
1 23

Knowledge and Information Systems
An International Journal

ISSN 0219-1377
Volume 33
Number 3

Knowl Inf Syst (2012) 33:491-522
DOI 10.1007/s10115-012-0528-3

Graph mining for discovering
infrastructure patterns in configuration
management databases

Pranay Anchuri, Mohammed J. Zaki,
Omer Barkol, Ruth Bergman, Yifat
Felder, Shahar Golan & Arik Sityon

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer-Verlag

London Limited. This e-offprint is for personal

use only and shall not be self-archived in

electronic repositories. If you wish to self-

archive your work, please use the accepted

author’s version for posting to your own

website or your institution’s repository. You

may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.

Knowl Inf Syst (2012) 33:491–522
DOI 10.1007/s10115-012-0528-3

REGULAR PAPER

Graph mining for discovering infrastructure patterns
in configuration management databases

Pranay Anchuri · Mohammed J. Zaki · Omer Barkol ·
Ruth Bergman · Yifat Felder · Shahar Golan · Arik Sityon

Received: 9 March 2012 / Revised: 16 April 2012 / Accepted: 14 July 2012 /
Published online: 10 August 2012
© Springer-Verlag London Limited 2012

Abstract A configuration management database (CMDB) can be considered to be a large
graph representing the IT infrastructure entities and their interrelationships. Mining such
graphs is challenging because they are large, complex, and multi-attributed and have many
repeated labels. These characteristics pose challenges for graph mining algorithms, due to
the increased cost of subgraph isomorphism (for support counting) and graph isomorphism
(for eliminating duplicate patterns). The notion of pattern frequency or support is also more
challenging in a single graph, since it has to be defined in terms of the number of its (poten-
tially, exponentially many) embeddings. We present CMDB-Miner, a novel two-step method
for mining infrastructure patterns from CMDB graphs. It first samples the set of maximal
frequent patterns and then clusters them to extract the representative infrastructure patterns.

This work was supported by the HP Labs Innovation Research Program Award, and in part by NSF Grant
EMT-0829835.

P. Anchuri · M. J. Zaki (B)
Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
e-mail: zaki@cs.rpi.edu

P. Anchuri
e-mail: anchupa@cs.rpi.edu

O. Barkol · R. Bergman · Y. Felder · S. Golan · A. Sityon
HP Labs, 32000 Technion City, Haifa, Israel
e-mail: omer.barkol@hp.com

R. Bergman
e-mail: ruth.bergman@hp.com

Y. Felder
e-mail: yifat.felder@hp.com

S. Golan
e-mail: shahar.golan@hp.com

A. Sityon
e-mail: arik.sityon@hp.com

123

Author's personal copy

492 P. Anchuri et al.

We demonstrate the effectiveness of CMDB-Miner on real-world CMDB graphs, as well as
synthetic graphs.

Keywords Single graph mining · Frequent subgraphs · Sparse graph mining · Configuration
management databases

1 Introduction

A configuration management database (CMDB) is used to manage and query the IT infrastruc-
ture of an organization. It stores information about the so-called configuration items (CIs)—
servers, software, running processes, storage systems, printers, routers, etc. As such, it can
be considered to be a single large multi-attributed graph, where the nodes represent the var-
ious CIs and the edges represent the connections between the CIs (e.g., the processes on a
particular server, along with starting and ending times). Figure 1 shows a snippet from a real-
world CMDB graph, displaying only type labels. A CMDB provides a wealth of information
about the largely undocumented IT practices of a large organization, and thus mining the
CDMB graph for frequent subgraph patterns can reveal the de facto infrastructure patterns.
Once mined, these patterns can be used to either set the default IT policies or refine them if
found unsatisfactory. Thus, the discovery of infrastructure patterns is an important real-world
application of subgraph mining in IT domain.

Mining a CMDB graph comes with several challenges. The CMDB graph is a massive,
multi-attributed, and complex graph. There are various types and subtypes of CIs, which
may be hierarchically related. CIs further have various associated attributes and metadata
elements. There are a lot of repetitive labels, namely the CIs and their various attributes.

Fig. 1 Snippet from a CMDB graph

123

Author's personal copy

Graph mining for infrastructure pattern discovery in CMDBs 493

For example, there can be hundreds and thousands of running processes of the same type,
running on (and thus connected to) a single server. The vast majority of frequent graph mining
algorithms assume that the database consists of many different graphs, so that the support or
frequency can be computed by counting how many graphs in the database contain a given
pattern. The containment is defined in terms of subgraph isomorphism, that is, the node
mapping, also called an embedding, corresponding to isomorphism between a pattern and
some subgraph of the database graph. As long as there exists an embedding of the pattern
in a database graph, the support can be incremented by one. On the other hand, the support
of a pattern in a single graph usually involves finding all possible pattern embeddings (or
node/edge-disjoint embeddings), which can potentially be exponential in the size and order
of the graph. Furthermore, the subgraph isomorphism problem is rendered more expensive
due to the repetitive CIs. Simply mining the frequent subgraph patterns from the CMDB
graph is not enough to discover the infrastructure patterns. As is well known in frequent
pattern mining, there can be a huge number of mined patterns, with many of them being
small variations of one another, what is required is to summarize the patterns and to select
only the most representative ones as the infrastructure patterns.

In this paper, we propose an effective approach to mine representative patterns from a
large multi-attributed graph, with special focus on discovering infrastructure patterns from
CMDB graphs. Our approach consists of two main steps: i) mining a sample of the maximal
frequent subgraphs from a single large database graph and ii) clustering the mined patterns
via spectral graph clustering, and extracting the representative infrastructure patterns. There
are several novel contributions in this paper:

– We propose a new approach for mining/sampling maximal subgraph patterns from a
single database graph. In particular, we propose a new network flow-based definition
of graph support, which is an upper bound on the number of edge-disjoint embeddings
and which allows us to prune patterns the moment they become infrequent. We also
propose an optimization to get a tighter upper bound on the number of edge-disjoint
embeddings. We further propose a fast filter-based approach for eliminating isomorphic
(i.e., duplicate) patterns.

– We propose a new diffusion-based graph similarity method to compute the pairwise
similarities between two labeled graphs. The method takes into account both the structure
and labels of the graphs. We demonstrate that this method is better compared to existing
graph matching algorithms. Given the pairwise similarity matrix, we use spectral graph
clustering to extract groups of related patterns. We then select the representative patterns
via a coverage-based approach.

We evaluate our approach on several real-world CMDB graphs with millions of nodes and
edges, as well as on synthetic graphs, to demonstrate that our method, called CMDB-Miner,
can find meaningful IT infrastructure patterns. Even though our focus is on CMDB graphs,
our approach is generic and can be applied in many other real-world applications with similar
characteristics, namely single large graph database, multiple attributes on the nodes and many
repeated labels.

2 Background

2.1 Preliminary concepts

Let � denote a given set of labels. A labeled graph is a triple G = (V, E, L), where V is
the set of vertices or nodes, E ⊆ V × V is the set of (unordered) edges, and L is the labeling

123

Author's personal copy

494 P. Anchuri et al.

function for both nodes and edges, so that L(v) is the label of a node v, and L(e) = L(a, b)

is the label of an edge e = (a, b). The origin and destination of an edge e(a, b) are a and b,
respectively. The order of the graph is the number of nodes |V |, and the size of the graph is
the number of edges |E |.

We say that G ′ = (V ′, E ′, L ′) is a subgraph of G = (V, E, L), denoted G ′ ⊆ G, if there
exists a 1–1 mapping π : V ′ → V , such that (vi , v j) ∈ E ′ implies (π(vi), π(v j)) ∈ E .
Further, π must preserve vertex and edge labels, that is, L ′(vi) = L(π(vi)) for all vi ∈ V ′,
and L ′(vi , v j) = L(π(vi), π(v j)) for all edges (vi , v j) ∈ E ′. The mapping π is called a
subgraph isomorphism from G ′ to G. If G ′ ⊆ G, we also say that G contains G ′. If G ′ ⊆ G
and G ⊆ G ′, we say that G and G ′ are isomorphic.

Let G = (V, E, L) be a single large database graph, and let P = (V ′, E ′, L ′) be a
candidate pattern, whose support we want to compute. Let π be a subgraph isomorphism
from P to G. The sequence π(v1), π(v2), . . . , π(vn) over all vi ∈ V ′ is called an embedding
of G ′ in G. For an edge ei = (ai , bi) ∈ E ′, define π(ei) = π(ai , bi) = (π(ai), π(bi)) ∈ E .
The sequence π(E ′) = π(e1), π(e2), . . . , π(em) over all edges ei ∈ E ′ is called an edge
mapping of P in G. For example, given the database graph G in Fig. 2a, and the candidate
pattern P in Fig. 2b, the subgraph isomorphism π3 from P to G specified by the mapping
p0 → g0, p1 → g9, p2 → g7, p3 → g11 corresponds to the embedding 0, 9, 7, 11, and the
edge mapping (0, 9), (9, 7), (7, 11), (11, 9). Since π uniquely specifies the embedding and
edge mapping, we use these terms interchangeably.

There are several ways to compute the number of occurrences, called the support, of
P in G. The most straightforward definition is to define the support of P as the number of
possible embeddings of P in G, denoted supa(P). Figure 2c shows all the possible embed-
dings of P in G. There are ten embeddings of P in G for this example, thus supa(P)= 10.
Unfortunately, there can be exponentially many embeddings of a pattern in the database
graph. For example, if G = P = Kn , where Kn is the complete graph on n nodes, with
all node and edge labels being the same, then there are n! distinct embeddings of P in G.
Unfortunately, due to the label multiplicities in the CMDB graphs, this is a real problem
in this application. To avoid the combinatorial blowup, support can also be defined as the
maximum number of node or edge-disjoint embeddings of P in G, denoted supn(P) and
supe(P), respectively. Let � be the set of all possible embeddings of P in G. We say that
two embeddings π, π ′ ∈ � are node disjoint, if π(vi) �= π ′(v j) for all nodes vi , v j ∈ V ′.
We say that π and π ′ are edge disjoint if (π(vi), π(v j)) �= (π ′(va), π ′(vb)) for all edges
(vi , v j), (va, vb) ∈ E ′. Figure 2d, e show examples of a maximum set of edge- and node-
disjoint embeddings, respectively. These sets are not unique; for example, the embedding set
{π0, π3, π9} is also edge disjoint. However, the edge-disjoint support of P is supe(P) = 3,
and the node-disjoint support is supn(P) = 2. Finding the maximum number of edge (or
node) disjoint embeddings is equivalent to finding the maximum independent set (MIS) in an
embeddings graph, where each embedding is a node, and there exists an edge between two
embeddings if they share an edge (or node). Unfortunately, the MIS problem is known to be
NP-hard, and thus, both the edge- and node-disjoint embeddings are expensive to compute.
One of the novel contributions of this paper is that we approximate the edge-disjoint support
via a network flow-based approach. We prefer edge disjointness, since node disjointness is
more constrained (every node-disjoint embedding is also an edge-disjoint embedding, but
not vice versa).

123

Author's personal copy

Graph mining for infrastructure pattern discovery in CMDBs 495

(a)

(b)

(c)

(d) (e)

Fig. 2 a A database graph. b A pattern graph. c All embeddings of P . d, e Edge- and node-disjoint embeddings
of P

2.2 Related work

Many different methods have been developed for frequent subgraph mining [9,18,19,23,
33]. Recently, methods that sample and summarize subgraph patterns have gained more
traction [8,10,1,26,34]. However, these methods assume that the database contains many
different graphs and cannot be directly applied when the database is just a single large graph.
This is because they define pattern support to be the number of graphs in the database that
contain the pattern. As long as a single embedding is found, the support can be incremented
by one, and as such these methods do not have to deal with the problem of enumerating all
the embeddings, or computing the maximum number of edge (or node) disjoint embeddings.

123

Author's personal copy

496 P. Anchuri et al.

Also, pattern support, as defined for a database of many graphs, is anti-monotonic, that is,
a supergraph cannot have support more than any of its subgraphs. This property allows for
fast pruning of candidate patterns during pattern search, since we can prune a pattern (and all
of its extensions), when its support falls below a user-specified minimum support threshold,
minsup. However, the number of embeddings is clearly not anti-monotonic. For example, let
minsup = 3, and let the database graph comprise a node labeled A, connected to two nodes
labeled B, and further, let each of the B nodes be connected to three nodes labeled C . In this
database graph, the edge A–B has two embeddings (below minsup), but the pattern A–B–C
has six embeddings (above minsup). The lack of anti-monotonicity is clearly a problem for
support computation.

2.2.1 Support in a single graph

Several recent approaches have been proposed to tackle the challenges in mining a single
graph. Kuramochi and Karypis [24] proposed a support counting measure that is anti-
monotonic. They proposed three different formulations for mining a single graph. The first
is based on an exact MIS of the overlap graph, which gives the exact set of edge-disjoint
embeddings. The other two approaches are based on approximate MIS, which provide a
subset and superset of the edge-disjoint embeddings. However, they require enumerating all
the embeddings and then discarding the ones that overlap. Since the total number of possi-
ble embeddings is exponential, it makes these methods incapable of finding bigger patterns.
Further, instead of the MIS, we propose a network flow-based approach. Fiedler and Borgelt
[16] give a formal proof that MIS-based support counting is anti-monotonic. We also prove
that our flow-based upper bound on the number of edge-disjoint embeddings leads to an anti-
monotonic pruning criteria. Bringmann and Nijssen [5] proposed an image-based support
of a pattern, defined as the minimum number of mappings from a vertex in the pattern to
a vertex in the graph. Our flow-based approach yields a tighter upper bound compared to
the image-based support. Chen et al. [11] proposed a gApprox to mine frequent approximate
patterns from a single large network. They defined the pattern space and proposed strategies
to explore it. The support of the pattern is same as the image-based support and requires
all the approximate embeddings of the pattern. Li et al. [25] propose a method to compute
edge-disjoint support to find frequent dense subgraphs in a single graph. This method is not
suitable for CMDB graphs, since infrastructure patterns are not very dense. Besemann and
Denton [3] tackle graphs in which nodes have multiple attributes. The edge-disjoint support
is computed by constructing a bipartite graph with the original node set (V) and a node for
every attribute (U). Edge disjointness is imposed on V , allowing for overlap in the bipartite
edges that connect a vertex in V to one of its attributes in U . Recent theoretical work has
focused on proving necessary and sufficient conditions for anti-monotonicity of edge overlap
based graph support measures [32], and in other generalizations such as homomorphisms
and isomorphisms, for labeled and unlabeled, directed and undirected graphs [7].

3 CMDB-Miner: mining CMDB graphs

CMDB-Miner has three main steps. Given the particular characteristics of CMDB graphs,
first we preprocess them to extract the relevant attributes for each configuration item and
summarize the graph. Second, we perform random walks in the pattern space to extract a
sample of the maximal frequent patterns. In the third step, we cluster the maximal patterns
(since many of them may be similar) and extract a set of representative patterns from each

123

Author's personal copy

Graph mining for infrastructure pattern discovery in CMDBs 497

Table 1 IP address-related
attributes and their values

DNS Server NetMask IP address

192.168.1.1 255.255.255.0 192.168.1.2

192.168.1.1 255.255.0.0 192.168.1.3

192.168.1.1 255.255.0.0 192.168.1.4

192.168.1.1 255.255.255.0 192.168.1.5

192.168.1.1 255.255.0.0 192.168.1.6

Table 2 Attribute entropies Attribute Entropy

DNS Server log2(1) = 0.0

NetMask 2
5 log2

(
2
5

)
+ 3

5 log2

(
3
5

)
= 0.971

IP address log2

(
1
5

)
= 2.322

cluster. The latter constitute the infrastructure patterns presented to the IT practitioners to
help manage and set the IT configuration policies throughout the organization. The details
of each step are given below.

3.1 Graph preprocessing

CMDB graphs have many different types of composite items, and each CI may have many
possible attributes (with various values). Furthermore, there are many degree of one nodes,
called leaf nodes in the CMDB graph. Before mining these graphs, we preprocess them in
two ways to aid in interpretation and mining. First, we prune attributes based on their entropy,
and second, we summarize the multiplicities among the leaf nodes.

3.1.1 Entropy-based attribute pruning

Based on the distribution of values for each attribute, we observed that across the various
instances of the same CI type, some of the attributes either have a single value, or they have
all distinct values. Let pv = mv

m be the probability of observing value v for an attribute a
of a given CI type, where m is the total number of occurrences of attribute a, and mv is the
number of times a has value v. The entropy of a is defined as E(a) = − ∑

v pv log2 pv . We
prune the uninformative attributes, namely those that have very low or very high entropy, by
discarding the tails of the entropy distribution (e.g., discarding attributes within the bottom
5 % and top 5 % of entropy).

This results in a significant reduction in the number of attributes. Table 1 shows instances
of an IP address CI, with three attributes. The DNS Server has the same values, whereas
the IP address has all distinct values across the instances. The entropy of these attributes is
shown in Table 2. DNS Server, and IP ddress will both be pruned, since the former has very
low and the latter very high entropy.

3.1.2 Summarizing leaf nodes

A peculiarity of CMDB graphs is that a vast majority of nodes are leaf nodes, defined as
those with degree one. Further, an internal node, defined as a node with degree more than
one, can be connected to many of the same types of leaf nodes, a characteristic we call

123

Author's personal copy

498 P. Anchuri et al.

node multiplicity. Some of the CI types like process, ip_address, etc., have a wide range of
multiplicities. CMDB-Miner employs leaf level summarization, which reduces the size of
the CMDB graphs significantly, and aids interpretation of the mined infrastructure patterns.
For each leaf node u with CI type t , we define its same label siblings as: Sib(u, t) =
{x |L(x) = t, x is a leaf node, xandu have common neighbor}. For every CI type t , we define
its multiplicities as: Mult (t) = { m | ∃ u, u is a leaf, L(u) = t, |Sib(u, t)| = m}.
In other words, the multiplicities of CI type t , is the multiset comprising the number of its
occurrences at the leaf level with common internal neighbors. We discretize the multiplicities
Mult (t) using equi-width binning. For each internal node connected to leaf nodes, we then
attach a new label of the form x −→ [l, u]y, which is interpreted as internal node x having
between l and u occurrences of CI type y as a leaf. Figure 1 shows an example of such a
label, namely issftpservice −→ [0, 2] issftpservice, meaning that issftpservice is connected
to up to two other leaf nodes with CI type issftpservice.

3.2 Sampling maximal patterns

The goal of this step is to extract a sample of maximal frequent subgraphs from a large, sparse
CMDB graph. We do this via random walks in the pattern space, starting from the empty
graph and extending the current candidate pattern by a random edge. After each extension,
we ensure that the pattern is frequent, according to our new network flow-based approach
(described below). Thus, random pattern extension and support computation form the two
substeps for each candidate.

3.2.1 Random walks in pattern space

CMDB-Miner takes as input a parameter k, specifying the number of walks to perform.
Each random walk begins with the empty graph and extends the patterns via random edge
extensions. If a random extension yields a frequent pattern, based on the flow-based support
described below, it is accepted. Otherwise, the extension is rejected, and we try another ran-
dom extension. If none of the possible extensions yield a frequent pattern, we are guaranteed
that the current pattern is maximal, and we add it to the set of maximal patterns M . It is impor-
tant to note that, unlike other graph mining approaches that check for isomorphism during
pattern growth (to eliminate duplicates), CMDB-Miner does not check for isomorphism until
all the k walks finish. This way we pay the price for isomorphism only for patterns that are
maximal, and not at each extension. This strategy confers significant efficiency.

Within a given walk, we assume that the edges (and nodes) in P are numbered in the
order in which they are added to generate P , starting from an empty graph. Edge ordering
automatically leads to node ordering as well. For example, Fig. 2a shows a database graph
G, and Fig. 2b shows a candidate pattern graph P . e1 = (p0, p1) is the first, e2 = (p1, p2)

is the second, and e3 = (p2, p3) is the third edge to be added to P . All of these are examples
of forward edges, that is, an edge that introduces at least one new node to P . The nodes are
ordered from p0 to p3. Due to node ordering, a forward edge is implicitly directed from a
lower to a higher numbered node. The last edge to be added to complete P is e4 = (p3, p1)

and is an example of a backward edge, defined to be an edge between existing nodes. All of
these steps in the random walk are shown in Fig. 3. A backward edge is implicitly directed
from a higher to lower numbered node. This direction information is used in our flow-based
support detailed next.

123

Author's personal copy

Graph mining for infrastructure pattern discovery in CMDBs 499

(a) (b)

(c) (d)

Fig. 3 Steps in the random walk leading to pattern P . a Add: e1 = (p0, p1). b Add: e2 = (p1, p2). c Add:
e3 = (p2, p3). d Add: e4 = (p3, p1)

3.2.2 Network flow-based pattern support

Recall that a flow network G = (V, E) is a directed graph with two distinguished vertices—
source s and sink t . Every ordered edge (u, v) ∈ E has a capacity c(u, v) ≥ 0. A flow in this
network is a function f : E → R that satisfies the following properties: i) capacity constraint:
f (u, v) ≤ c(u, v), and ii) flow conservation:

∑
u∈V f (u, v) − ∑

u∈V f (v, u) = 0, for all
v ∈ V \ {s, t}. The value of a flow is defined as | f | = ∑

v∈V f (s, v), and maximum flow is a
flow with the maximum value. It is known that if all the edge capacities c(u, v) are integers,
then there exists a maximum flow with only integer flows on the edges. A path from node u
to v in a flow network G = (V, E) is a sequence of distinct vertices (v1, v2, . . . , vk) such
that u = v1, (vi , vi+1) ∈ E for all 1 ≤ i ≤ k − 1, and vk = v. The length of this path is
k − 1. A path from s to t is also called a s–t path.

We now describe the construction of a flow network in which the maximum flow corre-
sponds to an upper bound on the edge-disjoint support of the pattern. The main idea is that
any embedding of a pattern can be viewed as a path from s to t in the flow network, and edge
disjointness can be imposed by using unit capacities on the edges.

Consider a pattern P = (V ′, E ′, L ′), and a database graph G = (V, E, L). Let E ′ =
{e1, e2, . . . , em} be an ordering of the edges in P (e.g., the order in which pattern P was
obtained). Recall that each edge is oriented, that is, it is a forward or backward edge. Let �i

denote the set of all embeddings in G for a single edge ei ∈ E ′. For example, Fig. 4a shows
the embeddings for each oriented edge in P . The flow network F = (VF , EF) is constructed
from the set of embeddings by setting VF to be the set of distinct nodes over all the edge
embeddings �i and by adding the directed edge (a j , b j), with capacity c(a j , b j) = 1, for
each embedding a j , b j ∈ �i , with 1 ≤ j ≤ |�i | and 1 ≤ i ≤ m. Further, we add an edge
(s, u) for each distinct u such that (u, v) ∈ �1, with capacity c(s, u) = nu , where nu is the
number of time node u appears in �1. Finally, we add an edge (v, t) for each distinct v such
that (u, v) ∈ �m , with capacity c(v, t) = nv , where nv is the number of times v appears in
�m . Figure 4b shows the flow network obtained from the embeddings of each edge in P .
For instance, since 0, 1 ∈ �1, we add the edge (0, 1) in F with capacity 1. Likewise, since
2, 1 ∈ �4, we add the edge (2, 1) in F with capacity 1. The same is done for all embeddings
in � j , for 1 ≤ j ≤ 4. There are three distinct start nodes in �1, namely {0, 5, 8}; thus, we
add three edges from the source: (s, 0) with capacity 2, (s, 5) with capacity 1, and (s, 8) with

123

Author's personal copy

500 P. Anchuri et al.

(a)

(b)

(c)

Fig. 4 Flow network and maximum flow: a Edge embeddings for P . b Flow network for P . Boxes show
capacity and flow on each edge. Maximum flow has value 3. c A possible set of three edge-disjoint embeddings
corresponding to the maximum flow of 3

capacity 1. Finally, there are two distinct end nodes in �4, namely {1, 9}; thus, we add two
edges to the sink: (1, t) with capacity 3, and (9, t) with capacity 1.

Definition 1 The flow-based support of a pattern P , denoted sup f (P), is defined as the
maximum flow in the flow network for P .

There are several efficient implementations of maximum flow. We use Dinic’s algo-
rithm [15] that is based on blocking flows. In special cases where all the edges have a
unit capacity, it has complexity O(min(V 2/3, E1/2) · E). Figure 4b shows that the maximum

123

Author's personal copy

Graph mining for infrastructure pattern discovery in CMDBs 501

flow value is 3, thus sup f (P) = 3. Figure 4c shows the three disjoint edge mappings for P ,
corresponding to the three disjoint embeddings in Fig. 2d.

We now prove that the flow-based support of P is an upper bound on the edge-disjoint
support. Let G = (V, E, L), and P = (V ′, E ′, L ′) with |V ′| = n and |E ′| = m. We make
the following observations:

– Lemma 1: If π is an embedding of P in G, then there exists a corresponding s–t path in
the flow network F . This follows immediately from the facts that: i) P is connected; ii)
for each edge ei = (ai , bi) ∈ E ′, there is an edge in the flow network corresponding to
the edge mapping for ei , namely π(ei) = (π(ai), π(bi)) ∈ �i ; iii) there exists an edge
from s to each start node in �1 (for edge e1 ∈ P), and from each end node in �m (for
em ∈ P) to t . Note that the path length can be less than m + 2. It is m + 2 when all edges
in P lie on some path from s to t .

– Lemma 2: If π1, and π2 are two edge disjoint embeddings of P in G, then the s–t
corresponding paths are disjoint, ignoring the out-edges of s and in-edges of t (which
may be shared).

– Lemma 3: If � = {π1, π2, . . . , πk} is a set of edge-disjoint embeddings of P in G, then
the maximum flow is at least k. Let nu embeddings have the same start vertex u, and
let nv embeddings have the same end vertex v. From Lemma 2, we know that ignoring
s and t , there are k disjoint paths in the flow network k, corresponding to each of the k
embeddings in �. If f (e) = 1 for all edges e on these paths, and if f (s, u) = nu and
f (v, t) = nv , then we can see that the resulting flow has value at least k.

Theorem 1 The maximum flow in the flow network F for pattern P is an upper bound on
the number of edge-disjoint embeddings of P in G.

Proof In Lemma 3, if � is the set of all possible edge-disjoint embeddings of P , with
|�| = k, then the maximum flow in F is at least k, and sup f (P) ≥ k = supe(P). Let Q be
an extension of pattern P , that is, P ⊆ Q. Since every edge disjoint embedding of Q is also an
edge-disjoint embedding of P , it immediately implies that supe(Q) ≤ supe(P) ≤ sup f (P).

�

The fact that sup f (P) is an upper bound on the edge-disjoint support allows us to prune
any extension (an immediate supergraph) of pattern P if sup f (P) < minsup. This follow
immediately from the theorem above, since sup f (P) < minsup �⇒ supe(Q) < minsup,
and thus, we can guarantee that no extension of P can be frequent according to edge-disjoint
support. We will call the flow network constructed using the embeddings of all the edges in
the network as the complete flow (CF) network.

It is worth noting that the edge-disjoint support of P is equal to the maximum number
of edge-disjoint s–t paths of length m + 2 in the flow network. However, [20] proved that
finding the maximum disjoint paths with constraints on the length is NP-Complete. For this
reason, our formulation does not place any restrictions on the length of the paths, and thus,
we obtain an upper bound on the edge-disjoint support. It is important to note that Dinic’s
algorithm finds the shortest s–t paths that are saturated. Thus, the flow-based support is close
to the actual support if the shortest s–t path length in the flow network is close to the number
of edges in the candidate pattern. While it may not be a beneficial strategy for general (dense)
patterns, our formulation is very effective for CMDB graphs, which are sparse, and thus, the
mined patterns are also sparse. For such patterns, the flow-based support is generally close
to the edge-disjoint support.

123

Author's personal copy

502 P. Anchuri et al.

Fig. 5 a A database graph.
b A candidate pattern obtained by
adding a back edge between p2
and p0. c All embeddings of P .
The embeddings π0 and π1 of P
in G are not edge disjoint

(a)

(b) (c)

4 Optimization

The upper bound on the edge-disjoint support calculated using the flow network formulation
of a candidate pattern may be loose if the length of the shortest path between s and t is
smaller compared to the number of edges in the candidate pattern. This situation arises when
the candidate pattern is generated as a result of adding a back edge to a vertex close to p0 or
by branching from a vertex close to p0. In the extreme case when the back edge is connected
to p0 or the branch extends from po, any flow that originates at s can reach t without any
restriction, that is, the capacity constraint on the internal edges may have no effect.

Consider the sample database shown in Fig. 5a, and suppose that e1(p0, p1) and e2(p1, p2)

are the two edges that are added to an empty pattern leading to a frequent pattern P ′. In the
next step of the random walk, a back edge is added from p2 to p0 leading to the candidate
pattern P shown in Fig. 5b. Figure 5c shows all the embeddings for the candidate pattern P .
It can be seen that the maximum number of edge-disjoint embeddings for P is 1 as the edge
mapping of e2 is (2, 4), and it is in both π0 and π1. Figure 6 shows the edge mappings and
the resulting flow network for P . The maximum s–t flow of 2 in the network is obtained by
pushing a unit flow on the paths s–g0–t and s–g1–t . Notice that there are no internal edges
on these paths. In this example, if the flow network is constructed using only edge mappings
of e′

3(p0, p2) and e′
2(p2, p1), then the maximum flow is 1. Figure 7 shows this alternative.

This construction separates the s′ and t ′ nodes by at least two edges, and hence, the capacity
constraint on the edges restricts the maximum flow to 1.

4.1 Longest path network

The key take away from the above example is that flow can be restricted by separating s and
t in the network. Therefore, to obtain a better upper bound on the edge-disjoint support, we
compute the maximum flow in a network where s and t are most separated, but the support
upper bound is still guaranteed. We refer to this optimization as the Longest path (LP) network
and contrast it with the CF network given above.

Let P ′ = (V ′, E ′) be a frequent pattern and P = (V, E) be the pattern obtained by adding
the edge ek = (vi , v j). Note that v j /∈ V ′ if ek is a forward edge. To construct the LP network

123

Author's personal copy

Graph mining for infrastructure pattern discovery in CMDBs 503

(a)

(b)

Fig. 6 Flow network and maximum flow: a Edge embeddings for P . b Flow network for P . Boxes show
capacity and flow on each edge. Maximum flow has value 2

of P , we first find a vertex vs ∈ V ′ which is farthest from v j , with S denoting the LP, which
starts at v j and ends at vs . We place an additional constraint that the first edge on S is (v j , vi).
The LP network then is the same as the flow network of a pattern Q = (V ′′, E ′′) ⊆ P where
E ′′ is the set of all edges present on the path S. The source node s is connected to the edge
mappings of the first edge on S, and the mappings of the last edge on S are connected to the
sink t in the LP network. As before, the maximum flow in the LP network is an upper bound
on the edge-disjoint support. There is a twofold advantage to using the maximum flow in
the LP network: 1) Q does not have a cycle and is branch free, which implies that the s–t
flow is more constrained. 2) The size of the LP network is smaller compared to the size of
flow network for P . This reduces the time required to compute the maximum flow. We will
now prove the upper bound property of the LP network. The argument for the proof is similar
to Theorem 1. We continue to use the notation introduced above and make the following
observations about the LP network.

– Lemma 4: If π is an embedding of P in G, then there exists a corresponding s–t path in
the LP network. This follows immediately from the following facts: i) Q is connected;
ii) for each edge ei = (ai , bi) ∈ E ′′, there is an edge in the LP network corresponding to
the edge mapping for ei , namely π(ei) = (π(ai), π(bi)) ∈ �i ; iii) there exists an edge
from s to each start node in the edge mappings of (v j , vi), and to t from each end node
in the mappings of the last edge on the path S.

Given the existence of s–t path, the rest of the proof is similar to the proof of Theorem 1.

123

Author's personal copy

504 P. Anchuri et al.

(a)

(b)

Fig. 7 Flow network and maximum flow: a Edge embeddings for the edges on the longest path. b Flow
network for edges on the path. Boxes show capacity and flow on each edge. Maximum flow has value 1. Note
that g3 has been omitted from the network as it not connected to any embedding in �1

4.2 Pruning isomorphic patterns

Given a minimum support threshold minsup, and given k, the number of random walks,
CMDB-Miner performs k random walks in the pattern space, to yield a set M of exactly k
maximal frequent subgraphs, using flow-based support. However, since the walks are random,
they may yield isomorphic maximal patterns. Such isomorphic patterns have to be discarded
before the infrastructure pattern extraction step. Unfortunately, while graph isomorphism is
in NP, it is not known whether it is NP-complete or is in P [14].

Instead of checking for isomorphism between every pair of maximal patterns in M , we use
a sequence of polynomial-time filters to create equivalence classes of possibly isomorphic
patterns. Thus, the worst-case exponential time algorithm for graph isomorphism has to be
applied to only pairs of graphs within the same equivalence class. Initially, M comprises a
single equivalence class. We then apply the following filters:

– Node Multiset: Given a pattern P = (V ′, E ′, L ′), define ρV (P) = {L(vi) : vi ∈ V }
to be the multiset of node labels in P . It is easy to see that two patterns P and P ′ cannot be
isomorphic if ρV (P) �= ρV (P ′). In this case, P and P ′ are added to different equivalence
classes and never have to be checked for isomorphism.

– Edge Multiset: Given pattern P = (V ′, E ′, L ′), for each edge ei = (ai , bi) ∈ E ′,
define a composite edge label to be the triple L(ei) = (L ′(ai), L ′(bi), L ′(ei)), with
ai < bi . Define the filter ρE (P) = {L(ei) : ei ∈ E ′} to be the multiset of composite
edge labels for P . Two patterns P and P ′ cannot be isomorphic if ρE (P) �= ρE (P ′).

123

Author's personal copy

Graph mining for infrastructure pattern discovery in CMDBs 505

Fig. 8 Sample maximal patterns

– Laplacian Spectrum: Let A be the adjacency matrix for pattern P , that is, A(vi , v j) =
1 if (vi , v j) ∈ E ′, and A(vi , v j) = 0, otherwise. Let D be the diagonal degree matrix
for P , defined as D(vi , vi) = ∑

v j
A(vi , v j), and D(vi , v j) = 0 for all vi �= v j . Define

the normalized Laplacian matrix of P as follows: N = D−1/2 · (D − A) · D1/2. N is
a n × n positive semi-definite matrix, and thus, N has n (not necessarily distinct) real,
positive eigenvalues: λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Define the Laplacian spectrum of P as
the multiset ρS(P) = {λi : 1 ≤ i ≤ n}. It is known that two isomorphic patterns are
iso-spectral, that is, they have the same Laplacian spectrum [14]. Thus, P and P ′ cannot
be isomorphic if ρS(P) �= ρS(P ′)

After applying the above filters, the set M is partitioned into smaller equivalence classes
of possibly isomorphic graphs. For each pair of graphs in the same class, we perform full
isomorphism checking using the VF2 [13] algorithm. The output of this step is the final set
M of non-isomorphic maximal frequent patterns in G. Note that at this stage, we can find the
actual edge disjoint support of all the maximal patterns by using the maximal independent
set approach proposed in [24].

5 Infrastructure pattern extraction

Given a set of non-isomorphic maximal patterns M , CMDB-Miner clusters them into groups
of similar patterns and then selects a representative set of infrastructure patterns from each
cluster. There are three main steps: i) defining pairwise similarities between patterns, ii) graph
clustering, iii) infrastructure pattern extraction.

5.1 Pattern similarity

Before clustering the maximal patterns, we have to define a similarity measure between
patterns, which takes into account both the structure and label information. Graph edit
distance-based methods [6] are a popular approach to compute the similarity; however, the
vast majority of these methods focus mainly on the structure. For example, a purely structure-
based method would consider P3 and P4 in Fig. 8 to be highly similar. Methods that consider
labels include [17,28]. We propose a novel pattern similarity approach based on diffusion
kernels [22], which works well for CMDB graphs. As such, the clustering method is inde-
pendent of the similarity measure, and thus any of the attributed graph similarity measures
can also be used. For instance, we compare our method with the similarity flooding method
[27] in the experimental section.

123

Author's personal copy

506 P. Anchuri et al.

(a)

(b)

Fig. 9 Augmented graph and pattern similarity: a shows the augmented weighted graph for P2 and P3 in
Fig. 8. Structural edges are solid, whereas attribute edges are shown dashed. b shows the pairwise similarity
matrix between all five patterns in Fig. 8

We define similarity between two patterns P = (VP , EP , L P) and Q = (VQ, EQ, L Q),
as

Sim(P, Q) = Jaccard(P, Q) × Di f f usion(P, Q) (1)

Here, Jaccard(P, Q) = |L P ∩L Q |
|L P ∪L Q | is the Jaccard coefficient between the label sets for P

and Q. The more the labels in common, the higher the Jaccard similarity. Di f f usion(P, Q)

is the diffusion kernel-based similarity between P and Q that considers both the structure
and the label information, as described below.

Following a procedure similar to that in [35], given P and Q, we first create an augmented
weighted graph R = (VR, ER, WR). Here, VR = VP ∪ VQ ∪ {

l|∃v ∈ VP , L P (v) = l
} ∪{

l|∃v ∈ VQ, L Q(v) = l
}
, that is, R contains both structural nodes (those in P and Q) and

attribute nodes (labels for nodes in P and Q). ER = EP ∪ EQ ∪ {(v, l) : v ∈ VP , L P (v) =
l} ∪ {(v, l) : v ∈ VQ, L Q(v) = l}. In other words, ER contains both the structural edges (the
original edges between vertices in both P and Q), as well as the attribute edges (between a
node in P and Q, and its label). Finally, WR : ER → R is a function that assigns a weight
to each edge. The weights on structural edges are set to 1, that is, W (u, v) = 1.0 for all
(u, v) ∈ EP ∪ EQ . The weights on attribute edges are set as follows: W (v, l) = 1

nl
, where

nl is the number of neighbors of node l in R. In the augmented graph, two structural vertices
that have the same label l are both neighbors of the attribute node l. To avoid inflating the

123

Author's personal copy

Graph mining for infrastructure pattern discovery in CMDBs 507

similarity purely due to labels (which has already been accounted for by Jaccard(P, Q)),
we assign the fractional weight on attribute edges. Figure 9a shows the augmented weighted
graph for P2 and P3 from Fig. 8.

To compute Di f f usion(P, Q) for each pair of patterns, we use the diffusion kernel
approach [22] over their augmented graph. A diffusion kernel mimics the physical process of
diffusion where heat, gases, etc., originating from a point diffuse with time. On graphs, it is the
local similarity that diffuses via continuous time random walks (i.e., with an infinite number
of infinitesimally small steps). Given the augmented graph R = (VR, ER, WR), the matrix
WR is taken to be the weighted adjacency matrix of R. Further, define the diagonal degree
matrix as D(vi , vi) = ∑

v j
WR(vi , v j), and D(vi , v j) = 0 when i �= j . The Laplacian

matrix of R is then defined as: N = D − WR . Finally, the diffusion kernel matrix is defined

as K = eβL =
∑∞

k=0

βk

k! Lk , where β is a real-valued diffusion parameter, and eβL is

the matrix exponential (with L0 = I and 0! = 1). Since L is positive semi-definite, it has
|VR | = n real and positive eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Let ui be the eigenvector
corresponding to eigenvalue λi . Then, the diffusion kernel can easily be computed as the
spectral sum [22]: K = ∑n

i=1 ui eβλi uT
i . The eigenvalues and eigenvectors of K can be

computed in O(n3) time, where n = |VR |.
The kernel matrix entry K (vi , v j) gives the diffusion-based similarity between any two

vertices in the augmented graph R for patterns P and Q. In particular, we are interested in
those entries K (u, v) where u ∈ VP and v ∈ VQ . We define the diffusion similarity between
P and Q as follows: If L P ∩ L Q = 0, then we set Di f f usion(P, Q) = 0, otherwise

Di f f usion(P, Q) = min
l∈L P ∩L Q

⎧⎪⎨
⎪⎩

max
u∈VP ,v∈VQ

(u,l),(v,l)∈ER

{
K (u, v)

}
⎫⎪⎬
⎪⎭

In other words, the diffusion similarity between P and Q is defined as the least label similarity
over all labels l, such that the label similarity is the maximum kernel similarity over pairs of
nodes u, v that share a given label l. Figure 9b shows the pairwise similarities between all
the patterns in Fig. 8, based on Eq. (1), that combines both the Jaccard() and Di f f usion()

values.

5.2 Clustering

We employ graph clustering to cluster the set of maximal patterns M . In particular, given the
similarity matrix S(i, j) = Sim(Pi , Pj) between any two patterns ∈ M , we can think of S as
the weighted adjacency matrix of a similarity graph, where each maximal pattern is a node,
and any two maximal patterns are linked with weight S(i, j). Clustering of the patterns is
then equivalent to clustering the nodes in the similarity graph. While many algorithms have
been proposed for graph clustering [29], we use the Markov clustering (MCL) [31] approach
as opposed to spectral methods [30], since MCL does not require the number of clusters as
input.

Let D be the diagonal degree matrix corresponding to the weighted similarity matrix S.
Let N = D−1S be the normalized adjacency matrix for the similarity graph. The matrix N is
a row-stochastic or Markov matrix that specifies the probability of jumping from node Pi to
any other node Pj . N is thus that transition matrix for a Markov random walk on the similarity
graph. As such, the kth power of N , namely N k , specifies the probability of transitioning
from Pi to Pj in a walk of k steps. MCL [31] takes successive powers of N to expand the

123

Author's personal copy

508 P. Anchuri et al.

influence of a node. However, it damps the extent of a nodes’ influence, by an inflation step,
whose goal is to enhance higher and diminish lower transition probabilities. Given transition

matrix N , define the inflation operator ϒ given as follows: ϒ(N , r) =
{

N (i, j)r∑n
a=1 N (i,a)r

}n

i, j=1
.

In essence, ϒ takes each element of N to the r th power and then re-normalizes the rows to
make the matrix row-stochastic.

Given the initial N matrix, and an inflation parameter r , MCL is an iterative matrix
algorithm consisting of two main steps: i) expansion: N = N 2, followed by ii) inflation:
N = ϒ(N , r). The method converges to a doubly idempotent matrix, and the strongly
connected components in the corresponding induced graph yield the final node clusters [31].
The only parameter in MCL is the inflation value r that controls the granularity. Higher values
lead to more, smaller clusters, whereas smaller values lead to fewer, larger clusters. MCL
runs in O(tn3) time, where |M | = n, and t is the number of iterations until convergence.

5.3 Infrastructure pattern extraction

Given a set of clusters Ci , 1 ≤ i ≤ k obtained via the MCL approach, the final step
in CMDB-Miner is to extract the so-called infrastructure patterns, that is, representative
members from each cluster. Given a similarity threshold θ , from each cluster Ci we aim
to extract as subset of the patterns Ri ⊆ Ci , such that for each Pj ∈ Ci , there exists a
pattern P ∈ Ri with Sim(Pj , P) ≥ θ . The task is to find a minimal set of representative
patterns for each cluster. However, this problem is equivalent to smallest set cover, an NP-
Complete problem, which nevertheless has a greedy
(log n) approximation algorithm [12].
The greedy heuristic iteratively chooses the pattern that covers or represents the largest
number of remaining elements in a cluster, until all the cluster members are covered.

6 Experimental evaluation

In this section, we evaluate CMDB-Miner on real-world CMDB graphs for two multi-national
corporations, company A and B (names not revealed due to non-disclosure issues), from HP’s
Universal Configuration Management Database (UCMDB). We also conduct experiments to
validate some of the design choices in the implementation of CMDB-Miner. All experiments
were performed on a machine with 2.67GHz Intel i7 processor with 4GB of memory running
Ubuntu Linux version 10.04.

6.1 Preprocessing

The raw CMDB graph of company A contains 443,192 vertices and 480,143 edges. Company
B also contains a similar number of nodes and edges and is shown in Table 3. We discard

Table 3 CMDB Graphs A,B:
before and after preprocessing

Property A B

Before After Before After

|V | 443,192 11,363 455,012 57,525

|E | 480,143 20,978 523,415 149,229

Avg. Deg. 2.16 3.68 2.3 5.16

123

Author's personal copy

Graph mining for infrastructure pattern discovery in CMDBs 509

Fig. 10 Attribute pruning

(a) (b)

Fig. 11 Maximal and non-isomorphic patterns for company A: a sampling time and b number of distinct
maximal patterns, versus number of random walks

uninformative attributes for each composite item, by discarding both high and low entropy
attributes. This results in a significant reduction in the number of attributes, as shown in Fig.
10 for some of the common CI types in the CMDB graph of company A (similar results
are obtained for B too). More than 75 % of the attributes are pruned in this stage. Further,
collapsing leaf nodes reduces the total number of vertices to 11,363. Table 3 shows the graph
order and size, as well as average degree, both before and after preprocessing. As pointed out
earlier, these two preprocessing steps also aid in better interpretation of the final infrastructure
patterns.

123

Author's personal copy

510 P. Anchuri et al.

Fig. 12 Sampling time for
company a using longest path
Optimization. a Time

(a)

Table 4 Biggest pattern
extracted

Database # Vertices # Edges

A 24 41

B 54 55

Table 5 Isomorphism checking
filters (Time in Seconds)

Walks Non-isomorphic Filtering VF2

100 89 0.17 2.05

500 361 5.26 82.07

700 464 3.14 47.57

1,000 671 10.96 148.66

6.2 Sampling maximal patterns

Figure 11a shows the time for sampling maximal patterns versus number of random walks,
for two different (absolute) values of minimum support for company A using the full flow
algorithm. We can see that as expected time is linear in the number of walks. Figure 11b
shows the number of distinct or non-isomorphic maximal patterns versus the number of
random walks. We can see that for minsup = 125, the fraction of distinct maximal patterns
decreases with the number of walks, indicating convergence to the “true” set of maximal
patterns. The convergence has not yet been reached for minsup = 110 within 2,500 walks.
These curves suggest an automated method to stop sampling, namely when the ratio of the
number of distinct patterns to the number of walks falls below some threshold. Figure 12a
shows the time for random walks using the LP network. It can be seen that the LP formulation
greatly reduces the running time for sampling maximal patterns. Similar results were also
obtained for company B. We show the size of the maximal pattern extracted in Table 4.

Table 5 shows the time to detect the number of distinct maximal patterns. We compare
the time taken by our filter-based approach versus the cost of running the VF2 algorithm on
each pair of patterns in M . It is clear that the sequence of filters is very effective in reducing
the running time by over an order of magnitude.

123

Author's personal copy

Graph mining for infrastructure pattern discovery in CMDBs 511

6.2.1 Baseline algorithm (BA)

To compare the effectiveness of our random sampling and network flow formulations, we
compared them with a baseline approach we implemented. Most of the existing single graph
mining algorithms explore the entire pattern space and require an enumeration of all the
embeddings to compute the support of a candidate pattern. Instead of comparing with a
specific algorithm, we formulated a baseline approach that retains a common attribute present
in all the existing algorithms, namely embedding enumeration. The support of a pattern is
computed using the maximum flow in the LP network constructed using all the embeddings,
and the candidates are generated using random sampling as before.

Unfortunately, on the real data sets from Company A and B, the baseline algorithm could
not be run (it crashed after some time) because of the exponential number of embeddings
of the candidates, especially given the multiplicity and other characteristics of the CMDB
graphs mentioned earlier. CMDB-Miner is essentially the only viable approach for these
types of graphs. Nevertheless, to get a better understanding of the baseline methods and
CMDB-Miner, we also compared them on synthetic graphs, as described below.

6.2.2 Synthetic graph data

Synthetic graph data sets were generated using the graph generator provided by Kuramochi
et al. [23]. A simple graph can be generated by using the following parameters: number
of transactions (N), number of Edge Labels (L), number of vertex labels (V), and other
parameters that control the size and number of frequent patterns in the graph. Figure 13a shows
the time versus number of random walks in the pattern space for four different minimum
support values in a graph containing 3,000 edges, 1,817 nodes, with 200 node labels, and
constructed using frequent patterns of size 10. All the edges in the graph have the same label.
The figure shows that the time is linear in the number of walks for the different support
values. However, note that that due to the random pattern extensions, there is not always a
clear relationship between the time for a lower and higher minimum support. In general, it
is the case that a lower support values take more time. However, we can see that extracting
2,000 patterns using support of 2 takes slightly less time than that for support 4 for these
sparse synthetic graphs. This might be an artifact of the higher probability of finding frequent
extensions with lower support values.

The plot in Fig. 13b shows the number of non-isomorphic maximal patterns for support
value of 10, as a function of the number of random walks. Figure 13c compares the run
times for a given number of random walks using the CF network and the LP optimization.
The minimum support used for this experiment is 4 and the graph is generated using the
parameters: 7,000 edges, 3,748 nodes, with 60 distinct vertex labels, 1,400 frequent graphs
of average size 10. By using the LP optimization, the run time reduces significantly. This is due
to the fact that flow in the LP network is a tighter upper bound and in general contains fewer
nodes and edges. Figure 13d shows the time for enumerating 1,000 maximal patterns versus
the number of nodes/vertices in the graph data set. Here, we also compare with the baseline
method. When the data set size is small, the LP approach is marginally better compared to
the baseline or the CF approach. However, as the data set size increases, the run time for LP
becomes significantly less compared to other two algorithms. The figure also shows that the
run time for BA increases steeply as the data set size increases where the increase for LP is
much slower. This also shows the scalability of the LP algorithm. Finally, Fig. 13e shows
that the run time in general decreases as the minimum support is increased. Here again, the
LP network yields the best results.

123

Author's personal copy

512 P. Anchuri et al.

(a) (b)

(c) (d)

(e)

Fig. 13 a Shows times for random walks with different minimum support. b Shows the number of non-
isomorphic maximal patterns. c Compares the run time using longest path and complete flow networks.
d Shows the effect of database size (number of nodes) on the run time. e Shows the effect of minium support
on run time. All the times mentioned are in secs

6.3 Pattern similarity

We now show the effectiveness of the our new similarity metric Sim(P, Q) defined in (1),
by comparing it with the SimFlood algorithm [27], which is a widely used technique for
graph matching. Given two patterns, P and Q, SimFlood first computes a match score

123

Author's personal copy

Graph mining for infrastructure pattern discovery in CMDBs 513

Table 6 Similarity flooding
variations: σ i is the similarity
between a pair of nodes in the i th
iteration, and ϕ is the weighted
sum of the similarities of all the
predecessors of a given node pair

Identifier Fixpoint formula

Basic σ i+1 = normali ze(σ i + ϕ(σ i))

A σ i+1 = normali ze(σ 0 + ϕ(σ i))

B σ i+1 = normali ze(ϕ(σ i + σ i))

C σ i+1 = normali ze(σ i + σ i + ϕ(σ i + σ i))

between nodes in P and Q based on the string matching of the labels. The match score of
a pair of labels depends on the prefixes and suffixes of the labels. This matching criterion
is not meaningful in the case of maximal patterns extracted from CMDB graphs because
all the labels are defined in the same context, and every pair of labels is either the same or
different. Hence, we used a 0/1 score for the initial match. In the second step, SimFlood
constructs an induced propagation graph in which each node is a pair of matchable nodes
obtained from P and Q. The number of nodes in the induced propagation graph can be as
many as |EP | × |EQ | depending on the edge labels. In contrast, the order of the Augmented
Weighted Graph constructed by our algorithm is equal to the sum of the number of nodes and
labels present in both the patterns. Though the payoff by using Augmented Graph is marginal
when the task is just to compare a single pair of patterns, there is a significant improvement in
the overall runtime when similarity between every pair of patterns is required. In SimFlood,
the similarity between nodes is computed by propagating the initial match scores to the
neighbors in a manner similar to the pagerank algorithm [4]. SimFlood uses four different
formulas (shown in Table 6) for computing the match score in any iteration using the score
in previous iteration and the initial match score. Our algorithm on the other hand propagates
the similarity using the idea of diffusion. To make a fair comparison between the algorithms,
similarity score between P and Q is computed similar to Di f f usion(P, Q), except that the
similarity between nodes vi and v j is the fixed point value of the node pair (ki , k j) in the
induced propagation graph instead of the kernel matrix entry K (vi , v j).

6.3.1 Comparing similarity metric

We compare our Sim(P, Q) based kernel, with the Sim Flood(P, Q) kernel, by comparing
the quality of the clusters the MCL algorithm generates using these kernels. The quality of a
clustering of maximal patterns is measured using coverage and conductance [21], which are
frequently used in graph clustering literature. The value of the minimum cut of a cluster is a
measure of its quality. A low value means that the cluster contains large number of dissimilar
pairs of nodes, which in turn implies that the cluster is of bad quality. Given a clustering
C = {C1, C2, . . . , Ck} of the graphs into k clusters, the conductance Con(Ci) of a cluster
Ci is a generalization of the minimum cut that considers the size of the cut and also the
similarity between a node and its neighbor. Given a set of clusters, the conductance of the
clustering is defined as the minimum of the conductance of all clusters, and the intercluster
conductance Con(C) [2] can be defined as the compliment of the maximum conductance
over all the clusters.

Con(Cx) =
∑

i∈Cx , j /∈Cx
ai j

min (a(Cx), a(V \ Cx))

Con(C) = 1 − max
i∈1,...,k

φ(Cx) (2)

123

Author's personal copy

514 P. Anchuri et al.

Table 7 I = 2: Time for computing the pair similarity between maximal patterns using diffusion kernel
approach and variations of the similarity flooding

Method Time (s) Cov1 Con2 Clusters #Repr

Basic 148.82 0.97 0.29 2 13

A 240.09 0.99 0.28 2 25

B 45.47 0.97 0.33 2 20

C 36.84 0.99 0.28 2 25

Diffusion 9.68 0.98 0.33 2 24

Cov1 Coverage of the clustering
Con2 External conductance of the clustering
Bold values indicate best results in time or quality

Table 8 I = 4: Time for computing the pair similarity between maximal patterns using diffusion kernel
approach and variations of the similarity flooding

Method Time (s) Cov1 Con2 Clusters #Repr

Basic 148.82 0.89 0.17 4 16

A 240.09 0.99 0.28 2 25

B 45.47 0.94 0.31 3 19

C 36.84 0.99 0.33 2 26

Diffusion 9.68 0.86 0.21 5 26

Cov1 Coverage of the clustering
Con2 External conductance of the clustering
Bold value indicates best result in time

where ai j is the similarity between the vertices i and j in the graph, and a(Cx) is the sum of
similarities between all pairs of vertices with at least one end in cluster Cx .

The other quality measure we use is the coverage (Cov), defined as the ratio of sum of the
similarities between vertices in the same cluster and sum of similarities between all pairs of
vertices in the graph. A clustering with a high value of coverage is preferred over a clustering
with low coverage.

Tables 7 and 8 compare our similarity metric with SimFlood in terms of time, the number
of resulting clusters, cluster coverage, conductance, and the number of representative patterns
extracted for different values of inflation parameter used in the MC L algorithm. In the tables,
Basic, A, B, and C refer to the different update formulas of SimFlood, whereas Diffusion
refers to our similarity method.

It is evident from the table that computing the similarity using our approach is signif-
icantly faster compared to the SimFlood method. We achieve this efficiency without sac-
rificing the quality of the resulting clusters. With inflation I = 2 (Table 7), the coverage
of the clustering obtained using our similarity metric is very close to the maximum possi-
ble value 1. This means that the similarity between the patterns in the same cluster is very
high compared to the similarity between patterns in different clusters. With inflation I = 4
(Table 8), our coverage is less than the coverage obtained using SimFlood. However, note
that our method finds more clusters, and coverage is biased toward fewer clusters, which
is the main reason for lesser coverage value. In terms of the conductance of the cluster-
ing, our similarity metric gives the best value when the value of inflation is I = 2, when

123

Author's personal copy

Graph mining for infrastructure pattern discovery in CMDBs 515

(a)

(b)

Fig. 14 a Shows time to extract clusters, and b shows the number of clusters and representative infrastructure
patterns, for different values of inflation parameter

all methods find the same number of clusters. Ideally, one should compare the coverage
and the conductance values when the number of resulting clusters is same using both the
methods. We tried MCL with a high values for inflation so that the number of clusters
returned using SimFlood is 5. Even with an inflation of 20, the number of clusters gen-
erated using method C remained at 2, whereas our algorithm generated 9 clusters. This
shows that Di f f usion is better compared to SimFlood at discriminating the maximal pat-
terns. The tables also show the number of representative patterns extracted with a similarity
threshold value of θ = 0.8. It can be seen that the number of representatives extracted
using our similarity metric is close to the number of representatives extracted using Sim-
Flood with maximum coverage, and when I = 4, it achieves that with a higher number of
clusters.

123

Author's personal copy

516 P. Anchuri et al.

(a) (b)

(c)

Fig. 15 Mined maximal patterns

6.4 Infrastructure pattern extraction

Having examined the performance of our sampling and similarity methods, we now turn
attention to examples of mined infrastructure patterns from the real CMDB graphs. For
company A, Fig. 14 shows the clustering time, and the number of clusters and representative
patterns versus the given number of walks, for different values of the inflation parameter
r = 2, 4, 6. We used θ = 0.9 (threshold for a pattern to represent another pattern), and β = 2
(the diffusion kernel parameter). Clustering time is negligible compared to the time to sample
the set of maximal patterns. The number of clusters increases with increase in the inflation
parameter, as expected. Also, in most cases, the number of representative patterns remains
the same. This is due to the characteristics of CMDB graphs, where each CI type is connected
to only a limited number of other CI types. Thus, most of the maximal patterns contain either
very similar or very different node labels. As the similarity measure is based on the attributes,
these patterns tend to remain in the same cluster or different clusters, respectively. The small
number of representative patterns shows the effectiveness of CMDB-Miner in summarizing
large and sparse CMDB graphs into a small set of infrastructure patterns.

6.4.1 Example infrastructure patterns

Figure 15 shows three mined maximal patterns, which are a partial view of a general construct
that is known in CMDB, and is defined as a standard Topological Query: Node = nt, sqlserver
= running_software. Figure 16 shows another infrastructure pattern mined by CMDB-Miner.
This pattern is a representative for several other patterns in a cluster. In order to choose a
representative for each cluster, we currently choose a member of the cluster that maximizes
the overall similarity to other members of the cluster. Alternatively, we can consider trimmed
similarity (to say only the closest 80 % of the members), or we could aim for a description

123

Author's personal copy

Graph mining for infrastructure pattern discovery in CMDBs 517

Fig. 16 Infrastructure pattern

(a)

(b)

Fig. 17 Maximal pattern with node attributes

of a family of graphs that describes a large majority of the cluster. Exploring these options
is part of future work.

6.4.2 Mining graphs with multiple attributes

Since CMDB graphs have a rich set of attributes for each composite item, we also mined
patterns at a much finer level of granularity in terms of the CI nodes and their attributes.
To mine such multi-attributed CI items, we created a new graph, where each node v ∈ V
with a label l and an attribute list < A1 : V al1, . . . , Ak : V alk > is replaced with k

123

Author's personal copy

518 P. Anchuri et al.

nodes with labels l@A1 − V al1, . . . , l@Ak − V alk , respectively. Also, each of the k labeled
nodes from v are lined to each of the k′ labeled nodes from another vertex v′, if the edge
(v, v′) existed in the original coarse graph. Thus, if each node in the graph contains O(d)

attributes, then the size of the resulting graph increases by O(d2). This finer grained graph
can then be mined using CMDB-Miner as before. Figure 17 shows some example patterns
extracted from company A with richer node labels. For example, we can see that the CI item
corresponding to nt has been refined into several of its specific attribute values, for example,
nt.A_N T _SE RV I C E P AC K = 2.0, nt.A_G APC_OW N E D = 0, and so on, for other
CI items as well. Such fine-grained patterns are more precise than the coarse CI item-based
patterns and thus may lead to a better characterization of the de facto infrastructure patterns
and policies in an IT organization.

7 Conclusions

We have demonstrated that CMDB-Miner is an effective algorithm for mining real-world
CMDB graphs. It makes use of the characteristics of such graphs (e.g., label multiplicities,
sparsity) to speed up the mining process. It performs random walks without having to check
for isomorphism, which is only performed on the final set of maximal patterns via a filter-
based approach. Further, we proposed a new flow-based upper bound on the edge-disjoint
support that allows for effective pattern pruning and which avoids the exponential blowup
in the number of possible embeddings that plague many previous methods. To extract the
infrastructure patterns, we proposed a new diffusion kernel-based similarity that takes into
account both the structure and label information. We show that CMDB-Miner is able to
extract meaningful infrastructure patterns. In terms of future work, we plan to parallelize the
approach for better scalability. We also want to explore other random sampling techniques by
which the probability of exploring a non-isomorphic pattern is high in each random walk. We
would also like to mine approximate patterns, with possibly mismatched nodes and edges.

References

1. Al Hasan M, Zaki MJ (2009) Output space sampling for graph patterns. In: Proceedings of the 35th
international conference on very large data bases, VLDB endowment, vol 2, no. 1, pp 730–741

2. Almeida H, Guedes D, Meira W Jr, Zaki MJ (2011) Is there a best quality metric for graph clusters?
In: 15th European conference on principles and practice of knowledge discovery in databases

3. Besemann C, Denton A (2007) Mining edge-disjoint patterns in graph-relational data. In: Proceedings of
the workshop on data mining for biomedical informatics at SDM-07, Citeseer, Minneapolis

4. Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. In: Proceedings of
the seventh international conference on, world wide web 7, WWW7, pp 107–117

5. Bringmann B, Nijssen S (2008) What is frequent in a single graph? In: 12th Pacific-Asia conference on
knowledge discovery and data mining

6. Bunke H, Shearer K (1998) A graph distance metric based on the maximal common subgraph. Pattern
Recognit Lett 19(3–4):255–259

7. Calders T, Ramon J, Van Dyck D (2011) All normalized anti-monotonic overlap graph measures are
bounded. Data Min Knowl Discov. doi:10.1007/s10618-011-0217-y (online first)

8. Chaoji V, Al Hasan M, Salem S, Besson J, Zaki MJ (2008) ORIGAMI: a novel and effective approach
for mining representative orthogonal graph patterns. Stat Anal Data Min 1(2):67–84

9. Chaoji V, Al Hasan M, Salem S, Zaki MJ (2008) An integrated, generic approach to pattern mining: data
mining template library. Data Min Knowl Discov 17(3):457–495

10. Chen C, Lin CX, Yan X, Han J (2008) On effective presentation of graph patterns: a structural representa-
tive approach. In: Proceeding of the 17th ACM conference on information and knowledge management,
ACM, pp 299–308

123

Author's personal copy

http://dx.doi.org/10.1007/s10618-011-0217-y

Graph mining for infrastructure pattern discovery in CMDBs 519

11. Chen C, Yan X, Zhu F, Han J (2007) Gapprox: mining frequent approximate patterns from a massive
network. In: Proceedings of the 2007 seventh IEEE international conference on data mining, ICDM ’07,
pp 445–450

12. Chvtal V (1979) A greedy heuristic for the set-covering problem. Math Oper Res 4(3):233–235
13. Cordella LP, Foggia P, Sansone C, Vento M (2004) A (sub) graph isomorphism algorithm for matching

large graphs. IEEE Trans Pattern Anal Mach Intell 26(10):1367–1372
14. Cvetkovic DM, Rowlinson P, Simic S, Biggs N (1997) Eigenspaces of graphs. Cambridge University

Press, Cambridge
15. Dinitz Y (2006) Dinitzalgorithm: the original version and evens version. Theor Comput Sci :218–240
16. Fiedler M, Borgelt C (2007) Support computation for mining frequent subgraphs in a single graph.

In: 5th international workshop on mining and learning with graphs
17. Hidovic D, Pelillo M (2004) Metrics for attributed graphs based on the maximal similarity common

subgraph. Int J Pattern Recog Arti Intell 18(3):299–313
18. Huan J, Wang W, Prins J (2003) Efficient mining of frequent subgraphs in the presence of isomorphism.

In: ICDM Proceedings, IEEE
19. Inokuchi A, Washio T, Motoda H (2003) Complete mining of frequent patterns from graphs: mining graph

data. Mach Learn 50(3):321–354
20. Itai A, Perl Y, Shiloach Y (1982) The complexity of finding maximum disjoint paths with length con-

straints. Networks 12:277–286
21. Kannan R, Vempala S, Veta A (2000) On clusterings-good, bad and spectral. In: Proceedings of the 41st

annual symposium on foundations of computer science, FOCS ’00, p 367
22. Kondor R, Vert J-P (2004) Diffusion kernels. In: Scholkopf B, Tsuda K, Vert J-P (eds) Kernel methods

in computational biology. The MIT Press, Cambridge
23. Kuramochi M, Karypis G (2001) Frequent subgraph discovery. In: 1st IEEE international conference on

data mining
24. Kuramochi M, Karypis G (2005) Finding frequent patterns in a large sparse graph. Data Min Knowl Disc

11(3):243–271
25. Li S, Zhang S, Yang J (2010) Dessin: mining dense subgraph patterns in a single graph. Sci Stat Database

Manag 178–195
26. Li J, Liu Y, Gao H (2011) Summarizing graph patterns. IEEE Trans Knowl Data Eng (99):1. doi:10.1109/

TKDE.2010.48 (online early access)
27. Melnik S, Garcia-Molina H, Rahm E (2002) Similarity flooding: a versatile graph matching algorithm

and its application to schema matching. In: Proceedings of the 18th international conference on data
engineering, ICDE ’02, p 117

28. Neuhaus M, Riesen K, Bunke H (2006) Fast suboptimal algorithms for the computation of graph edit
distance. Struct Syntactic Stat Pattern Recogn 163–172

29. Schaeffer SE (2007) Graph clustering. Comput Sci Rev 1(1):27–64
30. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell

22(8):888–905
31. Van Dongen S (2004) Graph clustering via a discrete uncoupling process. SIAM J Matrix Anal Appl

30(1):121–141
32. Vanetik N, Shimony SE, Gudes E (2006) Support measures for graph data. Data Min Knowl Discov

13(2):243–260
33. Yan X, Han J (2002) Gspan: graph-based substructure pattern mining. In: IEEE international conference

on data mining
34. Zhang S, Yang J, Li S (2009) Ring: an integrated method for frequent representative subgraph mining.

In: 2009 ninth IEEE international conference on data mining, IEEE, pp 1082–1087
35. Zhou Y, Cheng H, Yu JX (2009) Graph clustering based on structural/attribute similarities. Proc VLDB

Endow 2(1):718–729

123

Author's personal copy

http://dx.doi.org/10.1109/TKDE.2010.48
http://dx.doi.org/10.1109/TKDE.2010.48

520 P. Anchuri et al.

Author Biographies

Pranay Anchuri is a Ph.D. candidate in the Department of Computer
Science at Rennselaer Polytechnic Institute, Troy, USA where he is
advised by Mohammed J. Zaki. Earlier, he received his B.Tech in Com-
puter Science with an Honors in Data Mining from IIIT Hyderabad,
India. His research interests are in large scale graph mining, approxi-
mate pattern mining, and social network analysis.

Mohammed J. Zaki is a Professor of Computer Science at RPI. He
received his Ph.D. degree in computer science from the University of
Rochester in 1998. His research interests focus on developing novel
data mining techniques, especially in bioinformatics. He has published
over 200 papers and book chapters on data mining and bioinformatics.
He is the founding co-chair for the BIOKDD series of workshops.
He is currently Area Editor for Statistical Analysis and Data Mining,
and an Associate Editor for Data Mining and Knowledge Discovery,
ACM Transactions on Knowledge Discovery from Data, Knowledge
and Information Systems, ACM Transactions on Intelligent Systems
and Technology, Social Networks and Mining, and International Jour-
nal of Knowledge Discovery in Bioinformatics. He was/is the program
co-chair for SDM’08, SIGKDD’09, PAKDD’10, BIBM’11, CIKM’12,
and ICDM’12. He received the National Science Foundation CAREER
Award in 2001 and the Department of Energy Early Career Principal
Investigator Award in 2002. He received the HP Innovation Research

Award, 2010–2012, and the Google Faculty Research Award in 2011. He is a senior member of the IEEE
and was named an ACM Distinguished Scientist in 2010.

Omer Barkol is a research manager in HP Labs in Israel. The
main research agenda of Omer and his team deals with analytics and
collaboration in large organizations, with a focus on information man-
agement. As of 2008, Omer works in HP Labs, working both in the
area of imaging and printing, and in the research area of IT informa-
tion management. Omer has led the research project of print inspec-
tion which included a major tech transfer. He was also involved in
research and development of image-based automation and in automa-
tion for configuration management. Today, Omer’s main research focus
is on complex-data mining (i.e., graphs), working with various teams
in HP software. Prior to joining HP, Omer has led a software team in
Charlotte’s Web Networks, dealing with routing protocols. Omer has
a Ph.D. and M.Sc in Computer Science from Israel Institute of Tech-
nology (Technion). His research areas were in theoretical computer
science, coding theory, and cryptography. Omer received his B.Sc in
Mathematics and Computer Science from the Technion.

123

Author's personal copy

Graph mining for infrastructure pattern discovery in CMDBs 521

Ruth Bergman is the director of HP Labs in Israel. The research
agenda for the lab is analytics, collaboration, and automation in large
organizations, with a focus on IT management and serviceability of
printing systems. Ruth joined HP in October, 2001. She was the
research manager and principal research scientist for the IT Infor-
matics big bet since 2008. She has created business opportunities via
a novel image-based technology for software testing applications, IT
automation technology for configuration management, and a Knowl-
edge Management system to enhance collaboration in IT management.
She led projects to support HP’s printing and imaging business includ-
ing repairing defective images, including dust and scratch removal,
which is included in all of HPs scanner and All-In-One products, and
perceptual segmentation which extracts perceptual tags from images
such as sky, skin, and foliage and is a key ingredient for enhancing
images in the HP Indigo Photo Enhancement Server (HIPIE). Prior to
joining HP, Ruth was a researcher at the NASA Jet Propulsion Labo-

ratory in Pasadena, California, and at the Lincoln Laboratory at the Massachusetts Institute of Technology
(MIT). Ruth has a Ph.D. in Electrical Engineering and Computer Science from MIT and a Master’s and
Bachelor’s degrees in Computer Science from the University of California, San Diego. She has authored
six book chapters, 10 conference papers, and holds 7 patents and 17 patent applications.

Yifat Felder is a software engineer in HP software Israel. Her team
works on algorithms for extracting topological data from graph rep-
resentation of the IT world. As of 2009, Yifat works in HP. Yifat
has worked on several aspects, including incorporation of external
topological data source into the existing topology, and developing
a performance-related state machine enhancement for quicker data
analysis. Her latest project is developing a search engine based on nat-
ural language. Yifat has a M.Sc. and B.Sc. degrees in Computer Sci-
ence from Tel-Aviv University. Her main focus in research was in the
bioinformatics field.

Shahar Golan is a researcher in HP labs Israel since May 2010. He
is part of the Information Analytics lab, which deals with analytics
and collaboration in large organizations, with a focus on informa-
tion management. Shahar received his Ph.D. (summa cum laude) at
Ben Gurion University in 2010. His research was done under the
supervision of Prof. Daniel Berend on the topic “Algebraic Meth-
ods for Solving Constraint Satisfaction Problems.” In the past, Shahar
worked in HyperRoll (later purchased by Oracle) as a developer and
later as the research team leader. HyperRoll develops an aggrega-
tion engine for relational database. Shahar’s research interests are con-
straint satisfaction problems, algorithms on graphs and data mining.

123

Author's personal copy

522 P. Anchuri et al.

Arik Sityon is a team manager in HP Software in Israel. The main
agenda of Arik and his team deals with IT information management,
with a focus on topological algorithms to analyze the IT information.
As of 2006, Arik works in HP Software, working in the area of IT
information management. Arik has led the project of supporting multi-
tenancy in HP UCMDB product. He was also involved in research and
development of a search engine for the IT information which is still his
main work focus. Arik has an M.Sc. in Computer Science from Ben
Gurion University. His research area was computational geometry. Arik
received his B.Sc. in Computer Science from Ben Gurion University.

123

Author's personal copy

	Graph mining for discovering infrastructure patterns in configuration management databases
	Abstract
	1 Introduction
	2 Background
	2.1 Preliminary concepts
	2.2 Related work
	2.2.1 Support in a single graph

	3 CMDB-Miner: mining CMDB graphs
	3.1 Graph preprocessing
	3.1.1 Entropy-based attribute pruning
	3.1.2 Summarizing leaf nodes

	3.2 Sampling maximal patterns
	3.2.1 Random walks in pattern space
	3.2.2 Network flow-based pattern support

	4 Optimization
	4.1 Longest path network
	4.2 Pruning isomorphic patterns

	5 Infrastructure pattern extraction
	5.1 Pattern similarity
	5.2 Clustering
	5.3 Infrastructure pattern extraction

	6 Experimental evaluation
	6.1 Preprocessing
	6.2 Sampling maximal patterns
	6.2.1 Baseline algorithm (BA)
	6.2.2 Synthetic graph data

	6.3 Pattern similarity
	6.3.1 Comparing similarity metric

	6.4 Infrastructure pattern extraction
	6.4.1 Example infrastructure patterns
	6.4.2 Mining graphs with multiple attributes

	7 Conclusions
	References

