
Machine Learning, 42, 31–60, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

SPADE: An Efficient Algorithm for Mining
Frequent Sequences

MOHAMMED J. ZAKI zaki@cs.rpi.edu
Computer Science Department, Rensselaer Polytechnic Institute, Troy NY 12180-3590

Editor: Douglas Fisher

Abstract. In this paper we present SPADE, a new algorithm for fast discovery ofSequential Patterns. The
existing solutions to this problem make repeated database scans, and use complex hash structures which have poor
locality. SPADE utilizes combinatorial properties to decompose the original problem into smaller sub-problems,
that can be independently solved in main-memory using efficient lattice search techniques, and using simple join
operations. All sequences are discovered in only three database scans. Experiments show that SPADE outperforms
the best previous algorithm by a factor of two, and by an order of magnitude with some pre-processed data. It also
has linear scalability with respect to the number of input-sequences, and a number of other database parameters.
Finally, we discuss how the results of sequence mining can be applied in a real application domain.

Keywords: sequence mining, sequential patterns, frequent patterns, data mining, knowledge discovery

1. Introduction

The sequence mining task is to discover a set of attributes, shared across time among a
large number of objects in a given database. For example, consider the sales database of
a bookstore, where the objects represent customers and the attributes represent authors or
books. Let’s say that the database records the books bought by each customer over a period
of time. The discovered patterns are the sequences of books most frequently bought by the
customers. An example could be that, “70% of the people who buy Jane Austen’sPride and
Prejudicealso buyEmmawithin a month.” Stores can use these patterns for promotions,
shelf placement, etc. Consider another example of a web access database at a popular site,
where an object is a web user and an attribute is a web page. The discovered patterns are
the sequences of most frequently accessed pages at that site. This kind of information can
be used to restructure the web-site, or to dynamically insert relevant links in web pages
based on user access patterns. Other domains where sequence mining has been applied
include identifying plan failures (Zaki, Lesh, & Ogihara, 1998), finding network alarm
patterns (Hatonen et al., 1996), and so on.

The task of discovering all frequent sequences in large databases is quite challenging.
The search space is extremely large. For example, withm attributes there areO(mk)

potentially frequent sequences of lengthk. With millions of objects in the database the
problem of I/O minimization becomes paramount. However, most current algorithms are
iterative in nature, requiring as many full database scans as the longest frequent sequence;

32 M. J. ZAKI

clearly a very expensive process. Some of the methods, especially those using some form
of sampling, can be sensitive to the data-skew, which can adversely affect performance.
Furthermore, most approaches use very complicated internal data structures which have
poor locality (Parthasarathy, Zaki, & Li, 1998), and add additional space and computation
overheads. Our goal is to overcome all of these limitations.

In this paper we present a new algorithm, called SPADE (SequentialPAtternDiscovery
using Equivalence classes), for discovering the set of all frequent sequences. The key
features of our approach are as follows:

1. We use avertical id-list database format, where we associate with each sequence a list
of objects in which it occurs, along with the time-stamps. We show that all frequent
sequences can be enumerated via simple temporal joins (or intersections) on id-lists.

2. We use a lattice-theoretic approach to decompose the original search space (lattice) into
smaller pieces (sub-lattices) which can be processed independently in main-memory.
Our approach usually requires three database scans, or only a single scan with some
pre-processed information, thus minimizing the I/O costs.

3. We decouple the problem decomposition from the pattern search. We propose two
different search strategies for enumerating the frequent sequences within each sub-
lattice: breadth-first and depth-first search.

SPADE not only minimizes I/O costs by reducing database scans, but also minimizes
computational costs by using efficient search schemes. The vertical id-list based approach
is also insensitive to data-skew. An extensive set of experiments shows that SPADE out-
performs previous approaches by a factor of two, and by an order of magnitude if we have
some additional off-line information. Furthermore, SPADE scales linearly in the database
size, and a number of other database parameters.

We also briefly discuss how sequence mining can be applied in practice. We show that
in complicated real-world applications, sequence mining can produce an overwhelming
number of frequent patterns. We discuss how one can identify the most interesting patterns
using pruning strategies in a post-processing step.

The rest of the paper is organized as follows: In Section 2 we describe the sequence
discovery problem and look at related work in Section 3. In Section 4 we develop our lattice-
based approach for problem decomposition, and for pattern search. Section 5 describes our
new algorithm. An experimental study is presented in Section 6. Section 7 discusses how
the sequence mining can be used in a realistic domain. Finally, we conclude in Section 8.

2. Problem statement

The problem of mining sequential patterns can be stated as follows: LetI = {i1, i2, . . . , im}
be a set ofm distinct itemscomprising the alphabet. Aneventis a non-empty unordered
collection of items (without loss of generality, we assume that items of an event are sorted
in lexicographic order). Asequenceis an ordered list of events. An event is denoted as
(i1i2 . . . i k), wherei j is an item. A sequenceα is denoted as(α1 → α2 → · · · → αq),

SEQUENCE MINING 33

whereαi is an event. A sequence withk items (k = ∑ j |α j |) is called ak-sequence. For
example,(B→ AC) is a 3-sequence.

For a sequenceα, if the eventαi occurs beforeα j , we denote it asαi < α j . We say
α is asubsequenceof another sequenceβ, denoted asα ¹ β, if there exists a one-to-one
order-preserving functionf that maps events inα to events inβ, that is, 1)αi ⊆ f (αi), and
2) if αi < α j then f (αi) < f (α j). For example the sequence(B→ AC) is a subsequence
of (AB → E → AC D), sinceB ⊆ AB and AC ⊆ AC D, and the order of events is
preserved. On the other hand the sequence(AB→ E) is not a subsequence of(ABE),
and vice versa.

The databaseD for sequence mining consists of a collection of input-sequences. Each
input-sequence in the database has an unique identifier calledsid, and each event in a given
input-sequence also has a unique identifier calledeid. We assume that no sequence has
more than one event with the same time-stamp, so that we can use the time-stamp as the
event identifier.

An input-sequenceC is said tocontain another sequenceα, if α ¹ C, i.e., if α is a
subsequence of the input-sequenceC. Thesupportor frequencyof a sequence, denoted
σ(α,D), is the the total number of input-sequences in the databaseD that containα. Given
a user-specified threshold called theminimum support(denotedmin sup), we say that a
sequence isfrequentif it occurs more thanmin suptimes. The set of frequentk-sequences
is denoted asFk. A frequent sequence ismaximalif it is not a subsequence of any other
frequent sequence.

Given a databaseD of input-sequences andmin sup, the problem of mining sequential
patterns is to find all frequent sequences in the database. For example, consider the input
database shown in figure 1 (used as a running example throughout this paper). The database

Figure 1. Original input-sequence database.

34 M. J. ZAKI

Figure 2. Rule generation algorithm.

has eight items (A to H), four input-sequences, and ten events in all. The figure also shows
all the frequent sequences with a minimum support of 50% (i.e., a sequence must occur in
at least 2 input-sequences). In this example we have a two maximal frequent sequences,
ABF andD→ BF→ A.

Some comments are in order to see the generality of our problem formulation: 1) We
discover sequences ofsubsetsof items, and not just single item sequences. For example, the
setBF in (D→ BF→ A). 2) We discover sequences with arbitrarygapsamong events,
and not just the consecutive subsequences. For example, the sequence(D → BF → A)
is a subsequence of input-sequence 1, even though there is an intervening event between
D andBF. The sequence symbol→ simply denotes ahappens-afterrelationship. 3) Our
formulation is general enough to encompass almost any categorical sequential domain. For
example, if the input-sequences are DNA strings, then an event consists of a single item
(one of A,C,G, T). If input-sequences represent text documents, then each word (along
with any other attributes of that word, e.g., noun, position, etc.) would comprise an event.
Even continuous domains can be represented after a suitable discretization step.

2.1. Sequence rules

Once the frequent sequences are known, they can be used to obtain rules that describe the
relationship between different sequence items. For example, the sequence(BF) occurs in
four input-sequences, while(ABF) in three input-sequences. We can therefore say that
if BF occurs together, then there is a 75% chance thatA also occurs. In other words we
say that the rule(BF) ⇒ (ABF) has a 75%confidence. Another example of a rule is
that (D → BF) ⇒ (D → BF → A). It has 100% confidence. Given a user-specified
minimum confidence (min conf), we can generate all rules that meet the condition by
means of the simple algorithm shown in figure 2. Since the rule generation step is relatively
straightforward, in the rest of the paper we will mainly concentrate on the frequent sequence
discovery phase. We do return to the problem of generating useful rules, in Section 7, within
a planning domain.

3. Related work

The problem of mining sequential patterns was introduced in Agrawal and Srikant (1995).
They also presented three algorithms for solving this problem. TheAprioriAll algorithm

SEQUENCE MINING 35

was shown to perform better than the other two approaches. In subsequent work (Srikant &
Agrawal, 1996), the same authors proposed the GSP algorithm that outperformedAprioriAll
by up to 20 times. They also introduced maximum gap, minimum gap, and sliding window
constraints on the discovered sequences.

Independently, Mannila, Toivonen, and Verkamo (1995) proposed mining forfrequent
episodes, which are essentially frequent sequences in a single long input-sequence (typically,
with single items events, though they can handle set events). However our formulation is
geared towards finding frequent sequences across many different input-sequences. They
further extended their framework in Mannila and Toivonen (1996) to discovergeneralized
episodes, which allows one to express arbitrary unary conditions on individual sequence
events, or binary conditions on event pairs. The MEDD and MSDD algorithms (Oates et al.,
1997) discover patterns in multiple event sequences; they explore the rule space directly
instead of the sequence space.

Sequence discovery can essentially be thought of as association discovery (Agrawal et al.,
1996; Savasere, Omiecinski, & Navathe, 1995) over a temporal database. While association
rules discover only intra-event patterns (called itemsets), we now also have to discover
inter-event patterns (sequences). The set of all frequent sequences is a superset of the set of
frequent itemsets. Due to this similarity sequence mining algorithms likeAprioriAll , GSP,
etc., utilize some of the ideas initially proposed for the discovery of association rules. Our
new algorithm is based on the fast association mining techniques we presented in Zaki et al.
(1997). Nevertheless, the sequence search space is much more complex and challenging
than the itemset space, and thus warrants specific algorithms. A preliminary version of this
paper appeared in Zaki (1998).

3.1. The GSP algorithm

Below we describe the GSP algorithm (Srikant & Agrawal, 1996) in some more detail, since
we use it as a base against which we compare SPADE, and it is one of the best previous
algorithms.

GSP makes multiple passes over the database. In the first pass, all single items (1-
sequences) are counted. From the frequent items a set ofcandidate2-sequences are formed.
Another pass is made to gather their support. The frequent 2-sequences are used to generate
the candidate 3-sequences, and this process is repeated until no more frequent sequences
are found. There are two main steps in the algorithm.

1. Candidate Generation: Given the set of frequent(k−1)-sequencesFk−1, the candidates
for the next pass are generated by joiningFk−1 with itself. A pruning phase eliminates
any sequence at least one of whose subsequences is not frequent. For fast counting, the
candidate sequences are stored in ahash-tree.

2. Support Counting: To find all candidates contained in a input-sequenceE , conceptually
all k-subsequences ofE are generated. For each such subsequence a search is made in
the hash-tree. If a candidate in the hash-tree matches the subsequence, its count is
incremented.

36 M. J. ZAKI

Figure 3. The GSP algorithm.

The GSP algorithm is shown in figure 3. For more details on the specific mechanisms for
constructing and searching hash-trees, please refer to Srikant and Agrawal (1996).

4. Sequence enumeration: Lattice-based approach

Before embarking on the algorithm description, we will briefly review some terminology
from lattice theory (see Davey and Priestley (1990) for a good introduction).

Definition 1. Let P be a set. Apartial order on P is a binary relation≤, such that for
all X,Y, Z ∈ P, the relation is:

1) Reflexive:X ≤ X.
2) Anti-Symmetric:X ≤ Y andY ≤ X, impliesX = Y.
3) Transitive:X ≤ Y andY ≤ Z, impliesX ≤ Z.

The setP with the relation≤ is called anordered set.

Definition 2. Let P be an ordered set, and letS ⊆ P. An elementX ∈ P is anupper
bound(lower bound) of S if s ≤ X (s ≥ X) for all s ∈ S. The minimum (or least) upper
bound, called thejoin, of S is denoted as∨S, and the maximum (or greatest) lower bound,
called themeet, of S is denoted as∧S. The greatest element ofP, denoted>, is called the
top element, and the least element ofP, denoted⊥, is called thebottom element.

Definition 3. Let L be an ordered set.L is called ajoin (meet) semilatticeif X∨Y (X∧Y)
exists for allX,Y ∈ L, i.e., the minimum upper bound (maximum lower bound) exists.L
is called alattice if it is a join and meet semilattice. A ordered setM ⊂ L is asublatticeof
L if X,Y ∈ M implies X ∨ Y ∈ M andX ∧ Y ∈ M .

Definition 4. Let L be a lattice, and letX, Z,Y ∈ L. We sayX is covered by Y, if X < Y
andX ≤ Z < Y, impliesZ = X, i.e., if there is no elementZ of L with X < Z < Y. Let
⊥ be the bottom element of latticeL. ThenX ∈ L is called anatomif X covers⊥. The
set of atoms ofL is denoted byA(L).

SEQUENCE MINING 37

Definition 5. Let L be an ordered set.L is called ahyper-latticeif X∨Y (X∧Y), instead
of representing a unique minimum upper bound (maximum lower bound), represents a set
of minimal upper bounds (maximal lower bounds).

Note that in a regular lattice the join and meet refers to the unique minimum upper bound
and maximum lower bound. In a hyper-lattice the join and meet need not produce a unique
element; instead the result can be a set of minimal upper bounds and maximal lower bounds.
In the rest of this paper we will usually refer to the sequence hyper-lattice as a lattice (unless
we wish to stress the difference), since the sequence context is understood.

Lemma 1. Let S be the set of all sequences on the items inI. Then the subsequence
relation¹, defines a hyper-lattice onS.

Theorem 1. Given a setI of items, the ordered setS of all possible sequences on the
items, is a hyper-lattice in which the join of a set of sequences Ai ∈ S is the set of minimal
common supersequences, and the meet of a set of sequences is the set of maximal common
subsequences. More formally,∨

{Ai } = {α | Ai ¹ α and Ai ¹ β with β ¹ α ⇒ β = α}∧
{Ai } = {α | α ¹ Ai andβ ¹ Ai with α ¹ β ⇒ β = α}

From our example database (figure 1), the set of frequent items is given asF1 =
{A, B, D, F}. Figure 4 shows the sequence latticeS spanned by the subsequence rela-
tion on these four frequent items. These are also the atoms of the sequence lattice, since
they cover the bottom element{}. To see why the set of all sequences forms a hyper-lattice,
consider the join ofA and B; A ∨ B = {(A → B), (AB), (B → A)}. As we can see
the join produces three minimal upper bounds (i.e., minimal common super-sequences).
Similarly, the meet of two (or more) sequences can produce a set of maximal lower bounds.
For example,(B → AB) ∧ (AB → A) = {(AB), (B → A)}, both of which are the
maximal common sub-sequences.

The bottom element of the sequence lattice is⊥ = {}, but the top element is undefined,
since in the abstract the sequence lattice is infinite. Thus figure 4 shows only some parts of the
lattice, namely, the complete set of 2-sequences, the 3-sequences that can be generated from
A→ A and AB, and the possible 4-sequences that can be generated fromA→ A→ A.
The recursive combinatorial structure of the subsequence lattice should be apparent. For
example consider the set of sequences generated from the itemA, and the sequenceA→ A.
The two sets are identical except for the extraA→ prefix in the latter set.

Lemma 2. Let n denote the number of frequent items. Then the total number of sequences
of length at most k is O(nk).

Proof. We will count the number of ways in which ak sequence can be constructed,
and then assign items for each arrangement. The number of ways ak-sequence can be
constructed is given by the number of ways we can obtaink as a sum of integers. For

38 M. J. ZAKI

Figure 4. Sequence lattice spanned by subsequence relation.

Figure 5. Number of ways to obtain a 4-sequence.

example, figure 5 shows the number of ways we can obtain 4 as a sum of integers. The
integers in the sum are interpreted to be the sizes of the events comprising ak length
sequence. We now assign items to each such event. For an event of lengthi , we have

(n
i

)
item assignments. Multiplying the choices for each case, and adding all the cases we obtain
the total number ofk-sequences, given as

∑k
i1=1

(n
i1

)∑k−i1
i2=1

(n
i2

) · · ·∑k−i1−···−i k−1
i k=1

(n
ik

)
.

It is difficult to derive a closed-form expression for the exact number ofk-sequences
from the formula above, but a closed-form expression for an upper-bound on the number of
k-sequences can be obtained as follows. For each of thek positions we have the choice of

SEQUENCE MINING 39

Figure 6. Lattice induced by maximal frequent sequencesABF andD→ BF→ A.

n items, and between items we have two choices: to put a→ or not. Thus, the total number
of k-sequences is bounded above by the expression 2k−1nk. Then, the total number of se-
quences of length at mostk is given as

∑k
i=1 2i−1ni ≤ 2k−1∑k

i=1 ni ≈ 2k−1nk = O(nk), for
a constantk. ¤

As mentioned above, in the abstract case the lattice of sequences is infinite. Fortunately
in all practical cases it is bounded. The number of sequence elements (events) is bounded
above by the maximum number of events per input-sequence (sayC). Since the size of an
event is bounded above by the maximum event size (sayT), a sequence can have at most
C · T items, and hence the subsequence lattice is bounded above byC · T . In our example
database,C = 4 andT = 4, so that the largest possible sequence can have 16 items.

In all practical cases not only is the lattice bounded, but the set of frequent sequences
is also very sparse (depending on themin sup value). For example, consider figure 6
which shows the sequence lattice induced by the maximal frequent sequencesABF and
D → BF → A, in our example. The set of atomsA is given by the frequent items
{A, B, D, F}. It is obvious that the set of all frequent sequences forms a meet-semilattice,
because it is closed under the meet operation, i.e., ifX andY are frequent sequences, then
the meetX ∧ Y (a maximal common subsequence) is also frequent. However, it is not a
join-semilattice, since it is not closed under joins, i.e.,X andY being frequent, doesn’t
imply that X ∨Y (a minimal common supersequence) is frequent. The closure under meet
leads to the well known observation on sequence frequency:

Lemma 3. All subsequences of a frequent sequence are frequent.

The above lemma leads very naturally to a bottom-up search procedure for enumerating
frequent sequences, which has been leveraged in many sequence mining algorithms (Srikant

40 M. J. ZAKI

Figure 7. Id-lists for the atoms.

& Agrawal, 1996; Mannila, Toivonen, & Verkamo, 1995; Oates et al., 1997). In essence
what the lemma says is that we need to focus only on those sequences whose subsequences
are frequent. This leads to a very powerful pruning strategy, where we eliminate all se-
quences, at least one of whose subsequences is infrequent. However, the lattice formulation
makes it apparent that we need not restrict ourselves to a purely bottom-up search. We can
employ different search procedures, which we will discuss below.

4.1. Support counting

Let’s associate with each atomX in the sequence lattice itsid-list, denotedL(X), which is a
list of all input-sequence (sid) and event identifier (eid) pairs containing the atom. Figure 7
shows the id-lists for the atoms in our example database. For example consider the atomD.
In our original database in figure 1, we see thatD occurs in the following input-sequence
and event identifier pairs{(1, 10), (1, 25), (4, 10)}. This forms the id-list for itemD.

Lemma 4. For any X∈S, let J={Y ∈A(S) | Y¹ X}. Then X= ∨Y∈J Y , andσ(X)=
| ∩Y∈J L(Y)|, where∩ denotes a temporal join of the id-lists, and|L(Z)|, called the
cardinalityofL(Z), denotes the number of distinct sid values in the id-list for a sequence Z.

The above lemma states that any sequence inS can be obtained as a temporal join of some
atoms of the lattice, and the support of the sequence can be obtained by joining the id-list
of the atoms. Let’s say we wish to compute the support of sequence(D → BF → A).
Here the setJ = {D, B, F, A}. We can perform temporal joins one atom at a time to obtain
the final id-list, as shown in figure 8. We start with the id-list for atomD and join it with
that of B. Since the symbol→ represents a temporal relationship, we find all occurrences
of B after aD in an input-sequence, and store the corresponding time-stamps or eids, to
obtainL(D→ B). We next join the id-list of(D→ B) with that of atomF , but this time
the relationship betweenB and F is a non-temporal one, which we call anequality join,
since they must occur at the same time. We thus find all occurrences ofB andF with the
same eid and store them in the id-list for(D → BF). Finally, a temporal join withL(A)
completes the process.

SEQUENCE MINING 41

Figure 8. Naive temporal joins.

Lemma 5. For any X∈S, let X= ∨Y∈J Y , where Y¹ X for all Y ∈ J . Thenσ(X)=
|∩Y∈J L(Y)|.

While Lemma 4 tells us how to construct the id-list of a sequence given only the atoms
of the lattice, Lemma 5 generalizes this for any set of sequences. The lemma says that ifX
is given as a join of a set of sequences inJ, then its support is given as the temporal join of
id-lists of elements inJ. In particular we can determine the support of anyk-sequence by
simply joining the id-lists of any two of its(k−1) length subsequences. A simple check on
the cardinality (i.e., the unique sid values) of the resulting id-list tells us whether the new
sequence is frequent or not.

4.1.1. Space-efficient joins.If we naively produce the id-lists (as shown in figure 8) by
storing the eids (or time-stamps) for all items in a sequence, we waste too much space.
Using the corollary below, which states that we can always generate a sequence by joining
its lexicographically first twok− 1 length subsequences, it is possible to reduce the space
requirements, by storing only (sid, eid) pairs (i.e., only two columns) for any sequence, no
matter how many items it has.

Corollary 1. For any sequence X∈ S, let X1 and X2 denote the lexicographically first
two (k− 1)-subsequences of X. Then X= X1 ∨ X2 andσ(X) = |L(X1) ∩ L(X2)|.

The reason why this corollary allows space reduction is because the first twok−1 length
sequences,X1 andX2, of a sequenceX, share ak − 2 length prefix. Since they share the
same prefix, it follows that the eids for the items in the prefix must be the same, and the only
difference betweenX1 andX2 is in the eids of their last items. Thus it suffices to discard
all eids for the prefix, and to keep track of only the eids for the last item of a sequence.

Figure 9 illustrates how the idlist for(D→ BF→ A) can be obtained using the space-
efficient idlist joins. LetX = (D→ BF→ A), then we must perform a temporal join on
its first two subsequencesX1 = (D → BF) (obtained by dropping the last item fromX),
and X2 = D → B → A (obtained by dropping the second to last item fromX). Then,
recursively, to obtain the id-list for(D → BF) we must perform a equality join on the

42 M. J. ZAKI

Figure 9. Computing support via space-efficient temporal id-list joins.

id-list of (D → B) and(D → F). For (D → B→ A) we must perform a temporal join
onL(D→ B) andL(D→ A). Finally, the 2-sequences are obtained by joining the atoms
directly. Figure 9 shows the complete process, starting with the initial vertical database of
the id-list for each atom. As we can see, at each point only (sid,eid) pairs are stored in the
id-lists (i.e., only the eid for the last item of a sequence are stored). The exact details of the
temporal joins are provided in Section 5.3, when we discuss the implementation of SPADE.

Lemma 6. Let X and Y be two sequences , with X¹ Y . Then|L(X)| ≥ |L(Y)|.

This lemma says that if the sequenceX is a subsequence ofY, then the cardinality of
the id-list ofY (i.e., its support) must be equal to or less than the cardinality of the id-list
of X. A practical and important consequence of this lemma is that the cardinalities of
intermediate id-lists shrink as we move up the lattice. This results in very fast joins and
support counting.

4.2. Lattice decomposition: Prefix-based classes

If we had enough main-memory, we could enumerate all the frequent sequences by travers-
ing the lattice, and performing temporal joins to obtain sequence supports. In practice,

SEQUENCE MINING 43

Figure 10. a) Equivalence classes ofS induced byθ1, b) classes of [D]θ1 induced byθ2.

however, we only have a limited amount of main-memory, and all the intermediate id-lists
will not fit in memory. This brings up a natural question: can we decompose the original lat-
tice into smaller pieces such that each piece can be solved independently in main-memory.
We address this question below.

Define a functionp: (S, N)→ S whereS is the set of sequences,N is the set of non-
negative integers, andp(X, k) = X[1 : k]. In other words,p(X, k) returns thek length
prefix of X. Define an equivalence relationθk on the latticeS as follows:∀X,Y ∈ S, we
say thatX is related toY underθk, denoted asX ≡θk Y if and only if p(X, k) = p(Y, k).
That is, two sequences are in the same class if they share a commonk length prefix.

Figure 10 shows the partition induced by the equivalence relationθ1 on S, where we
collapse all sequences with a common item prefix into an equivalence class. The resulting
set of equivalence classes is{[A], [B], [D], [F]}. We call these first level classes as the
parentclasses. At the bottom of the figure, it also shows the links among the four classes.
These links carry pruning information. In other words if we want to prune a sequence (if it
has at least one infrequent subsequence) then we may need some cross-class information.
We will have more to say about this later in Section 5.4.

Lemma 7. Each equivalence class[X]θk induced by the equivalence relationθk is a
sub-(hyper)lattice ofS.

Proof. Let U andV be any two elements in the class [X], i.e., U,V share the common
prefix X. ThusX ¹ Z for all Z ∈ U∨V , i.e., sinceU andV share a common prefix, then so
must any minimal common super-sequence. This implies thatZ ∈ [X] for all Z ∈U ∨V .
On the other hand, sinceU and V share a common prefix, then so must any maximal

44 M. J. ZAKI

common sub-sequence. Thus for allZ ∈ U ∧ V we haveZ ∈ [X]. Therefore [X]θk

is a sub-(hyper)lattice ofS. ¤

Each [X]θ1 is thus a hyper-lattice with its own set of atoms. For example, the atoms
of [D]θ1 are{D → A, D → B, D → F}, and the bottom element is⊥ = D. By the
application of Corollary 1, we can generate the supports of all the sequences in each class
(sub-lattice) using temporal joins. If there is enough main-memory to hold temporary
id-lists for each class, then we can solve each [X]θ1 independently.

In practice we have found that the one level decomposition induced byθ1 is sufficient.
However, in some cases, a class may still be too large to be solved in main-memory. In this
scenario, we apply recursive class decomposition. Let’s assume that [D] is too large to fit
in main-memory. Since [D] is itself a lattice, it can be decomposed using the relationθ2.
Figure 10 shows the classes induced by applyingθ2 on [D] (after applyingθ1 onS). Each of
the resulting six parent classes, [A], [B], [D→ A], [D→ B], [D→ F], and [F], can be
processed independently to generate frequent sequences from each class. Thus depending
on the amount of main-memory available, we can recursively partition large classes into
smaller ones, until each class is small enough to be solved independently in main-memory.

4.3. Search for frequent sequences

In this section we discuss efficient search strategies for enumerating the frequent sequences
within each parent class. We will discuss two main strategies: breadth-first and depth-first
search. Both these methods are based on a recursive decomposition of each parent class into
smaller classes induced by the equivalence relationθk. Figure 11 shows the decomposition
of [D]θ1 into smaller and smaller classes, and the resulting lattice of equivalence classes.

Figure 11. Recursive decomposition of class [D] into smaller sub-classes viaθk.

SEQUENCE MINING 45

Breadth-First Search (BFS) In a breadth-first search the lattice of equivalence classes
generated by the recursive application ofθk is explored in a bottom-up manner. We
process all the child classes at a level before moving on to the next level. For example, in
figure 11, we process the equivalence classes{[D → A], [D → B], [D → F]}, before
moving on to the classes{[D→ B→ A], [D→ BF], [D→ F → A]}, and so on.

Depth-First Search (DFS) In a depth-first search, we completely solve all child equiva-
lence classes along one path before moving on to the next path. For example, we process
the classes in the following order [D → A], [D → B], [D → B → A], [D → BF],
[D→ BF→ A], and so on.

The advantage of BFS over DFS is that we have more information available for pruning.
For example, we know the set of 2-sequences before constructing the 3-sequences, while
this information is not available in DFS. On the other hand DFS requires less main-memory
than BFS. DFS needs only to keep the intermediate id-lists for two consecutive classes along
a single path, while BFS must keep track of id-lists for all the classes in two consecutive
levels. Consequently, when the number of frequent sequences is very large, for example
in dense domains or in cases where themin supvalue is very low, DFS may be the only
feasible approach, since BFS can run out of virtual memory.

Besides BFS and DFS search, there are many other search possibilities. For example, in
the DFS scheme, if we determine thatD → BF→ A is frequent, then we do not have to
process the classes [D→ F], and [D→ F → A], since they must necessarily be frequent.
We are currently investigating such schemes for efficient enumeration of only the maximal
frequent sequences.

5. SPADE: Algorithm design and implementation

In this section we describe the design and implementation of SPADE. Figure 12 shows
the high level structure of the algorithm. The main steps include the computation of the
frequent 1-sequences and 2-sequences, the decomposition into prefix-based parent equiva-
lence classes, and the enumeration of all other frequent sequences via BFS or DFS search
within each class. We will now describe each step in some more detail.

Figure 12. The SPADE algorithm.

46 M. J. ZAKI

5.1. Computing frequent 1-sequences and 2-sequences

Most of the current sequence mining algorithms (Agrawal & Srikant, 1995; Srikant &
Agrawal, 1996) assume ahorizontaldatabase layout such as the one shown in figure 1. In
the horizontal format the database consists of a set of input-sequences. Each input-sequence
has a set of events, along with the items contained in the event. In contrast our algorithm
uses avertical database format, where we maintain a disk-based id-list for each item, as
shown in figure 7. Each entry of the id-list is a(sid, eid) pair where the item occurs. This
enables us to check support via simple id-list joins.

ComputingF1: Given the vertical id-list database, all frequent 1-sequences can be com-
puted in a single database scan. For each database item, we read its id-list from the
disk into memory. We then scan the id-list, incrementing the support for each new sid
encountered.

ComputingF2: Let N = |F1| be the number of frequent items, andA the average id-list
size in bytes. A naive implementation for computing the frequent 2-sequences requires(N

2

)
id-list joins for all pairs of items. The amount of data read isA · N · (N − 1)/2,

which corresponds to aroundN/2 data scans. This is clearly inefficient. Instead of the
naive method we propose two alternate solutions:

1. Use a preprocessing step to gather the counts of all 2-sequences above a user specified
lower bound. Since this information is invariant, it has to be computed once, and the
cost can be amortized over the number of times the data is mined.

2. Perform a vertical-to-horizontal transformation on-the-fly. This can be done quite easily,
with very little overhead. For each itemi , we scan its id-list into memory. For each
(sid, eid) pair, say(s, e) in L(i), we insert(i, e) in the list for input-sequences. For
example, consider the id-list for itemA, shown in figure 7. We scan the first pair(1, 15),
and then insert(A, 15) in the list for input-sequence 1. Figure 13 shows the complete
horizontal database recovered from the vertical item id-lists. ComputingF2 from the
recovered horizontal database is straight-forward. We form a list of all 2-sequences in

Figure 13. Vertical-to-horizontal database recovery.

SEQUENCE MINING 47

the list for eachsid, and update counts in a 2-dimensional array indexed by the frequent
items.

5.2. Enumerating frequent sequences of a class

Figure 14 shows the pseudo-code for the breadth-first and depth-first search. The input
to the procedure is a set of atoms of a sub-latticeS, along with their id-lists. Frequent
sequences are generated by joining the id-lists of all pairs of atoms (including a self-join)
and checking the cardinality of the resulting id-list againstmin sup. Before joining the id-
lists a pruning step can be inserted to ensure that all subsequences of the resulting sequence
are frequent. If this is true, then we can go ahead with the id-list join, otherwise we can
avoid the temporal join. Although SPADE supports pruning, we found that in practice,
for the databases we looked at, it did not improve the running time. On the other hand, to
successfully apply pruning, one has to store in memory all the frequent sequences found thus
far. This imposes significant memory overheads, and thus in our experiments we disabled
pruning. We discuss more details in Section 5.4.

The sequences found to be frequent at the current level form the atoms of classes for
the next level. This recursive process is repeated until all frequent sequences have been
enumerated. In terms of memory management it is easy to see that we need memory to
store intermediate id-lists for at most two consecutive levels. The depth-first search requires
memory for two classes on the two levels. The breadth-first search requires memory of all
the classes on the two levels. Once all the frequent sequences for the next level have been
generated, the sequences at the current level can be deleted.

Disk scansBefore processing each parent equivalence class from the initial decompo-
sition, all the relevant item id-lists for that class are scanned from disk into memory. The
id-lists for the atoms (which are 2-sequences) of each initial class are constructed by joining

Figure 14. Pseudo-code for breadth-first and depth-first search.

48 M. J. ZAKI

the item id-lists. All the other frequent sequences are enumerated as described above. If
all the initial classes have disjoint set of items, then each item’s id-list is scanned from disk
only once during the entire frequent sequence enumeration process over all sub-lattices.
In the general case there will be some degree of overlap of items among the different
sub-lattices. However only the database portion corresponding to the frequent items will
need to be scanned, which can be a lot smaller than the entire database. Furthermore,
sub-lattices sharing many common items can be processed in a batch mode to minimize
disk access. Thus we claim that our algorithms will usually require a single database scan
after computingF2, in contrast to the current approaches which require multiple scans.

5.3. Temporal id-list join

We now describe how we perform the id-list joins for two sequences. Consider an equiva-
lence class [B→ A] with the atom set{B→ AB, B→ AD, B→ A→ A, B→ A→
D, B→ A→ F}. If we let P stand for the prefixB→ A, then we can rewrite the class to
get [P] = {P B, P D, P→ A, P→ D, P→ F}. One can observe the class has two kinds
of atoms: the event atoms{P B, P D}, and the sequence atoms{P→ A, P→ D, P→ F}.
We assume without loss of generality that the event atoms of a class always precede the
sequence atoms. To extend the class it is sufficient to join the id-lists of all pairs of atoms.
However, depending on the atom pairs being joined, there can be upto three possible result-
ing frequent sequences (these are the three possible minimal common super-sequences):

1. Event atom with event atom:If we are joining P B with P D, then the only possible
outcome is new event atomP B D.

2. Event atom with sequence atom:If we are joining P B with P → A, then the only
possible outcome is new sequence atomP B→ A.

3. Sequence atom with sequence atom:If we are joiningP→ A with P→ F , then there
are three possible outcomes: a new event atomP→ AF, and two new sequence atoms
P → A → F and P → F → A. A special case arises when we joinP → A with
itself, which can produce only the new sequence atomP→ A→ A.

We now describe how the actual id-list join is performed. Consider figure 15, which
shows the hypothetical id-lists for the sequence atomsP → A and P → F . To compute
the new id-list for the resulting event atomP→ AF, we simply need to check forequality
of (sid, eid) pairs. In our example, the only matching pairs are{(8, 30), (8, 50), (8, 80)}.
This forms the id-list forP → AF. To compute the id-list for the new sequence atom
P → A → F , we need to check for atemporalrelationship, i.e., for a given pair(s, t1)
in L(P → A), we check whether there exists a pair(s, t2) in L(P → F) with the same
sid s, but with t2 > t1. If this is true, it means that the itemF follows the itemA for
input-sequences. In other words, the input-sequences contains the patternP→ A→ F ,
and the pair(s, t2) is added to the pattern’s id-list. Finally, the id-list forP→ F → A can
be obtained in a similar manner by reversing the roles ofP → A and P → F . The final
id-lists for the three new sequences are shown in figure 15. Since we join only sequences
within a class, which have the same prefix (whose items have the same eid or time-stamp),

SEQUENCE MINING 49

Figure 15. Temporal id-list join.

we need only to keep track of the last item’s eid for determining the equality and temporal
relationships. As a further optimization, we generate the id-lists of all the three possible
new sequences in just one join.

5.4. Pruning sequences

The pruning algorithm is shown in figure 16. Letα1 denote the first item of sequenceα.
Before generating the id-list for a newk-sequenceβ, we check whether all itsk subsequences
of length k − 1 are frequent. If they all are frequent then we perform the id-list join.
Otherwise,β is dropped from consideration. Note that all subsequences except the last are
within the current class. For example consider a sequenceβ = (D → BF → A). The
first three subsequences,(D → BF), (D → B → A), and(D → F → A) are all lie in

Figure 16. Sequence pruning.

50 M. J. ZAKI

the class [D]. However, the last subsequence(BF → A) belongs to the class [B]. If [B]
has already been processed then we have complete subsequence information for pruning.
Otherwise, if [B] has not been processed, then we cannot determine whether(BF → A)
is frequent or not. Nevertheless, partial pruning based on the members of the same class
is still possible. It is generally better to process the class in lexicographically descending
order, since in this case at least for events all information is available for pruning. This is
because items of an event are kept sorted in increasing order. For example, if we wanted
to testβ = AB DF, then we would first check within its class [A] if ADF is frequent, and
since [B] will have been processed if we solve the classes in reverse lexicographic order,
we can also check ifB DF is frequent.

One practical note is that, to implement the subsequence pruning step efficiently, we need
to store all frequent sequences from the previous levels in some sort of a hash structure.
In general, such pruning can eliminate a lot of unnecessary candidates. However, in our
experiments, in Section 6, we found pruning to be of no help. This is mainly because of
Lemma 6, which says that the id-list join is especially efficient for large sequences, i.e., as
we generate longer sequences the cardinality of the id-lists decreases, and leads to very fast
frequency checking. In other words, performing an idlist join is as fast as checking if all
subsequences are frequent using hashing. Furthermore, storing all the frequent sequences in
memory imposes significant memory overheads, and causes virtual memory to be exceeded,
if there are a large number of frequent sequences. Thus, in our experiments reported below,
we disabled the subsequence pruning feature. Nevertheless, there may be databases where
pruning is crucial for performance, and we can support pruning for those datasets, as we
discussed above.

6. Experimental results

In this section we study the performance of SPADE by varying different database parameters
and by comparing it with the GSP algorithm. GSP was implemented as described in Srikant
and Agrawal (1996). For SPADE results are shown only for the BFS search. Experiments
were performed on a 100 MHz MIPS processor with 256MB main memory running IRIX
6.2. The data was stored on a non-local 2GB disk.

Synthetic datasetsThe synthetic datasets are the same as those used in Srikant and Agrawal
(1996), albeit with twice as many input-sequences. We used the publicly available dataset
generation code from the IBM Quest data mining project (IBM). These datasets mimic
real-world transactions, where people buy a sequence of sets of items. Some customers
may buy only some items from the sequences, or they may buy items from multiple
sequences. The input-sequence size and event size are clustered around a mean and a few
of them may have many elements. The datasets are generated using the following process.
First NI maximal events of average sizeI are generated by choosing fromN items. Then
NS maximal sequences of average sizeSare created by assigning events fromNI to each
sequence. Next a customer (or input-sequence) of averageC transactions (or events)
is created, and sequences inNS are assigned to different customer elements, respecting
the average transaction size ofT . The generation stops whenD input-sequences have

SEQUENCE MINING 51

Figure 17. Synthetic datasets.

been generated. Like Srikant and Agrawal (1996) we setNS = 5000,NI = 25000 and
N = 10000. Figure 17 shows the datasets with their parameter settings. We refer the
reader to Agrawal and Srikant (1995) for additional details on the dataset generation.

Plan dataset This real dataset was obtained from a planning domain. The input consists
of a database of plans for evacuating people from one city to another. Each plan has
a unique identifier, and a sequence of actions or events. Each event is composed of
several different attributes including the event time, the unique event identifier, the action
name, the outcome of the event, and a set of additional parameters specifying the weather
condition, vehicle type, origin and destination city, cargo type, etc. Some example plans
are shown in figure 18. Each plan represents an input-sequence (with sid = PlanId). Each

Figure 18. Example plan database.

52 M. J. ZAKI

distinct attribute and value pair is an item. For example,Action=Move, Action=Load,
etc., are all distinct items. A set of items forms an event (with eid = Time). For example,
the second row of the first plan corresponds to the event(84, Load, Success, Exodus,
People7, Heli1).

The data mining goal is to identify the causes of plan failures. Each plan is taggedFailure
or Successdepending on whether or not it achieved its goal. We mine only the dataset of
bad plans, which has 77 items, 202071 plans (input-sequences), and 829236 events in all.
The average plan length is 4.1, and the average event length is 7.6. Details of the planning
application are presented in Section 7 when we discuss how sequence mining can be applied
in practice.

6.1. Comparison of SPADE with GSP

Figure 19 compares SPADE with GSP, on different synthetic datasets. Each graph shows
the results as the minimum support is changed from 1% to 0.25%. Two sets of experiments
are reported for each value of support. The bar labeled SPADE corresponds to the case
where we computedF2 via the vertical-to-horizontal transformation method described in
Section 5.1. The times for GSP and SPADE include the cost of computingF2. The bars
labeled SPADE-F2 and GSP-F2 correspond to the case whereF2 was computed in a pre-
processing step, and the times shown don’t include the pre-processing cost. In all the runs,
subsequence pruning was disabled for SPADE, since it was found to be of no benefit.

The figures clearly indicate that the performance gap between the two algorithms in-
creases with decreasing minimum support. SPADE is about twice as fast as GSP at lower
values of support. In addition we see that SPADE-F2 outperforms GSP-F2 by an order of
magnitude in most cases. There are several reasons why SPADE outperforms GSP:

1. SPADE uses only simple temporal join operation on id-lists. As the length of a frequent
sequence increases, the size of its id-list decreases, resulting in very fast joins.

2. No complicated hash-tree structure is used, and no overhead of generating and search-
ing of subsequences is incurred. These structures typically have very poor local-
ity (Parthasarathy, Zaki, & Li, 1998). On the other hand SPADE has excellent locality,
since a join requires only a linear scan of two lists.

3. As the minimum support is lowered, more and larger frequent sequences are found. GSP
makes a complete dataset scan for each iteration. SPADE on the other hand restricts
itself to usually only three scans. It thus cuts down the I/O costs.

Another conclusion that can be drawn from the SPADE-F2 and GSP-F2 comparison is
that nearly all the benefit of SPADE comes from the improvement in the running time
after theF2 pass since both algorithms spend roughly the same time in computingF2.
BetweenF3 andFk, SPADE outperforms GSP anywhere from a factor of three to an order
of magnitude.

SEQUENCE MINING 53

Figure 19. Performance comparison: Synthetic datasets.

54 M. J. ZAKI

Figure 20. Performance comparison: Planning dataset.

We also compared the performance of the two algorithms on the plan database. The
results are shown in figure 20. As in the case of synthetic databases, the SPADE algorithm
outperforms GSP by a factor of two.

6.2. Scaleup

We first study how SPADE performs with increasing number of input-sequences. Figure 21
shows how SPADE scales up as the number of input-sequences is increased ten-fold, from
0.1 million to 1 million (the number of events is increased from 1 million to 10 million,
respectively). All the experiments were performed on theC10-T2.5-S4-I1.25dataset with
different minimum support levels ranging from 0.5% to 0.1%. The execution times are
normalized with respect to the time for the 0.1 million input-sequence dataset. It can be
observed that SPADE scales almost linearly.

We next study the scale-up as we vary the dataset parameters in two ways: 1) keeping the
average number of items per event constant, we increase the average number of events per
input-sequence; and 2) keeping the average number of events per input-sequence constant,
we increase the average number of items per event. The size of the datasets is kept nearly
constant by ensuring that the product of the average event size, the average number of events
per input-sequence, and the number of input-sequencesT · C · D remains the same. The
aim of these experiments is to gauge the scalability with respect to the two test parameters,
and independent of factors like database size or the number of frequent sequences.

Figure 22 shows the scalability results. To ensure that the number of frequent sequences
doesn’t increase by a great amount, we used an absolute minimum support value instead of
using percentages (the graph legends indicate the value used). For both the graphs, we used
S4-I1.25, and the database size was kept a constant atT ·C · D = 500 K. For the first graph
we usedT = 2.5, and variedC from 10 to 100 (D varied from 200 K to 20 K), and for the
second graph we setC = 10, and variedT from 2.5 to 25 (D varied from 200 K to 20 K).

SEQUENCE MINING 55

Figure 21. Scale-up: Number of input-sequences.

Figure 22. Scale-up: a) Number of events/input-sequence; b) event size.

It can be easily observed the the algorithm scales linearly with the two varying parameters.
The scalability is also dependent on the minimum support value used, since for a lower
minimum support relatively more frequent sequences are generated with increase in both
the number of events and the event size, and thus it takes more time for pattern discovery
in these cases.

We further study the scalability as we change the size of the maximal elements in two
ways: 1) keeping all other parameters constant, we increase the average length of maximal
potential frequent sequences; and 2) keeping all other parameters constant, we increase the
average length of maximal potential frequent events. The constant parameters for the first
experiment wereC10-T2.5-I1.25-D200K, andS was varied from 2 to 10. For the second
experiment, the constant parameters wereC10-T5-S4-D200K, andI was varied from 1 to 5.

56 M. J. ZAKI

Figure 23. Scale-up: a) Frequent sequence length; b) frequent event length.

Figure 23 shows how the algorithm scales with the two test parameters. For higher
values of support the time starts to decrease with increasing maximal element size. This
is because of the fact that the average event size and average number of input-sequence
events remains fixed, and increasing the maximal frequent sequence or event size means
that fewer of these will fit in an input-sequence, and thus fewer frequent sequences will be
discovered. For lower values of support, however, a larger sequence will introduce many
more subsequences, thus the time starts to increase initially, but then decreases again due
to the same reasons given above. The peak occurs at roughly the median values ofC10 (at
S6) for the sequences experiment, and ofT5 (at I 2) for the events experiment.

7. Practical application of sequence mining

We saw in the last section that SPADE is an efficient and scalable method for mining
frequent sequences. However, the mining process rarely ends at this stage. The more im-
portant aspect is how to take the results of mining and use them effectively within the target
domain. In this section we briefly describe our experiences in applying sequence mining
in a planning domain to predict failures before they happen, and to improve the plans.

Using SPADE to find the frequent sequences we developed a system called PLAN-
MINE (Zaki, Lesh, & Ogihara, 1998), which has been integrated into two applications
in planning: the TRIPS collaborative planning system (Ferguson & James, 1998), and
the IMPROVE algorithm for improving large, probabilistic plans (Lesh, Martin, & Allen,
1998).

TRIPS is an integrated system in which a person collaborates with a computer to develop
a high quality plan to evacuate people from a small island. During the process of building
the plan, the system simulates the plan repeatedly based on a probabilistic model of the
domain, including predicted weather patterns and their effect on vehicle performance. The
system returns an estimate of the plan’s success. Additionally, TRIPS invokes PLANMINE

SEQUENCE MINING 57

Figure 24. a) Number of frequent sequences; b) effect of different pruning techniques.

on the execution traces produced by simulation, in order to analyzewhy the plan failed
when it did. This information can be used to improve the plan. PLANMINE has also been
integrated into the IMPROVE algorithm forautomaticallymodifying a given plan so that it
has a higher probability of achieving its goal. IMPROVE runs PLANMINE on the execution
traces of the given plan to pinpoint defects in the plan that most often lead to plan failure.
It then applies qualitative reasoning and plan adaptation algorithms to modify the plan to
correct the defects detected by PLANMINE.

We applied SPADE to the planning dataset to detect sequences leading to plan failures.
We found that since this domain has a complicated structure with redundancy in the data,
SPADE generates an enormous number of highly frequent, but unpredictive rules (Zaki,
Lesh, & Ogihara, 1998). Figure 24 shows the number of mined frequent sequences of
different lengths for various levels of minimum support when we ran SPADE on the bad
plans. At 60% support level we found an overwhelming number of patterns (around 6.5
million). Even at 75% support, we have too many patterns (38386), most of which are
quite useless for predicting failures when we compute their confidence relative to the entire
database of plans. Clearly, all potentially useful patterns are present in the sequences mined
from the bad plans; we must somehow extract the interesting ones from this set.

We developed a three-step pruning strategy for selecting only the most predictive se-
quences from the mined set:

1. Pruning normative patterns: We eliminate allnormativerules that are consistent with
background knowledge that corresponds to the normal operation of a (good) plan,
i.e., we eliminate those patterns that not only occur in bad plans, but also occur in
the good plans quite often, since these patterns are not likely to be predictive of bad
events.

2. Pruning redundant patterns: We eliminate allredundantpatterns that have the same
frequency as at least one of their proper subsequences, i.e., we eliminate those patterns

58 M. J. ZAKI

q that are obtained by augmenting an existing patternp, whileq has the samefrequency
as p. The intuition is thatp is as predictive asq.

3. Pruning dominated patterns: We eliminate alldominatedsequences that are less pre-
dictive than any of their proper subsequences, i.e., we eliminate those patternsq that are
obtained by augmenting an existing patternp, wherep is shorter or more general than
q, and has a higherconfidenceof predicting failure thanq.

Figure 24 shows the reduction in the number of frequent sequences after applying each
kind of pruning. After normative pruning (by removing patterns with more than 25% support
in good plans), we get more than a factor of 2 reduction (from 38386 to 17492 sequences).
Applying redundant pruning in addition to normative pruning reduces the pattern set from
17492 down to 113. Finally, dominant pruning, when applied along with normative and
redundant pruning, reduces the rule set from 113 down to only 5 highly predictive patterns.
The combined effect of the three pruning techniques is to retain only the patterns that have
the highest confidence of predicting a failure, where confidence is given as:

Conf(α) = σ(α,Db)

σ (α,Db +Dg)

whereDb is the dataset of bad plans andDg the dataset of good plans.
These three steps are carried outautomaticallyby mining the good and bad plans sepa-

rately and comparing the discovered rules from the unsuccessful plans against those from
the successful plans. There are two main goals: 1) to improve an existing plan, and 2) to
generate a plan monitor for raising alarms. In the first case the planner generates a plan and
simulates it multiple times. It then produces a database of good and bad plans in simulation.
This information is fed into the mining engine, which discovers high frequency patterns in
the bad plans. We next apply our pruning techniques to generate a final set of rules that
are highly predictive of plan failure. This mined information is used for fixing the plan to
prevent failures, and the loop is executed multiple times till no further improvement is ob-
tained. The planner then generates the final plan. For the second goal, the planner generates
multiple plans, and creates a database of good and bad plans (there is no simulation step).
The high confidence patterns are mined as before, and the information is used to generate
a plan monitor that raises alarms prior to failures in new plans.

Our experiments (Zaki, Lesh, & Ogihara, 1998) showed that for IMPROVE, PLANMINE

improves the plan success rate from 82% to 98%, while less sophisticated methods for
choosing which part of the plan to repair were only able to achieve a maximum of 85%
success rate. We also showed that the output of PLANMINE can be used to build execution
monitors which predict failures in a plan before they occur. We were able to produce
monitors with 100% precision, that signal 90% of all the failures that occur.

8. Conclusions

In this paper we presented SPADE, a new algorithm for fast mining of sequential patterns in
large databases. Unlike previous approaches which make multiple database scans and use

SEQUENCE MINING 59

complex hash-tree structures that tend to have sub-optimal locality, SPADE decomposes
the original problem into smaller sub-problems using equivalence classes on frequent se-
quences. Not only can each equivalence class be solved independently, but it is also very
likely that it can be processed in main-memory. Thus SPADE usually makes only three
database scans—one for frequent 1-sequences, another for frequent 2-sequences, and one
more for generating all other frequent sequences. If the supports of 2-sequences is available
then only one scan is required. SPADE uses only simple temporal join operations, and is
thus ideally suited for direct integration with a DBMS.

An extensive set of experiments has been conducted to show that SPADE outperforms
the best previous algorithm, GSP, by a factor of two, and by an order of magnitude with
precomputed support of 2-sequences. It also has excellent scaleup properties with respect
to a number of parameters such as the number of input-sequences, the number of events
per input-sequence, the event size, and the size of potential maximal frequent events and
sequences.

We also discussed how the mined sequences can be used in a real application. We
observed that simple mining of frequent sequence produces an overwhelming number of
patterns, many of them trivial or useless. However, the mined set does contain all potentially
useful patterns. Thus some form of post-processing is necessary to weed out the irrelevant
patterns and to locate the most interesting sequences. We showed how one can identify
these using novel pruning strategies, that can be applied in almost any domain.

References

Agrawal, R. & Srikant, R. (1995). Mining sequential patterns. In11th Intl. Conf. on Data Engineering.
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., & Verkamo, A. I. (1996). Fast discovery of association rules.

In U. Fayyad, et al. (ed.),Advances in knowledge discovery and data mining, pp. 307–328. Menlo Park, CA:
AAAI Press.

Davey, B. A. & Priestley, H. A. (1990).Introduction to lattices and order. Cambridge: Cambridge University
Press.

Ferguson, G. & James, A. (1998). TRIPS: An integrated intelligent problem-solving assistant. In15th Nat. Conf.
Artificial Intelligence.

Hatonen, K., Klemettinen, M., Mannila, H., Ronkainen, P., & Toivonen, H. (1996). Knowledge discovery from
telecommunication network alarm databases. In12th Intl. Conf. Data Engineering.

IBM. http://www.almaden.ibm.com/cs/quest/syndata.html. Quest Data Mining Project, IBM Almaden Research
Center, San Jose, CA 95120.

Lesh, N., Martin, N., & Allen, J. (1998). Improving big plans. In15th Nat. Conf. Artificial Intelligence.
Mannila, H., & Toivonen, H. (1996). Discovering generalized episodes using minimal occurences. In2nd Intl.

Conf. Knowledge Discovery and Data Mining.
Mannila, H., Toivonen, H., & Verkamo, I. (1995). Discovering frequent episodes in sequences. In1st Intl. Conf.

Knowledge Discovery and Data Mining.
Oates, T., Schmill, M. D., Jensen, D., & Cohen, P. R. (1997). A family of algorithms for finding temporal structure

in data. In6th Intl. Workshop on AI and Statistics.
Parthasarathy, S., Zaki, M. J., & Li, W. (1998). Memory placement techniques for parallel association mining. In

4th Intl. Conf. Knowledge Discovery and Data Mining.
Savasere, A., Omiecinski, E., & Navathe, S. (1995). An efficient algorithm for mining association rules in large

databases. In21st Intl. Conf. on Very Large Data Bases.
Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: Generalizations and performance improvements.

In 5th Intl. Conf. Extending Database Technology.

60 M. J. ZAKI

Zaki, M. J., Parthasarathy, S., Ogihara, M., & Li, W. (1997). New algorithms for fast discovery of association
rules. In3rd Intl. Conf. on Knowledge Discovery and Data Mining.

Zaki, M. J., Lesh, N., & Ogihara, M. (1998). PLANMINE: Sequence mining for plan failures. In4th Intl. Conf.
Knowledge Discovery and Data Mining.

Zaki, M. J. (1998). Efficient enumeration of frequent sequences. In7th Intl. Conf. on Information and Knowledge
Management.

Received February 15, 1999
Revised February 15, 1999
Accepted November 26, 1999
Final manuscript December 4, 1999

