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ABSTRACT
FPM (Frequent Pattern Mining) is a data mining paradigm
to extract informative patterns from massive datasets. Re-
searchers have developed numerous novel algorithms to ex-
tract these patterns. Unfortunately, the focus primarily has
been on a small set of popular patterns (itemsets, sequences,
trees and graphs) and no framework for integrating the FPM
process has been attempted. In this paper we introduce
DMTL, a generic pattern mining library which fuses the-
oretical concepts from formal concept analysis and generic
programming. It provides a framework that allows mining
a large spectrum of patterns. We express each pattern in
terms of its relational properties. Describing patterns based
on their properties results in a pattern concept hierarchy.
This hierarchical model is implemented using principles from
generic programming. In this paper, we describe our design
considerations and the subsequent implementation. Some
of the challenges faced in terms of language features have
also been highlighted. Apart from using the library in its
entirety, we believe that some of its components, such as
isomorphism checking, can be used independently. These
components can definitely enrich the existing functionality
provided in some of the popular libraries such as the Boost
Graph Library.

1. INTRODUCTION
Frequent pattern mining (FPM) is a data mining paradigm
to extract informative patterns in massive datasets. Its
applications are growing enormously, aided by the avail-
ability of high computation power, cheap massive storage,
and improved technology for extraction and distribution of
data. Researchers have successfully applied FPM to a di-
verse set of problems in the areas of market basket anal-
ysis [1], bioinformatics [27, 26], web mining, fraud detec-
tion [4], scientific and medical data mining, etc. In many
of these application domains, FPM is not the core compo-
nent. Hence, availability of the FPM library would allow re-
searchers to save significant effort and would enable them to
focus on their core competence. FPM research discovers pat-
terns that conceptually represent relations among discrete
objects. Depending on the complexity of these relations, dif-
ferent types of patterns originate. The most common type
of patterns are sets, where the relation is the co-occurrence
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of objects. A well known example of the set pattern is a
supermarket transaction dataset; the set of items that are
bought together by a customer is of interest to the busi-
ness strategists. Next, there are sequence patterns, where
co-occurrence of objects is augmented by the presence of an
order between them. Examples include time-series data in
financial markets, genome sequence data in bioinformatics,
etc. Data mining researchers also work with tree and graph
patterns. In tree patterns the object relationship evolves
in a hierarchical manner, and in graph patterns the rela-
tionship is mostly arbitrary. Mining web log data, XML or
semi-structured data are examples of tree mining, and min-
ing chemical compounds for drug discovery is an example of
graph mining.

1.1 Related Work
Although FPM is a very mature research area, develop-
ment of an FPM library has mostly been ignored. Since the
commencement of FPM research with the legendary apriori
itemset mining paper [1] over a decade ago, several hun-
dreds different scholarly articles have been published. Some
proposed algorithmic improvements, some covered different
variations of FPM problems, such as maximal frequent [2]
or closed frequent pattern mining [13] and some developed
algorithms for mining new patterns, like DAG (Directed
Acyclic Graph), Free Tree [3], etc. Several others demon-
strated the potential of FPM algorithms by applying them to
new fields, like bioinformatics, operations research, intrusion
detection, etc. No real effort has concentrated on developing
a library targeting different FPM tasks. The closest works
are MLC++ [10] and Weka [20]. The former is a collection
of classification algorithms. The latter is a general purpose
Java library for different data mining algorithms that in-
cludes only itemset mining. Besides these, there are some
independent application programs developed by researchers
in academia, mostly to evaluate the correctness and perfor-
mance of their proposed mining algorithms. But they are
very specific, run on a selected format of datasets and are in
no way suitable as a library component. They do not offer
any standard interface for end users. A collection of such
algorithms specifically for itemset mining is available from
the FIMI [6] web site. Moreover, several practical machine
learning software, bioinformatics search tools, etc., employ
FPM as the core mining engine, for which they usually write
their specific FPM programs. The unavailability of a generic
FPM library thus wastes enormous time and computation
resources for programmers and researchers.

We developed DMTL (Data Mining Template Library), a



frequent pattern mining library, that provides a unified in-
terface to mine a range of patterns. Currently the library
has implementations for mining four key patterns—itemset,
sequence, tree and graph—but the framework provides the
scope to mine new patterns also. DMTL adopts a generic
design, inspired by the state-of-the-art generic libraries such
as the C++ Standard Template Library (STL) [16, 11] and
Boost Graph Library (BGL) [15], and hence it provides
widespread usability without compromising on efficiency.
The library is generic with respect to the following aspects:

• Pattern to be mined.

• Input data source and format.

• Data structure to be used in the mining algorithm.

• Storage management.

• Mining algorithm/approach.

1.2 Contributions
The major contributions of our work towards the data min-
ing community are as follows:

• DMTL offers algorithms for different pattern mining
tasks in a unified platform. To the best of our knowl-
edge this is the first effort of this kind in data mining.

• DMTL offers flexible interfaces to each of the algo-
rithms, including each of its sub-tasks so that it is very
simple for end users to use it as a library component
in their software development.

• DMTL is extensible; new patterns can be mined with
very minimal effort from the end user. Users just need
to define some template parameters to ensure that the
library selects the proper mining algorithm to mine
that pattern successfully. Some additional specialized
code may be required for efficiency reasons.

We also believe this work contributes to the library devel-
opment community in the following ways:

• DMTL adopts the generic software development ap-
proach using C++ templates. Due to the limitation
imposed by the programming language, it is still very
difficult for programmers to design generic software.
Few books [11, 15] are available that describe an im-
plementation of a generic library. We believe that the
design of DMTL could be an example for other generic
library developers to follow.

• Apart from its ultimate purpose of discovering fre-
quent patterns, our library provides several stand-alone
utilities for various patterns. This primarily includes
the isomorphism checking functionality for different
patterns. We believe that these features can comple-
ment the features provided in BGL.

• While implementing DMTL, we faced numerous chal-
lenges, mostly related to programming language sup-
port for generic software development. Most of these
issues have already been identified by several researchers
[14, 17], but our work stands as another practical ex-
ample of those limitations.

• DMTL uses several template tricks, which we think
could be tremendously useful for any generic software
developer.

2. PATTERN MINING PRELIMINARIES
The problem of mining frequent patterns can be stated as
follows: let N = {x1, x2, . . . , xnv} be a set of nv distinct
nodes or vertices. A pair of nodes (xi, xj) is called an edge.
Let L = {l1, l2, . . . , lnl}, be a set of nl distinct labels. Let
Ln : N → L, be a node labeling function that maps a node
to its label Ln(xi) = li, and let Le : N ×N → L be an edge
labeling function, that maps an edge to its label Le(xi, xj) =
lk.

A pattern P can be represented as the pair (PV , PE), with
labeled vertex set PV ⊆ N and labeled edge set PE =
{(xi, xj) | xi, xj ∈ PV }. The number of nodes in a pattern
P is called its size. A pattern of size k is called a k-pattern,
and the class of frequent (as defined below) k-patterns is re-
ferred to as Fk. Given two patterns P and Q, we say that P
is a sub-pattern of Q (or Q is a super-pattern of P ), denoted
P�Q, if and only if there exists a label-preserving isomor-
phism from P to Q; that is, iff there exists a 1-1 mapping f
from nodes in P to nodes in Q, such that for all xi, xj ∈ PV :
i) Ln(xi) = Ln(f(xi)), ii) Le(xi, xj) = Le(f(xi), f(xj)), and
iii) (xi, xj) ∈ PV iff (f(xi), f(xj)) ∈ QV . In some cases we
are interested in embedded sub-patterns. In embedded pat-
terns we modify condition iii) above to allow an edge (xi, xj)
in P provided f(xi) and f(xj) are connected in Q. In other
words, P is an embedded sub-pattern of Q if P is a sub-
pattern of the transitive closure of Q. If P�Q we say that
P is contained in Q or Q contains P .

A database D is just a collection of patterns (objects, in
database terminology). Let O = {o1, o2, . . . , ono} be a set
of no distinct object identifiers. An object has a unique
identifier, given by the function O(di) = oj , where di ∈ D
and oj ∈ O. The number of objects in D is denoted by
|D|. The absolute support of a pattern P in a database D is
defined as the number of objects in D that contain P , given
as πa(P,D) = |{P�d | d ∈ D}|. The (relative) support of

P is given as π(P,D) = πa(P,D)
|D| . A pattern is frequent if its

support is greater than a user-specified minimum support
(min sup) threshold, i.e., if π(P,D) ≥ min sup. A frequent
pattern is maximal if it is not a sub-pattern of any other
frequent pattern. A frequent pattern is closed if it has no
super-pattern with the same support. The frequent pattern
mining problem is to enumerate all the patterns that satisfy
the user-specified min sup frequency requirement (and any
other user-specified conditions).

The main observation in FPM is that the sub-pattern re-
lation � defines a partial order on the set of patterns. If
P�Q, we say that P is more general than Q, or Q is more
specific than P . The second observation used is that if Q
is a frequent pattern, then generally all sub-patterns P�Q
are also frequent.1 More important is the converse, i.e., if P
is infrequent and P�Q then Q shall also be infrequent (fol-
lows from the anti-monotonicity of frequency). The prefix
of a pattern of size k is a sub-pattern that consists of the
first k−1 nodes of the pattern. For efficiency reasons, many
FPM algorithms group (at least conceptually) patterns hav-

1Note that this property does not hold for induced patterns.



ing the same prefix into a prefix-based equivalence class. The
various FPM algorithms differ in the manner in which they
search the pattern space.

3. GENERIC ASPECTS OF DMTL
In this section we outline the generic aspects of the Data
Mining Template Library.

3.1 Generic Mining Algorithm
While implementing mining algorithms for different pat-
terns, we noticed that they exhibit considerable similarity,
which suggests developing a common framework for imple-
menting them. Figure 1 outlines a generic pattern mining
algorithm (pseudo-code) that applies to all commonly ex-
plored patterns. In the algorithm (not shown in the fig-
ure), k is initialized to zero and DB represents a global
database. Similarly, other related pattern mining algorithms
(closed or maximal pattern mining) also conform closely
with this outline. The algorithm is broken down into the ma-
jor sub-tasks which includes candidate generation, iso-
morphism checking and support counting (explained
in detail in the implementation section). By implement-
ing generic functions for these sub-tasks, we retain the ab-
straction shown in this pseudocode. The overall idea of the
algorithm is as follows: the mining process searches incre-
mentally in the pattern space by iteratively applying these
sub-tasks in each iteration to enumerate patterns of size 1, 2,
and so on. Each iteration discovers frequent patterns sized
one greater than the previous till no further frequent pat-
terns exist in the database. The example in figure 2 demon-

Enumerate-Frequent-Patterns ([P ],min sup):
1. ℘k+1 = cand gen([P ])
2. ∀ candidates c ∈ ℘k+1

3. if (check isomorphism(c)) then
4. count support(c, DB)
5. if (c.sup ≥ min sup) then
6. Fk+1 = Fk+1 ∪ c
7. for every equivalence class [Pi] ∈ Fk+1

8. Enumerate-Frequent-Patterns([Pi],min sup)

Figure 1: Pattern Mining Algorithm

strates how the generic algorithm works for itemset mining.
The database on top left corner of the figure has 4 trans-
actions. Each row contains a collection of items separated
by commas. We want to perform itemset mining on this
dataset with an absolute minimum support value of 3. The
same database is also shown in its vertical format (explained
later in subsection 3.1.2). This representation is important
in the vertical mining approach. The algorithm first finds
all the size-1 frequent itemsets, by making a single database
scan. The frequent items from the dataset with a support
value 3 or more are A, C, T and W, which are shown in
the oval to the right of the dataset. Each of these items is
present in at least 3 transactions. Now, the candidate gen-
eration step generates six size-2 candidates by joining items
from this set. The possible candidates here are shown in
the rectangle under the oval. Note that the joining process
in itemsets automatically eliminates duplicates. For joining
complex patterns (joining two graphs), this may not be the
case, and we need to employ isomorphism checking to ensure

that each candidate pattern is generated exactly once. Fi-
nally, the support counting step counts the support of each
of the candidates from the database. This step drops the
itemset AT, as it appears in only 2(< 3) transactions. The
algorithm iterates until the size-k patterns are found. All
frequent itemsets produced by this algorithm are shown in
the figure. For other patterns, the algorithm follows the
exact same approach as detailed in this example.

Figure 2: Itemset Mining Example

The sub-tasks of a generic mining algorithm that we re-
ferred to in the above two sections can be developed by using
generic algorithms expressed with C++ function templates.
For example, the candidate generation step takes two
parent patterns of type T and generates one or more candi-
date patterns of type T . Here, the algorithm strictly requires
that both the input arguments, together with the output ar-
gument, are of the same type T (e.g., we cannot join a set
pattern with a tree pattern to produce a tree candidate pat-
tern). The isomorphism checking algorithm takes two
input arguments of same type T (a pattern type) and pro-
duces a boolean value to indicate whether the arguments
are isomorphic patterns or not. The support count algo-
rithm takes one input argument of pattern type T , counts
its frequency in the entire database and returns an integer
value.

In all the above three generic algorithms, the type T models
a pattern concept. It has the following requirements:

1. T defines an object that relates some elements.

2. T must adhere to a structure that is defined by a col-
lection of relational properties.

3. T defines a ≤ operator.



4. Associated with type T there exists a pattern-iterator,
which is used to iterate through the elements of the
pattern.

All commonly known patterns in data mining, like set, se-
quence, tree or graph are refinements of a pattern concept.
The relational properties of a pattern concept that we re-
fer to as pattern properties in DMTL are explained in the
following subsection.

3.1.1 Pattern Properties
In section 2, we defined patterns in terms of graph abstrac-
tion. The choice of graph, indeed comes naturally, since all
the patterns are, in a way, specializations of a graph pat-
tern (a set is a special case, which we considered as a graph
without any edge). Hence, a graph can represent all the
patterns both conceptually and implementation-wise. Us-
ing graph implementation for more simpler patterns, like
set, sequence or tree introduces inefficiency in the mining
algorithm, however, the concept of pattern property pro-
vides a novel solution to this dilemma. In the implemen-
tation section, we explain the way we use pattern properties
to ensure a generic algorithm that does not compromise ef-
ficiency. Here, we explain the different pattern properties
that we used.

Relational properties that a pattern type T must conform
to, are indeed the graph properties. These properties im-
poses constraints on graph to formulate patterns like, tree,
sequence etc. We analyzed the pattern space and found
that the following properties are sufficient to describe the
most common patterns, but nevertheless, additional prop-
erties may be added seamlessly. The properties are them-
selves categorized depending on the elements (nodes, edges,
etc.) of a graph on which the constraints are imposed.

1. Edge Relation The edge set Eg is defined as Eg ⊆
Vg × Vg. Under edge relation category we considered
the following properties.

• no-edge Elements in the patterns are not con-
nected with any edge.

• directed Elements in the patterns are connected
with directed edge. To put it in another way, we
can say, they are asymmetrically related.

• undirected Elements in the patterns are con-
nected with symmetric edges.

• cyclic A pattern is cyclic if at least one vertex is
reflexive on edge relation in the transitive closure
of the pattern, otherwise the pattern possess the
acyclic property.

2. Vertex

• order The ordered property imposes an ordering
on the neighbors of a vertex, or else the pattern is
said to be unordered. Ordering is usually relevant
for the tree pattern only.

3. Degree

• indegree lte one This property constrains all
vertices of a graph to have indegree ≤ 1.

• outdegree lte one This property constrains all
vertices of a graph to have outdegree ≤ 1.

4. Label

• unique label This property requires the labeling
function to be one-to-one (injective). Each vertex
thus maps to a unique label (a common example
of such a pattern is an itemset).

3.1.2 Mining Properties
So far, we discussed that the generic mining algorithm that
DMTL advocates can mine any pattern belonging to a pat-
tern concept. But, in data mining research several varia-
tions of the core generic mining algorithms exist, by varying
the manner in which we perform its sub-tasks. We repre-
sent those variations in terms of mining property ; a user
can choose a collection of such mining properties to select
the exact kind of algorithm that (s)he would like to choose
for the mining process. It is worth noting that, the mining
properties are independent from the pattern properties. An
analysis of existing FPM tasks revealed the following mining
properties that we mention below. As with pattern proper-
ties, new mining properties can also be added effortlessly.

1. Join-type This category influences the candidate gen-
eration phase, in which potentially frequent pattern
are generated. During candidate generation, the algo-
rithm typically constructs a new pattern by joining two
parent patterns. The nature of this join is a property
itself. A suitably correct algorithm has to be provided
for the chosen property.

• Fk × F1 A (k + 1)-length pattern is constructed
by joining a k-length pattern with a unit length
pattern.

• Fk × Fk A (k + 1)-length pattern is constructed
by joining two k-length patterns. This join is usu-
ally more efficient since it generates fewer infre-
quent candidates.

2. Support-counting This category specifies how the
support of a candidate pattern is determined. Two
common approaches are:

• horizontal Indicates that the support for a can-
didate pattern shall be determined by counting its
occurrences in the database, testing against each
database object. This method usually involves
significant I/O overhead for large databases.

• vertical In this approach, support for a pattern
is determined from what is called a vertical rep-
resentation of a pattern [22]. This vertical rep-
resentation for a pattern is a list of transactions
in which the pattern occurs and is commonly re-
ferred to as Vertical Attribute Table (VAT). A
vertical database lists all the patterns along with
their VATs. Figure 2 shows a vertical database
in the table titled “Vertical Database”. Support
counting using a vertical database is typically faster
as it reduces I/O cost.

3. Transitivity This category indicates if embedded oc-
currences of a pattern should be considered in its sup-
port counting.



• induced Only induced pattern occurrences are
counted.2

• embedded Transitive closures on the edge rela-
tion E are included in the support as well. The
transitivity leads to discovery of embedded occur-
rences of the pattern.

3.2 Generic Storage Manager
Database (back-end) support is an integral part of any pat-
tern mining task. Since pattern mining datasets are typi-
cally large in size, back-end management becomes crucial to
achieving an efficient implementation. Sometimes a dataset
does not even fit in main memory, so part of it needs to be
saved on the disk for the algorithm to continue. Since back-
end access is tightly embedded in the mining algorithm, it is
very difficult for the user to modify the back-end to obtain
scalability or persistence.

DMTL’s implementation of back-end database support is
generic, through a generic storage manager class. Follow-
ing the STL iterator concept, we decoupled the back-end
database from the algorithm using iterators. Any access to
the database is done only through the iterators. We also
implemented three different storage managers; all provide
iterator classes. Discussion about each of them is given in
the implementation section.

3.3 Generic Input Data Source
DMTL is implemented with an objective to be widely ap-
plicable. However, the format of the input dataset is dif-
ferent for different application domains. For instance, in
supermarket transaction databases, items are usually rep-
resented by numeric identifiers, whereas in bioinformatics,
items may use string representations for protein or DNA
sequences. DMTL takes care of these kinds of dataset ir-
regularities by implementing a generic tokenizer, which is
templatized with various arguments to adapt to a wide va-
riety of input datasets.

4. PATTERN PROPERTY CONCEPT
The generic design of DMTL mining algorithms for all pat-
terns based on the pattern property has a foundation in For-
mal Concept Analysis (FCA) [5]. We explain this next.

4.1 Formal Concept
Definition 1. A formal context (K) := (G, M, I) con-

sists of two sets, G and M , and a relation I. The elements
of G are called the objects and the elements of M are called
the attributes of the context. In order to express that an
object g is in the relation I with an attribute m, we write
gIm or (g, m) ∈ I and read it as “object g has attribute m.”

Definition 2. For a set A ⊆ G of objects we define

A′ := {m ∈ M | gIm, ∀g ∈ A}
(the set of attribute common to the objects in A). Corre-
spondingly, for a set B of attributes we define

B′ := {g ∈ G | gIm, ∀m ∈ B}
(the set of objects which have all the attributes in B.)
2Note that for graphs we actually mine connected sub-
graphs, and not only induced sub-graphs.

Figure 3: Pattern Property Concept Lattice

Definition 3. A formal concept of the context (G, M, I)
is a pair (A, B) with A ⊆ G, B ⊆ M, A′ ⊆ B and B′ ⊆ A.
We call A the extent and B the intent of the concepts
(A, B). B(G, M, I) denotes the set of all concepts of the
context (G, M, I).

In DMTL, we consider M as the set of all patterns that we
want to mine, G as the set of all pattern properties and I
as the relation that a pattern conforms to a property, then
(G, M, I) is a context. Now, if A ⊆ M is maximal a col-
lection of patterns, and B ⊆ G is the set of properties that
are common to all the patterns in A, then (A, B) is a formal
concept of the context (G, M, I).
Example: If A = {DAG, Sequence, Ordered Tree, Un-
ordered Tree} is the set of patterns and B = {Directed, Acyclic}
is the set of properties common to members of A, then (A, B)
forms a formal concept. The set A, i.e. the set of patterns,
is the extent of the concept and B, the set of properties, in
the intent of the concept.

The concept in generic programming adheres with defini-
tion 3, if the objects equate with abstractions (types, in
particular) and the attributes with requirements. In [18],
Willcock et al. provide a precise definition for concepts, as
they are used in practical generic programming. That defi-
nition is an extended form of the above definition, where the
extensions clarify several issues related to generic software
design and programming languages.

4.2 Formal Concept Lattice
Definition 4. If (A1, B1) and (A2, B2) are concepts of a

context, (A1, B1) is called a sub-concept of (A2, B2), pro-
vided that A1 ⊆ A2 (which is equivalent to B2 ⊆ B1). In
this case, (A2, B2) is a superconcept of (A1, B1), and we
write (A1, B1) ≤ (A2, B2). The relation ≤ is called the hi-
erarchical order of the concepts. The set of all concepts of
(G, M, I) ordered in this way is denoted by B(G, M, I) and is
called the formal concept lattice of the context (G, M, I).



Example: The set of all pattern-property formal concepts
form a concept lattice as illustrated in Figure 3. In this
figure, every node is a formal concept. The corresponding
set of objects and attributes of that concept are shown next
to it, in boxes with rectangular and rounded edges, respec-
tively. Every box only list those objects or attributes that
are not implicitly inherited through the refinement relation
(discussed in next paragraph). We can retrieve the entire
set of extents (objects) by tracing all paths which lead down
from that node. On the other hand, the intents (attributes)
can be obtained by tracing all paths leading upward from
that node.

If we consider the node labeled with the formal object DAG,
it represents a formal concept with objects

{DAG, Sequence, Unordered Tree, Ordered Tree}
and with properties {Acyclic, DirectedEdge}

4.3 Concept Refinement
Definition 5. Concept refinement is the process of ob-

taining a sub-concept from a concept. Adding one or more
attributes in the intent removes objects from the extent that
do not conform to that property.

Example: We can refine the concept in the above exam-
ple by adding one property named indegree_lte_1. In the
refined concept, the pattern DAG is omitted, as DAG does
not conform to this property.

4.4 Concept Refinement in DMTL Design
In our generic library implementation, we employed under-
standing of formal concept hierarchy to develop mining al-
gorithms that can handle different types of patterns. Any
algorithm that works for patterns in a pattern-property con-
cept automatically works for the sub-concept. For patterns
in sub-concepts, a list of pattern properties that is passed
as template arguments matches partially and automatically
invokes the algorithm for the patterns belonging to the im-
mediate super-concept. However, there could exist a more
efficient implementation for the patterns in the sub-concept
as they might be comparably easier to mine. For those cases,
we provide a more efficient implementation of the algorithm
as an overloading of the template function.3 We discuss the
implementation details in the following section.

5. IMPLEMENTATION ISSUES
This section describes the implementation details of DMTL.
Three major subsections cover the architecture, data and
algorithms of DMTL respectively.

5.1 Architecture
Figure 4 provides a quick look at the various architectural
components (in rectangular boxes) of DMTL. We partitioned
the components into two main segments—the front end and
the back end. The front end deals with the core mining
process while the back end provides the necessary storage
support.

3If we were expressing algorithms with classes we would pro-
vide the more efficient algorithms as partial template spe-
cializations, but in the case of function templates one must
currently use overloading instead. Proposals to add partial
specialization of function templates to the language stan-
dard have been made but to date have not been accepted.
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Figure 4: High-level Architecture Diagram of the Data Min-
ing Template Library

5.1.1 Front-end: The Mining Engine
The mining task is initiated with all frequent patterns of
length one. This step is performed by reading the data from
a source. The source could either be a database, a flat file
or another process that is generating the data. This func-
tionality is performed by the Database Parser module (see
figure 4). Then the generic algorithm generates unique can-
didate patterns through candidate generation and isomor-
phism checking, as we explained in section 3.1. The task of
finding the support of each candidate pattern is delegated
to the back end through the Count Support module.

5.1.2 Back end: The Storage Manager
Frequent pattern mining is often performed on very large
datasets. Each iteration of the algorithm generates increas-
ingly larger patterns, and the number of candidate patterns
also grows enormously (especially, with low support) and
does not fit in memory on most machines. In a vertical
mining paradigm, associated with each pattern, a VAT also
needs to be stored. Most mining algorithms do not pro-
vide explicit means of memory management nor is the is-
sue addressed within the algorithm. The DMTL back end
is dedicated to storage management, which stores the pat-
terns, VATs, and the associated one-to-one mapping from
patterns to their VATs. The back end also determines the
support count of candidate patterns and returns it to the
front end.

The current state of DMTL has multiple implementations
of the back end—memory, Gigabase [9] and PSTL [7]—each
one exporting the same interface. The Count Support mod-
ule can select any one of these by using template arguments.
Gigabase is an embedded object relational database which
has its own storage management. It also stores elements
(patterns, VATs) in its database file. PSTL is a library of
persistent containers, akin to STL in its design. PSTL also
achieves persistence by maintaining memory-mapped data



files. In both the above cases, the mining results and inter-
mediate data (like VATs) are stored on disk and are avail-
able for processing at a later point. Thus, DMTL provides
an elegant solution when a memory-based back end fails due
to enormous growth of data. A flexible interface makes ad-
dition of a new storage manager type quite easy. We also
considered using third party object stores as storage man-
agers. Lack of flexible libraries for object storage prompted
us to develop our own storage manager.

5.2 Data Types
The most vital data in DMTL are the patterns and their
associated VATs. Patterns are implemented with a graph
structure. Elements of a pattern are the vertex or edge labels
of that graph. VATs are implemented using std::vector,
as they store a list of transaction identifiers. And for the
mapping between pattern and VAT, we use std::map. How-
ever, pattern structure plays the most important role in our
generic mining algorithm, so we describe it further in the
following section.

5.2.1 Pattern Structure
In DMTL, vertices and edges are the basic structural build-
ing blocks of every pattern. The most basic interface for a
pattern should thus provide methods for adding labeled ver-
tices and directed edges between vertices. Figure 5 shows
the C++ class interface of the pattern concept that we
mentioned in 3.1. It consists of the most basic operations
expected from a type modeling such concept. A specific
pattern (set, sequence, tree, etc.) is defined by enlisting
the respective pattern properties (pattern_props). The
canonical_code template parameter maintains a unique code
corresponding to each pattern and is employed for isomor-
phism checking. It also provides binary inequality testing
operations that can be used to implement the ≤ operator
for the pattern concept. The graph_model is the underlying
data structure used for storing the above representation. A
typical example of such a data structure is an adjacency list.
This design decision to parameterize the storage type aims
at decoupling the pattern storage from the pattern concept,
such that an adjacency list based storage could be substi-
tuted by a sparse adjacency matrix structure. Our design
underlines the fact that loose coupling between key design
components is crucial for the extensibility of a large software
system. From the above interface, a sequence such as A → B
can be constructed by invoking the add vertex("A") method
followed by the add vertex("B") and add out edge(v1, v2, e)
methods. The Boost Graph Library (BGL) [15] provides a
more complete set of graph representations and graph algo-
rithms. At this moment we have refrained from using BGL’s
graph representations, primarily to keep the design flexible
and open to various possibilities. In the future, we aim to
utilize BGL’s graph primitives to standardize our library.
As seen in figure 3, the specific patterns are instantiations
of the abstract pattern concept. Each such concrete concept
is represented by a set of properties (or constraints) that de-
fine the pattern. For instance, a directed acyclic graph (as
the name suggests) has {acyclic, directed} as its property
set. The notion of having a set of properties to represent
a concept is crucial for the implementation of our library.
Even though conceptually the properties are considered to
be a set, from the implementation perspective we treat them
as an ordered list of properties. This ordering of properties
is necessary for the compiler to match a specialized pattern

template<class pattern_props, class graph_model,
class canonical_code>

class pattern {

public:
typedef vector<V_TYPE> VERTICES;
typedef typename VERTICES::const_iterator

CONST_VIT;

bool add_vertex(const V_TYPE& v);
bool add_out_edge(const V_TYPE& v1,

const V_TYPE& v2,
const E_TYPE& e);

bool add_in_edge(const V_TYPE& v1,
const V_TYPE& v2,
const E_TYPE& e);

CONST_VIT get_neighbors(const V_TYPE& v);
CONST_VIT get_rmost_path();

};

Figure 5: Pattern Class Interface

to an appropriate super-pattern, if any algorithmic imple-
mentation is not available for that specialized pattern. This
leads to the pattern hierarchy tree in figure 6. Note that in
figure 3, a node can have multiple parents while in the pat-
tern tree each pattern has a single parent. The importance
of the single-parent characteristic becomes evident when we
realize that selecting a super-pattern would lead to ambigu-
ities in case of multiple super-patterns. Using this pattern
hierarchy tree, the ordering of the properties for a pattern
is automatically enforced. They are ordered along the path
from the root to a pattern node. In a nutshell, figure 3
represents the conceptual (theoretical) side of the pattern
mining problem whereas figure 6 represents the practical
(implementation) side of the problem.

We had the following goals while constructing the hierarchy
of patterns:

1. Abstract out the common aspects between the pattern
types and the algorithms,

2. Allow new patterns to be added to the hierarchy by
introducing new properties, and

3. Propagate absence of a lower-level concept implemen-
tation to a higher-level concept implementation.

The last objective above is a logical extension of using par-
tial specialization (via function template overloading). The
presence of a single parent in the hierarchy tree enables
finding the right pattern to which control should be dis-
patched. Our library provides implementations for what
we call the four core patterns—sets, sequences, trees and di-
rected graphs. Apart from being the most popular patterns,
the core patterns can be considered to mark the complexity
classes in frequent pattern mining. Sets are at the simpler
end of the spectrum with sequences and trees (in that or-
der) before graphs at the other extreme. The following para-
graphs describe the challenges faced in designing the library
to achieve the first two goals.

5.2.2 Pattern Properties Implementation
In order to enable dispatching to the appropriate pattern
we use the set of pattern properties as template parameters.



Figure 6: Pattern Hierarchy

This set of pattern properties is encapsulated in a proplist.
Since we model properties as types, the proplist is a static
list of types provided for collecting properties. It should
be noted that such a type list is a static accumulator, i.e.,
it relies on the template compile-time mechanism and hence
incurs no run-time overhead. A type list gives us the flexibil-
ity to append properties to it, making the design generic and
extensible. The type list was designed by borrowing ideas
from two of the C++ Boost libraries—the Boost Graph Li-
brary and the Metaprogramming Library [15]. Since it is
simply a container of types, the class itself is not compli-
cated and is given in Figure 7. The class null prop is used

template<class prop,
class next_property=null_prop>

class proplist {
public:
typedef prop FIRST;
typedef next_property SECOND;

};

Figure 7: proplist Class Interface

as the terminator of a type list. In addition to its utility
as a type list, the proplist possesses the nice feature of fa-
cilitating upward propagation of properties. This behavior
is demonstrated in Figure 8. To keep the example simple,
we have stripped function parameters and return types that
are not relevant for the example. In this example, we create
property classes and give the prototype of a function that
generates candidates from a given pattern. As pointed out
above, candidate generation is one of the three tasks a min-
ing algorithm must undertake. In the figure, two prototypes
of the candidates function are provided—one for directed
graphs and one for DAGs. DAGs do not possess cycles,
hence the specialized candidates function does not gener-
ate cyclic graphs as candidate DAGs. On the other hand,
the generic function generates all possible digraphs, includ-

/// Property class definitions ///
class directed {};
class acyclic {};
class planar {};
class null_prop {};

/// generic function ///
void candidates(const proplist<directed>&);

/// specialized function for DAGs ///
void candidates(const proplist<directed,

proplist<acyclic> >&);

///// an illustration of how it works /////
proplist<directed> digraph;
proplist<directed, proplist<planar> > planar_graph;
proplist<directed, proplist<acyclic> > dag;

/// Following function call compiles ///
/// to generic function. ///
candidates(digraph);

/// Following function call compiles ///
/// to specialized function. ///
candidates(dag);

/// Following function call compiles ///
/// to generic function ///
candidates(planar_graph);

Figure 8: Application of Property Hierarchy

ing cyclic ones. This relation between DAGs and directed
graphs is reinforced by the pattern hierarchy in figure 6).
Hence, as expected, method calls with directed graph and
DAG as their input parameter types would invoke the ap-
propriate methods. The planar graph property list is now
introduced. It should be noted at this point that the pat-
tern property planar is not defined in our library. Hence,
it is a new pattern property for representing planar graphs.
Let P1 denote the pattern type, digraphs, and P2 denote di-
rected, planar graphs. Since the properties defining P1 are
a subset of the properties defining P2 we can say P1 � P2.
As a result a candidates method call with planar graph
as input parameter will invoke the method with digraph
as the formal parameter. Had there been a more efficient
implementation for planar digraphs, that would have been
invoked. To summarize, we have shown how the proplist
can be used to select the most appropriate implementation
and how a new pattern can be easily introduced into the
framework.

5.3 Generic Algorithms
The core FPM algorithm shown in Figure 1 was introduced
in section 3.1. Even though we do not enforce a pattern to
conform to this precise formulation of the mining process,
most FPM algorithms (including the ones in our library)
conform closely to this outline.4 The pseudocode in figure 1
is implemented in the freq_pat_mine method.

4FP-tree is another approach for FPM. Since it is not as
widespread as the apriori based approach, DMTL does not
currently support it.



template<class PATTERN, class MINE_PROPS,
class SM_TYPE>

void
freq_pat_mine(const pat_fam<PATTERN>& Fk,

const pat_fam<PATTERN>&, int& min_sup,
pat_fam<PATTERN>& freq_pats,
count_support<MINE_PROPS,

SM_TYPE >& cs)

The first parameter to this method, pat_fam, is a collection
of patterns that belong to the same prefix-based equivalence
class and can be implemented as an STL vector or a list. The
third parameter, freq_pats, which is passed by reference,
is used to collect the final set of frequent patterns. Our
customized containers either retain the same interface as
the popular STL containers or are simply wrappers around
STL containers. Note that in the above example PATTERN is
the pattern representation. Hence it is not just a container
parameter but is used to pick the most efficient implemen-
tation along the pattern hierarchy. The actual template ar-
gument could represent any pattern. As the name suggests,
the count_support class is used for finding the support of
the candidate patterns in the dataset. count_support is
templated on the mining properties and back-end database
type. The former is necessary because counting support dif-
fers for embedded and induced mining (which is a mining
property). The later (SM_TYPE) is necessary for querying the
appropriate storage manager to find the number of occur-
rences of a pattern. Let us take a closer look at some of the
key steps inside freq pat mine.

5.3.1 Candidate Generation
Pattern types differ in how they generate candidates. How-
ever, there does exist significant commonality among the
varying pattern types. This was explored by us in a pre-
vious work [25]. The freq pat mine method calls the join
method to generate new candidates by joining two frequent
patterns. The interface for the join method is as shown be-
low:

template<class PAT_PROPS,
class MINE_PROPS,
class SM_TYPE>

pattern<PAT_PROPS,
MINE_PROPS,
SM_TYPE>**

join(const
pattern<PAT_PROPS, MINE_PROPS,

SM_TYPE>* pat_i,
const
pattern<PAT_PROPS, MINE_PROPS,

SM_TYPE>* pat_j)

This method takes two pattern pointers and outputs an ar-
ray of pattern pointers (an array is chosen, as sometimes
more than one pattern is created from the join operation).
Note that both the pattern properties and the mining prop-
erties are associated with the pattern type. Using pattern
properties, the join method chooses the most appropriate
algorithmic implementation to perform the join for this pat-
tern type. Note that a join between patterns is associated
with an intersection of the corresponding VATs. For exam-
ple, if a pattern A is a set {a, b, c} and another pattern B

is a set {a, b, d} and their VAT (list of transactions they oc-
cur in) are {1, 4, 10} and {1, 10, 12} respectively. A join (set
union operation) produces one pattern {a, b, c, d}, and the
corresponding intersection of VATs (set intersection opera-
tion) produces {1, 10}, which is the VAT of the new pattern.
However, the join method shown here materializes the pat-
tern join only; the associated VAT intersection is done in
the back end.

5.3.2 Isomorphism Checking
For itemsets and sequences we can circumvent generating
isomorphic patterns by intelligent candidate generation [1,
23]. Essentially, we exploit the lexicographic ordering on
the labels to avoid generating redundant patterns. Isomor-
phism checking can also be avoided for ordered trees by an
appropriate candidate generation scheme [24]. However, un-
ordered trees [12], free trees [3] and graphs [21, 8] require iso-
morphism testing. The isomorphism checker is provided by
the check_isomorphism method and it is templatized on the
pattern properties. Our library provides specialized isomor-
phism routines for various patterns—directed graphs and
unordered trees, to name a few. The isomorphism checker
can be used as a stand-alone component and we believe that
it could further enrich the isomorphism checking support
provided in BGL.

template<class PAT_PROPS,
class MINE_PROPS,
class SM_TYPE>

bool
check_isomorphism(pattern<PAT_PROPS,

MINE_PROPS,
SM_TYPE>* cand_pat)

5.3.3 Support Counting
The last step in an iteration is to determine the support of
candidates, and discard ones that do not pass the min sup
(minimum support) criterion. The support counting func-
tionality is supported by the Count Support block in figure 4.
Since support counting needs to query the back end, this
block acts as a liaison between the front end and the back
end. The support counting module is common across all the
pattern types, since it does not need to know anything about
a specific pattern. At the same time the count method is
independent of the back end since the count support class
is templatized on the storage type. The interface for the
count method is given below:

template<class PATTERN>
void
count(PATTERN* p1, PATTERN* p2, int min_sup)

As we mentioned under Candidate Generation above, a join
of patterns in the front end triggers an associated VAT in-
tersection in the back-end. We provided different back-end
implementations, all storing the same VAT but may be in
different formats. For example, the VAT stored in the Gi-
gabase database is necessarily different than that stored in
the memory back end. Nevertheless, the VAT intersection
algorithm is the same. Inspired by STL’s design, we used
iterator concepts to decouple the algorithm from the ac-
tual data structure. Figure 9 shows how iterators hide the



template<typename InIter,
typename OutIter>

void intersection(pair<InIter, InIter> itr_i,
pair<InIter, InIter> itr_j,
OutIter cand_vats);

Figure 9: Using Iterators with Generic Algorithms

data representation from the algorithms. The figure shows
the signature of the intersection method, which joins two
VATs to generate the VATs for new candidate patterns. The
first parameter is a pair of iterators pointing to the begin-
ning and end of the container that corresponds to the first
VAT. Similarly, the second parameter is for the second VAT.
The two iterators use the same InIter parameter since pat-
terns have to be of the same type to be intersected. The
third parameter represents an output iterator and is used to
collect the set of generated VATs. Note that, depending on
the pattern, more than one VAT could be generated.

To reiterate, the design of DMTL consists primarily of three
challenging components:

1. pattern structure,

2. pattern algorithms, and

3. back end storage facility.

Along with the above key components, the library contains
multiple smaller utilities for reading in data from multiple
sources, parsing data in multiple formats, and many others.

5.4 Incorporating new patterns
Representing patterns as property-based concepts allows users
to introduce new properties, and hence new patterns, with
minimal changes to the code. This effectively allows us to
mine any type of pattern. This idea of mining arbitrary
patterns is novel and extremely desirable in the data min-
ing community. Let us walk through an example to see how
a completely new pattern can be mined. At this time we
would like to remind the reader that our library currently
implements only four key kinds of patterns—sets, sequences,
trees and graphs. Each of these marks a new strata of pat-
tern complexity. For this example let us say we want to
mine all frequent cliques, given an input dataset containing
graphs. A clique of a graph is a maximal complete subgraph.
Suppose we want to mine all frequent k-cliques, where k is
the number of nodes in the clique. Since a clique is a special-
ized graph, we can guess that the process of mining cliques
might resemble that of mining graphs. Let us reconsider
the three core steps required for mining any patterns and
compare the functionality in each of those for the two pat-
terns. While the candidate generation step for graphs gener-
ates multiple candidates, the candidate generation step for
cliques needs to generate only fully-connected graphs. This
is much simpler than generating all possible candidates. The
isomorphism checking and support counting for cliques does
not change from regular graphs since cliques are specialized
graphs. The alert reader might note that the task of mining
cliques is similar to the task of mining itemsets. Although
they are similar there is a subtle difference—itemsets are
guaranteed to have unique labels whereas this is not the
case with cliques. This argument reinforces our claim that

typedef proplist<directed,
proplist<connected> > CLIQUE;

typedef proplist<directed > DI_GRAPH;

// Specialization for the clique pattern. //
template<class PAT, class MINE_PROPS,

class SM_TYPE>
void
cand_gen(const pat_fam<proplist<directed,

proplist<connected, PAT> >& Fk,
....);

// Specialization for directed graphs //
// Can be used by cliques. //
template<typename T>
bool
check_isomorphism(pattern<proplist<directed,

T> >* cand_pat);

Figure 10: Adding a new pattern

cliques just differ in the isomorphism-checking step. Even
though this example might seem contrived, it helps us see
that a similar approach can be taken for any other pattern.
In the worst case, the user will need to provide implemen-
tations for all three stages of pattern mining. From our ex-
perience with pattern mining, we can confidently claim that
all the patterns in figure 6 along with many others need very
few modifications on the part of the user. This has been the
motivation behind the library design and implementation.
Figure 10 shows the interface for the specialized candidate
generation method for cliques. The first parameter is spe-
cialized to match a clique or any of its sub-concepts. The
rest of the parameters have been omitted as they are not
relevant to the example. Clique mining can borrow the re-
maining methods that are specialized for directed graphs.

6. CHALLENGES AND FUTURE WORK
The design and implementation of DMTL has helped us ap-
preciate some of the language features provided by C++.
While specialization by overloading, iterator categories, and
similar powerful concepts are extremely important for generic
programming, there are other aspects that are not equally
well explored. Features such as concept checking and named
parameters are features that would benefit our implemen-
tation. Moreover, dispatching based on concepts rather
than pure type checking would allow partial specialization
based on concepts. Even though some of these features
have been implemented via template metaprogramming and
made available in Boost libraries, our experience suggests
advantages of including these features in the language stan-
dard.

The current design of DMTL has substantial scope for im-
provement. For example, our implementation of static lists
to manage the pattern properties is not necessarily the best
design choice. Such a property-list–based mechanism en-
forces a strict ordering of the properties in order for the
compiler to select the appropriate specialization. Ideally,
we would have benefited from the support for named pa-
rameters in C++. With such a feature we could omit the



properties that did not apply for a specific pattern and pro-
vide property in any order. While named parameters seems
like a good option, it might result in changes to the inter-
face while introducing newer properties in our framework. A
different approach to handling dispatching in this scenario
would necessitate support for concept based dispatching as
against type matching based dispatching. Additionally, sup-
port for concept checking [19] in the language specifications
would enhance development efforts. We also explored us-
ing the PropertyGraph concept in BGL to represent a set
of properties but it did not fit well into our framework at
that point without compromising flexibility. The enable if
family of templates is an approach for enabling certain func-
tion templates and class template specialization. It could
be used to achieving the same effect as our property list
approach. We hope to explore this opportunity with other
ongoing development in DMTL. From the data mining per-
spective, DMTL provides quite an extensive set of FPM
algorithms which perform better than existing stand-alone
algorithms. Since DMTL has been an evolving idea, now it
is ready for its first public release after undergoing numerous
refinements to the design. Some performance results based
on an earlier version of DMTL are presented in our previous
work [25]. In the long term, we plan to incorporate mining
algorithms in other pattern spaces such as maximal patterns
and closed patterns. Our eventual goal is to extend DMTL
to other data mining tasks like classification, clustering, and
so on.
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