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Abstract—Large Language Models (LLMs) hold considerable
promise for healthcare applications, leveraging vast, diverse
datasets to deliver insights across a broad range of tasks.
However, their effectiveness in personal health settings is cur-
rently limited by their dependence on unstructured information,
leading to issues concerning accuracy, trustworthiness, and per-
sonalization. In this perspective, we propose a transformative
framework integrating Knowledge Graphs (KGs) and Causal
Graphs (CGs) with LLMs to tackle these challenges. KGs
contribute structured, verifiable knowledge that grounds LLM
outputs in validated information, while CGs delineate causal
relationships that are crucial for precise health assessments
and intervention planning. We illustrate this framework with
a practical example in diabetes management to show its real-
world application. We indicate that integrating KGs and CGs
into LLMs is a pivotal advancement for addressing key challenges
in personal healthcare. This integration directly tackles issues of
trustworthiness, truthfulness, and personalization by anchoring
LLM in such structured knowledge. Practical solutions can be
deployed using this integrated approach with the support of
personal health data.

Index Terms—Personalized Healthcare, Large Language
Model, Knowledge Graph, Causal Graph, Causal Inference,
Reasoning, Truthfulness, Privacy, Bias, Explainability

I. INTRODUCTION

Large language models (LLMs) have rapidly advanced
as powerful tools capable of understanding and generating
human-like text, driven by vast networks of parameters and
extensive training on diverse text corpora [1]-[3]. Their ability
to encode and process vast amounts of information positions
them as transformative assets across various domains, partic-
ularly in healthcare, where they hold the potential to signif-
icantly enhance patient care, research, and clinical decision-
making [4].

Several approaches have been developed to integrate med-
ical knowledge into LLMs for healthcare applications. Fine-
tuning involves adapting the model’s parameters using domain-
specific datasets to improve accuracy and relevance in medical
contexts [5]-[8]. Prompt engineering, especially, Retrieval-
Augmented Prompting (RAP), incorporates relevant external

data into prompts in real-time, enhancing the contextual ac-
curacy of the model’s responses during medical discussions
[9]-[12]. RAP first retrieves relevant information using either
sparse methods (like TF-IDF [13] and BM25 [14]), or dense
methods (such as DPR [15], ART [16], ColBERT [17]) and
then integrates the retrieved information into the prompts to
ensure more contextually accurate outputs. LLMs can also
serve as agents by engaging with their environment to tackle
complex healthcare tasks with precision. Rather than simply
generating responses, they use structured frameworks like
ReAct [18] to reason, plan, and take deliberate actions in a
step-by-step process. These approaches predominantly rely on
unstructured data sources, such as text from electronic health
records (EHRs), clinical notes, medical academic papers, and
general domains like Wikipedia, which underpin much of the
current work in integrating LLMs into healthcare.

Despite the growing interest in applying LLMs to health-
care, prior work has largely leveraged text, and thus has
focused less on the valuable content in structured forms. The
significant challenges include the issues of truthfulness, limited
task evaluation, and gaps in explainability, transparency, and
privacy [19]. These problems are exacerbated by the reliance
on unstructured knowledge, which often fails to capture the
full complexity of medical information [20], [21] often without
much provenance information. For instance, free-text clinical
notes are difficult to process, may be acronymn heavy, and can
result in the loss of critical connections within the data [22]—
[25]. This is particularly problematic in personal health, where
accurate and personalized information is essential. With un-
structured knowledge, LLMs struggle to provide the necessary
detail and context, limiting their effectiveness in personal
health applications [26], [27].

Integrating advanced knowledge representation techniques,
such as Knowledge Graphs (KGs) and Causal Graphs (CGs),
into LLMs presents a promising solution to these challenges by
addressing the complex relationships and causalities inherent
in medical information [28]-[36]. KGs provide a structured,
interconnected understanding of entities and their relation-



ships, enabling LLMs to maintain the critical connections
often lost in unstructured data. CGs, on the other hand,
map out causal relationships between variables, enhancing
LLMs’ ability to reason and make informed decisions based
on nuanced causalities. For instance, leveraging a medical KG
can improve an LLM’s ability to reason and explain diagnostic
conclusions, while constructing a causal graph from a user’s
personal data can capture nutritional effects unique to the
individual, enabling more personalized recommendations [29],
[35], [37], [38]. These structured representations can elevate
the effectiveness of LLMs by aligning external knowledge with
the rigorous demands of healthcare applications.

In this perspective paper, we explore how the integration of
KGs and CGs can overcome the limitations of current LLMs in
personal health applications. We envision a future where these
graph-based technologies become integral to LLMs, bringing
much-needed structure to enhance truthfulness, trustworthi-
ness, and personalization in healthcare Al. Our discussion is
centered on several key contributions:

1) Investigating the unique roles and contributions of KGs,
CGs, and LLMs, as well as the benefits of their integra-
tion for personal health.

2) Exploring how the integration of KGs, CGs, and LLMs
can address specific challenges in personal health.

3) Providing a framework and a practical demonstration of
how this approach could be applied in personal diabetes
management.

II. KNOWLEDGE GRAPHS AND CAUSAL GRAPHS

A KG is a structured representation of information that
interlinks entities, such as people, places, and events, through
relationships [39]-[41]. Each entity in a KG is a node, and
the relationships between them are edges. This representation
allows for the organization and retrieval of factual data in a
way that captures both the entities themselves and context in
which they exist.

For example, Google Health Knowledge Graph is an early
implementation of how structured information is organized in
the healthcare domain [42]. It connects various entities, such
as diseases, symptoms, treatments, risk factors, and associated
conditions, into an interconnected web of knowledge. For in-
stance, in the context of diabetes, the Knowledge Graph might
include entities like “Diabetes,” “Insulin,” “Blood Glucose,”
and “Diet,” with relationships represented by edges such as
“is treated with” (e.g., “Diabetes is treated with Insulin”)
or “affects” (e.g., “Diabetes affects Blood Glucose levels”).
This interconnected structure allows healthcare providers and
patients to access relevant medical information more quickly
and accurately.

Causal Graphs (CGs) add more expressivity options as well
as complexity by using directed edges to clearly represent
the cause-and-effect relationships between different entities
or variables. Rooted in the principles of causal inference,
CGs focus on understanding how changes in one node (the
cause) can directly influence another (the effect) [43]-[45].
This representation of power makes CGs particularly valuable

in healthcare for predicting disease progression or evaluating
the impact of interventions, where understanding cause-and-
effect relationships is crucial.

In a healthcare setting, for instance, in the study of temporo-
mandibular disorders (TMDs) [44], the nodes in the causal
graph represent factors such as “Facial Injury,” “Pressure
Pain Threshold,” “Age,” “Gender,” “Psychological Stress,” and
“Genetic Predisposition.” The directed edges illustrate causal
relationships, such as “Facial Injury affects Pressure Pain
Threshold,” and “Pressure Pain Threshold influences the risk
of developing TMDs.” This causal graph can help researchers
understand how addressing one factor, like mitigating facial
injury, could potentially alter the pressure pain threshold and
thereby reduce the likelihood of TMDs.

The primary difference between KGs and CGs lies in the
types of relationships they model. KGs excel at organizing and
retrieving factual information based on associative relation-
ships, but they typically do not include causality explicitly. In
contrast, CGs are specifically designed to map out cause-and-
effect dynamics, which are crucial for applications that require
predictive and prescriptive analytics. Rather than representing
all possible relationships between data entities, a causal graph
focuses on the relationships that directly connect causes and
effects.

III. CHALLENGES IN APPLYING LARGE LANGUAGE
MODELS TO PERSONAL HEALTH

Despite the notable advancements of LLMs in healthcare,
they encounter substantial obstacles in personal health applica-
tions. Achieving high-standard personalized health responses,
which is the core objective of personal health applications,
presents unique challenges. These challenges arise from the
complexities of ensuring data availability, accurately analyzing
individual patterns, contextualizing findings within broader
health metrics, integrating population norms, and delivering
tailored responses. Specifically, the limitations of LLMs in
this domain can be broadly categorized into two key areas:
the need for deeper personalization and the imperative for
enhanced trustworthiness.

A. Trustworthiness

Trustworthiness for LLMs in personal health is a complex
and multifaceted issue [46]—[48]. Our discussion focuses on
three critical factors of trustworthiness: Privacy, Bias, and
Explainability.

1) Privacy: Privacy concerns are raised since achieving
deeper personalization involves accessing detailed personal
health data, which includes sensitive information such as med-
ical history, genetic data, and personal identifiers. Exposing
personal data to LLMs raises critical risks of data breaches
and unauthorized access, potentially leading to severe privacy
violations [49]-[55].

2) Explainability: These limitations also impact the
model’s capacity for explainability, which involves trans-
parently describing the reasoning process, enabling users
to understand how conclusions were derived. In personal



health, where decisions can profoundly affect patient out-
comes, the ability to audit and validate these decisions is
crucial [56], [57]. Processing complex personal data without
a clear mechanism to explain outputs complicates the trust
between the technology and its users—both patients and
healthcare providers—and further limits the utility of LLMs
in sensitive health applications [58]-[62].

3) Bias: Moreover, bias in LLM responses, especially
when handling personal data, manifests as unequal and unjust
treatment. For example, an LLM might provide high-quality
responses for certain populations but deliver less accurate or
effective recommendations for individuals from underrepre-
sented groups [63]-[65]. This often results from biased train-
ing corpora and the use of sensitive personal information like
demographics, which can reinforce existing disparities [66]—
[70].

B. Truthfulness

Truthfulness refers to the accurate representation of infor-
mation, facts, and results. This is a critical concern in health-
care because errors can lead to misdiagnoses, inappropriate
treatments, and overall patient harm [71]-[73]. LLMs often
struggle to provide truthful responses when relying solely on
their internal knowledge [74]. A major challenge is the phe-
nomenon of “hallucination,” where LLMs generate incorrect
but convincingly presented outputs. This issue stems from mis-
information or outdated information in the training data, along
with the inherent generative nature of LLMs. To mitigate this,
the generative process should be guided by factual, validated
knowledge sources to improve accuracy. Research shows that
LLMs augmented with external knowledge outperform state-
of-the-art models on benchmark datasets [75].

C. Deeper Personalization

Deeper personalization in personal health requires responses
to be better tailored to individuals. This involves a detailed
consideration and extraction of nuanced information from
each patient’s multifaceted personal data, such as patient
histories, preferences, and specific health conditions, which
is crucial for the truthfulness and safety of the health advice
provided [76]-[78]. Some existing studies attempt to enable
LLMs to provide personalized responses by incorporating
raw personal data. However, a deeper level of personalization
required for personal health often demands more sophisticated
processing of complex personal data [49], [50], [79], [80].
For example, a diabetic patient’s personal health data may in-
clude structured clinical information such as glucose readings,
medication dosage, and lab results, along with unstructured
data like patient-reported symptoms (e.g., fatigue, stress) and
lifestyle information from wearables or smartphones (e.g.,
daily physical activity, sleep patterns). Providing a deeply
personalized response requires sophisticated data processing
across multiple aspects of a patient’s health [79], [81]. For
instance, in response to a diabetic patient asking, “How can
I manage my blood sugar better?”, the system would need
to check the availability of recent glucose readings, analyze

trends in blood sugar levels over time, and identify any anoma-
lies. Additionally, it would assess lifestyle factors such as diet
and exercise from wearable devices, correlate these findings
with medication schedules, and contextualize them against
both personal health history and population norms. LLMs
can function as agents by planning and executing steps to
generate tailored recommendations, integrating both structured
data (e.g., glucose levels) and unstructured inputs (e.g., patient-
reported symptoms) [29], [82], [83]. However, they still face
challenges in navigating unstructured text, complex medical
terminology, and diverse data formats, lacking the advanced
mechanisms needed for fully personalized healthcare.

IV. CONTRIBUTIONS OF KNOWLEDGE GRAPHS, CAUSAL
GRAPHS, AND LARGE LANGUAGE MODELS IN PERSONAL
HEALTH

Understanding the impact of combining KGs, CGs, and
LLMs in personal health starts by recognizing the individual
strengths of each. This section examines the distinct roles of
KGs, CGs, and LLMs and highlights their contributions to
overcoming the challenges of personal healthcare, as Figure 1
illustrates.
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Fig. 1. Overview of Integrating Knowledge Graphs, Causal Graphs, and Large
Language Models in Personal Health

A. What Can Knowledge Graphs Provide?

A Knowledge Graph organizes data through a structured
network of entities (such as objects, events, or concepts)
interconnected by edges that represent their relationships [84].
This graphical format allows for representing and querying
complex relationships and attributes in an integrated manner,
which is particularly advantageous in healthcare where the



connections between symptoms, diseases, treatments, and pa-
tient characteristics are intricately linked.

1) Comprehensive Population-Level Knowledge: KGs can
compound a vast array of health-related information across dif-
ferent populations, including epidemiological data, treatment
outcomes, demographic statistics, etc. [85]. This integration
provides a holistic view that can inform public health decisions
and research [86]. By capturing diverse health scenarios within
the population, KGs can help a personal health service gener-
ate responses that are contextually appropriate and informed
by real-world, broad-spectrum validated knowledge.

2) Personalized Health Knowledge: KGs provide detailed
representations of an individual’s health profile by integrating
diverse personal data. This data includes medical history, cur-
rent medications, genetic information, lifestyle factors, familial
health patterns, and personal health goals. By organizing these
elements into a knowledge graph, personal KGs offer a holistic
view of a patient’s health, reflecting the various factors that
contribute to their overall well-being [87]. This comprehensive
perspective can provide more precise tailoring of medical
recommendations to meet the patient’s unique health needs
and circumstances.

3) Structured Knowledge Representation: KGs systemat-
ically organize information, enabling efficient retrieval and
analysis of data. This structured approach is essential for
comprehending and generating information relevant to spe-
cific personal health queries. It facilitates effective navigation
through complex medical terminology and patient data. More
specifically, by explicitly representing the relationships be-
tween various data types—such as symptoms, diagnoses, treat-
ments, and outcomes—KGs allow for precise querying and
retrieval of specific information. This organization enhances
the relevance of the resulting analyses and makes it easier to
derive meaningful insights from complex healthcare data.

B. What Can Causal Graphs Provide?

A Causal Graph is a directed graph that illustrates causal
relationships between variables. It is fundamental for those
systems where understanding the causal relationships founded
on statistical principles is essential [88]. In the healthcare
scenario, CGs play a vital role by mapping how changes
in one factor can causally influence others. This aids in the
determination of the causal impacts of treatments, lifestyle
choices, or genetic factors on health outcomes.

1) Causal Relationship Analysis: CGs provide a structured
representation of causal relationships among various health
factors. This can help LLMs understand disease progression,
treatment effects, and potential side effects. As a result,
decision-making becomes more informed, considering the
full health scenario of patients. In complex medical cases
where multiple variables interact, CGs enable users to manage
potential complications or treatment benefits effectively.

2) Support for Causal Inference and Counterfactual Rea-
soning: CGs encode causal assumptions that are essential for
using statistical methods to distinguish true causation from
mere correlation. With CGs, it is possible to conduct causal

inference to determine whether specific treatments directly
affect health outcomes or if observed effects arise from other
confounding factors. Additionally, CGs facilitate counterfac-
tual reasoning by exploring “what-if” scenarios, which allows
anticipation of the outcomes of various treatment options be-
fore their actual implementation. This ability provides insights
into potential effects and side effects of treatments and offers a
depth of understanding beyond the capabilities of LLMs alone.

3) Statistical Explainability: This is based on established
statistical theory and principles, is allowing LLMs to provide
reasoning that is transparent and verifiable, which is essential
for explainability in healthcare applications [89]. CGs outline
how specific health outcomes can be causally linked to certain
treatments or conditions. This capability is particularly valu-
able when LLMs need to justify their outputs and build user
trust in their recommendations.

4) Personalized Causal Insights: Personalized CGs can be
constructed to include individual patient data to offer detailed
insights into the potential impacts of specific health interven-
tions based on each patient’s unique health profile. This level
of personalization extends beyond generic medical advice,
and allows for better customized recommendations that reflect
an individual’s specific health conditions and predispositions.
By incorporating personalized CGs, healthcare delivery can
become more responsive and precisely tailored to meet the
unique needs of individual patients.

C. What Can Large Language Models Provide?

Large Language Models represent the next generation of
tools for natural language processing and generation, built
upon vast amounts of training data, and are increasingly
powerful in personal health applications due to their advanced
decision-making capabilities.

1) Natural Language Understanding and Generation:
Large Language Models excel in understanding and generating
human language, making them invaluable for interpreting
complex medical inquiries and providing coherent, contextu-
ally relevant responses. Their ability to comprehend nuanced
language enables them to interpret patient questions, extract
relevant information from diverse textual sources, and generate
detailed, patient-specific advice [72], [90]-[94]. This profi-
ciency bridges the gap between technical medical knowledge
and everyday patient communication, ensuring clarity and
understanding.

2) Knowledge From Extensive Training Data: Trained on
a vast corpus spanning a wide range of topics, LLMs possess
a rich repository of both general and specialized knowledge.
This extensive training enables them to recall and synthesize
information from diverse medical literature, guidelines, and
case studies. Techniques such as zero-shot prompting, few-
shot prompting, and chain-of-thought reasoning can be applied
to invoke this inherent knowledge, guiding LLMs to gener-
ate accurate and contextually relevant responses [95]-[97].
In healthcare applications, this empowers LLMs to provide
insights that are informed by the latest medical research and
established best practices.



3) Agentic Orchestration: LLMs can act as central or-
chestrators in the framework to manage complex tasks that
extend beyond simple language processing. They have the
ability to plan, execute, and coordinate multi-step processes by
utilizing KGs and CGs to collect, process, and analyze patient
data across various stages. This structured, iterative approach
allows LLMs to manage healthcare more effectively.

Specifically, LLMs serve as orchestrators by interfacing
between patients and different healthcare tools. They au-
tonomously choose the most suitable resources—such as
retrieving information from KGs or performing predictive
analysis with CGs—to respond to complex health queries.
For example, in chronic disease management, an LLM can
continuously adjust treatment plans by integrating real-time
data from wearable devices with patient histories stored in
KGs. Through this orchestration across data sources and tools,
LLMs are able to facilitate personalized healthcare by making
adaptive, well-informed decisions.

D. How Can Knowledge Graphs, Causal Graphs, and Large
Language Models Collaborate?

The integration of KGs, CGs, and LLMs establishes a
comprehensive framework that strengthens the functionality
of each component within personal health applications, as
demonstrated in Figure 1. This collaboration enables LLMs
to utilize structured and validated knowledge from KGs and
CGs, resulting in more precise and reliable healthcare solutions
tailored to individual needs.

1) Justification and Error Mitigation: KGs provide a struc-
tured factual base that LLMs can use to validate their re-
sponses. Aligning outputs with verified information from KGs
reduces biases and errors that might arise from the training
data. This approach ensures that the health advice generated
by LLMs adheres to established medical knowledge and
guidelines. CGs offer insights into the causal relationships and
potential outcomes of various health interventions, enhancing
the factual and contextual relevance of responses. When com-
bined, KGs provide the factual foundation that supports the
causal relationships identified by CGs, while CGs clarify the
implications of these facts. This synergy builds a solid basis
for accurate and reliable health information.

2) Dynamic Knowledge and Causality Integration: KGs
and CGs serve as dynamic guides that refine the decision-
making process of LLMs. KGs provide up-to-date factual
information, while CGs offer insights into the causal mecha-
nisms and expected outcomes of health interventions. Regular
updates to these graphs incorporate new knowledge and causal
insights, which allows LLMs to access the most current infor-
mation. This approach avoids the need for frequent retraining
or fine-tuning of the models. Consequently, LLMs can produce
outputs that are aligned with the latest medical practices
and adaptable to the changing landscape of patient data and
advancements in medical science.

3) Enhanced Large Language Models’ Reasoning: Inte-
grating KGs and CGs into LLMs advances their reasoning
capabilities beyond what training or prompt engineering alone

can achieve. KGs enrich LLM reasoning by providing a vast
repository of factual knowledge for the generation of well-
reasoned responses that are traceable within the graph. This
traceability creates a clear, logical pathway from question
to answer, linking each response to specific data points and
relationships.

Additionally, CGs enhance the ability of LLMs to under-
stand and predict health outcomes by elucidating causal rela-
tionships within medical data. This integration allows LLMs
to accurately anticipate outcomes based on symptoms and
treatments, and to grasp the underlying mechanisms driving
these outcomes. Thus, by combining structured knowledge
from KGs and causal insights from CGs, LLMs can produce
responses that are both reasoned and grounded in a robust
understanding of medical contexts.

4) Improved Explainability: KGs provide a structured rep-
resentation of medical knowledge, delineating relationships
between concepts. This empowers LLMs to not only generate
responses but also reference the specific knowledge underpin-
ning them. This transparency builds trust, allowing healthcare
professionals and patients to understand the rationale behind
the LLM’s suggestions. CGs, on the other hand, excel at
revealing causal relationships between health variables. By
integrating CGs, LLMs can explain not just the answer itself,
but the causal chain leading to it. This unveils the underlying
logic behind the LLM’s reasoning, fostering trust and enabling
informed decision-making within the context of a patient’s
specific health data.

5) Bias Mitigation and Privacy Protection: KGs filter and
ground the information used by LLMs in validated, unbiased
facts. Sensitive data, such as ethnicity, can be included in KGs
when relevant, but used selectively based on context [98]. For
example, ethnicity may be applied only when it has a clinically
significant role, like when certain populations show genetic
predispositions to specific health conditions. This approach
balances the need for bias mitigation with the necessity of
including clinically relevant data so that sensitive attributes
are considered only where appropriate, without reinforcing
demographic biases in unrelated contexts.

CGs take things a step further. They equip LLMs with
the ability to understand cause-and-effect relationships that
influence health outcomes. This is achieved through statistical
analysis, bypassing potentially biased factors like ethnicity or
demographics. CGs take bias mitigation a step further by fo-
cusing on the cause-and-effect relationships that truly influence
health outcomes, rather than relying on simple correlations.
For instance, in the context of cardiovascular disease, a CG
could model the causal relationships between factors such as
diet, exercise, and heart health while excluding potentially
biased variables like economic status. The focus on causality
over correlations helps mitigate bias in the LLM’s responses.
Additionally, CGs can act as an intermediary layer, further
protecting sensitive personal information.



V. FRAMEWORK FOR INTEGRATION OF KNOWLEDGE
GRAPHS, CAUSAL GRAPHS, AND LARGE LANGUAGE
MODELS

A. Proposed Framework

Integrating KGs, CGs, and LLMs can effectively tackle key
challenges in healthcare. This synergy improves trustworthi-
ness, truthfulness, and personalization in medical applications.
We propose a framework that integrates Knowledge Graphs,
Causal Graphs, and Large Language Models to address this
challenge. The framework integrates five key components
to deliver personalized health management: Personal Health
Data, Population Knowledge Graphs, Personal Knowledge
Graphs, Personal Causal Graphs, and LLMs. The system
synthesizes data from an individual’s medical history, ge-
netic profile, lifestyle habits, and biomarkers with population-
level medical knowledge, personal health trends, and causal
relationships to generate evidence-based personal health re-
sponses. The proposed framework is illustrated in Figure 2.

Personal Health Data forms the cornerstone of our frame-
work, providing a comprehensive view of an individual’s
health status. This component includes medical history, genetic
profile, lifestyle habits, physical activity patterns, vital signs,
etc. It captures past and present health conditions, inher-
ited traits, daily behaviors, exercise routines, and real-time
physiological measurements. This detailed personal health
information serves as the foundation for generating tailored
health insights and recommendations. By continuously up-
dating this diverse dataset, the system maintains an accurate
representation of an individual’s health state.

Population Knowledge Graphs are comprehensive col-
lections of medical information, combining insights from
research, clinical trials, and health statistics. These graphs
connect various health concepts—such as diseases, symptoms,
and treatments—showing how they relate to each other. This
structure helps the system understand the complex interplay
between different aspects of health. For example, a Population
Knowledge Graph might show how a particular medicine
relates to its effects, proper usage, and interactions with diet
and exercise.

Personal Knowledge Graphs create a detailed picture of an
individual’s health. They are constructed from Personal Health
Data to form a complete health profile. Personal Knowledge
Graphs organize this personal information in a way that mir-
rors the structure of Personal Knowledge Graphs. This allows
for a thorough understanding of a person’s health history and
current condition. For instance, a Personal Knowledge Graph
might link someone’s exercise habits, eating patterns, and sleep
routines to their blood pressure over time. It could also include
details about their job, family health history, and recent health
changes, providing a full view of their health situation.

Personal Causal Graphs map out how different factors af-
fect an individual’s health. Personal Causal Graphs show how
changes in one area of health might influence others, based
on the individual’s unique body and past experiences. For
example, a Personal Causal Graph could predict how changes

in diet or exercise might affect a person’s cholesterol or mood,
considering how they’ve responded to similar changes before.
This helps the system anticipate how different health choices
or treatments might affect the individual, allowing for more
precise and personalized health advice.

An LLM serves as the intelligent core of the framework,
interpreting user queries and translating complex medical
information into actionable advice. It processes health-related
questions with a nuanced understanding. The LLM accesses
and integrates information from all three graph types: drawing
broad medical knowledge from Population Knowledge Graphs,
individual health profiles from Personal Knowledge Graphs,
and predictive insights from Personal Causal Graphs. This
comprehensive approach allows the LLM to generate per-
sonalized health recommendations, balancing general health
guidelines with an individual’s unique health history, current
status, and predicted responses to interventions. The LLM
communicates these tailored suggestions in understandable
language, explaining the reasoning behind its advice. As
new medical knowledge emerges and individual health data
accumulates, the LLM continuously refines its responses to
provide the most relevant and up-to-date guidance for health
management.

B. Enhancing Trustworthiness

1) Safeguarding Privacy: Privacy is a fundamental right
that ensures that patients’ personal and medical information is
protected and kept confidential. In personal health applications
involving LLMs, privacy concerns are paramount, especially
as personalization often requires access to sensitive personal
data. Safeguarding this privacy is critical to maintaining patient
trust and ensuring that sensitive information is neither exposed
nor misused.

KGs and CGs can elevate privacy protection by serving as
an abstraction layer, as demonstrated in Figure 4. These graphs
extract and represent connections among symptoms, diag-
noses, treatments, and outcomes while obscuring direct access
to personal data [99]-[101]. CGs model causal relationships
between treatments and health outcomes based on aggregated
data. This approach allows KGs and CGs to safeguard privacy
by structuring personal details in a format that prevents direct
exposure of sensitive information.

For example, a KG can be constructed from personal
data to represent a patient’s medical condition and associated
treatments. This structured representation allows LLMs to
access and utilize necessary healthcare insights without linking
directly to identifiable personal data. This process protects
patient privacy while still enabling the LLM to provide per-
sonalized and accurate medical recommendations.

2) Advancing Explainability: In personal health applica-
tions, where decisions can directly influence patient outcomes,
explainability is paramount [102]. Explainability refers to the
ability to deconstruct and articulate the rationale underlying
LLMs’ outputs. Enhancing explainability in LLMs is vital for
fostering trust among healthcare professionals and patients,
and supporting informed decision-making [56], [103].
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KGs and CGs provide a clear and structured representa-
tion of medical knowledge, delineating relationships between
various healthcare concepts. This structured approach allows
LLMs to generate responses that are both clear and traceable,
as demonstrated in Figure 3. For example, KGs created
from electronic medical records (EMRs) offer a high-quality
overview of medical knowledge [42], [104], [105]. These KGs
mirror clinical reasoning and decision-making processes, thus
addressing issues of explainability in LLMs. CGs enhance
explainability by mapping out causal relationships between
different health variables. This allows LLMs to explain not
just the answers but also the causal pathways leading to those
answers. For instance, when an LLM suggests a particular
medication for hypertension, a CG can illustrate how this rec-
ommendation is derived from the patient’s specific symptoms,

health history, and potential interactions with other treatments.

In practice, when KGs and CGs are integrated with LLMs,
they allow the models to clearly articulate the basis of their
decisions. This integration enables LL.Ms to reference specific
nodes and connections within the graphs when explaining their
outputs. For example, an LLM might reference a KG to explain
that a treatment recommendation is based on the latest clinical
trials and safety warnings, while a CG could show how the
treatment will affect the patient’s health outcomes based on
their personal data.

Studies have shown that the structured and validated knowl-
edge provided by KGs and CGs significantly improves the
transparency and reliability of LLM-driven healthcare rec-
ommendations [87], [106], [107]. This approach prioritizes
explainability, thereby equipping users with the ability to
grasp the reasoning behind the model’s recommendations.
This transparency strengthens trust in the model’s outputs and
empowers users to make informed decisions.

3) Mitigating Bias: Mitigating bias in personal health LLM
applications is crucial to ensure equitable and accurate health-
care recommendations for all patients. Bias in LLMs can lead
to unequal treatment based on patient demographics such as
race, gender, or socioeconomic status, which can have serious
implications for patient care and outcomes.

A key advantage of this integration lies in the structured,
curated knowledge that KGs and CGs provide as shown in Fig-
ure 3. When carefully constructed, these graphs contain factual
and comprehensive medical information, allowing LLMs to
leverage this unbiased knowledge base. By grounding LLM-
generated insights in well-curated medical facts, the system



reduces the risk of bias typically associated with unstructured
data sources, ensuring that health recommendations are more
accurate and fair.

Even when KGs and CGs contain some inherent bias,
they still play a vital role in reducing bias, particularly for
underrepresented populations. These graphs can be specifically
designed to capture diverse medical data across various demo-
graphic groups, including those traditionally underrepresented
in healthcare datasets, such as specific genders, ethnicities,
or age groups. KGs serve as structured, objective repositories
of knowledge, standardizing information regardless of patient
demographics or other potential sources of bias. For example,
a KG can be constructed to facilitate balanced representation
across racial and gender groups for conditions like heart
disease or diabetes. Moreover, existing techniques [108]-[111]
can help mitigate bias within KGs broadening the range of pa-
tient scenarios considered and better addressing the healthcare
needs of diverse populations.

Similarly, CGs can model causal relationships grounded in
robust statistical evidence, rather than relying on unexamined
demographic correlations. This approach helps eliminate the
risk of perpetuating historical biases, ensuring that LLM
outputs are grounded in factual, unbiased data.

In practice, an LLM integrated with these graphs can
draw on this structured and balanced information to generate
responses. For instance, if a patient inquires about treatment
options for diabetes, the LLM can refer to a KG that includes
data from diverse patient populations and a CG that models the
causal impact of various treatments without demographic bias.
This integration allows for more accurate and personalized
healthcare recommendations, ensuring that these recommen-
dations are free from biases that might have arisen from
unrepresentative training data.

C. Ensuring Truthfulness

Truthfulness in personal health LLM applications involves
ensuring that these systems operate without causing unin-
tended harm to patients. This includes ensuring that the
LLM’s advice, diagnoses, and treatment recommendations
are accurate, reliable, and consistent with current medical
standards. Prioritizing the truthfulness of LLMs is crucial
to avoid misdiagnoses, inappropriate treatments, and overall
patient harm to help build trust in healthcare applications.

Integrating KGs and CGs with LLMs greatly improves
truthfulness in healthcare. As illustrated in Figure 3, KGs orga-
nize medical information in a structured way, making sure that
LLM decisions are based on validated, up-to-date, and precise
medical knowledge. This structure helps reduce diagnostic and
treatment errors by aligning LLM outputs more closely with
established medical standards and practices [112]-[114].

In practical applications, KGs and CGs guide LLMs by
providing access to the latest treatment guidelines and research
findings. For example, when recommending a treatment, a
KG makes sure that the LLM considers the most current
clinical trials and truthfulness warnings, lowering the risk of
recommending outdated or unsafe treatments. Similarly, CGs

map out the potential consequences of a recommendation
by showing the causal relationships between treatments and
outcomes. This allows LLMs to predict and avoid adverse
reactions or ineffective treatments. For instance, a CG might
show how a particular food could impact health outcomes in
patients, enabling the LLM to recommend safer alternatives
based on personalized causal analysis.

KGs and CGs also serve as review mechanisms to high-
light potential errors or inconsistencies in LLM responses,
preventing unsafe advice. For example, if an LLM generates
a treatment recommendation, the integration with KGs and
CGs allows for an automatic cross-checking process where the
generated advice is validated against the structured knowledge
within the graphs. An example of this would be an LLM
suggesting a recipe containing an ingredient that is risky for
a patient with diabetes; the KG could flag this issue based on
stored medical profiles, preventing the spread of potentially
harmful advice.

D. Deepening Personalization

Deeper personalization in personal health involves tailoring
healthcare responses to meet each individual’s unique needs
and circumstances. This approach considers various patient-
specific data, such as medical history, genetic predispositions,
lifestyle choices, and personal preferences. This leads to
improved patient outcomes, greater patient satisfaction, and
increased trust in these advanced healthcare solutions.

Integrating KGs and CGs with LLMs marks a pivotal step
toward deeper personalization in personal health management.
Figure 4 outlines the methodological framework for this
process. By constructing personal KGs from an individual’s
health records and developing personal CGs that model the
unique causal effects of interventions, such as medications
and lifestyle changes, LLMs gain access to a structured and
information-rich knowledge base. This enriched knowledge
allows LLMs to deliver more effective and personalized re-
sponses.

When an LLM equipped with these integrated graphs
receives a health query, it can efficiently access relevant,
personalized information from the KGs and CGs. Consider
a diabetic patient who asks, “What are the potential risks of
following a high-protein diet, given my current medications
and health conditions?” An LLM integrated with Knowledge
Graphs (KGs) and Causal Graphs (CGs) would first reference
the patient’s personal KG to retrieve critical information, such
as their current medications (e.g., Metformin), known allergies
(e.g., to dairy products), and dietary restrictions (e.g., low car-
bohydrate intake). Next, using the personal CG, the LLM can
evaluate how the high-protein diet might affect the patient’s
blood glucose levels. For instance, the CG might indicate that
consuming large amounts of protein could lead to increased
gluconeogenesis, potentially causing elevated blood glucose
levels, especially in the presence of certain medications like
Metformin, which alters glucose metabolism.

Figure 4 illustrates this process. For example, a personal
KG might compile comprehensive details about a patient’s



previous health conditions, current medications, and family
medical history, highlighting potential health risks and effec-
tive treatment options [87], [106], [107]. Simultaneously, a
personal CG could show how specific lifestyle adjustments,
such as changes in diet or exercise routines, could causally
influence this patient’s risk factors for conditions like diabetes
or heart disease.

Abstracted
Personal Data

Personal and CGs
® Personal Knowlegde
® Personal Causal Modeling

Constructs
Personal and CG LLM
Data Construction Model
A
\ S
S~ —

—_—,— e —_—— —

Restricted Data Exposure

Fig. 4. Illustration of Deeper Personalization and Privacy Preservation through
KGs and CGs. Personal data is first used to construct KGs and CGs via
a construction model. These graphs capture personal knowledge and causal
relationships. The resulting personal KGs and CGs are then abstracted, and
only this abstracted personal data is passed to the LLM. Raw personal data
is not directly input to the LLM.

VI. PRACTICAL EXAMPLE: PERSONAL DIABETES
MANAGEMENT

This section showcases a practical application of integrated
KGs, CGs, and LLMs to empower diabetic patients in their
self-care routines. By combining personal health data with
broader medical knowledge, the system constructs a person-
alized view of the patient’s health. This integrated approach
allows the LLM to understand the complex interplay between
factors like diet, exercise, and medication, enabling it to
generate evidence-based recommendations tailored to each
individual’s unique needs. An illustration of the workflow is
shown in Figure 5.

A. The Inputs

1) Personal Health Data: The process begins by collecting
and structuring the patient’s personal health data. Effective
diabetes management relies on continuous monitoring of blood
glucose levels, careful dietary planning, regular physical ac-
tivity, and adherence to medication protocols [115]-[118].
Wearable and mobile sensors/devices can be employed to track
these metrics accurately. For example, continuous glucose
monitors provide real-time data on blood glucose levels, fitness
trackers monitor physical activity, and smart scales track
weight changes. Additionally, dietary intake can be logged
through mobile apps that track nutrition and meal timing.
By continuously monitoring and recording a wide range of
health metrics, the personal health data establishes a strong
foundation for personalized diabetes management.

2) Population Knowledge Graphs: Population knowledge
graphs refer to the population-level medical knowledge. They
are utilized to offer a broader context to individual patient data.
These graphs compile extensive health-related information
across diverse populations, including epidemiological data,
treatment outcomes, and demographic statistics. Integrating
population knowledge graphs empowers the system to leverage
this validated, comprehensive medical knowledge.

B. Personal Knowledge Graph and Causal Graph Construc-
tion

1) Personal Knowledge Graph: This is constructed from
patient data to convert raw information into structured, action-
able knowledge. This transformation is crucial for organizing
and understanding the complex interactions between various
health factors and their impacts on diabetes management [34].
The Personal KG integrates information on dietary habits, such
as carbohydrate intake and meal timing, and lifestyle choices,
including physical activity levels and sleep patterns. It links
these factors to their impacts on blood glucose control and
insulin sensitivity. Real-time health metrics, like continuous
glucose monitoring data, are represented to provide insights
into the patient’s glycemic patterns and trends over time. This
interconnected knowledge demonstrates how different treat-
ments, lifestyle modifications, and genetic factors influence
diabetes management.

2) Personal Causal Graph: The Personal Causal Graph
maps out the causal relationships between different factors
influencing the patient’s health. Understanding these causal
pathways is essential for predicting the outcomes of various
health interventions and making informed decisions about
diabetes management. The Personal CG models the causal
pathways between various health determinants such as diet,
physical activity, and medication adherence [29]. For instance,
the CG elucidates how different foods impact blood glucose
levels, how varying intensities of physical activity influence
insulin sensitivity, and how consistent medication adherence
affects overall glucose control. It enables predictive analysis,
allowing healthcare providers to estimate the potential out-
comes of different self-care strategies. For example, the CG
can predict the effects of adjusting carbohydrate intake or
increasing physical activity on the patient’s glucose levels.

C. Personalized Diabetes Management Recommendations via
LLMs

1) Query Processing: The process begins when the LLM
receives a query from a patient regarding their diabetes man-
agement. For instance, a patient might ask, "What should
I eat for breakfast to maintain stable blood sugar levels?”
The LLM interprets this query, identifies the key aspects,
and determines the specific information required to provide
an accurate response.

2) Knowledge Retrieval: The LLM retrieves relevant infor-
mation from both personal and population knowledge graphs.
The personal knowledge graph provides insights into the pa-
tient’s medical history, dietary preferences, and current health
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Fig. 5. An Example of Personalized Diabetes Management Using KG and CG-Augmented LLM.

metrics. The population knowledge graph offers validated data
on the impacts of various dietary choices on blood sugar levels
across different populations.

3) Causal Analysis: Using the causal graph, the LLM
assesses the potential impact of various breakfast options. By
examining the causal relationships between different foods and
their predicted effects on blood glucose, the LLM predicts how
specific dietary choices will influence the patient’s glucose
levels based on their unique health profile.

4) Trace Explanations from the Graphs: To maintain ex-
plainability and build trust, the LLM traces its reasoning
and explanations back to the data and relationships within
the knowledge and causal graphs. This involves outlining the
causal pathways and factual bases for its recommendations and
providing patients with clear and understandable rationales for
the advice given.

5) Response Generation: Based on the insights derived
from the knowledge and causal graphs, the LLM generates
personalized, evidence-based dietary recommendations. For
example, it might suggest a breakfast high in fiber and
low in simple carbohydrates to help maintain stable blood
sugar levels. This recommendation is tailored to the patient’s
individual health needs and supported by both personal and
population-level medical knowledge.

6) Response Validation: Before presenting the response
to the patient, it undergoes a rigorous validation process to

prevent potential inaccuracies. The LLM cross-references the
generated response with the knowledge and causal graphs to
ensure it aligns with the patient’s health condition and medical
knowledge, verifying that no contraindications or allergies
are overlooked. The LLM evaluates the response against the
causal graph to confirm the predicted positive outcomes and
check for any potential negative impacts. This process involves
modeling the causal pathways to verify the truthfulness and
effectiveness of the recommendations. Any discrepancies or
potential improvements identified during this modeling prompt
the LLM to refine the response.

D. Continuous Monitoring and Adaptation

1) Real-Time Data Integration: Incorporating real-time
data from glucose monitors and wearable devices is essential.
This process involves updating the knowledge and causal
graphs with the latest health metrics from the patient. By
using current information, the system can provide accurate and
relevant recommendations tailored to the patient’s immediate
needs.

Real-time data integration ensures the system’s responses
are based on the latest health status. For example, if a glucose
monitor detects a spike in blood sugar levels, this information
updates the graphs immediately, allowing the system to adjust
its advice accordingly.



2) Feedback Loop: A dynamic feedback loop allows the
system to refine its recommendations continually. By col-
lecting user feedback and new health data, the system can
update its understanding and improve its advice over time. The
feedback loop is vital for learning from the patient’s unique
responses to previous recommendations. This iterative process
allows the responses to be more personalized and effective
with each cycle.

For instance, if a dietary recommendation leads to unex-
pected glucose fluctuations, the system analyzes this feedback
and adjusts future advice to better suit the patient’s needs.
This may involve modifying the causal graph to incorporate
new insights about the patient’s reactions to specific foods or
activities.

VII. TECHNICAL CHALLENGES AND OPPORTUNITIES

A. Bridging Structured Knowledge and Large Language Mod-
els

One of the key challenges in integrating KGs and CGs into
Large LLMs lies in the fundamental differences in how they
represent knowledge. KGs store information in a structured,
symbolic form that explicitly maps relationships between
entities. In contrast, LLMs operate using high-dimensional
embeddings, where knowledge is encoded implicitly through
statistical patterns in their parameters.

While early efforts, such as fine-tuning and prompt engi-
neering, have begun to explore potential solutions, they remain
limited. For example, even when factual information from
graphs is included in the prompt, the performance of LLMs
is highly sensitive to the prompt template itself, sometimes
resulting in incorrect responses [29], [119]. Bridging the
gap between these two forms of knowledge requires more
advanced embedding techniques [120]. These techniques must
translate the structured data from KGs into a format that is
compatible with the statistical nature of LLMs. Achieving this
hybrid representation is complex, as it needs to preserve the
explicit relationships inherent in KGs while enabling LLMs to
process and reason over the integrated data efficiently.

B. Computational Challenges

1) Training Costs: Integrating graphs into LLMs signif-
icantly increases computational demands. The model must
query, process, and merge structured medical knowledge data
from KGs and CGs with the language understanding tasks
performed by LLMs. This heightens the need for process-
ing power. Techniques such as Low-Rank Adaptation [121],
TIA3 [122], etc., have been introduced to reduce these com-
putational costs. As the size of KGs, CGs and LLMs grows,
improving the efficiency of these integration approaches be-
comes essential to maintain scalability.

2) Real-Time Inference: Incorporating KGs and CGs into
real-time inference introduces additional complexity, which
can lead to latency, especially when the model needs to access
information from these graphs to construct prompts. Querying
large-scale graphs during inference is resource-intensive and
can slow down response times, making real-time applications

less feasible [30]. The challenge is to efficiently query and
process structured data without causing delays. To maintain
responsiveness at scale, optimizing graph query mechanisms
and minimizing the overhead of integrating KG and CG
knowledge with LLM outputs are essential [123].

C. Graph Querying Costs

When querying large graphs, the computational cost can
quickly escalate due to the vast number of nodes, edges,
and relationships that must be processed and retrieved. As
the size of KGs or CGs expands, querying and retrieving
information efficiently without overwhelming computational
resources becomes increasingly challenging [124]. Efficient
query optimization techniques are critical for maintaining scal-
ability, reducing query times, and addressing the challenges
posed by the scale and complexity of highly interconnected
graphs [125], [126]. More advanced solutions are needed to
manage the growing size and intricate relationships within
these graph structures.

D. Knowledge Updating

Keeping LLMs, KGs, and CGs aligned with new informa-
tion as it emerges is complex [108]. Updating LLMs usually
requires fine-tuning, which is computationally expensive since
knowledge is embedded in their parameters. While KGs and
CGs are easier to update with new facts, scaling KGs and
handling large amounts of data in CGs can also become
costly [42]. Another challenge is maintaining consistency
between these systems as they are updated [35], [108]. Real-
time updates for both graphs and LLMs are still in the early
stages of development and need more efficient solutions to
manage this process effectively [127].

E. Domain-Specific Adaptation

LLMs are generally trained for broad language under-
standing, while KGs and CGs are often tailored to specific
domains, such as healthcare. Adapting LLMs to effectively
utilize domain-specific knowledge from KGs and CGs, without
losing their general versatility, is challenging. This requires
advanced fine-tuning and prompting strategies that allow the
model to incorporate specialized medical knowledge while still
handling a wide range of queries [128]-[130].
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