
MINING GRAPH DATA

A JOHN WILEY & SONS, INC., PUBLICATION

CHAPTER 1

A UNIFIED APPROACH TO
ROOTED TREE MINING:
ALGORITHMS AND APPLICATIONS

1.1 INTRODUCTION

Tree patterns typically arise in applications like bioinformatics, web mining, mining semi-

structured documents, and so on. For example, given a database of XML documents, one

might like to mine the commonly occurring “structural” patterns, i.e., subtrees, that appear

in the collection. As another example, given several phylogenies (i.e., evolutionary trees)

from the Tree of Life [15], indicating evolutionary history of several organisms, one might

be interested in discovering if there are common subtree patterns.

Recently there has been tremendous interest in mining increasingly complex pattern types

such as trees [30, 1, 4, 6, 26, 18, 2, 5] and graphs [12, 14, 27]. For example, several algo-

rithms for tree mining have been proposed recently, which include TreeMiner [30], which

mines embedded, ordered trees; SLEUTH [31], which mines embedded, unordered trees;

FreqT [1], which mines induced ordered trees, FreeTreeMiner [4] which mines induced,

unordered, free trees (i.e., there is no distinct root); TreeFinder [22], which mines embed-

ded, unordered trees (but it may miss some patterns; it is not complete); and PathJoin [26],

D R A F T August 26, 2005, 8:10am D R A F T

2 TREE MINING

uFreqt [18], uNot [2], CMTreeMiner [6] and HybridTreeMiner [5] which mine induced,

unordered trees.

In this paper we extend SLEUTH 1 to obtain an efficient, unified algorithm for the

problem of mining frequent subtrees. The key contributions of our work are as follows: 1)

We present a unified approach to tree mining that can handle both ordered or unordered,

and both induced or embedded trees. 3) We propose a new self-contained equivalence class

extension scheme to generate all candidate trees. Only potentially frequent extensions are

considered, but some redundancy is allowed in the candidate generation to make each class

self contained. We study the trade-off between non-redundant versus potentially frequent

candidate generation. 4) We extend the notion of scope-list joins (first proposed in [30])

for fast frequency computation for unordered/induced trees. 5) We also propose a method

to count only distinct tree occurrences, instead of all mappings. 6) Finally, we conduct

performance evaluation on several synthetic datasets and a real weblog dataset to show

that SLEUTH is an efficient algorithm for different types of tree patterns. We present

applications of tree mining in bioinformatics, such as mining frequent RNA structures, and

common phylogenetic tree patterns.

1.2 PRELIMINARIES

A rooted tree T = (V,E) is a directed, acyclic, graph with vertex set V = {0, 1, · · · , n},

edge set E = {(x, y)|x, y ∈ V }, and with one distinguished vertex r ∈ V called the root

such that for all x ∈ V , there is a unique path from r to x. In a labeled tree, l : V → L is a

labeling function mapping vertices to a set of labels L = {`1, `2, · · ·}. In an ordered tree

the children of each vertex are ordered (i.e., 1st child, 2nd child, etc.), otherwise, the tree is

unordered.

If x, y ∈ V and there is a path from x to y, then x is called an ancestor of y (and y

a descendant of x), denoted as x ≤p y, where p is the length of the path from x to y. If

x ≤1 y (i.e., x is an immediate ancestor), then x is called the parent of y, and y the child of

x. If x and y have the same parent, x and y are called siblings, and if they have a common

ancestor, they are called cousins.

We also assume that vertex x ∈ V is synonymous with (or numbered according to)

its position in the depth-first (pre-order) traversal of the tree T (for example, the root r is

1SLEUTH is an anagram of the bold letters in the phrase: Listing “Hidden” or Embedded/induced (Un)ordered

SubTrees)

D R A F T August 26, 2005, 8:10am D R A F T

PRELIMINARIES 3

vertex 0). Let T (x) denote the subtree rooted at x, and let y be the rightmost leaf (or highest

numbered descendant) under x. Then the scope of x is given as s(x) = [x, y]. Intuitively,

s(x) demarcates the range of vertices under x.

As suggested in [30], we represent a tree T by its string encoding, denoted T , generated

as follows: Add vertex labels to T in a depth-first preorder traversal of T , and add a unique

symbol $ 6∈ L whenever we backtrack from a child to its parent. For example, for T shown

in Figure 1.1., its string encoding is A B A C $ B $ $ C $ $ C $. We use the notation

T [i] to denote the element at position i in T , where i ∈ [1, |T |], and |T | is the length of the

string T .

Given a tree S = (Vs, Es) and tree T = (Vt, Et), we say that S is an isomorphic

subtree of T iff there exists a one-to-one mapping ϕ : Vs → Vt, such that (x, y) ∈ Es

iff (ϕ(x), ϕ(y)) ∈ Et. If ϕ is onto, then S and T are called isomorphic. S is called an

induced subtree of T = (Vt, Et), denoted S ¹i T , iff S is an isomorphic subtree of T , and

ϕ preserves labels, i.e., l(x) = l(ϕ(x)),∀x ∈ Vs. That is, for induced subtrees ϕ preserves

the parent-child relationships, as well as vertex labels. The induced subtree obtained by

deleting the rightmost leaf in T is called an immediate prefix of T . The induced tree obtained

from T by a series of rightmost node deletions is called a prefix of T . In the sequel we use

prefix to mean an immediate prefix, unless we indicate otherwise.

S = (Vs, Es) is called an embedded subtree of T = (Vt, Et), denoted as S ¹e T iff

there exists a 1-to-1 mapping ϕ : Vs → Vt that satisfies: i) (x, y) ∈ Es iff ϕ(x) ≤p ϕ(y),

and ii) l(x) = l(ϕ(x)). That is, for embedded subtrees ϕ preserves ancestor-descendant

relationships and labels. A (sub)tree of size k is also called a k-(sub)tree. If S ¹e T , we

also say that T contains S or S occurs in T . Note that each occurrence of S in T can be

identified by its unique match label, given by the sequence ϕ(x0)ϕ(x1) · · ·ϕ(x|S|), where

xi ∈ Vs. That is a match label of S is given as the set of matching positions in T .

Let δT (S) denote the number of occurrences (induced or embedded, depending on

context) of the subtree S in a tree T . Let dT be an indicator variable, with dT (S) = 1

if δT (S) > 0 and dT (S) = 0 if δT (S) = 0. Let D denote a database (a forest) of trees.

The support of a subtree S in the database is defined as σ(S) =
∑

T∈D dT (S), i.e., the

number of trees in D that contain at least one occurrence of S. The weighted support of S

is defined as σw(S) =
∑

T∈D δT (S), i.e., total number of occurrences of S over all trees in

D. Typically, support is given as a percentage of the total number of trees in D. A subtree S

is frequent if its support is more than or equal to a user-specified minimum support (minsup)

value. We denote by Fk the set of all frequent subtrees of size k. In some domains one

D R A F T August 26, 2005, 8:10am D R A F T

4 TREE MINING

might be interested in using weighted support, instead of support. Both of them are allowed

using our mining approach, but we focus mainly on support.

A

B C

T S

[5, 5]

[6, 6]

[0, 6]

[1, 5]

[2, 4]

[4, 4][3, 3]

induced sub−tree match labels

embedded sub−tree match labels:

String Encoding
A B $ C $

A

B

A C

C

BC

6

0

1

2

3 4

5

0

1 2

A B A C $ B $ $ C $ $ C $
String Encoding

ordered: {016}
unordered: {016, 243}

ordered: {016, 045, 046}
unordered: {016, 045, 046, 043, 243}

Figure 1.1. An Example: Tree and Subtree

Given a collection of trees D and a user specified minsup value, several rooted tree

mining tasks can be defined, depending on the choices among ordered/unordered or in-

duced/embedded trees. Consider Figure 1.1., which shows an example tree T with vertex

labels drawn from the set L = {A,B,C}, and vertices identified by their depth-first num-

ber. The figure shows for each vertex, its label, depth-first number, and scope. For example,

the root is vertex 0, its label l(0) = A, and since the right-most leaf under the root is ver-

tex 6, the scope of the root is s(0) = [0, 6]. Consider S; it is clearly an induced subtree

of T . If we look only at ordered subtrees, then the match label of S in T is given as:

012 → ϕ(0)ϕ(1)ϕ(2) = 016 (we omit set notation for convenience). If unordered subtrees

are considered, then 243 is also a valid match label. S has additional match labels as an

embedded subtree. In the ordered case, we have additional match labels 045 and 046, and in

the unordered case, we have on top of these two, the label 043. Thus the induced weighted

support of S is 1 for ordered and 2 for the unordered case. The embedded weighted support

of S is 3, if ordered, and 5, if unordered. The support of S is 1 in all cases.

1.3 RELATED WORK

Recently tree mining has attracted a lot of attention. Zaki proposed TreeMiner [30] to mine

labeled, embedded, and ordered subtrees. The notions of scope-lists and rightmost extension

were introduced in that work. TreeMiner was also used in building a structural classifier

D R A F T August 26, 2005, 8:10am D R A F T

RELATED WORK 5

for XML data [32]. XSpanner [24] is a pattern-growth based method for mining embedded

ordered subtrees. Asai et al. [1] presented FreqT, an apriori-like algorithm for mining labeled

ordered trees; they independently proposed the rightmost candidate generation scheme.

Wang and Liu [25] developed an algorithm to mine frequently occurring subtrees in XML

documents. Their algorithm is also reminiscent of the level-wise Apriori approach, and they

mine induced subtrees only. There are several other recent algorithms that mine different

types of tree patterns, which include FreeTreeMiner [4] which mines induced, unordered,

free trees (i.e., there is no distinct root); SingleTreeMining [21], which mines rooted,

unordered trees, with application to phylogenetic tree pattern mining; and PathJoin [26],

uFreqt [18], uNot [2], and HybridTreeMiner [5] which mine induced, unordered trees.

CMTreeMiner [6] mines maximal and closed induced, unordered trees. TreeFinder [22]

uses an Inductive Logic Programming approach to mine unordered, embedded subtrees,

but it is not a complete method, i.e, it can miss many frequent subtrees, especially as

support is lowered or when the different trees in the database have common node labels.

Dryade [23] is a recent method to mine embedded unordered subtrees, with the restriction

that no two siblings have the same labels. In recent work, Zaki [31] proposed SLEUTH,

the first complete algorithm to mine embedded unordered trees. Our focus here is on

an efficient, unified approach to mine the complete set of frequent, induced/embedded,

ordered/unordered trees.

Frequent tree mining is also related to tree isomorphism [20] and tree pattern match-

ing [7]. The tree inclusion problem was studied in [13], i.e., given labeled trees P and T ,

can P be obtained from T by deleting nodes? This problem is equivalent to checking if P is

embedded in T . Here we are interested in enumerating all common subtrees in a collection

of trees.

There has also been recent work in mining frequent graph patterns. The AGM algorithm

(see [12] and Chapter 10 of this book) discovers induced (possibly disconnected) subgraphs.

The FSG algorithm (see [14] and Chapter 7 of this book) improves upon AGM, and mines

only the connected subgraphs. Both methods follow an Apriori-style level-wise approach.

Recent methods to mine graphs using a depth-first tree based extension have been proposed

in [27, 28] (see also Chapter 6 of this book). Another method uses a candidate generation

approach based on Canonical Adjacency Matrices [11]. GASTON [17] adopts an interesting

step-wise approach using a combination of path, free tree and finally graph mining to

discover all frequent subgraphs. The SUBDUE system (see [8] and Chapter 8 of this

book) also discovers graph patterns using the Minimum Description Length principle. An

D R A F T August 26, 2005, 8:10am D R A F T

6 TREE MINING

approach termed Graph-Based Induction (GBI) was proposed in [29], which uses beam

search for mining subgraphs. In contrast to these approaches, we are interested in developing

efficient, complete algorithms for tree patterns.

1.4 GENERATING CANDIDATE SUBTREES

There are two main steps for enumerating frequent subtrees in D. First, we need a systematic

way of generating candidate subtrees whose frequency is to be computed. The candidate

set should be non-redundant to the extent possible; ideally, each subtree should be generated

at most once. Second, we need efficient ways of counting the number of occurrences of

each candidate tree in the database D, and to determine which candidates pass the minsup

threshold. The latter step is data structure dependent, and will be treated in Section 1.5. We

begin with the problem of candidate generation in this section.

 B

 C B A

 BD

 B

 C B A

 B D

 B

 A

 B D

 C B

 B

 A

 B D

 B C

0

1 2 3

4 5

0

1 2 3

4 5

0

1

2 3

4 5

0

1

2 3

4 5

T1 T2 T3 T4

Figure 1.2. Some Automorphisms of the Same Tree

An automorphism of a tree is an isomorphism with itself. Let Aut(T) denote the au-

tomorphism group, i.e., the set of all label preserving automorphisms, of T . Henceforth,

by automorphism, we mean label preserving automorphisms. The goal of candidate gen-

eration is to enumerate only one canonical representative from Aut(T). For an unordered

tree T , there can be many automorphisms. For example, Figure 1.2. shows some of the

automorphisms of the same tree. On the other hand, ordered trees have either only one

automorphism (the trivial one that maps T to itself), or if there are several of them, they

are indistinguishable (for example, when some node has at least two identical subtrees).

Whether a tree is induced or embedded does not impact its automorphism group.

Let there be a linear order ≤ defined on the elements of the label set L. Given any two

trees X and Y , we can define a linear order ≤, called tree order between them, recursively

as follows: Let rx and ry denote the roots of X and Y , and let crx

1 , · · · , crx
m and c

ry

1 , · · · , c
ry
n

denote the ordered list of children of rx and ry , respectively. Also let T (crx

i) denote the

subtree of X rooted at vertex crx

i . Then X ≤ Y (alternatively, T (rx) ≤ T (ry)) iff either:

D R A F T August 26, 2005, 8:10am D R A F T

GENERATING CANDIDATE SUBTREES 7

1.) l(rx) < l(ry), or

2.) l(rx) = l(ry), and either a) n ≤ m and T (crx

i) = T (c
ry

i) for all 1 ≤ i ≤ n, i.e.,

Y is a prefix (not necessarily immediate prefix) of or equal to X , or b) there exists

j ∈ [1,min(m,n)], such that T (crx

i) = T (c
ry

i) for all i < j, and T (crx

j) < T (c
ry

j).

This tree ordering is essentially the same as that in [18], although their tree coding is

different.

We can also define a code order on the tree encodings directly as follows: Assume that

the special backtrack symbol $ > ` for all ` ∈ L. Given two string encodings X and Y .

We say that X ≤ Y iff either:

i.) |Y| ≤ |X | and X [k] = Y[k] for all 1 ≤ k ≤ |Y|, or

ii.) There exists k ∈ [1,min(|X |, |Y|)], such that for all 1 ≤ i < k, X [i] = Y[i] and

X [k] < Y[k].

Incidentally, a similar tree code ordering was independently proposed in CMTreeMiner [6].

Lemma 1 X ≤ Y iff X ≤ Y .

Proof Sketch: Condition i) in code order holds if X and Y are identical for the entire

length of Y , but this is true iff Y is a prefix of (or equal to) X .

Condition ii) holds if and only if X and Y are identical up to position k − 1, i.e.,

X [1, · · · , k − 1] = Y[1, · · · , k − 1]. This is true iff both X and Y share a common prefix

tree P with encoding P = X [1, · · · , k − 1]). Let vi
X (and v

j
Y) refer to the node in tree X

(and Y), that corresponds to position X [i] 6= $ (and Y[j] 6= $).

If k = 1, then P is an empty tree with encoding P = ∅. It is clear that l(rx) < l(ry)

iff X [1] < Y[1]. If k > 1, then X [k] < Y[k], iff one of the following cases is true: A)

X [k] 6= $ and Y[k] 6= $: We immediately have X [k] < Y[k] iff T (vk
X) < T (vk

Y) iff

X < Y . B) X [k] 6= $ and Y[k] = $: let v
j
X be parent of node vk

X (j < k), and let v
j
Y be

the corresponding node in Y (which refers to Y[j] 6= $). We then immediately have that

T (vj
Y) is a prefix of T (vj

X), since X [j, · · · , k − 1] = Y[j, · · · , k − 1], and v
j
X has an extra

child vk
X , whereas v

j
Y doesn’t.

Given Aut(T) the canonical representative Tc ∈ Aut(T) is the tree, such that Tc ≤ X

for all X ∈ Aut(T). For any P ∈ Aut(T) we say that P is in canonical form if P = Tc.

For example, Tc = T1 for the automorphism group Aut(T1), four of whose members are

shown in Figure 1.2.. We can see that the string encoding T1 = BAB$D$$BC is smaller

than T2 = BAB$D$$CB and also smaller than other members.

D R A F T August 26, 2005, 8:10am D R A F T

8 TREE MINING

Lemma 2 A tree T is in canonical form iff for all vertices v ∈ T , T (cv
i) ≤ T (cv

i+1) for all

i ∈ [1, k], where cv
1, c

v
2, · · · , c

v
k is the list of ordered children of v.

Proof Sketch: T is in canonical form implies that T ≤ X for all X ∈ Aut(T). Assume

that there exist some vertex v ∈ T such that T (ci) > T (ci+1) for some i ∈ [1, k], where

c1, c2, · · · , ck are the ordered children of v. But then, we can obtain tree T ′ by simply

swapping the subtrees T (ci) and T (ci+1) under node v. However, by doing so, we make

T ′ < T , which contradicts the assumption that T is canonical.

Let R(P) = v1v2 · · · vm denote the rightmost path in tree P , i.e., the path from root Pr

to the rightmost leaf in P . Given a seed frequent tree P , we can generate new candidates

P i
x obtained by adding a new leaf with label x to any vertex vi on the rightmost path R(P).

We call this process as prefix-based extension, since each such candidate has P as its prefix

tree.

It has been shown that prefix-based extension can correctly enumerate all ordered

trees [30, 1]. SLEUTH follows the same strategy for ordered, embedded trees. For

unordered trees, we only have to do a further check to see if the new extension is the

canonical form for its automorphism group, and if so, it is a valid extension. For example,

Figure 1.3. shows the seed tree P , with encoding P = CDA$B (omitting trailing $’s). To

preserve the prefix tree, only rightmost branch extensions are allowed. Since the rightmost

path is R(P) = 013, we can extend P by adding a new vertex with label x any of these

vertices, to obtain a new tree P i
x (i ∈ {0, 1, 3}). Note, how adding x to node 2 gives a

different prefix tree encoding CDAx, and is thus disallowed, as shown in the figure.

Equivalence Class

Element List: (label, attached to position)

 x

 x

 x x

Class Prefix

3

 C

 D

2

1

0

 B A

Prefix String: C D A $ B

 (x, 3) // attached to 3: C D A $ B x $ $ $

 (x, 1) // attached to 1: C D A $ B $ x $ $

(x, 0) // attached to 0: C D A $ B $ $ x $

Figure 1.3. Prefix Extension and Equivalence Class

In [18] it was shown that for any tree in canonical form its prefix is also in canonical

form. Thus starting from vertices with distinct labels, using prefix extensions, and retain-

D R A F T August 26, 2005, 8:10am D R A F T

GENERATING CANDIDATE SUBTREES 9

ing only canonical forms for each automorphism group, we can enumerate all unordered

trees non-redundantly. For each candidate, we can count the number of occurrences in

database D to determine which are frequent. Thus the main challenges in tree extension are

to: i) efficiently determine whether an extension yields a canonical tree, and ii) determine

extensions which will potentially be frequent. The former step considers only valid candi-

dates, whereas the latter step minimizes the number of frequency computations against the

database.

1.4.1 Canonical Extension

To check if a tree is in canonical form, we need to make sure that for each vertex v ∈ T ,

T (ci) ≤ T (ci+1) for all i ∈ [1, k], where c1, c2, · · · , ck is the list of ordered children of

v. However, since we extend only canonical trees, for a new candidate, its prefix is in

canonical form, and we can do better.

 B

 A

B

 C

B

A

B

C

A

B

 C

A

C

D

C

0

1

4

5

6

7

10 12

13

11

3

2

8

9 x

14

15

Figure 1.4. Check for Canonical Form

Lemma 3 Let P be a tree in canonical form, and let R(P) be the rightmost path in P . Let

P k
x be the tree extension of P when adding a vertex with label x to some vertex vk in R(P).

For any vi ∈ R(P k
x), let cvi

l−1
and cvi

l denote the last two children of vi
2. Then P k

x is in

canonical form iff for all vi ∈ R(P k
x), T (cvi

l−1
) ≤ T (cvi

l).

Proof Sketch: Let R(P) = v1v2 · · · vkvk+1 · · · vm be the rightmost path in P . By

Lemma 2, P is in canonical form implies that for every node vi ∈ R(P), we have T (cvi

l−1
) ≤

T (cvi

l).

2If vi is a leaf, then both children are empty, and if vi has only one child, then c
vi

l−1
is empty

D R A F T August 26, 2005, 8:10am D R A F T

10 TREE MINING

When we extend P to P k
x , we obtain a new rightmost path R(P k

x) = v1v2 · · · vkvn,

where vn is the new last child of vk (with label x). Thus both R(P) and R(P k
x) share the

vertices v1v2 · · · vk in common. Note that for any i > k, vi ∈ R(P) is unaffected by the

addition of vertex vn. On the other hand, for all i < k, the last child cvi

l of vi ∈ R(P) (i.e.,

vi ∈ R(P k
x)) is affected by vn, whereas cvi

l−1
remains unchanged. Also for i = k, the last

two children of vk change in tree P k
x ; we have cvk

l−1
= vk+1 and cvk

l = vn.

Since P is in canonical form, we immediately have that for all vi ∈ {v1, v2, · · · , vk},

T (cvi

j) ≤ T (cvi

l−1
) for all j < l − 1. Thus we only have to compare the new subtree

T (cvi

l) with T (cvi

l−1
). If T (cvi

l−1
) ≤ T (cvi

l) for all vi ∈ R(P k
x), then by Lemma 2, we

immediately have that P k
x is in canonical form. On the other hand if T (cvi

l−1
) > T (cvi

l) for

some vi ∈ R(P k
x), then P k

x cannot be in canonical form.

According to lemma 3 we can check if a tree P k
x is in canonical form by starting from the

rightmost leaf in R(P k
x) and checking if the subtrees under the last two children for each

node on the rightmost path are ordered according to ≤. By lemma 1 it is sufficient to check

if their string encodings are ordered by ≤. For example, given the candidate tree P 12
x shown

in Figure 1.4. which has a new vertex 15 with label x attached to node 12 on the rightmost

path, we first compare 15 with its previous sibling 13. For T (13) ≤ T (15), we require that

x ≥ C. After skipping node 11 (with empty previous sibling), we reach node 0, where we

compare T (5) and T (11). For T (5) ≤ T (11) we require that x ≥ D, otherwise P 12
x is

not canonical. Thus for any x < D the tree is not canonical. It is possible to speed-up the

canonicality checking by adopting a different tree coding [18], but here we will continue

to use the string encoding of a tree. The corresponding checks for canonicality based on

lemma 1 among the subtree encodings are shown below:

T(13) vs. T(15): BAAC$$B$$ABCC $$D $$B $$ABCC $$x

T(5) vs. T(11): BAAC$$B$$ABCC $$D $$B $$ABCC $$x

Based on the check for canonical form, we can determine which labels are possible

for each rightmost path extension. Given a tree P and the set of frequent edges F2 (or the

frequent labels F1), we can then try to extend P with each edge from F2 (or each item in F1)

that leads to a canonical extension. Even though all of these candidates are non-redundant

(i.e., there are no isomorphic duplicates), this extension process may still produce too many

candidate trees, whose frequencies have to be counted in the database D, and many of the

candidates may not be frequent. To reduce the number of such trees, we try to extend P with

a vertex that is more likely to result in a frequent tree, using the idea of a prefix equivalence

class.

D R A F T August 26, 2005, 8:10am D R A F T

GENERATING CANDIDATE SUBTREES 11

1.4.2 Equivalence Class-based Extension

We say that two k-subtrees X,Y are in the same prefix equivalence class iff they share the

same prefix tree. Thus any two members of a prefix class differ only in the last vertex. For

example, Figure 1.3. shows the class template for subtrees with the same prefix subtree P

with string encoding P = C D A $ B. The figure shows the actual format we use to

store an equivalence class; it consists of the class prefix string, and a list of elements. Each

element is given as a (x, i) pair, where x is the label of the last vertex, and i specifies the

vertex in P to which x is attached. For example (x, 1) refers to the case where x is attached

to vertex 1. The figure shows the encoding of the subtrees corresponding to each class

element. Note how each of them shares the same prefix up to the (k − 1)th vertex. These

subtrees are shown only for illustration purposes; we only store the element list in a class.

Let P be a prefix subtree of size k − 1; we use the notation [P] to refer to its class (we

will use P and its string encoding P interchangeably). If (x, i) is an element of the class,

we write it as (x, i) ∈ [P]. Each (x, i) pair corresponds to a subtree of size k, sharing P as

the prefix, with the last vertex labeled x, attached to vertex i in P . We use the notation P i
x

to refer to the new prefix subtree formed by adding (x, i) to P . Let P be a (k− 1)-subtree,

and let [P] = {(x,i)|P
i
x is frequent} be the set of all possible frequent extensions of prefix

tree P . Then the set of potentially frequent candidate trees for the class [P i
x] (obtained

by adding an element (x, i) to P), can be obtained by prefix extensions of P i
x with each

element (y, j) ∈ [P], given as follows: i) cousin extension: If j ≤ i and |P | = k − 1 ≥ 1,

then (y, j) ∈ [P i
x], and in addition ii) descendant extension: If j = i then (y, k−1) ∈ [P i

x].

Consider Figure 1.5., showing the prefix class P = AB, which contains 2 elements,

(C, 1) and (D, 0). Let’s consider the extensions of first element, i.e., of [P 1
C] = [ABC].

First we must consider element (C, 1) itself. As descendant extension, we add (C, 2) (tree

C1), and as cousin extension, we add (C, 1) (tree C2). Extending with (D, 0), since 0 < 1,

we only add cousin extension (D, 0) (tree C3) to [ABC]. When considering extensions of

[P 0
D] = [AB$D], we consider (C, 1) first. But since C is attached to vertex 1, it cannot

preserve the prefix tree PD. Considering (D, 0), we add (D, 0) as a cousin extension and

(D, 2) as a descendant extension, corresponding to trees C4 and C5.

1.4.3 Discussion

Note that for ordered and embedded tree mining, we can guarantee that each equivalence

class is complete, i.e., all potential embedded, ordered (k + 1)-subtrees can be obtained by

D R A F T August 26, 2005, 8:10am D R A F T

12 TREE MINING

 A

 B

 C D

 A

 B

 A A A

 B B B

 C C C

 A A

 B B D D
 D

 C
 C

 D

 D

Element List: (C,1) (D,0)
Prefix: A B

Prefix: A B C
Element List: (C,2) (C,1) (D,0)

Prefix: A B $ D
Element List: (D,2) (D,0)

C1

C4

P2

C3C2

C5

P1

2 2

1

2

3

1

2

1

2

1 2

3

1 2 3

0

P1
0

P2

11

0
C1

0
C2

0

C3

3

3

0 0 C5C4

Figure 1.5. Equivalence Class-based Extension

joining two embedded, ordered k-subtrees in the class. For unordered subtrees, we have to

allow non-canonical subtrees, to preserve completeness. Thus any embedded, unordered

(k + 1)-subtree can be obtained by joining two embedded, unordered k-subtrees in the

class, where the tree being extended is canonical. For induced subtrees also the equivalence

class is not complete, if we only keep induced subtrees as class members. For example, in

Figure 1.1., there are two induced 2-subtrees with B as a root, namely, BA$ and BC$. Thus

[B] = {(A, 0), (C, 0)}. It is clear that we cannot obtain the pattern BAB$$ by joining only

two elements within the class [B]. To guarantee completeness, we must allow embedded

subtrees to be class members. For example, if we add the embedded pattern BB$ to [B],

then we will be able to obtain BAB$$ by joining only two elements within the class [B].

In general we can obtain any induced, (un)ordered (k + 1)-subtree, from two k-subtrees

within a class, provided the tree being extended is both canonical and induced. Thus the

main observation behind equivalence class extension is the Fk × Fk candidate generation

process, where only known frequent k-elements from the same class are used for extending

P i
x. Furthermore, we only extend P i

x, if it is in canonical form, and satisfies the given tree

properties. However, to guarantee that all possible extensions are members of [P], we have

to relax the canonicality or induced requirements.

D R A F T August 26, 2005, 8:10am D R A F T

FREQUENCY COMPUTATION 13

As opposed to equivalence class extensions, for pure canonical extensions, an equiv-

alence class contains only canonical members, and only those members that satisfy the

tree properties (embedded or induced). To guarantee that all possible extensions will be

tried, we extend [P i
x] by considering all members of the form (x, y) ∈ F2, which itself

stores only canonical or embedded/induced elements as the case may require. Canonical

extension thus corresponds to an Fk × F2 (or Fk × F1) candidate generation process. In

essence canonical and equivalence class extensions represent a trade-off between the num-

ber of redundant (isomorphic) candidates generated and the number of potentially frequent

candidates to count. Canonical extensions generate non-redundant candidates, but many

of which may turn out not to be frequent. On the other hand, equivalence class extension

generates redundant candidates, but considers a smaller number of (potentially frequent)

extensions. In our experiments we found equivalence class extensions to be more efficient

(see Section 1.8). One consequence of using equivalence class extensions is that SLEUTH

doesn’t depend on any particular canonical form; it can work with any systematic way of

choosing a representative from an automorphism group. Provided only one representative

is extended, its class contains all information about the extensions that can be potentially

frequent. This can provide a lot of flexibility on how tree enumeration is performed.

1.5 FREQUENCY COMPUTATION

The candidate generation step allow us to enumerate potentially frequent ordered/unordered

subtrees in a systematic manner. The goal of the frequency counting step is to quickly find

the support of a candidate. We first look at the task of finding the frequency of embedded

subtrees, and then extend the method to compute the support of induced subtrees.

1.5.1 Embedded Subtrees

In SLEUTH, we represent the database in the vertical format [30], in which for every

distinct label we store its scope-list, which is a list of tree ids and vertex scopes where that

label occurs. For label `, we denote its scope-list as L(`); each entry in the scope list is a

pair (t, s), where t is a tree id (tid) in which ` occurs, and s is the scope of a vertex with

label ` in tid t. Figure 1.6. shows a database of 3 trees, and the scope-lists for each label.

Consider label A; since it occurs at vertex 0 with scope [0, 3] in tree T0, we add (0, [0, 3]) to

its scope list. A also occurs in T1 with scope [1, 3], and in T2 with scopes [0, 7] and [4, 7],

D R A F T August 26, 2005, 8:10am D R A F T

14 TREE MINING

thus we add (1, [1, 3]), (2, [0, 7]) and (2, [4, 7]) to L(A). In a similar manner, the scope lists

for other labels are created.

D in Vertical Format: (tid, scope) pairs

0, [0, 3]
1, [1, 3]
2, [0, 7]
2, [4, 7]

1, [0, 5]
1, [2, 2]
1, [4, 4]
2, [2, 2]
2, [5, 5]

1, [5, 5]
2, [1, 2]
2, [6, 7]

0, [3, 3]
1, [3, 3]
2, [7, 7]

2, [3, 7]

A B C D E

0, [1, 1]0, [2, 3]

Tree T1

Database D of 3 Trees

Tree T0 Tree T2

 A

 D

 B

 A

 B D

 B C

 A

 C

 B

 E

 A

 B C

 D

[1,1]

[4,7]

[2,2]

[4, 4] [5,5]

[1,3]

[0,5]

[0,3]

[3,3]

[2,3]

[2,2]

[1,2]

[0,7]

[3,7]

[5,5]

[7,7]

[6,7]

[3, 3]

B C

0

1

3

0

1

2 3

4 5

1

2

3

4

5 6

7

2

0

Figure 1.6. Scope-Lists

We also use the scope-lists to represent the list of occurrences in the database, for any

k-subtree S. Let x be the label of the rightmost leaf in S. The scope list of S consists of

triples (t,m, s), where t is a tid where S occurs, s is the scope of vertex with label x in tid

t, and m is a match label for the prefix subtree of S. Thus the vertical database is in fact the

set of scope-lists for all 1-subtrees (and since they have no prefix, there is no match label).

SLEUTH uses scope-list joins for fast frequency computation for a new embedded

extension. We assume that each element (x, i) in a prefix class [P] has a scope-list which

stores all occurrences of the tree P i
x (obtained by extending P with (x, i)). The vertical

database contains the initial scope lists L(`) for each distinct label `. To compute the scope-

D R A F T August 26, 2005, 8:10am D R A F T

FREQUENCY COMPUTATION 15

lists for members of [P i
x] we need to join the scope-lists of (x, i) with every other element

(y, j) ∈ [P]. If the resulting tree is frequent, we insert the element in [P i
x].

Let sx = [lx, ux] be a scope for vertex x, and sy = [ly, uy] a scope for y. We say that

sx is strictly less than sy , denoted sx < sy , if and only if ux < ly , i.e., the interval sx has

no overlap with sy , and it occurs before sy . We say that sx contains sy , denoted sx ⊃ sy ,

if and only if lx < ly and ux ≥ uy , i.e., the interval sy is a proper subset of sx.

Recall from the equivalence class extension that when we extend element [P i
x] there can

be at most two possible outcomes, i.e., descendant extension or cousin extension. The use

of scopes allows us to compute in constant time whether y is a descendant of x or y is a

cousin of x. We describe below how to compute the embedded support for (un)ordered

extensions, using the descendant and cousin tests.

Descendant Test. Given [P] and any two of its elements (x, i) and (y, j). In a descendant

extension of P i
x the element (y, j) is added as a child of (x, i). For embedded frequency

computation, we have to find all occurrences where label y occurs as a descendant of x,

sharing the same prefix tree P i
x in some T ∈ D, with tid t. This is called the descendant

test. To check if this subtree occurs in an input tree T with tid t, we search if there exists

triples (ty,my, sy) ∈ L(y) and (tx,mx, sx) ∈ L(x), such that:

1) ty = tx = t, i.e., the triples both occur in the same tree, with tid t.

2) my = mx = m, i.e., x and y are both extensions of the same prefix occurrence, with

match label m.

3) sy ⊂ sx, i.e., y lies within the scope of x.

If the three conditions are satisfied, we have found an instance where y is a descendant of

x in some input tree T . We then extend the match label my of the old prefix P , to get the

match label for the new prefix P i
x (given as my ∪ lx), and add the triple (ty, {my ∪ lx}, sy)

to the scope-list of (y, |P |) in [P i
x].

Cousin Test. Given [P] and any two of its elements (x, i) and (y, j). In a cousin extension

of P i
x the element (y, j) is added as a cousin of (x, i). For embedded frequency computation,

we have to find all occurrences where label y occurs as a cousin of x, sharing the same

prefix tree P i
x in some input tree T ∈ D, with tid t. This is called the cousin test. To check

if y occurs as a cousin in some tree T with tid t, we need to check if there exists triples

(ty,my, sy) ∈ L(y) and (tx,mx, sx) ∈ L(x), such that:

1) ty = tx = t, i.e., the triples both occur in the same tree, with tid t.

2) my = mx = m, i.e., x and y are both extensions of the same prefix occurrence, with

D R A F T August 26, 2005, 8:10am D R A F T

16 TREE MINING

match label m.

3) sx < sy or sx > sy , i.e., either x comes before y or y comes before x in depth-first

ordering, and their scopes do not overlap. This allows us to find the unordered frequency

and is one of the crucial differences compared to ordered tree mining, as in TreeMiner [30],

which only checks if sx < sy .

If these conditions are satisfied, we add the triple (ty, {my ∪ lx}, sy) to the scope-list of

(y, j) in [P i
x].

1, 1, [2, 2]
2, 0, [2, 2]
2, 0, [5, 5]
2, 4, [5, 5]

A

B

A

C

0, 0, [2, 3] 0, 0, [1, 1]
2, 0, [1, 2]

2, 0, [6, 7]
2, 4, [6, 7]

A

B C

0, 02, [1, 1]

2, 02, [6, 7]

2, 45, [6, 7]
2, 05, [6, 7]

2, 05, [1, 2]

Figure 1.7. Scope-list Joins: Embedded

Figure 1.7. shows an example of how scope-list joins work, using the database D from

Figure 1.6.. The initial class with empty prefix consists of four frequent labels (A,B,C,

and D), with their scope-lists. All pairs (not necessarily distinct) of elements are considered

for extension. Two of the frequent trees in class [A] are shown, namely AB$ and AC$.

AB$ is obtained by joining the scope lists of A and B and performing descendant tests,

since we want to find those occurrences of B that are within some scope of A (i.e., under

a subtree rooted at A). Let sx denote a scope for label x. For tree T0 we find that sB =

[2, 3] ⊂ sA = [0, 3]. Thus we add the triple (0, 0, [2, 3]) to the new scope list. Similarly, we

test the other occurrences of B under A in trees T1 and T2. If a new scope-list occurs in at

least minsup tids, the pattern is considered frequent. The next candidate shows an example

of testing frequency of a cousin extension, namely, how to compute the scope list of AB$C

by joining L(AB) and L(AC). For finding all unordered embedded occurrences, we need

to test for disjoint scopes, with sB < sC or sC < sB , which have the same match label.

For example, in T0, we find that sB = [2, 3] and sC = [1, 1] satisfy these condition. Thus

we add the triple (0, 02, [1, 1]) to L(AB$C). Notice that the new prefix match label (02) is

D R A F T August 26, 2005, 8:10am D R A F T

FREQUENCY COMPUTATION 17

obtained by adding to the old prefix match label (0), the position where B occurs (i.e.,2).

The other occurrences are noted in the final scope-list.

1.5.2 Induced Subtrees

For counting the support of only induced trees, SLEUTH extends the scope-list to be a

five-tuple of the form (t,m, s, d, i), where in addition to the tid t, prefix match-label m, and

last node scope s, we keep the last node’s depth d (i.e., the number of edges on the path from

the root to the given node), and a boolean flag i indicating whether this tuple contributes to

the induced-support of the candidate. Initially, for single items, d is the actual depth of the

item in tree t, but for k-subtrees (k ≥ 2), d denotes the depth of the node in the candidate

subtree. Figure 1.8. shows the single item scope-lists for induced mining; only the triples

(t, s, d) are shown for single items, since the match-label m = ∅, and the induced flag i = 1

for all elements. For example, in tree To, A occurs at vertex 0 with scope [0, 3] and at depth

0, in tree T0, we add (0, [0, 3], 0) to its scope list. In tree T1, A occurs at node 1 with scope

[1, 3] and at depth 1, so we add (1, [1, 3], 1) to its scope list, and so on.

A B C D

A

B C

A

B

A

C

1, [1, 3]

2, [4, 7]

0, [0, 3], 0

, 1

2, [0, 7], 0

, 1

0, [2, 3], 1

1, [0, 5], 0

1, [2, 2], 2

1, [4, 4], 1

2, [2, 2], 2

2, [5, 5], 2

0, [1, 1], 1

1, [5, 5], 1

2, [1, 2], 1

2, [6, 7], 2

0, [3, 3], 2

1, [3, 3], 2

2, [7, 7], 3

0, 0, [2, 3], 1, 1

1, 1, [2, 2], 1, 1

2, 0, [2, 2], 2, 0

2, 0, [5, 5], 2, 0

2, 4, [5, 5], 1, 1

0, 02, [1, 1], 1, 1

2, 05, [1, 2], 1, 0

2, 02, [6, 7], 2, 0

2, 05, [6, 7], 2, 0

2, 45, [6, 7], 1, 1

0, 0, [1, 1], 1, 1

2, 0, [1, 2], 1, 1

2, 0, [6, 7], 2, 0

2, 4, [6, 7], 1, 1

Figure 1.8. Scope-list Joins: Induced

D R A F T August 26, 2005, 8:10am D R A F T

18 TREE MINING

Instead of cousin and descendant tests, for induced mining, we have to consider only

sibling and child tests. Let [P] be an equivalence class, let (x, i) ∈ [P]. For canonical

extensions, let (y, j) ∈ F2, and for equivalence class extensions, let (y, j) ∈ [P].

Child Test. In a child extension of P i
x the element (y, j) is added as a child of (x, i). For

induced frequency computation, we first find all occurrences where label y occurs as a de-

scendant of x, but we increment the support only for those tuples, where y is a direct child of

x. Note that we keep all embedded occurrences to preserve the equivalence-class complete-

ness property. Thus for induced support counting, like in the embedded case, we begin by

searching if there exists tuples (ty,my, sy, dy, iy) ∈ L(y) and (tx,mx, sx, dx, ix) ∈ L(x),

such that the tids (ty = tx = t) and match-labels (my = mx = m) are equal, and y lies

within the scope of x (sy ⊂ sx). In addition, we compute the difference in the depth of

nodes y and x, δ = dy − dx. If ix = 1 then x represents an induced subtree, and therefore,

if δ = 1, then y must also be an induced extension of x. In this case we add the new tuple

(ty, {my∪ lx}, sy, d, 1) to the scope-list of (y, |P |) in [P i
x], where d = δ when transitioning

from absolute depth of y in t to relative depth of y in the candidate, i.e., for 2-subtrees,

otherwise d = dy (for k > 2). If ix 6= 1, then y cannot be an induced extension of x, but

rather is an embedded extension. In this case we add the new tuple (ty, {my ∪ lx}, sy, d, 0)

to the scope-list, but only if we are using equivalence-class extensions.

Cousin Test. In a cousin extension of P i
x the element (y, j) is added as a cousin of

(x, i). For induced support counting, we require that both y and x are induced exten-

sions of the same parent node. That is we look for tuples (ty,my, sy, dy, iy) ∈ L(y) and

(tx,mx, sx, dx, ix) ∈ L(x), such that: ty = tx = t, my = mx = m, and sx < sy for

ordered trees, and in addition if sx > sy for unordered trees. Further, if ix = iy = 1,

then it is an induced extension, and we add the tuple (ty, {my ∪ lx}, sy, dy, 1) to the scope-

list of (y, j) in [P i
x]. Otherwise, if we are using equivalence class extensions, we add

(ty, {my ∪ lx}, sy, dy, 0) to the scope-list. Note that since a cousin test can only be applied

to k-subtrees, with k ≥ 3, the depth dy is already relative to the root of the candidate.

Figure 1.8. shows an example of how induced scope-list joins work, using the database

D from Figure 1.6.. It shows the initial scope-lists for the four frequent items. Consider the

candidate AB$ obtained by joining the scope lists of A and B and performing child tests.

Consider (0, [2, 3], 1) ∈ L(B) and (0, [0, 3], 0) ∈ L(A). We find that sB = [2, 3] ⊂ sA =

[0, 3], and δ = dy−dx = 1−0 = 1, which means it is an induced occurrence of the pattern,

so we add the tuple (0, 0, [2, 3], 1, 1) to the new scope list L(AB). As another example, for

D R A F T August 26, 2005, 8:10am D R A F T

COUNTING DISTINCT OCCURRENCES 19

T2 we have (2, [2, 2], 2) ∈ L(B) and (2, [0, 7], 0) ∈ L(A), with sB = [2, 2] ⊂ sA = [0, 7],

and δ = dy − dx = 2 − 0 = 2, which means it is only an embedded extension, so we add

(2, 0, [2, 2], 2, 0) to the new scope-list. In a similar manner we compute other elements of

L(AB) and of L(AC). For induced support we only count those tuples with the induced

flag i = 1. Thus the induced support of AB$ is 3 (since there is at least one element with

i = 1 for each t), and the induced support of AC$ is 2. As an example of cousin testing,

consider the scope-list of AB$C, obtained by joining L(AB) and L(AC). For finding

all (un)ordered induced occurrences, we need to test for disjoint scopes, with sB < sC

or sC < sB , which have the same match label, and where both tuples are induced. For

example, for T0, we find that the tuple (0, 0, [2, 3], 1, 1) and (0, 0, [1, 1], 1, 1), in L(AB)

and L(AC), respectively, satisfy these conditions. Thus we add the tuple (0, 02, [1, 1], 1, 1)

to L(AB$C). If we were interested only in ordered subtrees, this tuple would not be valid,

since [1, 1] < [2, 3]. Note also that tuples (2, 0, [5, 5], 2, 0) and (2, 0, [1, 2], 1, 1), in L(AB)

and L(AC), respectively, represent a sibling, rather than a cousin extension. So we add

the tuple (2, 05, [1, 2], 1, 0) to the new list, The other tuples are obtained similarly, and

the induced support of AB$C is 2. In this example, we showed the scope-lists assuming

equivalence class extensions; for pure canonical extension, all those tuples with i = 0 will

not be added to the scope-lists.

1.6 COUNTING DISTINCT OCCURRENCES

SLEUTH is inherently a very efficient method for weighted support computation since it

counts all embeddings of a frequent pattern within each database tree, using the scope-list

joins. Many applications, however, may require only the support, i.e., instead of finding all

embeddings of a subtree in the entire database, we may simply want to know the number of

database trees that contain at least one embedding of a subtree. If there are relatively few

embeddings per tree, SLEUTH continues to be very effective for support counting. On the

other hand, if there are many duplicate labels, and if the tree is highly branched, the number

of embeddings can get large, resulting in long scope-lists and increased running time. If the

application calls for the use of weighted support, the increased cost is acceptable, but if we

want only support, it is possible to optimize SLEUTH to count only distinct occurrences

of each pattern.

To count only distinct occurrences SLEUTH uses a different scope-list representation

for computing pattern frequency. It does not maintain the match-labels, which keep track

D R A F T August 26, 2005, 8:10am D R A F T

20 TREE MINING

of all embeddings. Instead, it stores the scopes for all nodes on the right-most path within a

tree; we call the new scope-lists as scope-vector-lists or SV-lists for short. Thus each element

of the new list is a pair of the form (t, s), where t is a tree id and s = {s1, s2, · · · , sm} is the

scope-vector of matching node scopes si on the rightmost path. Furthermore, s represents

a minimal occurrence of the pattern within a database tree, i.e., there does not exist another

scope-vector s
′ strictly contained in s

3, such that the pattern also occurs at nodes with

scopes given by s
′. Note that for induced mining, we can extend the tuple to be of the

form (t, s, d, i), where d is the depth information, and i is an induced flag, as previously

described in Section 1.5.2. For simplicity, we only illustrate the embedded case below; it

is straight-forward to extend it to the induced case.

SV-List Joins

Given two trees (x, i) and (y, j) within the same equivalence class [P], we perform SV-list

as follows: Let (tx, sx) and (ty, sy) be any SV-list elements for nodes x and y, respectively.

Let sx = {s1
x, s2

x, · · · , sm
x } and sy = {s1

y, s2
y, · · · , sn

y}.

Descendant Test. For the descendant test we first make sure that tx = ty , i.e., both nodes x

and y occur in the same database tree. Next, we look at the last node-scope of scope-vectors

sx and sy , namely sm
x and sn

y . If sn
y ⊂ sm

x , and there does not exist another last node-scope,

say sm′

x , in another element of x’s SV-list, such that sn
y ⊂ sm′

x ⊂ sm
x (i.e., this is a minimal

occurrence of the pattern), then we add the pair (tx, s′ = {s1
x, · · · , sk

x, · · · , sn
y}) new SV-list

(where, s
′ represents the scope-vector for only those nodes on the rightmost path of the

extended pattern).

Cousin Test. After checking tx = ty , we make sure that sm
x < sn

y or sm
x > sn

y , i.e., the

last nodes of each element are disjoint. Note that when extending P i
x with (y, j) we obtain

a new tree with prefix P i
x, and which has y as the label of the rightmost node, attached to

node j in the prefix. The next step in the cousin test is to compare the scopes at position j

in both x and y, (i.e., sj
x and sj

y), and sn
y . There are two cases to consider: a) sn

y ⊂ sj
x and

either sn
y > sj+1

x , or sn
y < sj+1

x , (i.e., the last node of y is contained within the j-th node

of x (say, with label z), but it is not contained within the (j + 1)-th node’s scope), or b)

either sn
y > sj

x or sn
y < sj

x, and sj
x ⊂ sj

y , i.e., the last node of y is before or after the j-th

3We say that a scope-vector s
′ = {s′

1
, s′

2
, · · · , s′n} is contained within another scope-vector s =

{s1, s2, · · · , sm} if (s1 < s′
1
∧ s′n ≤ sm) or (s1 ≤ s′

1
∧ s′n < sm)

D R A F T August 26, 2005, 8:10am D R A F T

THE SLEUTH ALGORITHM 21

node of x and the j-th node of x is contained in the j-th node of y. If a) is true, then we

add the pair (tx, {s1
x, · · · , sj

x, sn
y}) to the SV-list of the new candidate, or if b) is true we

add (tx, {s1
y, · · · , sj

y, sn
y}). To maintain minimality, we store the pair only for the nearest

j-th node to y in a database tree.

Figure 1.9. shows an example of how SV-list joins work, using the database D from

Figure 1.6.. The initial SV-lists are the same as the item scope-lists in Figure 1.6.. While

2, [4,7], [7,7]

1, [1,3], [3,3]
2, [4,7], [7,7]

0, [0,3] [3,3]
1, [1,3] [3,3]

0, [0,3], [2,3]

2, [4,7], [5,5]

2, [0,7], [2,2]

1, [1,3], [2,2]

A

B

A

D

A

B D

Figure 1.9. SV-List Joins

computing the new SV-lists for the subtrees AB$ and AB$, we have to perform only

descendant tests. The key is to keep only minimal occurrences. For example, in tree T2,

the node scopes [0, 7] and [4, 7] for label A both contain the scope [5, 5] for label B. In

this case, the SV-list for AB$ contains only the pair (2, [4, 7], [5, 5]). In a similar manner

the complete SV-lists for both patterns are obtained, as shown in the figure. These two lists

are joined to compute the frequency of ABD, using the cousin test. In our example, all

tree ids belong to case a) of the cousin test. For example, for T2, node label D has scope

[7, 7], whereas node label B has occurrences at scopes [2, 2] and [5, 5]. Here j = 0 and

thus D’s scope [7, 7] is contained in B’s j-th node’s scope [0, 7], and also it is after B’s

(j + 1)-th node’s scope [2, 2]. The cousin test is true, but it is not minimal, since the test is

also satisfied for B’s scope [4, 7], and thus we add (2, [4, 7], [7, 7]) to the new candidate’s

SV-list.

1.7 THE SLEUTH ALGORITHM

Figure 1.10. shows the high level structure of SLEUTH. The main steps include the

computation of the frequent labels (1-subtrees) and 2-subtrees, and the enumeration of all

other frequent subtrees via recursive (depth-first) equivalence class extensions of each class

[P]1 ∈ F2. We will now describe each step in some more detail.

D R A F T August 26, 2005, 8:10am D R A F T

22 TREE MINING

SLEUTH (D, minsup):

1. F1 = { frequent 1-subtrees };

2. F2 = { classes [P]1 of frequent 2-subtrees };

3. for all [P]1 ∈ F2 do

4. Enumerate-Frequent-Subtrees([P]1);

Enumerate-Frequent-Subtrees([P]):

5. for each element (x, i) ∈ [P] do

6. if check-canonical(P i
x) then

7. [P i
x] = ∅;

8. for each element (y, j) ∈ [P] do

9. if do-descendant-extension then

Ld = descendant-scope-list-join((x, i), (y, j));

10. if do-cousin-extension then

Lc = cousin-scope-list-join((x, i), (y, j));

11. if descendant or cousin extension is frequent then

12. Add (y, j) and/or (y, k − 1) & their scope-lists

to equivalence class [P i
x];

13. Enumerate-Frequent-Subtrees([P i
x]);

Figure 1.10. SLEUTH Algorithm

Computing F1 and F2:. SLEUTH assumes that the initial database is in the horizontal

string encoded format. To compute F1 (line 1), for each label i ∈ T (the string encoding

of tree T), we increment i’s count in a count array. This step also computes other database

statistics such as the number of trees, maximum number of labels, and so on. All labels in

F1 belong to the class with empty prefix, given as [P]0 = [∅] = {(i,), i ∈ F1}, and the

position indicates that i is not attached to any vertex. Total time for this step is O(n) per

tree, where n = |T |.

For efficient F2 counting (line 2) we compute the supports of all candidate by using a 2D

integer array of size F1 × F1, where cnt[i][j] gives the count of the candidate (embedded)

subtree with encoding (i j $). Total time for this step is O(n2) per tree. While computing

F2 we also create the vertical scope-list representation for each frequent item i ∈ F1, and

before each call of Enumerate-FrequentSubtrees ([P]1 ∈ E) (line 4) we also compute

the scope lists of all frequent elements (2-subtrees) in the class.

D R A F T August 26, 2005, 8:10am D R A F T

THE SLEUTH ALGORITHM 23

Computing Fk(k ≥ 3):. Figure 1.10. shows the pseudo-code for the recursive (depth-

first) search for frequent subtrees (Enumerate-Frequent-Subtrees). The input to

the procedure is a set of elements of a class [P], along with their scope-lists (or SV-lists).

Frequent subtrees are generated by joining the scope-lists (SV-lists) of all pairs of elements.

Before extending the class [P i
x] we first make sure that P i

x is the canonical representative

of its automorphism group (line 6). If not, the pattern will not be extended. If yes, we try to

extend P i
x with every element (y, j) ∈ [P]. We try both descendant and cousin extensions,

and perform descendant or cousin tests during scope-list join or SV-list join (lines 9-10).

If any candidate is frequent, it is added to the new class [P i
x]. This way, the subtrees found

to be frequent at the current level form the elements of classes for the next level. This

recursive process is repeated until all frequent subtrees have been enumerated. If [P] has n

elements, the total cost is given as O(qn2), where q is the cost of a scope-list join. The cost

of scope-list join is O(me2), where m is the average number of distinct tids in the scope

list of the two elements, and e is the average number of embeddings of the pattern per tid.

The total cost of generating a new class is therefore O(m(en)2).

In terms of memory management, we need memory to store classes along a path in DFS

search. In fact we need to store intermediate scope-lists for two classes at a time, i.e., the

current class [P], and a new candidate class [P i
x]. Thus the memory footprint of SLEUTH

is not much, unless the scope-lists become too big, which can happen if the number of

embeddings of a pattern is large. If the lists are too large to fit in memory, we can do joins

in stages. That is, we can bring in portions of the scope-lists for the two elements to be

joined, perform descendant or cousin tests, and write out portions of the new scope-list.

Lemma 4 SLEUTH correctly generates all possible induced/embedded, ordered/unordered,

frequent subtrees.

Equivalence Class vs. Canonical Extensions

As described above, SLEUTH uses equivalence class extensions to enumerate the fre-

quent trees. For comparison we also implemented the pure-canonical extension in a

method called SLEUTH-FkF2. The main idea is to extend a canonical and frequent

(induced/embedded) subtree, with a known frequent (induced/embedded) subtree from F2.

The main difference is that Enumerate-Frequent-Subtrees takes as input a class [P],

all of whose elements are known to be both frequent and canonical. Each member (x, i) of

[P] is either extended with another element of [P] or with elements in [x], where [x] ∈ F2

denotes all possible frequent 2-subtrees of the form xy$; to guarantee correctness we have

D R A F T August 26, 2005, 8:10am D R A F T

24 TREE MINING

to extend [P i
x] with all y ∈ [x]. Note that elements of both [P] and [x] represent canonical

subtrees, and if the descendant or cousin extension is canonical, we perform descendant

and cousin joins, and add the new subtree to [P i
x] if is is frequent. This way, each class

only contains elements that are both canonical and frequent, and is induced/embedded as

the case requires.

As we mentioned earlier pure canonical and equivalence class extensions denote a trade-

off between the number of redundant candidates generated and the number of potentially

frequent candidates to count. Canonical extensions generate non-redundant candidates,

but many of which may turn out not to be frequent (since, in essence, we join Fk with

F2 to obtain Fk+1). On the other hand, equivalence class extension generates redundant

candidates, but considers a smaller number of (potentially frequent) extensions (since, in

essence, we join Fk with Fk to obtain Fk+1). In Section 1.8 we compare these two methods

experimentally; we found SLEUTH, which uses equivalence class extensions to be more

efficient, than SLEUTH-FkF2, which uses only canonical extensions.

1.8 EXPERIMENTAL RESULTS

All experiments were performed on a 3.2GHz Pentium 4 processor with 1GB main memory,

and with a 200GB, 7200rpms disk, running RedHat Linux 9. Timings are based on total

wall-clock time, and include all preprocessing costs (such as creating scope-lists).

Synthetic Datasets. We used the synthetic data generation program to create a database

of artificial website browsing behavior [30]. The program constructs a master website

browsing tree W based on parameters supplied by the user. These parameters include

the maximum fanout F of a node, the maximum depth D of the tree, the total number of

nodes M in the tree, and the number of node labels N . For each node in master tree W ,

the generator assigns probabilities of following its children nodes, including the option of

backtracking to its parent, such that sum of all the probabilities is 1. Using the master tree,

one can generate a subtree Ti ¹ W by randomly picking a subtree of W as the root of Ti

and then recursively picking children of the current node according to the probability of

following that link.

We used the following default values for the parameters: the number of labels N = 100,

the number of vertices in the master tree M = 10, 000, the maximum depth D = 10,

the maximum fanout F = 10 and total number of subtrees T = 100, 000. We use three

synthetic datasets: D10 dataset had all default values, F5 had all values set to default,

D R A F T August 26, 2005, 8:10am D R A F T

EXPERIMENTAL RESULTS 25

except for fanout F = 5, and for T1M we set T = 1, 000, 000, with remaining default

values.

CSLOGS Dataset. consists of web logs files collected over 1 month at the CS depart-

ment [30]. The logs touched 13361 unique web pages within the department’s web site.

After processing the raw logs 59691 user browsing subtrees of the CS department website

were obtained. The average string encoding length for a user subtree was 23.3.

1.8.1 Performance Evaluation

We first compare four options for SLEUTH for different types of tree mining tasks,

namely SLEUTH-EU (embedded, unordered), SLEUTH-EO (embedded, ordered),

SLEUTH-IU (induced, unordered), and SLEUTH-IO (induced, ordered). Note that

SLEUTH-EO is essentially the same as the TreeMiner algorithm [30] (which also uses

vertical scope-lists to mine embedded, ordered trees). Figure 1.12. shows their performance

on different datasets for different values of minimum support. Figure 1.11. also shows the

length distribution of the different types of frequent trees for the highest minsup value.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 P

at
te

rn
s

Length of Patterns

F5 (minsup = 0.025%)

SLEUTH-EU
SLEUTH-EO
SLEUTH-IU
SLEUTH-IO

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 P

at
te

rn
s

Length of Patterns

D10 (minsup = 0.025%)

SLEUTH-EU
SLEUTH-EO
SLEUTH-IU
SLEUTH-IO

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 P

at
te

rn
s

Length of Patterns

T1M (minsup = 0.025%)

SLEUTH-EU
SLEUTH-EO
SLEUTH-IU
SLEUTH-IO

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 1.5 2 2.5 3 3.5 4 4.5 5

N
um

be
r

of
 P

at
te

rn
s

Length of Patterns

cslogs (minsup = 1.75%)

SLEUTH-EU
SLEUTH-EO
SLEUTH-IU
SLEUTH-IO

Figure 1.11. Distribution of Patterns

D R A F T August 26, 2005, 8:10am D R A F T

26 TREE MINING

Let’s consider the F5 dataset. We find that for embedded trees, there is a gap between

unordered and ordered pattern mining. Ordered pattern mining (SLEUTH-EO) is slower,

even though unordered pattern mining (SLEUTH-EU) needs to check for canonical forms,

whereas SLEUTH-EO does not. The reason this happens is because there are more

ordered rather than unordered frequent patterns for this dataset (as shown in Figure 1.11.).

Looking at the length distribution, we find it to be mainly symmetric across the support

values, and also, generally speaking more ordered tree are found as compared to ordered

ones, especially as minimum support is lowered. Similar trends are obtained for the D10

and T1M datasets.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

F5

SLEUTH-EU
SLEUTH-EO
SLEUTH-IU
SLEUTH-IO

 0

 5

 10

 15

 20

 25

 30

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

D10

SLEUTH-EU
SLEUTH-EO
SLEUTH-IU
SLEUTH-IO

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

T1M

SLEUTH-EU
SLEUTH-EO
SLEUTH-IU
SLEUTH-IO

 5

 10

 15

 20

 25

 30

 35

 40

 1.5 2 2.5 3 3.5 4 4.5 5

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

cslogs

SLEUTH-EU
SLEUTH-EO
SLEUTH-IU
SLEUTH-IO

Figure 1.12. SLEUTH-EU vs. SLEUTH-EO vs. SLEUTH-IU vs. SLEUTH-IO

Comparing the induced, unordered (SLEUTH-IU) and ordered (SLEUTH-IO) min-

ing methods, we see once again that SLEUTH-IU is slightly faster then SLEUTH-IO;

the difference is not large, since there is little difference in the length distributions of these

pattern types. Similar trends are obtained for the D10 and T1M datasets.

Comparing embedded versus induced trees, we find a very big difference in the running

times (embedded mining can be 4-5 times slower than induced mining). Once look at

the length distributions explains why this is the case. We see that the number of induced

D R A F T August 26, 2005, 8:10am D R A F T

EXPERIMENTAL RESULTS 27

patterns is orders of magnitude smaller than the number of embedded patterns. The shape

of the distribution is also symmetric.

The web-log dataset CSLOGS has different characteristics than the synthetic ones.

Looking at the pattern length distribution, we find that the number of patterns keep decreas-

ing as length increases. Like before there are more ordered, than unordered patterns, and

the timing trends remain the same as in the synthetic datasets. That is, SLEUTH-EO

is slower than SLEUTH-EU, there is not much difference between SLEUTH-IO and

SLEUTH-IU, and induced mining is faster than embedded mining.

Figure 1.13. compares SLEUTH-EO (which uses equivalence class extensions), with

SLEUTH-D (which mines only distinct occurrences), and with SLEUTH-FkF2 (which

uses pure canonical extensions). We evaluate the case only for embedded, ordered trees,

since the results are similar for other pattern types.

 0

 20

 40

 60

 80

 100

 120

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

F5

SLEUTH-D
SLEUTH-EO

SLEUTH-FkF2

 0

 50

 100

 150

 200

 250

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

D10

SLEUTH-D
SLEUTH-EO

SLEUTH-FkF2

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

T1M

SLEUTH-D
SLEUTH-EO

SLEUTH-FkF2

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1.5 2 2.5 3 3.5 4 4.5 5

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

cslogs

SLEUTH-D
SLEUTH-EO

SLEUTH-FkF2

Figure 1.13. SLEUTH-EO vs. SLEUTH-D vs. SLEUTH-FkF2

Comparing SLEUTH-EO with SLEUTH-FkF2, for all the datasets, we find that

there is a big performance loss for the pure canonical extensions due to the joins of Fk with

F2, which result in many infrequent candidates; SLEUTH-FkF2 can be 5 times slower

than SLEUTH-EO. This shows clearly that the equivalence-class based strategy of gener-

D R A F T August 26, 2005, 8:10am D R A F T

28 TREE MINING

ating some redundant candidates, but extending only canonical prefix classes is superior to

generating many infrequent but purely canonical candidates. Comparing SLEUTH-EO

with SLEUTH-D, we find that for the synthetic datasets, SLEUTH-D is slightly slower.

This happens because, for these datasets, the number of possible embeddings is small, and

SLEUTH-EO requires potentially smaller memory (since an SV-list element can be twice

the size of a scope-list element). On the other hand, CSLOGS has highly branched trees,

and consequently, there are many embeddings, as support is lowered. In this case, we

find that SLEUTH-D can be about 7 times faster than SLEUTH-EO, confirming that

counting distinct occurrences is clearly beneficial when the number of mappings increases

rapidly.

Summarizing from the results over synthetic and reals datasets, we can conclude that

SLEUTH is an efficient, complete, unified algorithm for mining ordered/unordered, in-

duced/embedded trees. Furthermore, it has optimizations to mine only distinct occurrences,

and its equivalence class extension scheme is more effective than a pure canonical extension

process.

1.9 TREE MINING APPLICATIONS IN BIOINFORMATICS

In this section we look at two applications of tree mining within the domain of bioinfor-

matics: RNA structure and phylogenetic tree analysis.

1.9.1 RNA Structure

RNA molecules perform a variety of important biochemical functions, including translation;

RNA splicing and editing; and cellular localization. Predicting RNA structure is thus an

important problem; if a significant match to an RNA molecule of known structure and

function is found, then a query molecule may have a similar role. Here we are interested in

finding common motifs in a database of RNA structures [10].

Whereas RNA has a three-dimensional (3D) shape, it can be viewed in terms of its sec-

ondary structure, which is composed mainly of double-stranded regions formed by folding

the single-stranded RNA molecule back on itself. To produce these double-stranded regions

a subsequence of bases (made up of four letters: A,C,G,U) must be complementary to an-

other subsequence so that base-pairing can occur (G-C and A-U). It is these pairings that

contribute to the energetic stability of the RNA molecule. Moreover, bulges may also form,

for example, when the middle portion of a complementary subsequence doesn’t participate

D R A F T August 26, 2005, 8:10am D R A F T

TREE MINING APPLICATIONS IN BIOINFORMATICS 29

in the base-pairing. Thus there are different RNA secondary structures that are possible,

such as: single-stranded RNA, double-stranded RNA helix, stem and loop or hairpin loop,

bulge loop, interior loop, junction and multi-loops, and so on [16]. In addition there may be

tertiary interactions between RNA secondary structures, e.g., pseudo-knots, kissing hair-

pins, hairpin-bulge contacts, etc. Figure 1.14. shows a two-dimensional (2D) representation

of a (transfer) RNA secondary structure. There are 5 loops (as numbered in the center);

loop 1 is a bulge loop, 3, 4, and 5 are hairpin loops, and 2 is a multi-junction loop.

1 2

3 4

5

1

2

3 4 5

Free Tree Rooted Ordered Tree

Figure 1.14. An Example RNA Structure and its Tree Representation

To mine common RNA motifs or patterns, we use a tree representation of RNA sec-

ondary structure obtained from the RNA Matrix method used in the RAG (RNA-as-graph)

database [9]. In the RNA tree, a nucleotide bulge, hairpin loop, or internal loop is consid-

ered a vertex if there is more than one unmatched nucleotide or non-complementary base

pair. The 3’ and 5’ ends of a helical stem are considered vertices, and so is a junction.

An RNA stem with complementary base pairs (more than 1) is considered an edge. The

resulting free tree captures the topological aspects of RNA structure. To turn the free tree

into a rooted labeled tree, we label each vertex from 1 to n, numbered sequentially from

the 5’ to the 3’ end of the RNA strand. We choose the root to be vertex 1, and children of

a node are ordered by their label number. For example, Figure 1.14. shows the RNA free

tree representing the RNA secondary structure, and its rooted version.

We took 34 Eukarya RNA structures from the Ribonuclease P (Rnase P) database [3].

Rnase P is the ribonucleoprotein endonuclease that cleaves transfer (and other) RNA pre-

cursors. Rnase P is generally made up of two sub-units, an RNA and a protein, and it is

D R A F T August 26, 2005, 8:10am D R A F T

30 TREE MINING

the RNA subunit that acts as the catalytic unit of the enzyme. The RNase P database is a

compilation of currently available RNase P sequences and structures. For a given RNase P

RNA subunit, we obtained a free tree using the RNA Matrix program 4, and then converted

it into a rooted ordered tree. The resulting RNA tree dataset has 34 trees, with the smallest

having 2 vertices and the largest having 12 vertices. We then ran SLEUTH on this RNA

tree dataset. Figure 1.15. shows the total time taken to mine the dataset and the number of

patterns found at different values of minimum support. We observe that mining at minimum

support of one occurrence took less than 0.1 seconds, and found 5593 total patterns. An

example of a common topological RNA pattern is also shown (rightmost figure); this pattern

appears in at least 10 of the 34 Eukarya RNA. By applying tree mining, it is thus possible to

analyze RNA structures to enumerate all the frequent topologies. Such information can be a

useful step in characterizing existing RNA structures, and may help in structure prediction

tasks [10]. Enumerating frequent RNA trees also helps in cataloging the kinds of RNA

structures seen in nature [9].

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 5 10 15 20 25 30 35

T
o
ta

l
T

im
e
 (

s
e
c
)

Absolute Minimum Support

Running Time

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30 35

N
u
m

b
e
r
 o

f
P

a
tt
e
r
n
s

Absolute Minimum Support

Num Frequent Patterns 1

2

3

4

5

6

7 8 9

10

11

Figure 1.15. RNase P Database: A) Time, B) Num. Patterns, C) Example Pattern

1.9.2 Phylogenetic Trees

Given several phylogenies (i.e., evolutionary trees) from the Tree of Life [15], indicating

evolutionary history of several organisms, one might be interested in discovering if there

are common subtree patterns. This is an important task, since there are many algorithms

for inferring phylogenies, and biologists are often interested in finding consensus subtrees

(those shared by many trees) [19]. Tree mining can also be used to mine cousin pairs in

4http://monod.biomath.nyu.edu/rna/analysis/rna matrix.php

D R A F T August 26, 2005, 8:10am D R A F T

TREE MINING APPLICATIONS IN BIOINFORMATICS 31

phylogenetic trees [21]. A cousin pair is essentially a pair of siblings, and mining pairs that

share common ancestors gives important clues about the evolutionary divergence between

two organisms or species.

TreeBASE is a relational database designed to manage and explore information on phy-

logenetic relationships 5. It stores phylogenetic trees and data matrices used to generate

them from published research papers. It includes bibliographic information on phylogenetic

studies, as well as details on taxa, methods, and analyses performed; it contains all types of

phylogenetic data (e.g., trees of species, trees of populations, trees of genes) representing

all biotic taxa. The database is ideally suited to allow retrieval and recombination of trees

and data from different studies; it thus provides a means of assessing and synthesizing

phylogenetic knowledge.

H
. co

n
to

rtu
s

N
. b

rasilien
sis

O
. o

stertag
i

S
. trach

ea

H
. b

acterio
p
h
o
ra

D
o
lich

o
rh

ab
d
itis

P
. ty

p
ica

R
. ax

ei

R
. b

lu
m

i

C
. b

rig
g
sae

D
ip

lo
scap

ter

C
. eleg

an
s

1 2 3 4 5 6 7 8 9 10 11 12

0

0

0

0

0

0

0

0

0

0

0

Figure 1.16. A) Part of Phylogenetic Tree of Phylum Nematoda, B) Tree for Mining

Figure 1.16. shows part of the evolutionary relationship between organisms of the plylum

Nematoda taken from the TreeBase site. This tree was produced using a parsimony based

phylogenetic tree construction method [16]; using different algorithms may produce several

variants of the evolutionary relationships. Tree mining can help infer the parts of the

phylogeny that are common among many alternate evolutionary trees.

We took 1974 trees from the TreeBase dataset, and converted them into a format suitable

for mining. We give each organism a unique label (e.g., C. elegans has label 2), and we give

each internal node the same label (e.g., 0). Given the resulting database of 1974 trees, we

mine for frequent patterns. To prevent combinatorial effects, we also impose a constrain on

5http://www.treebase.org/

D R A F T August 26, 2005, 8:10am D R A F T

32 TREE MINING

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 2 4 6 8 10 12

T
o
t
a
l
T

im
e

(
s
e
c
)

Num of Internal Nodes

Running Time

minsup=40

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 2 4 6 8 10 12

N
u
m

b
e
r

o
f

P

a
t
t
e
r
n
s

Num of Internal Nodes

Num Frequent Patterns

minsup=40

143 145 146 147135 136 138 139 144 148 149

o
u

tg
ro

u
p

C
. c

o
rd

a
ta

C
. re

p
e
n

s

C
.L

. c
a
n

a
d

e
n

sis

C
. m

o
llis

C
.A

. a
lp

in
a

C
.A

. a
n

g
u

stifo
lia

C
.A

. c
a
u

le
sc

e
n

s

C
.A

. im
a
ic

o
la

C
.A

. m
ic

ra
n

th
a

C
.A

. p
a
c
ific

a

Figure 1.17. Phylogenetic Data: A) Runtime and Num. Patterns, B) Example Pattern

the number of internal nodes allowed in the mined patterns; this constrain is incorporated

during mining for efficiency reasons (as opposed to post-processing). Figure 1.17. shows

the running time and number of patterns found for an absolute support value of 40, as the

number of internal nodes increase from 1 to 12. As we allow more internal nodes, more

patterns are found. An example of a mined frequent pattern (with frequency 42) is also

shown; this pattern shows the evolutionary relationship between members of the Circaea

plant family. Notice how the most closely related organisms, e.g., Circaea Alpina (C.A.),

group together (right branch under the root).

1.10 CONCLUSIONS

In this paper we presented SLEUTH, a unified algorithm to mine induced/embedded,

ordered/unordered subtrees, and the procedure for systematic candidate subtree generation

using self-contained equivalence prefix classes. All frequent patterns are enumerated by

scope-list joins via the descendant and cousin tests. Our experiments show that SLEUTH

is highly effective in mining various kinds of tree patterns. We studied two applications of

tree mining: finding common RNA structures and mining common phylogenetic subtrees.

For future work we plan to extend our tree mining framework to incorporate user-

specified constraints. Given that tree mining, though able to extract informative patterns,

is an expensive task, performing general unconstrained mining can be too expensive and is

also likely to produce many patterns that may not be relevant to a give user. Incorporat-

ing constraints is one way to focus the search and to allow interactivity. We also plan to

develop efficient algorithms to mine maximal frequent subtrees from dense datasets which

D R A F T August 26, 2005, 8:10am D R A F T

REFERENCES 33

may have very large subtrees. Finally, we plan to apply our tree mining techniques to other

compelling applications, such as the extraction of structure from XML documents and their

use in classification, clustering, and so on.

Acknowledgments

This work was supported in part by NSF Career Award IIS-0092978, DOE Career Award

DE-FG02-02ER25538, and NSF grants EIA-0103708 and EMT-0432098.

REFERENCES

1. T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Satamoto, and S. Arikawa. Efficient substructure

discovery from large semi-structured data. In 2nd SIAM Int’l Conference on Data Mining, April

2002.

2. T. Asai, H. Arimura, T. Uno, and S. Nakano. Discovering frequent substructures in large un-

ordered trees. In 6th Int’l Conf. on Discovery Science, October 2003.

3. J.W. Brown. The ribonuclease p database. Nucleic Acids Research, 27(1):314–315, 1999.

4. Y. Chi, Y. Yang, and R. R. Muntz. Indexing and mining free trees. In 3rd IEEE International

Conference on Data Mining, 2003.

5. Y. Chi, Y. Yang, and R. R. Muntz. Hybridtreeminer: An efficient algorihtm for mining frequent

rooted trees and free trees using canonical forms. In 16th International Conference on Scientific

and Statistical Database Management, 2004.

6. Y. Chi, Y. Yang, Y. Xia, and R. R. Muntz. Cmtreeminer: Mining both closed and maximal

frequent subtrees. In 8th Pacific-Asia Conference on Knowledge Discovery and Data Mining,

2004.

7. R. Cole, R. Hariharan, and P. Indyk. Tree pattern matching and subset matching in deterministic

o(n log3
n)-time. In 10th Symposium on Discrete Algorithms, 1999.

8. D. Cook and L. Holder. Substructure discovery using minimal description length and background

knowledge. Journal of Artificial Intelligence Research, 1:231–255, 1994.

9. H.H. Gan, D. Fera, J. Zorn, N. Shiffeldrim, M. Tang, U. Laserson, N. Kim, and T. Schlick.

RAG: RNA-As-Graphs database–concepts, analysis, and features. Bioinformatics, 20(8):1285–

91, 2004.

D R A F T August 26, 2005, 8:10am D R A F T

34 TREE MINING

10. H.H. Gan, S. Pasquali, and T. Schlick. Exploring the repertoire of rna secondary motifs using

graph theory with implications for rna design. Nucleic Acids Res., 31:2926–2943, 2003.

11. Jun Huan, Wei Wang, and Jan Prins. Efficient mining of frequent subgraphs in the presence of

isomorphism. In IEEE Int’l Conf. on Data Mining, 2003.

12. A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent sub-

structures from graph data. In 4th European Conference on Principles of Knowledge Discovery

and Data Mining, September 2000.

13. P. Kilpelainen and H. Mannila. Ordered and unordered tree inclusion. SIAM J. of Computing,

24(2):340–356, 1995.

14. M. Kuramochi and G. Karypis. Frequent subgraph discovery. In 1st IEEE Int’l Conf. on Data

Mining, November 2001.

15. V. Morell. Web-crawling up the tree of life. Science, 273(5275):568–570, aug 1996.

16. D.W. Mount. Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor Press, 2001.

17. S. Nijssen and J.N. Kok. A quickstart in frequent structure mining can make a difference. In

ACM SIGKDD Int’l Conf. on KDD, 2004.

18. Siegfried Nijssen and Joost N. Kok. Efficient discovery of frequent unordered trees. In 1st Int’l

Workshop on Mining Graphs, Trees and Sequences, 2003.

19. R.D. Page and E.C. Holmes. Molecular Evolution: A Phylogenetic Approach. Blackwell Sci-

ence, 1998.

20. R. Shamir and D. Tsur. Faster subtree isomorphism. Journal of Algorithms, 33:267–280, 1999.

21. D. Shasha, J. Wang, and S. Zhang. Unordered tree mining with applications to phylogeny. In

International Conference on Data Engineering, 2004.

22. A. Termier, M-C. Rousset, and M. Sebag. Treefinder: a first step towards xml data mining. In

IEEE Int’l Conf. on Data Mining, 2002.

23. A. Termier, M-C. Rousset, and M. Sebag. Dryade: a new approach for discovering closed

frequent trees in heterogeneous tree databases. In IEEE Int’l Conf. on Data Mining, 2004.

24. C. Wang, M. Hong, J. Pei, H. Zhou, W. Wang, and B. Shi. Efficient pattern-growth methods for

frequent tree pattern mining. In Pacific-Asia Conference on KDD, 2004.

25. K. Wang and H. Liu. Discovering typical structures of documents: A road map approach. In

ACM SIGIR Conference on Information Retrieval, 1998.

26. Y. Xiao, J.-F. Yao, Z. Li, and M. H. Dunham. Efficient data mining for maximal frequent subtrees.

In International Conference on Data Mining, 2003.

D R A F T August 26, 2005, 8:10am D R A F T

REFERENCES 35

27. X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In IEEE Int’l Conf. on

Data Mining, 2002.

28. X. Yan and J. Han. Closegraph: Mining closed frequent graph patterns. In ACM SIGKDD Int.

Conf. on Knowledge Discovery and Data Mining, August 2003.

29. K. Yoshida and H. Motoda. CLIP: Concept learning from inference patterns. Artificial Intelli-

gence, 75(1):63–92, 1995.

30. M. J. Zaki. Efficiently mining frequent trees in a forest. In 8th ACM SIGKDD Int’l Conf.

Knowledge Discovery and Data Mining, July 2002.

31. M. J. Zaki. Efficiently mining frequent embedded unordered trees. Fundamenta Informaticae,

66(1-2):33–52, 2005.

32. M. J. Zaki and C.C. Aggarwal. Xrules: An effective structural classifier for xml data. In 9th

ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining, August 2003.

D R A F T August 26, 2005, 8:10am D R A F T

