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ABSTRACT
Graph classification is an important data mining task, and
various graph kernel methods have been proposed recently
for this task. These methods have proven to be effective,
but they tend to have high computational overhead. In this
paper, we propose an alternative approach to graph clas-
sification that is based on feature-vectors constructed from
different global topological attributes, as well as global la-
bel features. The main idea here is that the graphs from
the same class should have similar topological and label at-
tributes. Our method is simple and easy to implement, and
via a detailed comparison on real benchmark datasets, we
show that our topological and label feature-based approach
delivers better or competitive classification accuracy, and is
also substantially faster than other graph kernels. It is the
most effective method for large unlabeled graphs.

1. INTRODUCTION
With the proliferation of graph data, there has been a

lot of interest in recent years to develop effective methods
for classifying graph objects [13]. Applications range from
chem-informatics [21, 19] (e.g., compounds that are active
or inactive for some target) and bioinformatics [5, 2] (e.g.,
classifying proteins into different families, classifying tissue
samples), to telecommunication networks (e.g., classifying
customers based on their calling behavior) and social net-
works (e.g., classifying users based on their feeds on Twitter,
Facebook, etc.).

The graph classification problem can be stated as follows:
There is a dataset of graphs Gi ∈ D, with i = 1, . . . , N .
Each graph Gi = (Vi, Ei) is given as a collection of vertices
Vi = {vi1, . . . , vin} and edges Ei = {(va, vb)|va, vb ∈ Vi}.
The graphGi may have labels on the nodes and edges, drawn
from some common set of labels Σ for the entire dataset D.
Finally, each graph Gi has a corresponding class yi ∈ C,
where C is the set of k categorical class labels, given as
C = {1, . . . , k}. The goal of graph classification is to learn
a model f : D → C that predicts the class label for any
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graph. Typically the model is learned from a training set of
graphs with known class labels. The model is then evaluated
on a testing set of graphs. The accuracy of the classification
model can be tested by comparing the predicted output ŷi =
f(Gi) with the true class label yi (provided it is known).

The main challenge in classifying graphs is how to convert
the discrete graph objects into numeric features or similar-
ities for effective classification. Graph kernel methods have
attracted a lot of attention due to their ability to represent
the graph data as a N×N symmetric, positive semi-definite
kernel matrix K = {κ(Gi, Gj)}

N
i,j=1 that records the pair-

wise similarities between graphs in D. Conceptually, the ker-
nel function κ(Gi, Gj) represents an inner-product between
the vectors corresponding to the two graphs Gi and Gj in
some N-dimensional feature space; see [23] for more details
on kernel methods. Once the kernel matrix has been con-
structed, it is possible to classify the graphs with a Support
Vector Machine (SVM) [27], using the supplied kernel ma-
trix K. There has been a lot of research activity in trying to
develop more effective and efficient graph kernel functions κ.
These methods can broadly be classified into methods based
on random walks [10, 15], shortest paths [4], cycles [12] sub-
trees [22, 21, 24], and subgraphs [25, 17, 26]. Despite the
research above, it is fair to say that efficient and effective
graph classification still remains a challenge, especially for
large graphs.

In this paper we propose an alternative approach to con-
structing a feature-vector for graph classification. Instead
of relying on “patterns” like path, cycles, subtrees and sub-
graphs, we compute several global topological and label at-
tributes from each graph Gi ∈ D. The values for these
attributes yield a numeric feature-vector Fi = (fi1, . . . , fip).
The set of feature vectors Fi and the corresponding class
labels yi are then used to construct an SVM classifier. We
show that our approach is both effective and scalable com-
pared to state-of-the-art graph kernel methods. We con-
duct an extensive set of experiments over several real graphs,
representing chemical compounds, proteins, and cell-graph
datasets. We demonstrate that our approach yields better
or competitive accuracy in a fraction of the time taken by
other kernels. Our method is particularly effective in clas-
sifying large unlabeled graphs, since it is able to effectively
capture the structural differences among the classes.

2. RELATED WORK
Graph kernels compute the similarity between pairs of

graphs in D, based on the common patterns they share. The
patterns can range from the simple to the complex. Specif-



ically the kernels are designed to exploit random walks [10,
15, 5, 28], shortest paths [4], cyclic patterns [12], subtrees [22,
21, 19, 24] and subgraphs [25, 17, 26]. Another class of graph
kernels, e.g., the diffusion kernel [16], deal with the similar-
ity between nodes of a single graph. However, our focus in
this paper is on kernels between different graphs, which we
discuss in more detail below.

Random Walk Kernels: The similarity of two graphs
Gi, Gj ∈ D can be quantified by counting labeled walks
that are common to both of them. The random walk kernel
[10], one of the first graph kernels, is based on this idea.
The kernels in [15, 5] are also based on random walks over
labeled graphs. Computing the pair-wise kernel values has
worst case O(n6) complexity, where n denotes the number of
nodes in Gi and Gj . A more efficient version of the random
walk kernel was proposed in [28], reducing the complexity to
O(n3) per pair of graphs. One potential problem with these
kernels is that artificially high kernel values may be obtained
by repeatedly visiting same nodes and edges multiple times
[18]. We refer to [29] for a recent overview of random walk
based graph kernels.

Shortest Path Kernels: The shortest-path graph ker-
nel [4] first computes the shortest-path graph S = (VS, ES)
for each graph G = (V,E) ∈ D. Here VS = V , and a
weighted edge (va, vb) exists in ES if va and vb are con-
nected by a path in G, with the edge weight representing
the shortest path length between va and vb (infinity if they
are not reachable). Given the shortest-path graphs Si and
Sj for two input graph Gi and Gj the kernel is defined as the
sum over all pairs of edges from Si and Sj , using any suitable
positive definite kernel on the edges. The all-pairs shortest-
path graphs can be computed in O(n3) time, and the kernel
can then be computed in O(n4) time, since Si and Sj each
have O(n2) edges. Other variants of the shortest path ker-
nel include equal length shortest paths, k shortest paths, k
shortest disjoint paths, and so on [4].

Cyclic Pattern Kernels: The cyclic pattern kernel [12] is
based on counting the number of common cycles that occur
in both graphs. Since there is no known polynomial time
algorithm to find all the cycles in a graph, sampling and
time-bounded enumeration of cycles are used to measure
the similarity of the graphs.

Subtree Kernels: Subtree kernels are based on common
subtrees in the graphs [22]. The main idea is to consider
pairs of nodes from Gi and Gj and see if they share common
tree-like neighborhoods, i.e., to count the pairs of identical
subtrees of height h rooted at vertex va ∈ Gi and vb ∈ Gj .
The kernel is defined as the sum over all pairs of vertices of
a suitably defined vertex pair kernel. The complexity of this
approach is O(n2h4d), where d denotes the maximum de-
gree. Another subtree kernel was proposed in [21], based on
a path representation of the trees obtained via a depth-first
search on the input graphs. The kernel function is computed
on these paths (e.g., the ratio of the longest common path).

The recently proposed Weisfeiler-Lehman Kernel [24], is a
fast subtree kernel that scales up to large, labeled graphs. It
uses the Weisfeiler-Lehman isomorphism test, which uses it-
erative multiset-label determination, label compression, and
relabeling steps. The isomorphism test terminates after a
pre-specified number of iterations h. If the sets of labels
for nodes are not identical, then two graphs are considered
as non-isomorphic, otherwise, they are isomorphic. The WL

graph kernel counts the matching multiset labels for the two
graphs Gi and Gj in each iteration of the WL isomorphism
test. The WL kernel has O(mh) complexity, where m is the
number of edges in the graphs.

Graphlet and Subgraph Kernels: Similar graphs should
have similar subgraphs. Graphlet kernels measure the simi-
larity of two graphs by the dot product of count vectors of all
possible connected subgraphs of order k (i.e., the graphlets,
also called as k-minors) [25, 17]. For any k (usually set to 3,

4, or 5), there are 2(
k
2
) possible graphlets of size k, but many

of them are isomorphic. Usually, to avoid the dependence
on the size, the count vector is normalized into a probabil-
ity vector, and the graphlet kernel is re-defined as the dot
product of the normalized count vectors for two graphs. Ex-
haustive enumeration of all graphlets has complexity O(nk).
For a graph with bounded degree d, the connected graphlets
can be enumerated in O(nd(k−1)) [25].

Frequent subgraph mining can also be used to define a
kernel between two graphs [26]. Let F = {s1, . . . , sp} denote
the set of p frequent and discriminative subgraph patterns
mined from D. Each graph Gi ∈ D is then represented as
a binary feature vector {0, 1}p where feature j is set to 1
if and only if sj is isomorphic to a subgraph in Gi. The
kernel between Gi and Gj can be defined over their binary
feature vectors. CORK [26] implements this approach; it
uses gSpan [31] to mine the subgraphs, and selects near-
optimal features (subgraphs) from that set, that are most
discriminative for classification.

In our experiments in Section 4, we compare with the fol-
lowing graph kernel methods: fast geometric Random-walk
(RW) kernel [28], Shortest-path (SP) kernel [4], Graphlet
(GK) kernel [25], Ramon-Gärtner (RG) subtree kernel [22],
and Weisfeiler-Lehman (WL) subtree kernel [24]. We also
compare with CORK [26].

3. GRAPH ATTRIBUTES FOR CLASSIFI-
CATION

As we have seen above, while many sophisticated graph
kernels have been proposed, efficiency and scalability remain
as challenges, for large graph datasets. Our basic idea is to
compute several topological and label attributes for each
graph in the dataset, and to use the derived feature-vector
attributes for classification. Like most of the graph kernel
work, we use a Support Vector Machine (SVM) as the classi-
fier of choice. The graph attributes we use are listed below.

Figure 1: A triangle with its three triples

1. Average degree: The degree of a node is defined as
the number of its neighboring edges. Average degree
is the average value of the degree of all nodes in the
graph, i.e., d̄(G) =

∑n
i d(ui)/n, where d(ui) denotes

the degree of node ui.

2. Average clustering coefficient: For a node u, the
clustering coefficient c(u) represents the likelihood that
any two neighbors of u are connected. More formally,
the clustering coefficient of a node u is defined as:



c(u) = λ(u)
τ(u)

, where λ(u) is the number of triangles

(complete graph with three nodes) of a node u and

τ (u) = d(u)2−d(u)
2

, the number of triples a node u has.
Figure 1 shows a triangle and its three triples. Al-
ternatively, the clustering coefficient for node u can
be defined as the ratio of the number of actual edges
between the neighbors of u to the number of possible
edges between them. The clustering coefficient C(G)
of a graph is the average of c(u) taken over all the
nodes in the graph, i.e., C(G) = 1

n

∑n
i=1 c(ui). Here

we use C(G) as one of our global graph features. Gen-
erally, average clustering coefficient is a very popular
metric in network analysis, but in some specific graph
datasets, such as chemical compounds, there do not
exist many triangles in any graph instance, which re-
sults in the clustering coefficient taking on value close
to 0.

3. Average effective eccentricity: The eccentricity of
a node u is defined as e(u) = max{d(u, v) : v ∈ V },
where the distance d(u, v) is the length of the shortest
path from u to v. For effective eccentricity we take the
maximum length of the shortest path from u, so that
u can reach at least 90 percent of nodes in the graph.
Effectiveness is a more robust measure if we take noise
into consideration. The average effective eccentricity
is the average of effective eccentricities of all nodes in
the graph.

4. Maximum effective eccentricity (effective diam-
eter): Maximum effective eccentricity is defined as the
maximum value of effective eccentricity over all nodes
in the graph. Note that the maximum eccentricity is
the graph diameter, i.e., diam(G) = max{e(u)|u ∈
V } = max{d(u, v)|u, v ∈ V }. Maximum effective ec-
centricity is thus the same as effective diameter.

5. Minimum effective eccentricity (effective radius):
Minimum effective eccentricity is defined as the mini-
mum value of effective eccentricity over all nodes in the
graph. Note that minimum eccentricity is called the
graph radius, i.e., rad(G) = min{e(u)|u ∈ V }, thus
minimum effective eccentricity is the effective radius.

6. Average path length (closeness centrality): The
closeness centrality of a node u is defined as the recip-
rocal of the averaged total path length between node
u and every other node that is reachable from node
u, where u ∈ V , i.e., close(u) = n−1∑

v∈V,v 6=u d(u,v)
. We

take the average of closeness centrality of all nodes as
a global metric for a graph.

7. Percentage of central points: We define a point
u to be a central point if it has an eccentricity equal
to the effective radius of the graph, i.e., it satisfies:
{u ∈ V : effective-rad(G) = e(u)}. The ratio of the
number of central points to the total number of points
in the graph is selected as a feature.

8. Giant connected ratio: A giant component is a sub-
graph that is connected and has the maximum number
of nodes. We take the ratio of the number of nodes of
the giant connected component to the total number
of nodes in the entire graph as a global metric for a
graph. Note that if the entire graph is connected, the
ratio is 1, thus in those datasets that are comprised
of connected graphs, this attribute will not be a good

graph descriptor. However, not all graphs in our ex-
perimental study are connected, thus this ratio may be
a meaningful attribute to use.

9. Percentage of isolated points: We define a isolated
point in a graph to be a node with degree zero. The
ratio of isolated points to the total number of nodes in
the entire graph is considered as a feature. For graphs
that are connected, this feature will not be meaningful,
but there are datasets we used in our study that do
have isolated points.

10. Percentage of end points: A node which has a de-
gree of one is defined as an end point. The ratio of the
number of end points to the total number of nodes in
the entire graph is selected as a feature.

11. Number of nodes: Total number of nodes in the
graph.

12. Number of edges: Total number of edges in the
graph.

13. Spectral radius: The spectral radius is defined as
the largest magnitude eigenvalue of the adjacency ma-
trix of the graph. More formally, let |λ1| > |λ2| >
. . . > |λs| be the distinct eigenvalues of the adjacency
matrix A of the graph, sorted by their magnitude.
The spectral radius of the graph, ρ(G), is defined as:
ρ(G) = |λ1|.

14. Second largest eigenvalue: The value of the second
largest eigenvalue of the adjacency matrix A, i.e., |λ2|.

15. Trace: Sum of the eigenvalues of the adjacency ma-
trix, i.e.,

∑n
i λi. This is in fact equivalent to the trace

of the adjacency matrix A, i.e., Tr(A) =
∑n

i=1 aii.
This feature is useful only if the graph has several
loops, i.e., an edge joining a vertex to itself. For a
simple graph, which is loop-free, the trace equals 0 be-
cause the elements on the main diagonal of A are all
zeros.

16. Energy: Squared sum of the eigenvalues of the adja-
cency matrix A. More formally, the energy of a graph
G is: E(G) =

∑n
i λ2

i .
17. Number of eigenvalues: Number of distinct eigen-

values, s ≤ n, of the adjacency matrix A of the graph.
The adjacency matrix A of an undirected graph has n
eigenvalues, however, they are not necessarily distinct.

18. Label Entropy: We employ label entropy to measure
the uncertainty of labels. Suppose a graph G has q
different labels: l1,..., lq, then the label entropy is given
as: H(G) = −

∑q
i=1 p(li) log p(li).

19. Neighborhood Impurity: We define the impurity
degree of a node u as:

ImpurityDeg(u) = |L(v) : v ∈ N(u), L(u) 6= L(v)|

where L(u) is the label, and N(u) is the neighbor-
hood of (the nodes adjacent to) node u. If all nodes
in the neighborhood of u have the same node label,
the impurity degree is 0. For the whole graph, we are
only interested in the nodes that have impurity degree
larger than 0, i.e., the nodes which have at least one
neighbor whose label is different. The neighborhood
impurity of a graph G is defined as the average impu-
rity degree over nodes with positive impurity.

20. Link Impurity: An edge (u, v) is defined to be im-
pure if L(u) 6= L(v). The link impurity of a graph G is

defined as: |(u,v)∈E:L(u) 6=L(v)|
m

, where m is the number
of total edges in graph G.



F f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20
V 2.10 0.00 5.75 8 4 0.29 0.15 1.00 0.00 0.45 20 21 2.56 2.15 0.0 42.00 20 1.09 1.11 0.48

Table 1: Global graph feature vector for the example. F: Feature, V: Value.

Figure 2: A chemical compound from PTC dataset (with
implicit hydrogens)

Figure 3: The graph representation for Figure 2. La-
bels on node/atoms: O:Oxygen, H:Hydrogens, N:Nitrogen,
C:Carbon. Labels on edges/bonds: A:Aromatic, S:Single,
D:Double.

Example: Figure 2 illustrates an example from PTC
chemical compound dataset (see Section 4.2 for description).
Figure 3 is a graph representation for the molecule in Figure
2. Nodes/edges are assigned a label based on their types,
properties, etc. Table 1 gives the graph feature vector based
on the 20 global graph attributes that are listed in the order
given above. For instance, there are 20 nodes in the graph,
with 9 nodes having degree 1, and 11 nodes having degree 3.
The average degree (f1) is therefore d̄ = 9×1+11×3

20
= 42

20
=

2.1. Since there are no triangles in the graph the cluster-
ing coefficient (f2) is 0. As another example, the graph has
m = 21 edges, but there are 11 impure links (L(u) 6= L(v)),
thus the link impurity is given as f20 = 10/21 = 0.48. The
other features can be computed based on their definition.

Graph Classification: In computing the feature values,
if a certain graph in the dataset is disconnected and con-
tains several components, we compute the average value for
a given graph metric over all the components. Each graph
Gi in the database is finally represented by its corresponding
feature vector Fi over the 20 topological and label attributes.
However, using the raw or unnormalized feature values does
not perform well. This is mainly because the original fea-
ture have different range of values (see Table 1 for example),
which would give more importance to features with larger
values than those with smaller values. Instead we normalize
the feature values via range and z-normalization.

In range normalization each value x of a feature fi is trans-
formed into r(x) = x−min

max−min
, where min and max denote the

minimum and maximum value for fi. In z-normalization x is
replaced by z-score(x) = x−µ

σ
, where µ and σ are the mean

and standard deviation for fi. By normalizing the values
all features are considered on equal footing, which helps im-
prove the classification accuracy. Once each graph Gi in
the dataset D has been transformed into its corresponding
normalized feature-vector of length 20, Fi = (fi1, . . . , fi20),
we use a SVM classifier over the new feature-vector dataset,
using the Gaussian or radial basis (RBF) kernel (we tried a
linear kernel too, but RBF gave better results).

Computational Complexity: The various graph at-
tributes range from the simple to the complex, with higher
computational times for the more complex features. In the
analysis below, we use n to denote the number of nodes |V |
(also called the graph order), and m to denote the number
of edges |E| (also called the graph size).

For each graph in the database, the number of nodes (f11)
and edges (f12) are already known, so their cost is O(1). If
they are not known before-hand, we can compute them in
one pass over the entire graph in time O(n+m). The degree
based attributes like the percentage of isolated or end nodes
(f9, f10), and average degree (f1) can be computed in time
linear in the graph order and size, i.e., in O(n + m) time.
The giant connected component (f8) can also be found via
breadth-/depth-first search in O(n+m) time.

The clustering coefficient (f2) can be computed in time
O(nd2max), where dmax is the maximum degree for the graph.
A better approximation is to use the average degree d = 2m

n
.

To compute the clustering coefficient for each node takes on

average O(d2) = 2m2

n2 . The time to compute the average

clustering coefficient over all nodes is then O(m
2

n
).

The eccentricity based attributes (f3, f4, f5, f7) and the
average path length (f6) can be easily computed from the
all-pairs shortest path matrix. The all-pairs matrix can be
computed in time O(n2 + nm) via n calls of single-source
shortest paths, each of which can be computed in breadth-
/depth-first search in time O(n+m), since we assume that
each edge has weight one. From the shortest path matrix,
the attributes can be computed in O(n2) time.

The spectral attributes (f13 to f17) depend on the eigen-
decomposition of G, which can be computed in O(n3) time
in the worst case. However, typically real-world graphs are
sparse, which can be exploited to reduce the complexity to
O(n2) [20]. Also note that when the input graphs are very
large, we compute only the top k ≥ 2 eigenvalues. For
sparse graphs, the top k eigenvalues can be computed in
O(mkt+nk2t+k3t) time (e.g., using the Implicitly Restarted
Lanczos Method [1]), where t is the number of iterations un-
til convergence. For sparse graphs, withm = O(n), if k ≪ n,
the time reduces to O(nt). The trace (f15) and energy (f16)
are computed only over these k eigenvalues. The number of
eigenvalues (f17) is not very informative in this case.

Finally, label entropy (f18) can be computed in O(n),
neighborhood impurity (f19) can be computed in O(ndmax)
and link impurity (f20) can be computed in O(n+m) time.

4. EXPERIMENTS



4.1 Experimental Setup
We compare our graph feature based classification ap-

proach with state-of-the-art graph kernel classifiers. More
specifically, we compare with the following graph kernel meth-
ods: fast geometric Random-walk (RW) kernel [28], Shortest-
path (SP) kernel [4], Graphlet (GK) kernel [25], Ramon-
Gärtner (RG) subtree kernel [22], and Weisfeiler-Lehman
(WL) subtree kernel [24]. We relied on a Matlab imple-
mentation of all of these kernels1. As suggested in [24], we
used the tuned parameter settings for each of the kernels as
follows. For RW, the decay weight is chosen in the range
λ ∈ {10−6, . . . , 10−2}. For RG we set λr = λs = 1. For the
WL kernel, we choose h = {1, . . . , 10}, which means that
10 different kernel matrices are computed. For SP, we use
equal length shortest paths, and for GK we use connected
3-minors. We also compare with the subgraph-feature based
approach of CORK [26]2, which is implemented in C++. For
CORK, we use 10% minimum support to mine the frequent
discriminative subgraphs.

In the discussion below, our graph feature approach is de-
noted as GF. GF was written in Python, with NumPy [14]
and Networkx [11] modules for linear algebra and graph sup-
port. Note that both NumPy and Matlab use low-level C
implementations for most matrix operations, therefore, the
timing results are comparable3, though there might be slight
differences. We present results for three variants of the GF
approach: GF(no) denotes the method using a raw or unnor-
malized feature vector, whereas GF(r) and GF(z) use range
and z-score normalized feature vectors, respectively.

We use the libsvm [6] (Support Vector Machine library)
for all of the kernels and our method. The graph kernels use
the kernel matrix computed via the particular graph kernel,
whereas we use the default Gaussian or radial basis (RBF)
kernel in libsvm: κ(Gi, Gj) = exp

{

−γ‖Fi − Fj‖
2
}

, where

γ = 1
p
, where p equals the number of features, which is 20 for

all datasets, except the cell-graphs and CATH (w/o L). For
these latter two datasets, the number of features is n′ = 17,
since they do not have any labels on the nodes or edges, and
thus we do not use the label-based features. We also use a
RBF kernel for CORK, since that gave us the best results.

For each method, we perform 10 runs of 10-fold cross-
validation, and we tune the C parameter, for C-SVM, using
only the training folds. Note that all times reported below
are only for the graph kernel matrix computation (for other
methods), or for the graph feature computation (for GF).
The time for SVM is not included, since all methods use
the same libsvm package, albeit with a different kernel. The
SVM training and testing times are mostly comparable. All
the experiments were performed on MAC OS X 10.5 with
two 2.66GHz Dual Core Intel Xeon processors, with 4GB
667MHz DDR2 memory.

For performance assessment, we report the average accu-
racy and standard deviation over the 10-fold cross-validation
run 10 times. We also assess whether the accuracy of our
method is significantly better or worse than the accuracy of
the best previous method. For this we use the paired t-test

1obtained from Prof. K. Borgwardt and N. Shervashide
2obtained from Marisa Thoma
3For performance comparison of NumPy and Matlab, see
http://www.scipy.org/PerformancePython for instance.

for the difference between the accuracies in each fold. We
report the value of the t-statistic, given as: t =

√
Nµ
σ

, where

µ and σ2 denote the mean and variance of the difference
in accuracy between the two methods, and N = 100 is the
total sample size (10 runs times 10 folds). We fail to reject
the null hypothesis, that there is no significant difference, if
t ∈ (−tα/2,N−1, tα/2,N−1), where α is the significance level
for a two-tailed t-test with N − 1 degrees of freedom. We
use α = 0.05 for which the interval is (−1.98, 1.98). If the
value of t-statistic is outside this interval, the two methods
are statistically significantly different in performance.

4.2 Datasets
We used three different types of graph datasets: chemi-

cal compounds, proteins, and cell graphs. See Table 2 for
statistics on the different graphs.

Chemical Compounds: The chemical compound datasets
include MUTAG [7], NCI1 and NCI109 [30], and PTC4,
which have been employed as benchmark datasets in previ-
ous graph kernel papers. MUTAG is a dataset of mutagenic
aromatic and heteroaromatic nitro compounds assayed for
mutagenicity on bacterium Salmonella typhimurium. We
used two balanced subsets of the NCI (National Cancer In-
stitute) datasets. The class labels are based on an anti-
cancer screen, as active or inactive. The PTC (The Pre-
dictive Toxicology Challenge) datasets record the carcino-
genicity of several hundred chemical compounds for Male
Rats (MR), Female Rats (FR), Male Mice (MM) and Fe-
male Mice (FM). As one can in Table 2(a), these graphs are
very small (20-30 nodes, and 25-40 edges) and sparse, with
average degree around 2.

Proteins: The D&D dataset [9], which has also been used
by previous studies, consists of 1178 proteins, with 691 en-
zymes and 487 non-enzymes. In addition, we created two
new datasets from CATH5, a manually curated database
of protein domain structures. CATH1 consists of proteins
in the same class (Mixed Alpha-Beta), but having differ-
ent architectures (Alpha-Beta Barrel vs. 2-layer Sandwich).
CATH2 has proteins in the same class (Mixed Alpha-Beta),
architecture (Alpha-Beta Barrel), and topology (TIM Bar-
rel), but in different homology classes (Aldolase vs. Glycosi-
dases). CATH2 is harder to classify, since proteins in the
same topology class are structurally similar. The protein
graphs are 10 times larger in size than chemical compounds,
with 200-300 nodes and 700-1250 edges (Table 2(b)), and
average degree is 5-8. We use another variant of the CATH
datasets, without the node labels (which correspond to the
amino acids). We denote these as CATH1 (w/o L) and
CATH2 (w/o L).

Cell-graphs: We also performed experiments on cancer
Cell-Graph datasets [2, 3, 8]. These graphs were constructed
from the histo-pathological samples from three different types
of tissues: breast, bone and brain. Within each type of
tissue we consider three classes: healthy (Normal/Benign),
cancerous (Invasive, Osteo-sarcoma:Ost, Glioma), and dam-
aged (Non-invasive, Fracture:frac, Inflammation). We per-
form binary classification for each pair of classes within a
tissue type. Usually, it is much easier to distinguish be-
tween normal and cancerous classes, but harder to classify
cancerous versus damaged classes, for each tissue type. For

4www.predictive-toxicology.org/ptc
5www.cathdb.info



dataset size (N) classes positive negative avg. |V | avg.|E| Max. |V | Max. |E| avg. deg

MUTAG 188 2 125 63 17.7 38.9 28 33 2.19
NCI1 4110 2 2057 2053 29.9 32.3 111 119 2.16

NCI109 4127 2 2079 2048 29.7 32.1 111 119 2.16
PTC(MM) 336 2 129 207 25.0 25.4 109 108 1.98
PTC(FM) 349 2 143 206 25.2 25.6 109 108 1.99
PTC(MR) 344 2 152 192 25.6 26.0 109 108 1.99
PTC(FR) 351 2 121 230 26.1 26.5 109 108 1.99

(a) Chemical Compound Datasets

class size (N) classes positive negative avg. |V | avg.|E| Max. |V | Max. |E| avg. deg

D & D 1178 2 691 487 284.3 715.7 5748 14267 4.98
CATH1 712 2 384 328 205.7 819.8 568 2356 7.79
CATH2 190 2 109 81 308.0 1254.8 568 2220 8.14

(b) Protein Datasets

tissue class size (N) avg. |V | avg.|E| Max. |V | Max. |E| avg. deg

Breast
Invasive (EI) 202 966.9 12503.6 1956 51454 22.07

Non-invasive (EN) 93 889.7 13459.4 1940 48750 25.47
Benign (EB) 151 829.4 15677.7 1885 49165 34.72

Bone
Ost(OO) 49 532.2 2324.7 2855 18790 5.42
Frac(OF) 39 497.7 1599.2 1913 13564 4.25

Normal(ON) 20 174.2 1174.0 612 7309 8.14

Brain
Glioma(AG) 329 4550.2 43400.5 7311 98572 18.04

Inflamation(AI) 107 4244.1 39457.7 7113 90029 17.06
Benign(AB) 210 789.0 3988.9 1755 9309 9.65

(c) Cell-Graph Datasets: E: Breast; O: Bone; A: Brain

Table 2: Benchmark Datasets

example, for the breast tissue, classifying EB vs. EN and
EB vs. EI is easier than classifying EI vs. EB. In contrast
to the chemical compounds and proteins, the cell graphs
are even larger and denser (see Table 2(c)). Average graph
size is 5-10 times larger than proteins, with 200-4500 nodes
and 100-43000 edges. Average degree is 4-8 for bone, 10-18
for brain, and 22-35 for breast tissue. The cell-graphs are
unlabeled (i.e., no labels on nodes or edges).

4.3 Graph Kernel Comparison
Chemical Compound Datasets: Table 3 shows the ac-
curacy comparison for our GF approach versus other graph
kernels on the chemical compound datasets. Each cell records
the average classification accuracy, as well as the standard
deviation, over the 10 fold cross-validation over 10 different
runs. Table 4 reports the wall clock running times for each
method on the different datasets. A ‘–’ in any cell means
that the computation of the kernel matrix did not finish in
one day, and thus the run was aborted.

We can observe from the results that graph features with
unnormalized/raw values, denoted GF(no), do not perform
well in terms of accuracy. Furthermore, for these graphs,
the z-normalized GF(z) approach delivers the best results,
except for PTC(FM) and PTC(FR).

On the MUTAG dataset, GF(z), is the best overall method.
Looking at the t-statistic, it is significantly better than the
next best method, SP kernel, at a significance level of α =
0.05, since t 6∈ (−1.98, 1.98). Considering the time, we can
see that GF takes only a fraction of the time compared to
other methods. It is 6 times faster than SP.

On the NCI1 and NCI109 datasets, the WL subtree kernel
has the best accuracy. The NCI datasets are quite tree-
like; we can see in Table 2 that for both the average and
maximum number of edges, we have |E| ≈ |V |. Given that
the WL kernel is a subtree kernel, it is well suited for such
tree-like datasets. However, in terms of time, GF is over 25
times faster.

The PTC datasets are also tree-like, and thus the WL ker-
nel performs well. However, while WL is the best method for
MM, GF(z) is the best method for MR. These differences are
statistically significant. On FM, the WL kernel has a slight
advantage, whereas on FR data, GF(r) is slightly better,
though there is no significant difference between them. In
terms of computational time, GF method is vastly superior,
being 6 times faster than WL. In terms of time, GK is the
second fastest method, but its accuracy is not very high.
Compared to RW, SP, RG, and CORK, our GF approach is
one to three orders of magnitude faster.

Protein Datasets: The protein graphs are much larger
compared to the chemical compound datasets. The accuracy
and timing results are shown in Tables 5 and 6.

In terms of accuracy, among the GF variants, the unnor-
malized version is the worst, whereas GF(r) gives the best
results, except on CATH2(w/o L).

For the D&D enzyme dataset, the only kernel methods
that finished within 24 hours, were GF, GK,WL and CORK.
Here WL has the best accuracy, but GF is about 3 times
faster. Even though CORK is 4 times faster, since it uses
C++ and GF uses python, the timing comparison is not
entirely fair.

On the CATH datasets (with labels), RW, and RG were
not able to finish in the alloted time (1 day). For CATH1,
we find that GF(r) has a slight (though not significant) ad-
vantage over other approaches in terms of accuracy. CATH1
is an easier dataset to classify, since the proteins in the two
classes differ at the architecture level, and thus are struc-
turally different. All the methods do well on this dataset.
On CATH2 data, CORK gave the best overall results, and
GF was significantly worse. CATH2 is a much harder dataset
to classify from a structural viewpoint. This is because the
two classes have significant structural similarity. On the
other hand, there are possibly significant differences in the
protein sequences between the two classes. GF mainly relies



MUTAG NCI1 NCI109 PTC(MM) PTC(FM) PTC(MR) PTC(FR)
GF(no.) 86.75 ± 6.38 67.18 ± 2.99 66.30 ± 1.67 60.99 ± 4.05 55.90 ± 6.40 51.15 ± 5.87 58.12 ± 6.52
GF(r) 87.11 ± 8.59 69.64 ± 1.69 69.44 ± 2.26 62.78 ± 6.83 63.90 ± 3.97 57.52 ± 6.63 66.71 ± 6.47

GF(z) 91.37 ± 4.77 75.62 ± 2.05 74.22 ± 1.66 63.38 ± 5.43 59.87 ± 6.13 63.94 ± 7.05 62.96 ± 6.65
RW 84.01 ± 6.61 – – 60.58 ± 8.92 58.98 ± 9.72 51.40 ± 5.77 64.63 ± 8.74
SP 88.13 ± 7.15 73.82 ± 1.61 72.89 ± 2.17 57.52 ± 9.98 52.41 ± 9.79 58.46 ± 6.08 63.67 ± 5.27
GK 83.93 ± 6.48 69.18 ± 2.62 69.82 ± 1.89 58.04 ± 8.22 55.86 ± 8.95 55.19 ± 5.66 59.41 ± 5.36
RG 86.23 ± 4.41 – – 64.30 ± 7.89 58.45 ± 7.01 57.61 ± 8.32 63.52 ±6.40
WL 86.89 ± 6.33 84.11 ± 1.61 83.50 ± 2.34 67.23 ± 5.87 64.37 ± 6.57 58.10 ± 7.18 65.22 ± 5.34

CORK 86.19 ± 7.82 78.12 ± 1.61 77.76 ± 1.48 61.85 ± 8.04 57.90 ± 6.53 60.75 ± 7.31 65.51 ± 9.82
t-statistic 4.02 -28.61 -29.27 -3.91 -0.88 3.26 1.40

Table 3: Accuracy (± Standard Deviation): Chemical Compound Datasets. (bold t-statistic means statistically significant.)

MUTAG NCI1 NCI109 PTC(MM) PTC(FM) PTC(MR) PTC(FR)
GF 0.78s 36.48s 36.77s 2.30s 2.56s 2.66s 2.50s

RW 5m3s – – 2h3m42s 2h16m11s 2h12m7s 2h17m28s
SP 4.61s 16m56s 21m2s 35.82s 35.79s 36.14s 37.72s
GK 1.42s 3m21s 3m25s 4.88s 5.05s 5.04s 5.22s
RG 42m54s – – 2h11m1s 2h16m54s 2h14m17s 2h20m6s
WL 5.88s 15m30s 16m1s 14.86s 16.22s 15.51s 16.10s

CORK 1m1s 33m19s 35m44s 19.92s 23.90s 23.03s 27.04s

Table 4: Running Times on Chemical Compound Datasets (h:hours, m:minutes, s:seconds)

D&D CATH1 CATH2 CATH1(w/o L) CATH2(w/o L)
GF(no) 62.99 ± 4.49 83.29 ± 4.98 61.58 ± 10.27 82.86 ± 5.43 61.05 ± 8.87
GF(r) 76.32 ± 2.72 99.02 ± 0.90 81.57 ± 5.39 98.60 ± 1.54 77.89± 7.74
GF(z) 75.95 ± 2.66 98.46 ± 1.32 79.27 ± 9.46 97.90 ± 1.57 81.05 ± 3.49

RW – – – – –
SP – 98.88 ± 1.37 96.32 ± 3.37 97.89 ± 1.70 76.32 ± 8.57
GK 75.13 ± 2.71 98.32 ± 0.84 94.74 ± 4.71 97.61 ± 2.52 66.84 ± 11.05
RG – – – – –
WL 78.29 ± 3.05 98.59 ± 1.09 94.21 ± 4.97 98.59 ± 1.26 76.84 ± 8.22

CORK 71.22 ± 4.56 94.24 ± 2.77 97.89 ± 2.58 – –
t-statistic -3.75 0.07 -26.75 0.15 4.67

Table 5: Accuracy (± Standard Deviation): Protein Datasets. (bold t-statistic means statistically significant.)

D&D CATH1 CATH2 CATH1(w/o L) CATH2(w/o L)
GF 52m35s 4m36s 2m15s 4m33s 2m15s

RW – – – – –
SP – 1h42m12s 42m26s 1h2m9s 30m32s
GK 23h14m53s 37m8s 15m54s 18m37s 7m49s
RG – – – – –
WL 2h12m57s 22m33s 4m45s 20m20s 4m19s

CORK 14m10s 41m28s 43m6s – –

Table 6: Running Times on Protein Datasets (h:hours, m:minutes, s:seconds)

on topological graph features, and the three label features
(f18 to f20) are not able to capture the subsequence simi-
larity (since they are local and are not designed to look at
subsequences). GF is thus not able to distinguish between
the two classes as well as the other kernels that can effec-
tively utilize label information.

To verify this hypothesis, we removed the node (amino
acid) labels from the proteins. On CATH1(w/o L) and
CATH2(w/o L), all methods have to rely only on topolog-
ical information. CORK aborted on the unlabeled CATH
data, since the (sub)-graph isomorphism checks in this case
become too expensive. We now find that GF(z) is signifi-
cantly superior to other methods on CATH2(w/o L). While
the accuracy of GF(z) remains close to the labeled case, the
other methods suffer a significant drop in accuracy. For ex-
ample, WL has an accuracy of 94.21 on CATH2, but only
76.85 on CATH2(w/o L). This confirms two things: i) there
is significant sequence similarity between sequences in the
same class, exploiting which helps the other methods, and
ii) even though the classes are topologically similar, there are
enough structural differences that GF is still able to exploit.

In terms of time, we can see that GF is 2-5 times faster
than WL, about 20 times faster than SP, 4-8 times faster
than GK, and 10-20 times faster than CORK.

Cell-Graph Datasets: Table 7 shows the accuracy com-
parison for GF versus other graph kernels on the cell-graph
datasets. The corresponding timing results are shown in
Table 8. One of the differences between cell-graph and the
other datasets is that cell-graphs are much larger (e.g., 4550
nodes and 43400 edges for brain graphs). Furthermore, while
the other datasets are labeled, the cell-graph data does not
have any labels.

We show the results separately for each tissue type, and
we show results for binary classification. Among the GF
variants, GF(z) is usually better than GF(r), or is close to
it. The unnormalized version is significantly worse. For GF,
we use only the top k = 2 eigenvalues for Bone(O), and
k = 100 for Brain(A). This is because computing all the
eigenvalues for these large graphs is expensive.

For the cell-graph datasets, GF significantly outperforms
all other methods in terms of accuracy, and also has an ad-
vantage in terms of time. For the largest graphs, from brain



EB vs EI EN vs EB EN vs EI OF vs ON ON vs OO OF vs OO

GF(no) 57.78 ± 7.25 61.92 ± 5.21 64.48 ± 4.96 65.67 ± 20.76 71.19 ± 14.06 58.83 ± 16.59
GF(r) 87.70 ± 5.30 86.35 ± 7.02 82.76 ± 5.35 98.33 ± 5.00 94.29 ± 7.00 53.47 ± 22.08
GF(z) 88.05 ± 4.27 84.58 ± 6.96 83.84 ± 4.41 97.67 ± 6.67 92.86 ± 7.14 63.75 ± 14.09

RW – – – 90.00 ± 11.06 76.43 ± 14.30 49.72 ± 14.28
SP 76.27 ± 5.16 77.61 ± 6.29 73.22 ± 6.14 94.67 ± 8.19 78.33 ± 14.57 60.67 ± 12.19
GK 66.01 ± 9.57 75.19 ± 8.13 62.38 ± 6.91 56.00 ± 21,12 60.71 ± 13.27 51.39 ± 13.57
RG – – – 72.33 ± 12.52 67.04 ± 15.54 48.87 ± 14.07
WL 87.23 ± 4.57 74.81 ± 6.09 71.22 ± 8.15 98.33 ± 5.00 63.57 ± 17.63 61.25 ± 13.60

t-statistic 0.23 9.31 12.74 0 12.28 1.29

AG vs AI AG vs AB AB vs AI

GF(no) 75.36 ± 5.06 61.04 ± 3.98 66.20 ± 8.36
GF(r) 88.28 ± 3.40 98.70 ± 1.45 99.06 ± 2.81
GF(z) 87.91 ± 2.86 99.26 ± 0.91 98.74 ± 2.87
RW – – –
SP – – –
GK – – 97.79 ± 2.01
RG – – –
WL – – 99.38 ± 1.88

t-statistic – – -0.14

Table 7: Accuracy (± Standard Deviation) on Cell-Graph Datasets – E: Breast, O: Bone, and A: Brain. (bold t-statistic
means statistically significant.)

EB vs EI EN vs EB EN vs EI OF vs ON ON vs OO OF vs OO AG vs AI AG vs AB AB vs AI
GF 1h11m13s 47m11s 1h15m40s 23.7s 1m26s 1m43s 17h50m5s 13h53m38s 5h15m44s

RW – – – 11m16s 18m14s 40m8s – – –
SP 8h21m36s 5h44m23s 9h40m4s 19m8s 1h11m58s 1h27m2s – – –
GK 14h12m4s 9h51m37s 11h46m28s 5m33s 9h47s 10m47s – – 9h11m12s
RG – – – 24.15s 43.70s 1m29s – – –
WL 1h55m42s 44m29s 1h23m35s 55.30s 2m56s 2m32s – – 7h24m29s

Table 8: Running Times on Cell-Graph Datasets (h:hours, m:minutes, s:seconds).

tissues, even GK and WL were not able to complete within a
day of computation time. We also do not report the accura-
cies for CORK, since it aborted on the cell-graphs datasets.
Due to the large graph size, and the lack of labels, the graph
mining step in CORK fails to enumerate any discriminative
subgraphs.

The accuracy of the competing methods depends on the
two classes being compared. WL has comparable accuracy
only on the easier to classify pairs, namely benign and can-
cerous breast graphs (EB vs. EI), normal and fractured bone
graphs (OF vs. ON), and benign and inflamed brain graphs
(AB vs. AI). On the other hand, on the other hard pairs,
such as inflamed/noninvasive/damaged versus cancer (EN
vs. EI, OF vs. OO, and AI vs. AG), our graph feature ap-
proach is significantly superior. For example, on EN vs. EI,
GF(z) has an accuracy of 83.84, whereas SP has an accuracy
of 73.22, WL has an accuracy of 71.22 and GK has an even
lower value (62.38).

It is interesting to note that since cell-graph datasets do
not have labels, all the kernels can only use structural in-
formation for computing the kernel matrix. The fact that
GF has the best accuracies implies that the topological at-
tributes we compute are well-suited to extract discriminat-
ing features among the graphs from different classes. In fact,
these attributes are much better at capturing the topological
differences than the corresponding kernels based on subtrees,
graphlets, shortest paths, and random walks, especially on
large, unlabeled graphs, such as the cell graphs.

5. CONCLUSIONS
We propose a simple yet effective and efficient graph clas-

sification approach that is based on topological and label
graph attributes. The graph dataset is converted into a

feature-vector dataset, which can be classified easily using
any classifier. Our main idea is that graphs from the same
class should have similar attribute values. Based on an ex-
tensive comparison with state-of-the-art graph kernel classi-
fiers, we show that our approach yields competitive or bet-
ter accuracies, and has typically much lower computational
times. Our conclusion is that graph attributes are effec-
tive in capturing discriminating structural information from
different classes. While no method is uniformly the best,
our approach is particularly effective for unlabeled graphs.
Combining our graph features, with the best features from
other approaches, such as the WL kernel, has the potential
to yield even better methods, especially for labeled graphs.

This work opens up fruitful directions for future research.
First, we would like to consider many of the other graph at-
tributes such as betweenness, efficiency, entropy, various cen-
tralities, and even features spanning local attributes. Sec-
ond, we would like to construct better label attributes. Third,
we would like to exploit additional features from the other
graph kernels (e.g., WL kernel). Finally, we would like to
understand which graph and kernel features are the most
informative in terms of classification, and eventually, even
for clustering.
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