
Clustering with Lower Bound on Similarity ⋆

Mohammad Al Hasan1, Saeed Salem1,
Benjarath Pupacdi2, and Mohammed J. Zaki1

1 Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY
2 Chulabhorn Research Institute, Laksi, Bangkok, Thailand

Abstract. We propose a new method, called SimClus, for clustering
with lower bound on similarity. Instead of accepting k the number of
clusters to find, the alternative similarity-based approach imposes a lower
bound on the similarity between an object and its corresponding cluster
representative (with one representative per cluster). SimClus achieves a
O(log n) approximation bound on the number of clusters, whereas for
the best previous algorithm the bound can be as poor as O(n). Experi-
ments on real and synthetic datasets show that our algorithm produces
more than 40% fewer representative objects, yet offers the same or better
clustering quality. We also propose a dynamic variant of the algorithm,
which can be effectively used in an on-line setting.

1 Introduction

In many application domains that involve clustering, it is difficult to guess the
number of clusters. It is even more challenging in dynamic domains like news-
groups and blogosphere clustering, where the number of topics is typically un-
known and may even change.

An alternative to the parameter k that defines the number of clusters is to
provide a lower bound, β that defines the desired (minimum) similarity between
a cluster member and a representative object in that cluster. This similarity-
based formulation has several benefits. Firstly, the lower bound β automatically
imposes a similarity bound among the members of a cluster. Secondly, it supports
overlapping clusters in a very natural way. Thirdly, this paradigm can easily be
adapted to work in a dynamic setting, where new objects are added in or existing
objects are removed.

The optimization problem of clustering with a lower bound on similarity is
in fact NP-Hard (as we show below). We thus propose a greedy solution, named
SimClus, that achieves a O(log n) approximation bound (where n is the size of
the object-set). We also show that the approximation bound for the existing best
algorithm, star clustering [2], is as worse as O(n). We then propose a variant of
SimClus that is suitable for clustering in a dynamic setting. We experiment with
different synthetic and real-world datasets like random graphs and newsgroup

⋆ This work was supported in part by NSF Grants EMT-0829835, and CNS-0103708,
and NIH Grant 1R01EB0080161-01A1.

documents. In all experiments, SimClus achieves similar or better clustering
performance in comparison to Star clustering algorithm with more than 40%
fewer representatives. It also outperforms traditional clustering algorithms (k-
Medoids, hierarchical clustering) in terms of cluster quality and execution time.

2 Background

Consider a set of objects, O, and a similarity function, sim : O×O → [0, 1] such
that for any x ∈ O : sim(x, x) = 1. Assume that the objective is to cluster the
objects in O such that the objects in a cluster are at least β-similar for a user
defined β ∈ [0, 1] (with minimum number of clusters). This formulation leads to
an interesting graph problem, given as follows: Let G(V,E) be a graph whose
vertices are the objects, and an edge e(u, v) ∈ E implies that the similarity
between vertices u and v is at least β. Below we shall refer to it as the (β)
similarity graph. Now, any clique in this graph can be taken as one cluster
in some clustering, since the distances between the elements in a clique would
satisfy the required pair-wise similarity constraints. The clustering objective then
becomes to cover the entire graph G by a minimum number of cliques. However,
this formulation is difficult to solve; in fact, it leads to an NP-Complete problem,
named covering a graph by cliques, which can not be approximated in polynomial
time [11].

A relaxation of the above problem can be obtained which requires the sim-
ilarity bound (β) to hold only between the cluster elements and a fixed center
object belonging to that cluster. The center object is the representative for the
corresponding cluster. Thus if a cluster has m elements, out of all

(

m

2

)

similari-
ties, m− 1 are guaranteed to be greater than or equal to β. Nevertheless, all the
m objects in the cluster would be sufficiently similar due to triangular inequality
or other forms of transitive bounds. We call this relaxed formulation the lower
bound similarity clustering (LBSC) problem, and it is the main focus of
this paper. LBSC seeks exactly one cluster center (representative object) for
every cluster. Thus a center object c together with all the objects s such that
sim(c, s) ≥ β, form a cluster. All objects s that satisfy the above inequality are
called β-similar objects with respect to the object c. If s is β-similar to multi-
ple centers, it belongs to multiple clusters. Thus this model naturally supports
overlapping clusters. Since every object s belongs to at least one cluster, s is
β-similar to at least one representative object, say c. In that case, we say that
c covers s. Thus, the clustering objective is to cover all the objects with the
smallest number of center objects. A center always covers itself. Unfortunately,
the optimization task of LBSC is also NP-Hard, since the corresponding decision
problem is NP-Complete.

Lemma 1. For a given collection of objects O, and a user-defined similarity

threshold β, to determine whether there exists a set of representative objects,

C ⊆ O, of size k is NP-Complete.

Proof: Given graph G = (V,E), the vertex dominating set problem, a known

NP-Complete problem [7], asks whether there exists a subset C ⊆ V (called
dominating set), of size at most k, such that every vertex in V \C is adjacent to
at least one element in C. If G is the β-similarity graph then each center set C
corresponds to a dominating set, since every object in O is either in the center
set or is covered by at least one cluster center.

1

2

3

4

5

6

7

8

9

(a)

1

2

3

4

5

6

7

8

9

(b)

Fig. 1. Lower bound similarity clustering. (a) β-similar graph. (b) overlap-
ping clusters

The above relation to the dominating set problem suggests a graph-based for-
mulation. From

(

n

2

)

similarity values for a set of n objects, we can first construct
a β-similarity graph. Then, in this graph we need to find a vertex dominating
set, which would constitute the representative center set. Figure 1(a) shows an
example β-similarity graph. Figure 1(b) shows a LBSC of these objects with 3
clusters (dotted closed curves, with gray circles as center objects).

2.1 Related Work

LBSC did not get much attention in the past. Star clustering [2] is the leading
algorithm in this paradigm (we discuss it in detail below). [6] highlighted some
of the problems of the Star algorithm and proposed an alternative solution to
improve it, however they did not provide any approximation bounds. Further-
more, they considered only the static scenario. In terms of dynamic clustering,
[3] propose an online version of the popular EM-based approach. [1] solves it by
using an online component and an off-line component, whereas [5] proposed an
online variant of different mixture model clustering for text data. One may con-
sider the streaming model as dynamic clustering, however, this model imposes
very strict requirements [4] on available memory and the number of passes over
the data. Hence, the approximation quality is generally poor.

Star Clustering: Aslam et. al. [2] proposed a greedy solution to LBSC called
Star clustering. It sorts the vertices in the descending order of degree; it then
selects the first vertex in the sorted order as one of the cluster centers. Any other
vertex covered by this one is deleted from the sorted list and the procedure is
repeated until all the vertices are covered. Provided the similarity matrix is
given, the computational complexity of this method is O(|V | lg |V |). Figure 1(b)

shows an example of Star clustering. The greedy solution of the Star algorithm
is obviously not optimal. Moreover, the approximation bound can be very bad.

Lemma 2. The greedy Star clustering algorithm generates an independent set.

Proof: Once it selects an object as a center-node, it removes all adjacent (cov-
ered) nodes. In later iterations they never appear in the dominating set, thus it
is an independent set.

1

2

3

4

5
6

7

8

9

10

Fig. 2. Star clustering: poor
bound

The independent set restriction is the
main reason why Star clustering yields un-
necessarily many star-centers. In Figure 2,
we show an example that illustrates the poor
bound of the Star clustering algorithm. In-
stead of choosing {2, 8} as center-nodes (in
gray), Star algorithm chooses {1, 3, 4, 5, 8},
to respect the independence set condition.
This example can be generalized to obtain a
bound in an asymptotic sense. Assume, we have n vertices arranged in two star-
shapes (as in Figure 2), each with n

2
− 1 satellites and one star-center. Assume

further that the two star-centers are adjacent to each other. In this case, Star
clustering would return n

2
centers, whereas the optimal LBSC would have only

2 centers; thus the approximation ratio can be as bad as O(n).

3 SimClus: Lower Bound Similarity Clustering

We now describe our set cover formulation for LBSC, named SimClus. It is
also greedy in nature, but with a better O(log n) approximation bound. It thus
produces fewer cluster centers, and better representative objects for each cluster.

Lemma 3. LBSC can be reduced to a set cover problem.

Proof: Let G = (V,E) be the β-similarity graph. For each vertex u ∈ V , we
construct a new set su = {u}∪{v : (u, v) ∈ E}. Let S = {su : u ∈ V }. Obviously,
|S| = |V | and there exists a one-to-one correspondence between the elements in
S and the vertices in V . The set cover problem is to find the smallest set of
elements T ⊆ S, that covers all the vertices, i.e.,

⋃

u{Su : u ∈ T } = V). If for
each sx ∈ T , we insert the corresponding vertex x ∈ V in the center-set C, then
C is also an optimal solution for the LBSC problem, since the minimality of |T |
ensures the minimality of |C|.

The set-cover problem is NP-Complete, but it can be solved using an efficient
greedy algorithm that achieves O(log n) approximation bound [10]. The greedy
heuristic iteratively chooses the set that covers the largest number of uncovered
elements until all the elements are covered. Using the same heuristic for LBSC
then yields the O(log n) approximation bound with much fewer representatives.
For the dominating set problem, the hardness of approximation result is also
available, that proves that unless P = NP , no polynomial time algorithm can

have better than O(log n) approximation [9]. So, it is highly unlikely that a
better bound then log n can be achieved for LBSC.

The main difference between Star clustering and SimClus is that instead of
choosing the uncovered object with the highest degree (as done in Star), SimClus
chooses the object that can cover the most uncovered elements. This drastically
reduces the number of clusters; the clusters are more dense and hence, more
informative.

SimClus follows the reduction shown in Lemma 3. At the beginning, all the
objects are not covered and the center-set is empty. We then map each vertex, u
of LBSC similarity graph to a set su that contains itself and all objects that it can
cover. To facilitate the greedy heuristic, the set su,∀u ∈ V contains only those
objects that are uncovered. So, we call the set su as the uncovered cover-set of u,
which intuitively means that it holds those objects that are uncovered and can
be covered by choosing u as a center. Hence, once an object is chosen as a center,
the uncovered cover-set of all the non-center objects are updated by removing
any object that is covered by the newly chosen center. In every iteration a new
center is selected using the above greedy criterion and the process is repeated
until all the objects are covered. If there is a tie in the above criterion, we break
the tie by selecting the object that has the largest degree in the similarity graph.
If there is still a tie, we break it arbitrarily.

Example: Consider the similarity graph in Figure 2. The uncovered cover-set
of vertex 1 is {1, 2}, and for vertex 2 it is {1, 2, 3, 4, 5, 8}. At the beginning, the
uncovered cover-set of both the vertices 2 and 8 have the same size. They also
have equal degrees. So, we arbitrarily choose, say, vertex 2 as a center. After
updating the uncovered cover-set for all the objects, we have empty uncovered
cover-set for 1, 3, 4 and 5 and only one object for 6, 7, 9 and 10. But, the uncovered
cover-set for 8 contains {6, 7, 9, 10}. So, 8 is selected as the next center. At this
point all the objects are covered, and the algorithm terminates by returning
{2, 8} as representatives.

Complexity Analysis: SimClus computes the entire similarity matrix to find
the β-similarity graph. So, the overall complexity of the algorithm is at least
O(|V |2). If we consider that the similarity matrix is given, then the overall
worst-case complexity can be computed in terms of the number of the centers
obtained. Assume, that the final clustering has k centers. In each iteration, the
best center can be obtained in O(lg |V |) time by using a max heap data structure.
The cover-set update affects only those vertices that are adjacent to the newly
covered objects. For the sake of worse case analysis, if we assume that to be
O(|V |), the worst case complexity of the algorithm is O(k|V |).

4 Dynamic SimClus: Dynamic Similarity Clustering

The static algorithm that is provided in the previous section requires that the
entire β-similarity graph is available before the algorithm is applied. However,
in many practical application scenarios, this requirement does not hold. For
information retrieval, new documents can be added or old documents may be

deleted from the repositories and the clustering may need to be updated. One
option is to re-cluster the objects by running the static clustering algorithm
for every change in the collection. But, for most of the cases, the changes are
only local; so re-computing the entire clustering is wasteful. Also note that re-
computation dramatically changes the cluster-centers; so if the objective of LBSC
is to find representative objects in a dynamic setting, one may prefer the dynamic
algorithm over the static algorithm, since the former retains a large portion of
the representative set. It is also useful in adopting a lazy update scheme for a
static version. Since, the dynamic version is generally worse in terms of number
of clusters compared to the static version (the O(log n) approximation guarantee
may not hold), a static update may follow after a batch of dynamic updates to
re-optimize the clustering.

Dynamic SimClus: In a dynamic environment, we assume that we have an
initial solution for the lower bound similarity clustering. New requests for inser-
tion or deletion of an object come in an arbitrary manner. We need to satisfy
the requests efficiently while maintaining the minimality of the representative
set as much as possible. We are allowed to change the status of an object in
either direction (a center can be made non-center and vice-versa). It is worth
pointing that this model is not the same as the online model that is studied
in theoretical computer science. In the online model, the decision that is made
based on present information cannot be altered later when further information is
available at future. So in a pure online setting, if a node is made representative,
its status cannot be changed later. Nevertheless, the online version of LBSC is
very difficult; in fact its competitive ratio is as worse as O(n − 1) [8].

Since the dynamic model assumes that a valid solution to the lower bound
similarity clustering exists, addition of new objects cannot be made based on
the greedy criteria of the static algorithm, as only one object (the new object) is
uncovered and all vertices adjacent to it have exactly the same size (one) for the
uncovered cover-set. So, we propose to obtain cluster-centers in such way that
the following three conditions are satisfied.

1. Every object is either a cluster-center or is adjacent to at least one cluster
center.

2. A cluster center with degree > 0 must be adjacent to at least one non-center
object of smaller or equal degree.

3. No cluster-center is redundant, i.e. every cluster-center covers at least one
object exclusively.

Note that the first of the above conditions is from the definition of LBSC.
However, the second and the third conditions are chosen for LBSC to have a
reasonably good solution in a dynamic setting. In the experimental section, we
shall show that the above dynamic algorithm generates less centers in comparison
to both static and dynamic Star clustering algorithm.

Inserting a new object: A center is called illegal if it does not satisfy condition
(2) above, i.e. all its adjacent vertices have degree strictly higher than it. A center
is called redundant, if its removal does not change (increase) the number of nodes

that need to be covered. The dynamic SimClus accepts as input the similarity
graph and the covered vector, which stores the current coverage of each existing
vertex. Once a new object v is added, the adjacency list of similarity graph G
is updated. If v is adjacent to any existing center, it is properly reflected in the
covered vector. Now, we have two different cases to consider.

In the first case, when v is covered, condition 1 is already satisfied. Then, we
check condition 2 (illegal center) for all the centers that are adjacent to v. Since
addition of new vertices can change the adjacency list of some of the existing
vertices, this may change a legal center into an illegal one. If this check succeeds
(some illegal neighboring center is found), we make the illegal center as non-
center and v becomes a center. This step is called recursively on success. In case
the above step fails (v is not a center yet), we test whether v should be a center
as it has strictly higher degree than any of its neighboring centers. Note that
this step is not essential for correctness according to our conditions, but this
heuristic has potential to generate better centers.

For the second case, when v is not covered, then none of its adjacent vertices
is a center and to fulfill the coverage requirements, at least one of these vertices
should be a center. We first test whether it should be some x ∈ adj(v) by checking
whether it has any illegal neighbors. If not, then we choose the vertex with the
highest degree as a center.

When a node is made a center, some auxiliary updates are required. First,
redundancy check is required for all other centers that are adjacent to it to satisfy
the condition 3. Moreover, some adjacent non-centers can also become a center
as one of its neighboring center becomes illegal. Figure 3 shows an example of
insertion, where we explain the steps of the insertion algorithm.

Deleting an existing object: Deletion is comparably easier. Like insertion, we
first update the adjacency and covered vector as necessary. Then, we consider
the following two cases. The first is when the deleted node v was a center. In
that case, we need to check if any of its adjacent vertex becomes isolated. All
of those become centers. For the remaining, if they are still covered, we return
immediately. Assume x is not covered, then we cover x by making the highest
degree vertex (among itself and its neighbors) a center. For the second case,
when v was not a center, its removal does not violate condition (1), so we check
for condition (2) and (3) by calling the same methods as in insert routine.

Complexity Analysis: Complexity of dynamic SimClus is difficult to analysis,
since it depends on the degree of the vertices that are adjacent to the inserted (or
deleted) vertex. For the sake of average-case analysis, we assume Erdos-Renyi
random graph model, where the (expected) degree of a node is equal to d = p.|V |;
p is the probability of an edge to exist. The redundancy checking of a node takes
O(d) time as it just reads the covered array of its adjacent nodes. Similarly, the
illegal center condition checking of one node also takes O(d) time, as it reads the
degree of the adjacent nodes. So, considering the above check for all the nodes
adjacent to the inserted (deleted) node, the total cost is O(d2) But, this check
is done recursively on success. If the recursion is successful for I times, the total

1

2

8 3

4

6

5

7

(a)

1

2

8 3

4

6

5

7

(b)

1

2

8 3

4

6

5

7

(c)

1

2

8 3

4

6

5

7

(d)

Fig. 3. Insertion example; a diamond shape indicates a center. (a) after
inserting node 8, node 3 is illegal center. (b) node 3 becomes non-center and
node 8 becomes a center; now, node 4, a center-neighbor of 8 is redundant.
(c) redundant center removed; a non-center neighbor of 8, namely 1, has
an illegal center 2 as neighbor. (d) Final result; an off-line algorithm will
produce identical result.

cost is O(Id2). But, generally the value of I is very close to O(1) as we show
next.

From the definition, an illegal center has the smallest degree among all its
neighbors. Assume u is a node, deg(u) is its degree and adj(u) is its adjacency
list. The probability that u is an illegal node is given as:

=
n−2
∑

i=1

P [∀v ∈ adj(u) : deg(v) ≥ i + 1 | deg(u) = i]

=

n−2
∑

i=1

(P [deg(v) ≥ i + 1|v ∈ adj(u)])
i
· P [deg(u) = i]

=
n−2
∑

i=1





(

n−2
∑

k=i+1

(

n − 2

k

)

pk(1 − p)n−k−2

)i

·

(

n − 1

i

)

pi(1 − p)n−i−1





The probability that the node u has degree i is equal to
(

n−1

i

)

pi(1− p)n−i−1

and the probability that a node v ∈ adj(u) has degree greater than i is equal to
∑n−2

k=i+1

(

n−2

k

)

pk(1 − p)n−k−2. For a node to be illegal, all its neighbors should
have greater degree. Since an illegal node can have degree from 1 to n − 2, the
outer sum aggregates these probabilities. If the above probability is prepeat, using
geometric distribution, the average value of I is 1

1−prepeat
. For all possible values

of p, the value for I is less than 2 (found with direct calculation in Matlab) when
n >= 10. For example, the highest value of I from n is 10 is around 1.75 and
for n = 1000, it is around 1.015 and with larger n, the value diminishes further.
Intuitively, this means that for random graphs, every node is generally connected
to some vertices with higher and some vertices with lower degree; hence, very
few nodes are illegal. For real-life graphs, the constant may be a bit higher. So,

considering I a constant, the complexity of dynamic algorithm for one insertion
or deletion is O(d2).

5 Experiments

The objective of the experiments is to show the following. Firstly, that SimClus
returns a smaller number of representatives for LBSC, yet it yields similar quality
as Star clustering. Secondly, that the representative objects are of good quality
and can generate clustering that is better than the traditional clustering algo-
rithms. Finally, that the LBSC approach is particularly suitable for clustering
multi-label dataset.

Besides SimClus and Star, the experiments use two other traditional cluster-
ing algorithms: k-Medoids, and hierarchical (UPGMA). For all the algorithms,
the document similarity is modeled by using cosine similarity and a similar-
ity matrix is provided as input. For k-Medoids, we use our own implementa-
tion which works very similar to k-Means, but in each iteration, when k-Means
chooses a new center by averaging the vectors in that cluster, it chooses it by find-
ing the object with the best average similarity to all the objects in that cluster
(thus it has a quadratic time complexity). For hierarchical clustering, we use the
CLUTO implementation (glaros.dtc.umn.edu/gkhome/views/cluto/). The
Star algorithm was implemented as described in [2].

5.1 Synthetic data: Random Graphs

vertex edge
Number of clusters

SimClus Star
static dynamic static dynamic

Erdos-Renyi random graphs

1000 5000 144 194 209 209
1000 10000 84 123 126 130
1000 100000 16 22 21 24

10000 50000 1424 1951 2066 2068
10000 100000 840 1227 1323 1311
10000 1000000 147 225 247 245

Power Law graphs

1000 5000 547 564 579 579
1000 10000 525 539 550 549
1000 100000 496 502 502 503

10000 50000 3285 3498 4015 4024
10000 100000 2734 2928 3340 3340
10000 1000000 1991 2094 2156 2156

Table 1. Performance on random graphs

The first experiment considers
synthetic data, in the form of
random similarity graph of vari-
ous size and types for both static
and dynamic scenario. For the dy-
namic experiments, we shuffle the
vertices of the similarity graphs
randomly and insert them in the
existing graph (staring from an
empty graph) in that order. With
a small probability (0.05), we also
delete a random vertex after ev-
ery insertion. For random graph
type, we considers the following
two models: (1) Erdos-Renyi and
(2) Power-law graphs. Table 1
shows the center-set sizes. For
both static and dynamic versions,
SimClus achieves a smaller num-
ber of clusters in comparison to Star. Specifically, the static version significantly
outperforms the static (and dynamic) version of Star. As expected, dynamic

SimClus does not perform as good as the static version, yet it performs better
than Star.

5.2 Newsgroup dataset

For a real-life dataset, we chose the Twenty-newsgroup data from the UCI Repos-
itory (www.ics.uci.edu/~mlearn). This dataset is interesting for our exper-
iments, as it has a set of documents that have multiple labels. We used the
rainbow package (www.cs.cmu.edu/~mccallum/bow) to convert the documents
into word vectors and then used the best 100 words (in terms of mutual in-
formation gain statistics) as feature vectors. We discarded any document that
did not have any of the top 100 words. The final dataset had 16701 documents.
Out of those, 16199 had a unique label, 497 documents had 2 labels, and only 5
documents had more than 2 labels. There were 20 different labels in total.

In this experiment, we cluster the documents using different clustering algo-
rithms and compare the clustering performance using supervised performance
metrics, like precision, recall and F-measure. For k-Medoids and Hierarchical
(UPGMA) we set the k value to be 20 to obtain 20 different clusters; then for
every cluster, we use majority voting to label the cluster. For any object with
multiple labels, its vote is counted for all its labels. In case of SimClus and
Star, we cannot use k, so we cluster the documents by two different similarity
thresholds (we used, β = 0.5 and β = 0.75). Number of clusters obtained are
generally higher than 20 (exact values are shown in the k column). As the simi-
larity threshold increases, the number of clusters also increases. Then we classify
each of these clusters as the label of the cluster representative. Note that many
representatives (thus many clusters) can have the same class-label; all of those
clusters are collectively classified with that label. If the representative object has
multiple labels, all the objects adjacent to that representative objects gets mul-
tiple labels. An object can also get multiple labels by being adjacent to multiple
representatives with different class-labels. While computing precision/recall for
multi-label objects, if any of the predicted labels match with any of the actual
labels, the object is considered as a true positive.

algorithm
parameters average average F-Measure
β k precision recall

k-Medoids - 20 59.80 40.21 48.09
UPGMA - 20 48.37 37.33 42.14

Star
0.50 125 53.50 85.96 65.95
0.75 1060 66.83 83.79 74.36

SimClus
0.50 77 51.83 82.38 62.06
0.75 687 70.00 82.79 75.86

Table 2. Comparison on newsgroup dataset

Table 2 shows the results.
Compared to k-Medoids and
Hierarchical, both Star and
SimClus achieve much bet-
ter performance using F-score
measure, because of the very
high recall that these two
achieve. The possible reason
is that, instead of choos-
ing exactly 20 centers (which
may not be enough for the dataset, since the cluster boundary is not regular),
they sample enough representatives to cover the entire cluster. So, a document
has much higher chance to be a neighbor of one of the many centers that matches
with its class label. For example, if a document has a label ”comp.graphics”, out

of, say 500 representatives, roughly 500/20 = 25 representatives may have a label
”comp.graphics”. So, the document has a much higher probability to be a neigh-
bor of any of these. Comparing Star and SimClus, their F-values are similar; for
smaller β, the former and for larger β, the latter has marginally better F-values.
However, SimClus chooses 40% less centers compared to the Star algorithm.

Our third set of experiments compares the ability of SimClus and Star to
predict multiple labels. For this, we find the predicted labels of the objects that
has more than one actual labels (502 documents qualify). An actual multi-label
is considered as recalled if at least two predicted labels matches with two of
the actual labels. Table 3 shows the result for three different values of similar-
ity threshold. The multi-recall columns of the corresponding algorithms show
their respective recalls in percentage. The recall values for both the algorithms
drop with increasing threshold values. The reason is with large threshold β-
similarity graphs become more and more sparse, so an object is not connected
to many representatives. Thus the ability to predict multiple labels diminishes.

similarity SimClus Star
threshold center multi- center multi-

(β) count recall count recall

0.60 144 76.49 273 48.41
0.70 382 41.63 550 45.80
0.80 1274 28.88 1811 31.47

Table 3. Overlapping clustering
performance

In comparison to Star, SimClus performs
substantially better than Star. For exam-
ple, for a β value of 0.60, even with 47% less
centers. As β increases, it suffers somewhat
because it optimizes the number of centers.
In fact, as we investigated we found that
Star achieved better multi-recall, by ac-
tually selecting many of the multi-labeled
nodes as the center objects.

algorithm
Size

k or β 4000 8000 12000 16701

k-Medoids 20 33.36 301.21 1200.12 3100.38
UPGMA 20 6.71 33.48 75.76 216.96

RB 20 25.64 116.68 297.88 677.28

Star 0.50 0.02 0.04 0.06 0.09
(static) 0.75 0.02 0.04 0.05 0.08

SimClus 0.50 5.09 27.62 68.68 197.49
(static) 0.75 0.50 2.53 6.78 15.22

Table 4. Execution time comparison

We also compare the timing
performance of SimClus in com-
parison to other algorithms. The
result is shown in Table 4. The
table shows only the execution
time (in seconds) of the cluster-
ing task; the I/O cost of load-
ing the similarity matrix is ex-
cluded for the sake of fair compar-
ison. The timings were obtained
using a 2.1 GHz machine with
2GB RAM with Linux OS. For this experiment, we randomly select documents
from the newsgroup dataset to make 3 different smaller-size datasets (4000,
8000, 12000). Besides k-Medoids, and UPGMA we also use another algorithm,
RB (from the Cluto software) which is a fast partitional algorithm that uses
repeated bisection. For k-Medoids, UPGMA and RB, which require a k value to
cluster, k = 20 is used as it is the natural number of clusters for the newsgroup
dataset. For Star and SimClus, timing for two different similarity thresholds
(0.5 and 0.75) are reported. Different thresholds account for different number of
edges in the β-similarity graphs. From Table 4, we see that Star is the fastest
among all the algorithms as it just needs to sort the vertex-set only once based

on degree and its timing varies negligibly based on the number of edges. Sim-
Clus is the second fastest and its timing varies based on the number of edges in
the similarity graph since the time complexity has a term related to |E|. The
execution time of SimClus for 0.5 threshold (which is very relaxed for LBSC)
with the entire newsgroup dataset is 1.1, 3.4, and 15.7 times better than UP-
GMA, RB, and k-Medoids respectively. We also compared the execution time of
our dynamic algorithm to evaluate its utility over the static algorithm. For the
newsgroup dataset, average insertion time of one document is 0.13 second, which
is much faster in comparison to the re-clustering time (15.22 seconds) using the
static algorithm.

6 Conclusions

In this paper we proposed a clustering algorithm that uses lower bound on sim-
ilarity to cluster a set of objects from the similarity matrix. Experiments on
real-life and synthetic datasets show that the algorithm is faster and produces
higher quality clustering in comparison to existing popular algorithms. Further-
more, it provides representative centers for every cluster; hence, it is effective in
summarization or semi-supervised classification. It is also suitable for multi-label
or dynamic clustering.

References

1. C. C. Aggarwal, J. Han, J. Wang, and P. S Yu. A framework for clustering evolving
data streams. In VLDB Proceedings, August 2003.

2. J. Aslam, J. E. Pelekhov, and D. Rus. The star clustering algorithm for static and
dynamic information organization. Graph Algorithms and Application, 8(1):95–
129, 2004.

3. K. S. Azoury and M. K. Warmuth. Relative loss bounds for on-line density estima-
tion with the exponential family of distributions. Machine Learning, 43(3):211–246,
2001.

4. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues
in data streams. In ACM SIGMOD-SIGACT-SIGART symposium on Principles
of Database Systems. ACM.

5. A. Banerjee and S. Basu. Topic models over text streams: A study of batch and
online unsepervised learning. In SIAM Data Mining, 2007.

6. R. G-Garcia, J. Badia-Contelles, and A. Pons-Porrata. Extended Star Clustering,
LNCS 2905. Springer, 2003.

7. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

8. G. King and W. Tzeng. On-line algorithm for the dominating set problem. Infor-
mation Processing Letters, 61:11–14, 1997.

9. C. Lund and M. Yannakakis. On the hardness of approximating minimization
problems. Journal of the ACM, 41(5):960–981, 1994.

10. V. V. Vazirani. Approximation Algorithms. Springer-Verlag.
11. D. Zuckerman. Np-complete problems have a version that’s hard to approximate.

In Proc. of Eighth Annual Structure in Complexity Theorey, pages 305–312. IEEE
Computer Society, 1993.

