results on the benign cancer datasets are
shown in Fig. 18. Here too SPARCL successfully identifies the regions of interest. The K
value for this dataset is 100. The distinct clusters in the cancer dataset represent the nuclei,
whereas the surrounding region is the tissue. Clusters that are globular in shape correspond to
healthy tissues whereas irregular shapes of the nuclei correspond to cancerous tissues. We do
not show the time for the real datasets since the datasets are fairly small and both Chameleon
and SPARCL perform similarly.

5 Conclusions

In this paper, we made use of a very simple idea, namely, to capture arbitrary shapes by
means of convex decomposition, via the use of the highly efficient Kmeans approach. By
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Fig. 18 Cancer dataset: a–c are the actual benign tissue images. d–f gives the clustering of the corresponding
tissues by SPARCL

selecting a large enough number of seed clusters K , we are able to capture most of the dense
areas in the dataset. Next, we compute pairwise similarities between the seed clusters to
obtain a K × K symmetric similarity matrix. The similarity is designed to capture the extent
to which the points from the two clusters come close to each other, namely close to the
d-dimensional hyperplane that separates the two clusters. The similarity is computed rapidly
by projecting all the points in the two clusters on the line joining the two centers (which is
reminiscent of linear discriminant analysis). We bin the distances horizontally and compute
a one-dimensional histogram to approximate the closeness of the points, which in turn gives
the similarities between the clusters. We then apply a merging based approach to obtain the
final set of user-specified (natural) clusters.

Our experimental evaluation shows that this simple approach, SPARCL, is remarkably
effective in finding arbitrary shaped-based clusters in a variety of 2d and 3d datasets. It
has the same accuracy as Chameleon, a state of the art shape-based method, and at the
same time it is over an order of magnitude faster, since its running time is essentially lin-
ear in the number of points as well as dimensions. SPARCL can also find clusters in the
classic Swiss-roll dataset, effectively discovering the 2d manifold via Kmeans approxi-
mations. It does make some small errors on that dataset. In general SPARCL works well
for full-space clusters, and is not yet tuned for subspace shape-based clusters. In fact,
find arbitrary shaped-based subspace clusters is one avenue of future work for our
method.
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