
Mining Features for Sequence Classification

Neal Lesh1, Mohammed J. Zaki2, Mitsunori Ogihara3

lesh@merl.com, zaki@cs.rpi.edu, ogihara@cs.rochester.edu

1 MERL - Mitsubishi Electric Research Laboratory, 201 Broadway, 8th Floor, Cambridge, MA 02139
2 Computer Science Dept., Rensselaer Polytechnic Institute, Troy, NY 12180

3 Computer Science Dept., U. of Rochester, Rochester, NY 14627

Abstract

Classification algorithms are difficult to apply to sequential
examples because there is a vast number of potentially useful
features for describing each example. Past work on feature
selection has focused on searching the space of all subsets
of features, which is intractable for large feature sets. We
adapt sequence mining techniques to act as a preprocessor
to select features for standard classification algorithms such
as Naive Bayes and Winnow. Our experiments on three
different datasets show that the features produced by our
algorithm improve classification accuracy by 10-50%,

1 Introduction

Some classification algorithms work well when there are
thousands of features for describing each example (e.g,
[Littlestone, 1988]). In some domains, however, the
number of potentially useful features is exponential in
the size of the examples. Data mining algorithms (e.g.,
[Zaki, 1998]) have been used to search through billions
of rules, or patterns, and select the most interesting
ones. In this paper, we adapt data mining techniques
to act as a preprocessor to construct a set of features
to use for classification.

In past work, the rules produced by data mining
algorithms have been used to construct classifiers
primarily by ordering the rules into decision lists (e.g.
[Segal and Etzioni, 1994, Liu et al., 1998]) or by merging
them into more general rules that occur in the training
data (e.g., [Lee et al., 1998]). In this paper, we
convert the patterns discovered by the mining algorithm
into a set of boolean features to feed into standard
classification algorithms. The classification algorithms,
in turn, assign weights to the features which allows
evidence from different rules to be combined in order
to classify a new example.

While there has been a lot of work on feature
selection, it has mainly concentrated on non-sequential
domains. In contrast, we focus on sequence data in
which each example is represented as a sequence of
“events”, where each event might be described by a set
of predicates. Examples of sequence data include text,
DNA sequences, web usage data, and execution traces.

In this paper we combine two powerful mining
paradigms: sequence mining, which can efficiently
search for patterns that are correlated with the target

classes, and classification, which learns to weigh evi-
dence from different features to classify new examples.
We present FeatureMine, a scalable disk-based fea-
ture mining algorithm. We also specify criteria for s-
electing good features, and present pruning rules that
allow for more efficient feature mining. FeatureMine
integrates pruning constraints in the algorithm itself, in-
stead of post-processing, enabling it to efficiently search
through large pattern spaces.

2 Data mining for features

We now formulate and present an algorithm for feature
mining. Let F be a set of distinct features, each with
some finite set of possible values. Let I be the set of all
possible feature-value pairs. A sequence is an ordered
list of subsets of I. For example, if I = {A, B, C...},
then an example sequence would be AB → A → BC. A
sequence α is denoted as (α1 → α2 → ... → αn) where
each sequence element αi is a subset of I. The length
of sequence (α1 → α2 → ... → αn) is n and its width
is the maximum size of any αi for 1 ≤ i ≤ n. We say
that α is a subsequence of β, denoted as α ≺ β, if there
exists integers i1 < i2 < ... < in such that αj ⊆ βij

for all αj . For example, AB → C is a subsequence of
AB → A → BC. Let C be a set of class labels. An
example is a pair 〈α, c〉 where α = α1 → α2 → ... → αn

is a sequence and c ∈ C is a label. Each example has a
unique identifier eid, and each αi has a time-stamp at
which it occurred. An example 〈α, c〉 is said to contain
sequence β if β ≺ α.

Our input database D consists of a set of examples.
This means that the data we look at has multiple
sequences, each of which is composed of sets of items.
The frequency of sequence β in D, denoted fr(β,D), is
the fraction of examples in D that contain β. Let β be
a sequence and c be a class label. The confidence of
the rule β ⇒ c, denoted conf(β, c,D), is the conditional
probability that c is the label of an example in D given
that it contains sequence β. That is, conf(β, c,D) =
fr (β,Dc)/fr(β,D) where Dc is the subset of examples
in D with class label c. A sequence is said to be frequent
if its frequency is more than a user-specified min freq
threshold. A rule is said to be strong if its confidence is
more than a user-specified min conf threshold. Our goal
is to mine for frequent and strong patterns. Figure 1
shows a database of examples. There are 7 examples,
4 belonging to class c1, and 3 belonging to class c2.
In general there can be more than two classes. We are
looking for different min freq in each class. For example,
while C is frequent for class c2, it’s not frequent for class
c1. The rule C ⇒ c2 has confidence 3/4 = 0.75, while
the rule C ⇒ c1 has confidence 1/4 = 0.25.

A sequence classifier is a function from sequences to
C. A classifier can be evaluated using standard metrics

A

B

A->B

B->A

B->B

AB->B

AB

A->A

100%

75%

75%

75%

75%

100%

100%

100%

EID

A B

A B C

B

B

A C

A

B

A

A B

A

B

20

30

50

10

30

40

30

40

50

10

50

30

FREQUENT SEQUENCES

40

7 20 C

min_freq (c2) = 67%

Class = c2

min_freq (c1) = 75%

Class = c1
Time

A C

A B

C

A A

C

A->C

67%

67%

100%

Items

4

3

2

1 20

30 A B

10

5

Class

c1

c1

c1

c1

6 c2

c2

c2

A->C

0

0

0

0

0

1

1

A

0

1

1

1

1

1

1

A->A

1

1

1

0

1

0

0

B->A

1

1

0

0

1

1

0

B

1

1

1

1

1

0

0

AB

1

1

1

0

1

0

0

A->B

1

0

0

1

1

1

0

B->B

1

0

0

0

0

1

1

AB->B

1

0

0

0

1

1

0

C

1

0

0

1

0

1

1

1

2

3

4

5

6

7

E
x
a

m
p

le
s

New Boolean Features

Class

c1

c1

c1

c1

c2

c2

c2

EID

Figure 1: A) Original Database, B) New Database with
Boolean Features

such as accuracy and coverage.
Finally, we describe how frequent sequences β1, ..., βn

can be used as features for classification. Recall that
the input to most standard classifiers is an example
represented as vector of feature-value pairs. We
represent a example sequence α as a vector of feature-
value pairs by treating each sequence βi as a boolean
feature that is true iff βi � α. For example, suppose
the features are f1 = A → D, f2 = A → BC, and
f3 = CD. The sequence AB → BD → BC would be
represented as 〈f1, true〉, 〈f2, true〉, 〈f3, false〉. Note
that features can “skip” steps: the feature A → BC
holds in AB → BD → BC.

2.1 Selection criteria for mining

We now specify our selection criteria for selecting
features to use for classification. Our objective is to
find sequences such that representing examples with
these sequences will yield a highly accurate sequence
classifier. However, we do not want to search over
the space of all subsets of features [Caruana and
Freitag, 1994]), but instead want to evaluate each
feature in isolation or by pair-wise comparison to other
candidate features. Certainly, the criteria for selecting
features might depend on the domain and the classifier
being used. We believe, however, that the following
domain-and-classifier-independent heuristics are useful
for selecting sequences to serve as features:
1) Features should be frequent.
2) Features should be distinctive of at least one class.
3) Feature sets should not contain redundant features.

The intuition behind the first heuristic is simply that
rare features can, by definition, only rarely be useful for
classifying examples. In our problem formulation, this
heuristic translates into a requirement that all features
have some minimum frequency in the training set. Note
that since we use a different min freq for each class,
patterns that are rare in the entire database can still
be frequent for a specific class. We only ignore those

patterns which are rare for any class. The intuition for
the second heuristic is that features that are equally
likely in all classes do not help determine which class
an example belongs to. Of course, a conjunction of
multiple non-distinctive features can be distinctive. In
this case, our algorithm prefers to use the distinctive
conjunction as a feature rather than the non-distinctive
conjuncts. We encode this heuristic by requiring that
each selected feature be significantly correlated with at
least one class that it is frequent in.

The motivation for our third heuristic is that if two
features are closely correlated with each other, then
either of them is as useful for classification as both
are together. We show below that we can reduce
the number of features and the time needed to mine
for features by pruning redundant rules. In addition
to wanting to prune features which provide the same
information, we also want to prune a feature if there
is another feature available that provides strictly more
information. Let M(f,D) be the set of examples in D
that contain feature f . We say that feature f1 subsumes
feature f2 with respect to predicting class c in data
set D iff M(f2,Dc) ⊆ M(f1,Dc) and M(f1,D¬c) ⊆
M(f2,D¬c). Intuitively, if f1 subsumes f2 for class c
then f1 is superior to f2 for predicting c because f1
covers every example of c in the training data that
f2 covers and f1 covers only a subset of the non-c
examples that f2 covers. The third heuristic leads
to two pruning rules, in our feature mining algorithm
described below. The first pruning rule is that we do not
extend (i.e, specialize) any feature with 100% accuracy.
Let f1 be a feature contained by examples of only one
class. Specializations of f1 may pass the frequency and
confidence tests in the definition of feature mining, but
will be subsumed by f1. The following lemma captures
this pruning rule:
Lemma 1: If fi ≺ fj and conf(fi, c,D) = 1.0 then fi

subsumes fj with respect to class c.
Our next pruning rule concerns correlations between

individual items. Recall that the examples in D are
represented as a sequence of sets. We say that A ; B in
examples D if B occurs in every set in every sequence in
D in which A occurs. The following lemma states that
if A ; B then any feature containing a set with both
A and B will be subsumed by one of its generalizations,
and thus we can prune it:
Lemma 2: Let α = α1 → α2 → ... → αn where
A, B ∈ αi for some 1 ≤ i ≤ n. If A ; B, then α will be
subsumed by α1 → ...αi−1 → (αi − B) → αi+1... → αn.
Feature mining: We can now define the feature min-
ing task. The inputs to the FeatureMine algorith-
m are a set of examples D and parameters min freq,
maxw, and maxl. The output is a non-redundant set
of the frequent and distinctive features of width maxw

and length maxl. Formally: Given examples D and
parameters min freq, maxw, and maxl return feature
set F such that for every feature fi and every class
cj ∈ C, if length(fi) ≤ maxl and width(fi) ≤ maxw and
fr (β,Dcj

) ≥ min freq(cj) and conf (β, cj ,D) is signifi-
cantly greater (via chi-squared test) than |Dc|/|D| then
F contains fi or contains a feature that subsumes fi

with respect to class cj in data set D.

2.2 Efficient mining of features

We now present the FeatureMine algorithm which
leverages existing data mining techniques to efficiently
mine features from a set of training examples. Fea-
tureMine is based on the recently proposed SPADE

algorithm [Zaki, 1998] for fast discovery of sequential
patterns. SPADE is a scalable and disk-based algorith-
m that can handle millions of example sequences and t-
housands of items. Consequently FeatureMine shares
these properties as well. To construct FeatureMine,
we adapted the SPADE algorithm to search databases
of labeled examples. FeatureMine mines the pattern-
s predictive of all the classes in the database, simulta-
neously. As opposed to previous approaches that first
mine millions of patterns and then apply pruning as
a post-processing step, FeatureMine integrates prun-
ing techniques in the mining algorithm itself. This en-
ables it to search a large space, where previous methods
would fail.

FeatureMine uses the observation that the subse-
quence relation � defines a partial order on sequences.
If α ≺ β, we say that α is more general than β, or
β is more specific than α. The relation � is a mono-
tone specialization relation with respect to the frequen-
cy fr(α,D), i.e., if β is a frequent sequence, then all
subsequences α � β are also frequent. The algorith-
m systematically searches the sequence lattice spanned
by the subsequence relation, from general to specific
sequences, in a depth-first manner.

1 2 3 6 754

c1 c1 c1 c1 c2 c2 c2

EID

Class

4

2

4

1 0

3

0

3

0

4frequency(c1)

frequency(c2)

CLASS INDEX TABLE FREQUENCY TABLE

3

FREQUENT SEQUENCE LATTICE

3 3 4 34

44

EID
1 10

2

3
4
4

1
1

2

20

30
30
50

50
30
30

BA
EID

1 10

40

2
2

3
3
4
4

1
20
30

30
10
40
30

5
5

6

10
50

30

5 10

ORIGINAL ID-LIST DATABASE

A B

SUFFIX-JOINS ON ID-LISTS

EID
1
2
4

30
30

10

AB->B

EID
1
2
2
3
4

10
20
30
10
30
404

A->B
EID Time

10
20
30

B->B

2
1
1

4 30

A->B B->B AB->B

Time Time

Time

Time

{ }

AB->B

A->A B->A B->BA->BAB

BA

A->C

C

(Intersect A->B and B->B)

(Intersect A and B)

Figure 2: Sequence Lattice and Frequency Computation
Frequency Computation: FeatureMine uses a
vertical database layout, where we associate with each
item X in the sequence lattice its idlist, denoted L(X),
which is a list of all example IDs (eid) and event time
(time) pairs containing the item. Given the sequence
idlists, we can determine the support of any k-sequence
by simply intersecting the idlists of any two of its (k−1)
length subsequences. A check on the cardinality of
the resulting idlist tells us whether the new sequence
is frequent or not. Figure 2 shows that the idlist
for A → B is obtained by intersecting the lists of A
and B, i.e., L(A → B) = L(A) ∩ L(B). Similarly,
L(AB → B) = L(A → B) ∩ L(B → B). We also
maintain the class index table indicating the classes for
each example. Using this table we are able to determine
the frequency of a sequence in all the classes at the same
time. For example, A occurs in eids {1, 2, 3, 4, 5, 6}.
However eids {1, 2, 3, 4} have label c1 and {5, 6} have
label c2. Thus the frequency of A is 4 for c1, and 2 for
c2. The class frequencies for each pattern are shown in
the frequency table.

To use only a limited amount of main-memory Fea-
tureMine breaks up the sequence search space into
small, independent, manageable chunks which can be
processed in memory. This is accomplished via suffix-
based partition. We say that two k length sequences are
in the same equivalence class or partition if they share

a common k − 1 length suffix. The partitions, such as
{[A], [B], [C]}, based on length 1 suffixes are called par-
ent partitions. Each parent partition is independent in
the sense that it has complete information for gener-
ating all frequent sequences that share the same suffix.
For example, if a class [X] has the elements Y → X , and
Z → X . The possible frequent sequences at the next
step are Y → Z → X , Z → Y → X , and (Y Z) → X .
No other item Q can lead to a frequent sequence with
the suffix X , unless (QX) or Q → X is also in [X].

FeatureMine(D,min freq(ci)):
P = { parent partitions, Pi}
for each parent partition Pi do EnumerateFeatures(Pi)

EnumerateFeatures(S):
for all elements Ai ∈ S do

for all elements Aj ∈ S, with j > i do

R = Ai ∪ Aj ; L(R) = L(Ai) ∩ L(Aj);
if RulePrune(R, maxw, maxl) == FALSE and

frequency(R, ci) ≥ min freq(ci) for any ci

T = T ∪ {R}; F = F ∪ {R};
EnumerateFeatures(T);

RulePrune(R, maxw, maxl):
if width(R) > maxw or length(R) > maxl return TRUE;
if accuracy(R) == 100% return TRUE;
return FALSE;

Figure 3: The FeatureMine Algorithm
Feature Enumeration: FeatureMine processes
each parent partition in a depth-first manner, as shown
in the pseudo-code of Figure 3. The input to the
procedure is a partition, along with the idlist for each
of its elements. Frequent sequences are generated by
intersecting the idlists of all distinct pairs of sequences
in each partition and checking the cardinality of the
resulting idlist against min sup(ci). The sequences
found to be frequent for some class ci at the current
level form partitions for the next level. This process is
repeated until we find all frequent sequences.
Integrated Constraints: FeatureMine integrates
all pruning constraints into the mining algorithm
itself, instead of applying pruning as a post-processing
step. As we shall show, this allows FeatureMine to
search very large spaces efficiently, which would have
been infeasible otherwise. The Rule-Prune procedure
eliminates features based on our two pruning rules, and
also based on length and width constraints. While the
first pruning rule has to be tested each time we extend
a sequence with a new item, there exists a very efficient
one-time method for applying the A ; B rule. The
idea is to first compute the frequency of all 2 length
sequences. Then if P (B|A) = fr(AB)/fr(A) = 1.0,
then A ; B, and we can remove AB from the suffix
partition [B]. This guarantees that AB will never
appear together in any set of any sequence.

3 Empirical evaluation

We now describe experiments to test whether the fea-
tures produced by our system improve the performance
of the Winnow [Littlestone, 1988] and Naive Bayes [Du-
da and Hart, 1973] classification algorithms. We ran
experiments on three datasets. In each case, we ex-
perimented with various settings for min freq, maxw,
and maxl to generate reasonable results. We report the
values used, below.
Random parity problems: We first describe a non-
sequential problem on which standard classification

algorithms perform very poorly. The problem consists
of N parity problems of size M with L distracting, or
irrelevant, features. For every 0 ≤ i ≤ N and 0 ≤
j ≤ M , there is a boolean feature Fi,j . Additionally,
for 0 ≤ k ≤ L, there is an irrelevant, boolean feature
Ik. To generate an instance, we randomly assign each
boolean feature true or false with 50/50 probability.
An example instance for N = 3, M = 2, and L =
2 is (F1,1=true, F1,2=false, F2,1=true, F2,2=true,
F3,1=false, F3,2=false, I1=true,I2= false). There are
N × M + L features, and 2N×M+L distinct instances.

We also choose N weights w1, ..., wN which are used
to assign each instance one of two class labels (ON or
OFF) as follows. An instance is credited with weight wi

iff the ith set of M features has an even parity. That
is, the “score” of an instance is the sum of the weights
wi for which the number of true features in fi,1, ...fi,M

is even. If an instance’s score is greater than half the

sum of all the weights,
∑N

i=1 wi, then the instance is
assigned class label ON, otherwise it is assigned OFF.
Note that if M > 1, then no feature by itself is at
all indicative of the class label ON or OFF, which is why
parity problems are so hard for most classifiers. The
job of FeatureMine is essentially to figure out which
features should be grouped together. Example features
produced by FeatureMine are (f1,1=true, f1,2=true),
and (f4,1=true, f4,2=false). We used a min freq of .02
to .05, maxl = 1 and maxw = M .
Forest fire plans: The FeatureMine algorithm was
originally motivated by the task of plan monitoring
in stochastic domains. As an example domain, we
constructed a simple forest-fire domain based loosely
on the Phoenix fire simulator [Hart and Cohen, 1992].
We use a grid representation of the terrain. Each grid
cell can contain vegetation, water, or a base. At the
beginning of each simulation, the fire is started at a
random location. In each iteration of the simulation,
the fire spreads stochastically. The probability of a
cell igniting at time t is calculated based on the cell’s
vegetation, the wind direction, and how many of the
cell’s neighbors are burning at time t− 1. Additionally,
bulldozers are used to contain the fire before they reach
the bases. For each example terrain, we hand-designed a
plan for bulldozers to dig a fire line to stop the fire. The
bulldozer’s speed varies from simulation to simulation.
An example simulation looks like:

(time0 Ignite X3 Y7), (time0 MoveTo BD1 X3 Y4), (time0

MoveTo BD2 X7 Y4), (time0 DigAt BD2 X7 Y4), ..., (time6

Ignite X4 Y8), (time6 Ignite X3 Y8), ..., (time32 Ignite X6

Y1), (time32 Ignite X6 Y0),

We form a database of instances from a set of
simulations as follows. Because the idea is to predict
success or failure before the plan is finished, the instance
itself is a list of all events that happen by some time
k, which we vary in our experiments. We label each
instance with SUCCESS if none of the locations with
bases have been burned in the final state, or FAILURE

otherwise. Thus, the job of the classifier is to predict
if the bulldozers will prevent the bases from burning,
given a partial execution trace of the plan. Example
features produced by FeatureMine in this domain are
(MoveTo BD1 X2) → (time6), and (Ignite X2) → (time8
MoveTo Y3) The first sequence holds if bulldozer BD1
moves to the second column before time 6. The second
holds if a fire ignites anywhere in the second column and
then any bulldozer moves to third row at time 8. Many
correlations used by our second pruning rule described

Experiment W WFM B BFM
parity, N = 5, M = 3, L = 5 .51 .96 .50 .96
parity, N = 3, M = 4, L = 8 .50 .98 .50 1.0
parity, N = 10, M = 4, L = 10 .50 .88 .50 .84
fire, time = 5 .60 .79 .69 .81
fire, time = 10 .56 .85 .68 .75
fire, time = 15 .52 .88 .68 .72
spelling, their vs. there .70 .94 .75 .78
spelling, I vs. me .86 .94 .66 .90
spelling, than vs. then .83 .92 .79 .81
spelling, you’re vs. your .77 .86 .77 .86

Table 1: Classification results (W=Winnow, B=Bayes,
WFM, BFM = Winnow, Bayes with FeatureMine, resp.)

Experiment Evaluated Selected
features features

random, N = 10, M = 4, L = 10 7,693,200 196
fire world, time =10 64,766 553
spelling, there vs. their 782,264 318

Table 2: FeatureMine Mining results

in section 2.2 arise in these data sets. For example,
Y 8 ; Ignite arises in one of our test plans in which a
bulldozer never moves in the eighth column.

For fire data, there are 38 boolean features to describe
each event. Thus there are ((38×2)maxw))maxl possible
composite features for describing each sequence of
events. In the experiments reported here, we used a
min freq = .2, maxw = 3, and maxl = 3.
Context-sensitive spelling correction: We also
tested our algorithm on the task of correcting spelling
errors that result in valid words, such as substitut-
ing there for their ([Golding and Roth, 1996]). For
each test, we chose two commonly confused words and
searched for sentences in the 1-million-word Brown cor-
pus [Kucera and Francis, 1967] containing either word.
We removed the target word and then represented each
word by the word itself, the part-of-speech tag in the
Brown corpus, and the position relative to the target
word. For example, the sentence “And then there is
politics” is translated into (word=and tag=cc pos=-2)
→ (word=then tag=rb pos=-1) → (word=is tag=bez
pos=+1) → (word=politics tag=nn pos=+2).

Example features produced by FeatureMine in-
clude (pos=+3) → (word=the), indicating that the
word the occurs at least 3 words after the target word,
and (pos=-4) → (tag=nn) → (pos=+1), indicating that
a noun occurs within three words before the target
word. These features (for reasons not obvious to us)
were significantly correlated with either there or their
in the training set. In the experiments reported here,
we used a min freq = .05, maxw = 3, and maxl = 2.

3.1 Results

For each test in the parity and fire domains, we mined
features from 1,000 examples, pruned features that did
not pass a chi-squared significance test (for correlation
to a class the feature was frequent in) in 2,000 examples,
and trained the classifier on 5,000 examples. Thus,
the entire training process required 7,000 examples.
We then tested the resulting classifier on 1,000 fresh
examples. The results in Tables 1 and 2 are averaged
over 25 trials of the process (i.e., we retrained and then
re-tested the classifier on fresh examples in each trial).
For the spelling correction, we trained on 80 percent
of the examples in the Brown corpus and tested on
the remaining 20 percent. During training, we mined
features from 500 sentences and trained the classifier on
all training examples.

Table 1 shows that the features produced by Fea-
tureMine improved classification performance. We
compared using the feature set produced by Fea-

Experiment CPU seconds CPU seconds CPU seconds Features Features examined Features
with no pruning with only with all examined with with only examined with

A ; B pruning pruning no pruning A ; B pruning all pruning
random 320 337 337 1,547,122 1,547,122 1,547,122
fire world 5.8 hours 560 559 25,336,097 511,215 511,215
spelling 490 407 410 1,126,114 999,327 971,085

Table 3: Impact of pruning rules: results taken from one data set for each example.

tureMine with using only the primitive features them-
selves, i.e. features of length 1. Both Winnow and
Naive Bayes performed much better with the features
produced by FeatureMine. In the parity experiments,
the mined features dramatically improved the perfor-
mance of the classifiers and in the other experiments
the mined features improved the accuracy of the classi-
fiers by a significant amount, often more than 20%.

Table 2 shows the number of features evaluated and
the number returned, for several problems. For the
largest parity problem, FeatureMine evaluated more
than 7 million features and selected only about 200.
There were in fact 100 million possible features (there
are 50 booleans features, giving rise to 100 feature-value
pairs; we searched to depth M = 4.) but most were
rejected implicitly by the pruning rules.

Table 3 shows the impact of the A ; B pruning
rule on mining time. The results are from one data set
from each domain, with slightly higher values for maxl

and maxw than in the above experiments. The pruning
rule did not improve mining time in all cases, but made
a tremendous difference in the fire world problems,
where the same event descriptors often appear together.
Without A ; B pruning, the fire world problems are
essentially unsolvable because FeatureMine finds over
20 million frequent sequences.

4 Related work

A great deal of work has been done on feature-subset
selection, motivated by the observation that classifiers
can perform worse with feature set F than with some
F ′ ⊂ F (e.g., [Caruana and Freitag, 1994]). The
algorithms explore the exponentially large space of
all subsets of a given feature set. In contrast, we
explore exponentially large sets of potential features,
but evaluate each feature independently. The feature-
subset approach seems infeasible for the problems
we consider, which contain hundreds of thousands to
millions of potential features.

[Golding and Roth, 1996] applied a Winnow-based
algorithm to context-sensitive spelling correction. They
use sets of 10,000 to 40,000 features and either use
all of these features or prune some based on the
classification accuracy of the individual features. They
obtain higher accuracy than we did. Their approach,
however, involves an ensemble of Winnows, combined
by majority weighting, and they took more care in
choosing good parameters for this specific task. Our
goal, here, is to demonstrate that the features produced
by FeatureMine improve classification performance.

Data mining algorithms have often been applied to
the task of classification. [Liu et al., 1998] build decision
lists out of patterns found by association mining. [Ali et
al., 1997] and [Bayardo, 1997] both combine association
rules to form classifiers. Our use of sequence mining is
a generalization on association mining. Our pruning
rules resemble ones used by [Segal and Etzioni, 1994],
which also employs data mining techniques to construct
decision lists. Previous work on using data mining for
classification has focused on combining highly accurate

rules together. By contrast, our algorithm can weigh
evidence from many features which each have low
accuracy in order to classify new examples.

[Liu and Setiono, 1998] describes recent work on s-
caling up feature-subset selection. They apply a proba-
bilistic Las Vegas Algorithm to data sets with 16 to 22
features. One of the problems is a parity problem, much
like the one described above, which contains 20 features
(N=2,M=5,L=10). Their algorithms, thus, search the
space of all 220 subsets of the available features. For
comparison, we have applied our algorithms to parity
problems with 50 features, which results in 100 feature-
value pairs. Our algorithm then searches over the set
of all conjunctions of up to maxw feature-value pairs.
FeatureMine can handle millions of examples and t-
housands of items, which makes it extremely scalable.

Our work is close in spirit to [Kudenko and Hirsh,
1998], which also constructs a set of sequential, boolean
features for use by classification algorithms. They
employ a heuristic search algorithm, called FGEN,
which incrementally generalizes features to cover more
and more of the training examples, based on its
classification performance on a hold-out set of training
data, whereas we perform an exhaustive search (to
some depth) and accept all features which meet our
selection criteria. Additionally, we use a different
feature language and have tested our approaches on
different classifiers than they have.

References
[Ali et al., 1997] K. Ali, S. Manganaris, and R. Srikant. Partial

classification using association rules. In KDD97.

[Bayardo, 1997] R.J. Jr. Bayardo. Brute-force mining of high-
confidence classification rules. In KDD97.

[Caruana and Freitag, 1994] R. Caruana and D. Freitag. Greedy
attribute selection. In ICML94.

[Duda and Hart, 1973] R.O. Duda and P.E. Hart. Pattern
Classification and Scene Analysis. Wiley.

[Golding and Roth, 1996] A. Golding and D. Roth. Applying
winnow to context-sensitive spelling correction. In ICML96.

[Hart and Cohen, 1992] D.M Hart and P.R Cohen. Predicting
and explaining success and task duration in the phoenix
planner. In 1st Intl. Conf. on AI Planning Systems.

[Kucera and Francis, 1967] H. Kucera and W.N. Francis. Com-
putational Analysis of Present-Day American English. Brown
University Press, Providence, RI.

[Kudenko and Hirsh, 1998] D. Kudenko and H. Hirsh. Feature
generation for sequence categorization. In AAAI98.

[Lee et al., 1998] W. Lee, S. Stolfo, and K. Mok. Mining audit
data to build intrusion detection models. In KDD98.

[Littlestone, 1988] N. Littlestone. Learning quickly when irrel-
evant attributes abound: A new linear-threshold algorithm.
Machine Learning, 2:285–318.

[Liu and Setiono, 1998] H. Liu and S. Setiono. Some issues on
scalable feature selection. In 4th World Congress of Expert
Systems: Application of Advanced Info. Technologies.

[Liu et al., 1998] B. Liu, W. Hsu, and Y. Ma. Integrating
classification and association rule mining. In KDD98.

[Segal and Etzioni, 1994] Richard Segal and Oren Etzioni.
Learning decision lists using homogeneous rules. In AAAI94.

[Zaki, 1998] M. J. Zaki. Efficient enumeration of frequent se-
quences. In 7th Intl. Conf. Info. and Knowledge Management.

