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Preface

As the volume of data increases, it is clear that both parallel and distributed data mining techniques
are required to make the whole knowledge discovery process scalable and interactive. This workshop
called for papers on high performance parallel and distributed methods, as well as mining on
distributed and heterogeneous datasets. Topics of interest included:

e Efficient, scalable, disk-based, parallel and distributed algorithms for large-scale data mining
tasks

e New algorithms for common data mining methods such as association rules, sequences, clas-
sification, clustering, deviation detection, etc.

e Pre-processing and post-processing operations like sampling, feature selection, data reduction
and transformation, rule grouping and pruning, etc.

e Incremental, exploratory and interactive mining

e Meta-mining, coping with distributed and/or heterogeneous datasets

e Integration of mining with parallel/distributed databases and data-warehouses

e Mining non-traditional datasets, such as large scientific databases

e Frameworks for KDD systems, and parallel or distributed mining

e Agent based approaches for PDDM

e Applications of PDDM in business, science, engineering, medicine, and other disciplines
e Theoretical foundation of PDDM

This is the 4th workshop on this theme held annually in conjunction with the IPDPS conference.
The first three workshops went under the name “High Performance Data Mining,” and were held at
Orlando (HPDM’98), San Juan (HPDM’99) and Cancun (HPDM’00). In keeping with the growing
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popularity and international scope of this field, this workshop was renamed as the “International
Workshop on Parallel and Distributed Data Mining”.

These proceedings contain 5 papers that were accepted for presentation at the workshop. Each
paper was reviewed by two or three members of the program committee. In keeping with the spirit
of the workshop some of these papers also represent work-in-progress. In all cases, however, the
workshop program highlights avenues of active research in high performance data mining.

We would like to thank all the authors and attendees for contributing to the success of the
workshop. Special thanks are due to the program committee for help in reviewing the submissions.
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Abstract

This paper presents research projects tackling two as-
pects in data mining. First, a toolbox is discussed that al-
lows flexible and interactive data exploration, analysis and
presentation using the scripting language Python. The ad-
vantages of this toolbox are that it provides the functional-
ity to process multiple SQL queries in parallel, and enables
fast data retrieval using a supervised caching mechanism
for commonly used queries. These two facets of the toolbox
allow for fast, efficient data access reducing the time spent
on data exploration, preparation and analysis.

Secondly, an approach to predictive modelling is pre-
sented that leads to scalable parallel algorithms for high
dimensional data collections. This is an essential require-
ment for data mining algorithms as those that do not scale
linearly with the data size are infeasible. These algorithms
are implemented in parallel and achieve an almost ideal
speedup for their respective implementations.

One aim of the presented research is to integrate and
combine these two different aspects of data mining into an
efficient but flexible data mining toolbox that allows the ex-
perienced data miner to attack large scale problems inter-
actively or with batch processing.

1 Introduction

There is much ongoing research in sophisticated algo-
rithms for data mining purposes. Examples include predic-
tive modelling, genetic algorithms, neural networks, deci-
sion trees, association rules, and many more. However, it
is generally accepted that it is not possible to apply such

*Corresponding author, E-Mail: Peter.Christen @anu.edu.au

Understand Understand Prepare
Customer Data Data

Take Evaluate Build
Action Model Model(s)

ﬁ

Figure 1. The data mining process

algorithms without a careful data preparation and data un-
derstanding process, which may often dominate the actual
data mining activities [8, 20]. It is also rarely feasible to use
off-the-shelf data mining software and expect useful results
without a substantial amount of data insight. In addition,
data miners working as consultants are often presented with
datasets from an unfamiliar domain and need to get a good
feel for the data and the domain prior to any “real” data
mining. The ease of initial data exploration and preprocess-
ing may well hold the key to successful data mining results
later in a project. These processes are highly interactive:
The data miner investigates the data and extracts subsets of
attributes or transactions to be mined and conducts experi-
ments that lead to new ideas and questions requiring further
exploration. Fast and flexible data querying and aggregation
are therefore mandatory.

Data mining is an iterative process (Figure 1), as vari-
ous steps may have to be repeated several times until useful
and valuable knowledge is found, e.g. the same mining al-
gorithm is used on different subsets of a data collection to
compare different outcomes. A lot of effort in a data mining
project is often spent with time consuming routine tasks. A
caching of intermediate results can thus shorten response
times tremendously and help the data miner to concentrate
on knowledge extraction.

Today data collections have the size of Gigabytes and
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Terabytes, and the first Petabyte databases are appearing in
science [10]. Data mining tools thus have to be able to han-
dle large amounts of data efficiently and they also need to be
scalable with the increasing size of data collections. There-
fore, algorithms which do not scale linearly with the data
size are not feasible. Additionally, the dimensionality of
datasets is increasing, which is a major challenge for many
algorithms as their complexity grows exponentially with the
dimension of a dataset. This has been called the curse of
dimensionality [13]. Parallel processing can help both to
tackle larger problems and to get reasonable response times.
It is not only that more computing power becomes available,
but equally important is the increased I/O bandwidth and
larger main memory provided by most parallel machines.

A further challenge in real world data mining projects
is the various data formats that have to be dealt with, like
relational databases, flat text files, non-portable binary files
or data downloaded from the Web. A flexible middleware
layer can unify the view of different data collections and
facilitate the application of various tools and algorithms.

This paper presents ideas and methods that tackle many
of the described challenges. A toolbox approach using the
scripting language Python [5] allows flexible data explo-
ration, while parallel predictive modelling algorithms that
are scalable both with the number of attributes of a data
collection as well as the number of used processing nodes,
allow mining of high-dimensional data sets. The toolbox
DMtools [18] is currently under development and a pre-
decessor has successfully been applied in real-world data
mining projects under the ACSys CRC grant!. The tool-
box assists our research group in all stages of data mining
projects, starting from data preprocessing, analysis and sim-
ple summaries up to visualisation and report generation. In
Section 2 related work in the relevant areas is presented,
and Section 3 presents our toolbox approach in more detail.
Section 4 discusses our scalable parallel algorithms for pre-
dictive modelling, and Section 5 gives an outlook to future
work.

2 Related work

There are several projects describing toolbox like ap-
proaches to data exploration. The authors of the IDEA
(Interactive Data Exploration and Analysis) system [21]
identify five general user requirements for data exploration:
Querying (the selection of a subset of data according to the
values of one or more attributes), segmenting (splitting the
data into non-overlapping sub-sets), summary information
(like counts or averages), integration of external tools and

' ACSys CRC stands for ’ Advanced Computational Systems Collabora-
tive Research Centre’ and the data mining consultancies were conducted at
the Australian National University (ANU) in collaboration with the Com-
monwealth Scientific and Industrial Research Organisation (CSIRO)

applications, and history mechanisms. The IDEA frame-
work allows quick data analysis on a sampled sub-set of the
data with the possibility to re-run the same analysis later
on the complete dataset. IDEA runs on a PC, with the user
interacting on a graphical interface.

Another approach used in the Control [14] project is to
trade quality and accuracy for interactive response times, in
a way that the system quickly returns a rough approxima-
tion of a result that is refined continuously. The user can
therefore get a glimpse at the final result very quickly and
use this information to change the ongoing process. The
Control system, among others, includes tools for interactive
data aggregation, visualisation and data mining.

Database research and data mining are two related fields
and there are many publications dealing with both areas. An
overview of database mining is given in [7]. According to
the authors the efficient handling of data stored in relational
databases is crucial because most available data is in a rela-
tional form. Scalable and efficient algorithms are one of the
challenges, as is the development of high-level query lan-
guages and user interfaces so data mining tasks can be spec-
ified by non-experts. One of the identified key requirements
is interactivity. The possibilities to interactively analyse
data collections, to refine data mining requests, to deepen
the analysis and to change the focus should be encouraged,
because it is often difficult to predict what exactly could be
discovered from a dataset. Interactive data mining is also
needed if transformation and manipulation of data are nec-
essary, or if different subsets of a data collection are to be
examined. To be able to deal with the huge amounts of data
available, parallel and distributed data mining algorithms
are important, as is the possibility to mine information from
different sources of data.

Parallel data mining is a hot research topic (see [24] for
recent research papers), as the need for parallel processing
is clearly given by the huge and increasing data collections
available. The requirements for parallel KDD systems [17]
include not only parallel scalable hardware platforms, paral-
lel I/O and databases, and parallel data mining algorithms,
but also frameworks for rapid algorithm development and
evaluation. Issues like security, fault tolerance, heteroge-
neous data access and representation, quality of service,
pricing and portability have to be addressed as well. Large-
scale parallel KDD systems should support the entire KDD
process, including pre- and post-processing.

3 A toolbox for data mining

Using a portable, flexible, and easy to use toolbox can
not only facilitate the data exploration phase of a data min-
ing project, it can also help unifying the data access with a
middleware library to integrate the access of different data
sources to the data mining applications. Thus it forms the
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framework for the application of a suite of more sophisti-
cated data mining algorithms. The command line driven
approach of a toolbox — which is also used in packages like
Matlab or Mathematica — is maybe not suited for a novice
user, but for the experienced data miner it provides a more
powerful and flexible tool than a graphical user interface.

The DMrtools [18] are based on the scripting language
Python [5], chosen since it has proven to be an excellent
tool for rapid code development. It allows for efficient han-
dling of large datasets, it is flexible and easily extensible.
Functions and routines can be used as templates which can
be changed and extended as needed by the user to do more
customised analysis tasks. Having a new data exploration
idea in mind, the data miner can implement a rapid pro-
totype very easily by writing a script using the functions
provided by our toolbox.

Because many data collections are stored in relational
databases, it is important that such data can be accessed
efficiently by data mining applications [6]. Furthermore,
databases using SQL are a standard tool for storing and ac-
cessing transactional data in a safe and well-defined man-
ner. However, both complex queries and transmissions of
large data quantities tend to be prohibitively slow. For our
toolbox we follow another route: Only simple queries (e.g.
no joins) are sent to the database server, and the results
are cached and processed within the toolbox. The Python
database API [15] allows us to access a relational database
by SQL queries. Currently, we are using MySQL [23] for
the underlying database engine, but Python modules for
other database servers are available as well. Both MySQL
and Python are licensed as free software and enjoy very
good support from a large user community. In addition,
both products are very efficient and robust.

3.1 Toolbox architecture

In our toolbox the ease of SQL queries and the safety
of relational databases are combined with the efficiency of
binary file access and the flexibility of object-oriented pro-
gramming languages in an architecture as shown in Fig-
ure 2. Based on relational databases, flat files, the Web,
or any other data source a Data Manager deals with re-
trieval, caching and storage of data. It provides routines
to execute an arbitrary SQL query and to read and write bi-
nary and text files. The two important core components of
this layer are its transparent caching mechanism and its par-
allel database interface which intercepts SQL queries and
parallelises them on-the-fly. The Aggregation module im-
plements a library of Python routines taking care of simple
data exploration, statistical computations, and aggregation
of raw data. The Modelling module contains functions for
parallel predictive modelling, clustering, and generation of
association rules. The Report module provides visualisation

‘ Data Mining Toolbox ‘

Data
Manager

Aggregation Modelling Report

Caching

‘ Database H File System H Web Data ‘

Figure 2. Architecture of DMtools

and allows facilities for simple automatic report generation.
Complex domain-specific functions and end-user applica-
tions can then be written in terms of the scripting language
making use of the available modules.

3.2 Caching and database parallelism

Caching of function results is a core technology used
throughout our data mining toolbox. We have developed
a methodology for supervised caching of function results as
opposed to the more common (and also very useful) auto-
matic disk caching provided by most operating systems and
Web browsers.

Like automatic disk caching, supervised caching trades
space for time, but the approach we use is one where time
consuming operations such as database queries or complex
functions are intercepted, evaluated and the resulting ob-
jects are made persistent for rapid retrieval at a later stage.
We have observed that most of these time consuming func-
tions tend to be called repetitively with the same arguments.
Thus, instead of computing them every time, the cached re-
sults are returned when available, leading to substantial time
savings. The repetitiveness is even more pronounced when
the toolbox cache is shared among many users, a feature we
use extensively.

This type of caching is particularly useful for computa-
tionally intensive functions with few frequently used combi-
nations of input arguments. Note that if the inputs or outputs
are very large, caching might not save time because disk ac-
cess may dominate the execution time. Supervised caching
is invoked in the toolbox by explicitly applying it to cho-
sen functions. For a given Python function of the form T =
func (argl, ...,argn) caching in its simplest form is
invoked by replacing the function call with the following
call: T = cache (func, (argl, ...,argn)). This
structure has been applied in the Data Manager module
of the toolbox so using the top level toolbox routines will
utilise caching transparently. For example, most of the SQL
queries that are automatically generated by the toolbox are
cached in this fashion. Generating queries automatically in-
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creases the chance of cache hits as opposed to queries writ-
ten by the end user because of their inherent uniformity. In
addition to this, caching can be used in code development
for quick retrieval of precomputed results. For example, if
a result is obtained by automatically crawling the Web and
parsing HTML or XML pages, caching will help in retriev-
ing the same information later — even if a Web server is
unserviceable.

An example query used in a health data mining project
that extracts all patients belonging to a particular group to-
gether with a count of their transactions required on the
average 489 seconds worth of CPU time on a Sun Enter-
prise server and the result took up about 200 Kilobytes of
memory. After having cached this query, subsequent load-
ing takes 0.22 seconds — more than 2,000 times faster than
the computing time. This particular function was hit 168
times in a fortnight saving four users a total of 23 hours of
waiting.

If a function definition changes after a result has been
cached, or if the result depends on other files, wrong results
may occur when using caching in its simplest form. The
caching utility therefore supports specification of explicit
dependencies in the form of a file list, which, if modified,
triggers a recomputation of the cached function result.

If a database server allows parallel execution of indepen-
dent queries, we use this parallelism within our toolbox by
sending a list of queries to the database server and process
the returned results sequentially. This is very efficient if the
queries take a long time to proceed, but only return a small
result list.

Example 3.1 Caching of XML documents

Supervised caching is used extensively for database
querying but is by no means restricted to this. Caching
has proven to be useful in other aspects of the data min-
ing toolbox. An example is a Web application built on
top of the toolbox which allows managers to explore and
rank branches according to one or more user-defined fea-
tures such as Annual revenue, Number of customers ser-
viced relative to total population, or Average sales per
customer. The underlying data is historical sales transac-
tion data which is updated monthly, so features need only
be computed once for new data when it is added to the
database. Because the data is static, cached features are
never recomputed and the application can therefore make
heavy use of the cached database queries. Moreover, no
matter how complicated a feature is, it can be retrieved
as quickly as any other feature once it has been cached.
In addition, the Web application is configured through an
XML document defining the data model and describing
how to compute the features. The XML document must
be read by the toolbox, parsed and converted into appropri-
ate Python structures prior to any computations. Because
response time is paramount in an interactive application,

parsing and interpretation of XML is prohibitive, but by
using the caching module, the resulting Python structures
are cached and retrieved quickly enough for the interactive
application. The caching function was made dependent on
the XML file itself, so that all structures are recomputed
whenever the XML file has been edited — for example to
modify an existing feature-definition, add a new month, or
change the data description. Below is a code snippet from
the Web application. The XML configuration file is as-
sumed to reside in sales.xml. The parser which builds
Python structures from XML is called parse_configand
it takes the XML filename as input. To cache this function,
instead of the call (feature_list, branch._list)
= parse_config(filename) we write:

filename = "sales.xml"
(feature_ list, branch list) = \
cache (parse_config, filename, \

dependencies = filename)
3.3 Integration of parallel applications

One aim of our research is to integrate parallel applica-
tions into the toolbox to enable fast and efficient execution
of large and complex data mining tasks, so the data miner
is able to attack large problems interactively or with batch
processing. The toolbox also gives a common interface to
various data mining algorithms, whereby the details of the
parallel application and architecture (like starting and work-
ing with a parallel environment) are hidden from the user.

Using a scripting language like Python to control paral-
lel applications has already been used for steering [4, 19]
of scientific applications, where a user can change param-
eters at run-time to control the behaviour of long-running
simulations like molecular dynamics applications.

In our toolbox, we use the standard Python interpreter to
start parallel applications with a dynamically generated sys-
tem call. The Unix command system is executed through
Python to invoke an MPI [12] program like in the following
example:

mpi str = "mpirun -np " + str(num proc) + \
predmodel " + arg_str + result_str
os.system(mpi_str)

The string arg_str contains the input arguments and re -
sult_str contains the name of the result file. A Python
wrapper code converts toolbox objects (like lists or dictio-
naries) into a format which is processable by the parallel
application, and creates configuration and data files as nec-
essary. The parallel application gets its input parameters
from the Python script at the command line, and then loads
and processes the requested data files. Results are saved to
files by the parallel program and read by the toolbox for fur-
ther processing. Time consuming data mining algorithms
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can therefore be run in parallel, while the Python toolbox
handles the more high level aspects of data mining like pre-
processing and visualisation.

4 Scalable parallel predictive modelling

Algorithms applied in data mining have to deal with two
major challenges: Large datasets and high dimensionality.
It has also been suggested that the size of databases in an
average company doubles every 18 months [3] which is
similar to the growth of hardware performance according
to Moore’s law. Consequently, data mining algorithms have
to be able to scale from smaller to larger data sizes when
more data becomes available. The complexity of data is
also growing as more attributes tend to be logged in each
record. Data mining algorithms must, therefore, be able to
handle high dimensions in order to process such datasets,
and algorithms which do not scale linearly with data size
and dimension are not feasible.

An important technique applied in data mining is predic-
tive modelling. A predictive model in some way describes
the average behaviour of a data set, and can be used to
find data records that lie outside of the expected behaviour.
These outliers often have simple natural explanations but,
in some cases, may be linked to fraudulent behaviour.

A predictive model is described by a function y =
f(z1,...,2q) from the set, T, of attribute vectors of di-
mension d in the response set, S. If S is a finite set (of-
ten S = {0, 1}), the determination of f is a classification
problem and if S is the set of real numbers, one speaks of
regression. In the following it will mainly be assumed that
all the attributes x; as well as y are real values and we set
x = (r1,...,24)T.

In many applications, the response variable y is known
to depend in a smooth way on the values of the attributes, so
it is natural to compute f as a least squares approximation
to the data with an additional smoothness component im-
posed. In this paper, we state the problem formally as fol-
lows. Given n data records (x?,y(),i =1,...,n where
x() € Q with Q = [0, 1]¢ (the d-dimensional unit cube), we
wish to minimise the following functional subject to some
constraints:

n
Jo(f) = (D) — 502 —|—a/Q LFx)[2 dx (1)
i=1
where « is the smoothing parameter and £ is a differential
operator whose different choices may lead to different ap-
proximation techniques. The smoothing parameter « con-
trols the trade-off between smoothness and fit. One can
choose different function spaces to approximate the min-
imiser f of equation (1).

We have developed three different methods [9] to ap-

proximate the minimiser of Equation (1). TPSFEM uses

piecewise multilinear finite elements and gives the most ac-
curate approximation at the highest computational costs;
HISUREF is based on interpolatory wavelets which provides
good approximations at reasonable costs; and ADDFIT im-
plements additive models which have the lowest costs but
give the coarsest approximation. The three methods differ
in how well they approximate f and more importantly in
their algorithmic complexities, but all three consist of the
following two steps:

1. Assembly: An m x m symmetric matrix A and a cor-
responding m x 1 vector b are assembled whose struc-
tures depend on the chosen method, but whose dimen-
sion m is independent on the number of data records
n. For the TPSFEM method, the matrix structure is
sparse with 3¢ filled diagonals (d the dimensionality
of the dataset), and for both HISURF and ADDFIT we
store dense matrices. The size m of the assembled lin-
ear system depends on the total number of categories
for categorical variables and on the resolution of the
finite element grid for continuous variables. The as-
sembly step requires access to all n data records once
only, and it can be organised such that the amount of
computational work is linear in n. As usually m << n
this step can be interpreted as a reduction operation on
the original data. Note that the assembly of the ma-
trices coming from the smoothing part of Equation (1)
and constraints do not require accessing the data at all.
These matrices have similar sizes to A.

2. Solving: This step assembles the m x m matrices com-
ing from the smoothing part of Equation (1) and solves
the entire linear system. It does not involve the n data
records and the computational work depends only on
m, typically as O(m?) for the dense and O(m) for the
sparse equations.

Note that for large n step 1 will dominate whereas for large
m step 2 will dominate. As the number of data records n is
usually very large for data mining applications, the overall
complexity is mainly determined by n.

The process of assembling the linear systems has the
same structure for all three methods. For each data record,
some nonzero elements are added into the matrix and vec-
tor. The number of nonzero elements per data record is
O(d), forming the normal equations matrix A is thus of
order O(d?) for each data record. The total complexity of
assembling n data records sequentially is therefore:

Tassem(l) = O(dQn) (2)

The assembly of data records into the linear system is ad-
ditive and thus each data record can be assembled indepen-
dently from all others. By reading a fraction n/p of the
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dataset in parallel each processing node can assemble a lo-
cal linear system without communication, so the parallel
complexity of the assembly process on p nodes becomes:

2
Tassem (P) =0 <d_n> (3)
p

The complete matrix data structure has to be stored on each
node, as every data record can contribute nonzero elements
anywhere in the matrix. The linear system is therefore dis-
tributed, but not replicated, on the nodes and the final linear
system is the sum of all local linear systems.

Figure 3 shows the structure of the assembled data ma-
trix for the three methods for a 3D-problem with a grid res-
olution of nine points in each dimension. The lower right
graph gives the amount of memory needed for a 1D to 10D
problem (again with a grid resolution of nine points in each
dimension). One can clearly see the limitation of the TPS-
FEM and HISURF methods due to their storage require-
ments.

The assembly process without communication is limited
by the available amount of main memory. For matrices that
are too large, a more complex assembly has to be applied
(not yet implemented), where the matrix data has to be dis-
tributed in a memory-scalable way. A blocking structure of
reading and redistributing data will be used.

4.1 Parallel implementation
At the time of writing, the assembly phase has been im-

plemented for ADDFIT in ANSI C and using MPI [12] for
communication. As the basic assembly structure is the same
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Figure 4. Assembly on Beowulf Linux cluster

for all three methodes, it is simple to include analogous rou-
tines for TPSFEM and HISURF: The matrix data structures
and the assembly of data records are the only parts that have
to be changed.

First timing tests with synthetic datasets (consisting of
5 million records with 10 attributes each) show an almost
ideal speedup for different matrix dimensions. As an exam-
ple Figure 4 illustrates the times and speedup achieved on
the 196 processor Beowulf Linux cluster Bunyip at the Aus-
tralian National University [1]. This cluster is built with 98
dual 550 MHz Pentium III nodes, each equipped with 384
Megabytes of RAM (total about 36 Gigabytes), 13 Giga-
bytes of disk space (total 1.3 Terabytes) and 3 x 100 MBit/s
fast Ethernet cards. Logically 96 nodes are connected in
four groups of 24 nodes arranged as a tetrahedron with a
group of nodes at each vertex. Two nodes are designated
as servers. For our tests we only used one group (i.e. up to
24 nodes), whereas all data files have been distributed onto
local disks. The results in Figure 4 show the times used
for the assembly and redistribution of two linear systems of
different size (corresponding to a different number of used
attributes). The communication time is almost negligible
compared to the assembly time, but yields to a small time
increase for the larger linear system.

Solving the assembled linear system can be done with
either a sequential or parallel solver, depending on the size
of the system and the available parallel architecture. The
sparse linear system resulting from TPSFEM can be solved
with a Conjugate-Gradient iterative solver approach [9].

The systems currently generated by HISURF and
ADDFIT are dense and symmetric, positive definite in the
former case, and semi-definite in the latter case. However,
in future refinements of these models, the definiteness prop-
erty may be lost, for example because of the addition of
extra constraints or — in the case of additive models — ex-
tending it to a second-order model.

For HISURF and ADDFIT a solver is thus required that
will be accurate for any symmetric dense system, and also
has good parallel and sequential performance. The former
requirement argues for a direct solver with good stability
properties; the latter argues for one that exploits symme-
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try to require only st + O(m?) floating point operations,
and that has been shown to have an efficient parallelisation.
A direct solver for general symmetric (indefinite) systems
based on the diagonal pivoting method [2, 11] meets these
requirements.

In the diagonal pivoting method, the decomposition A =
LDLY is performed, where L is an m x m lower triangu-
lar matrix with a unit diagonal, and D is a block diagonal
matrix with either 1 x 1 or 2x 2 sub-blocks [11]. The factori-
sation of A proceeds column by column; in the elimination
of column j, three cases arise:

1. Eliminate using a 1 x 1 pivot from A; ;. This corre-
sponds to the definite case, and will be used when A; ;
is sufficiently large (compared with max(A; 1.1 ;)).

2. Eliminate using a 1 x 1 pivot from A; ;, where ¢ > j.
This corresponds to the semi-definite case; a symmet-
ric interchange with row/columns ¢ and 7 must be per-
formed.

3. Eliminate using a 2 X 2 pivot using columns 7’ and 4
(i',1 > 7,47 # 7). This case produces a 2 X 2 sub-block
at column j of D. This corresponds to the indefinite
case; a symmetric interchange with rows/columns 7',
and 7,7 + 1 must be performed. However, columns j
and j + 1 are eliminated in this case.

The tests used to decide between these cases, and the
searches used to select column 7 (and 7’), yield several algo-
rithms based on the method, the most well-known being the
variants of the Bunch-Kaufman algorithm (see [11] and the
references cited within).

It has been recently shown for the Bunch-Kaufman al-
gorithm that there is no guarantee that the growth of L is
bounded [2]. Variants such as the bounded Bunch-Kaufman
and fast Bunch-Parlett algorithms have been devised which
overcomes this problem. The extra accuracy of these meth-
ods results from more extensive searching for stable pivot
columns ¢ (and ¢") for cases 2 and 3, with a correspondingly
more frequent use of these cases.

For linear systems that are close to definite, such as are
likely to be generated by our models, the diagonal piv-
oting methods permit most columns to be eliminated by
case 1, requiring no symmetric interchanges. For a paral-
lel implementation, this is a highly useful property, as even
for large matrices the communication startup and volume
overheads of symmetric interchange, when the rows and
columns come from different nodes, is considerable [22].

Instead of suppressing interchanges, which even if done
judiciously may result in the loss of some accuracy [22],
high parallel performance can also be achieved with a block-
search algorithm that searches for suitable pivot columns ¢
and 4’ from the current storage block [16]. If this search
was successful, the symmetric interchanges would require

no communication, resulting in no parallel overhead. Such
a strategy could be based on the Duff-Reid algorithm used
for sparse matrices [2, 16], which also has strong guarantees
of accuracy.

However, if the search was not successful, an equally
stable means of eliminating column j must then be used.
We chose the bounded Bunch-Kaufman algorithm over the
fast Parlett-Reid algorithm, as the latter requires sorting of
the columns by the size of the diagonal, which would give
it higher parallel overheads.

The solving of the linear systems described in Figure 4
took less than one second for the small system and between
20 (sequential) and 11 (parallel) seconds for the large sys-
tem. On the used cluster architecture even a matrix dimen-
sion of 2111 is too small to be efficiently solved on more
than just a few computing nodes.

5 OQutlook

We are currently working both on the toolbox and on
the parallel algorithms. Planned extensions will be more
domain independent high-level analysis functions and the
inclusion of other parallel data mining algorithms besides
predictive modelling, like clustering and association rules.

On the parallel predictive modelling side we plan to add
support for data types other than continuous and categorical
variables. We hope to include in a first instance support for
sets, time series and hierarchical data types.
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Abstract

In this paper, we present our experiences in implement-
ing a hierarchical parallel version of apriori association
mining using a middleware. The middleware supports both
shared memory and distributed memory parallelization, and
enables high I/O performance. Our experimental results on
a cluster of SMPs show that: 1) distributed memory paral-
lelization achieves very high efficiency, 2) shared memory
parallelization achieves good efficiency if the application
is not I/O bound, and 3) the processing time required per
data item remains almost the same as the dataset size is
increased, establishing that efficient processing of disk resi-
dent datasets is possible.

1 Introduction

Association mining is one of the most important data mining
tasks. Over the last 6 years, several sequential and parallel
algorithms have been developed for association mining. An
excellent survey is available from Zaki [23].

Parallel association mining algorithms have been devel-
oped for both distributed memory and shared memory archi-
tectures. Some recent efforts have also targeted hierarchical
systems like cluster of SMP workstations, which have both
distributed memory and shared memory parallelism [22].
We believe that two of the important challenges still remain-
ing in developing parallel implementations of data mining
tasks are:

1) Developing efficient implementations that process disk
resident datasets. The amount of data available for analy-
sis can be huge, and can easily exceed the aggregate main
memory available on today’s small and medium sized par-
allel machines.

2) Implementing parallel data mining algorithm without
very high programming effort. Currently, developing a par-
allel implementation that processes disk resident datasets
on a cluster of SMPs typically requires programming with
the Message Passing Interface (MPI), Posix threads, and file
I/O. Thus, developing, debugging, performance tuning, and

*This research was supported by NSF CAREER award ACI-9733520,
NSF grant CCR-9808522, and NSF grant ACR-9982087. The equipment
for this research was purchased under NSF grant EIA-9703088.

maintaining a parallel data mining application requires both
high expertise and effort.

In our recent work, we have developed a middleware for
enabling rapid implementation of parallel data mining ap-
plications. This middleware can help exploit parallelism
on both shared memory and distributed memory configu-
rations, while allowing efficient processing of disk resident
data.

This paper presents a case study on the use of this mid-
dleware. We have developed an implementation of apriori
association mining on cluster of SMP workstations. The
distributed memory parallelization strategy we use is the
same as in the well known count distribution technique [1],
except that communication is handled by the middleware.
Our middleware allows a number of strategies for shared
memory parallelization of data intensive reduction oper-
ations, including full replication, partial replication, full
locking, and fixed locking. Thus, the use of our middle-
ware results in a new family of parallel association mining
algorithms for hierarchical systems.

Our experiments on a cluster of SUN SMPs shows that
1) distributed memory parallelization achieves very high ef-
ficiency, 2) shared memory parallelization achieves good ef-
ficiency if the application is not I/O bound, and 3) the pro-
cessing time required per data item remains almost the same
as the dataset size is increased, establishing that efficient
processing of disk resident datasets is possible.

The rest of the paper is organized as follows. We give
an overview of our middleware in Section 2. The parallel
algorithm we use and its implementation using the middle-
ware is presented in Section 3. The experimental evaluation
of our implementation is presented in Section 4. We com-
pare our work with related research efforts in Section 5 and
conclude in Section 6.

2 Middleware for Parallel Data Mining
Implementations

2.1 Motivation

We have developed a middleware for enabling rapid devel-
opment of parallel data mining applications. This middle-
ware can help exploit parallelism on both shared memory
and distributed memory configurations, while allowing effi-
cient processing of disk resident data.
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Our middleware is based on the observation that paral-
lel versions of several well-known data mining techniques
share a relatively similar structure. We have carefully
studies parallel versions of apriori association mining [1],
bayesian network for classification [9], k-means cluster-
ing [13], k-nearest neighbor classifier [12], and artificial
neural networks [12]. In each of these methods, paralleliza-
tion can be done by dividing the data instances (or records
or transactions) among the nodes. The computation on each
node involves reading the data instances in an arbitrary or-
der, processing each data instance, and performing a local
reduction. The reduction involves only commutative and as-
sociative operations, which means the result is independent
of the order in which the data instances are processed. Af-
ter the local reduction on each node, a global reduction is
performed. This similarity in the structure can be exploited
by the middleware system to execute the data mining tasks
efficiently in parallel, starting from a relatively high-level
specification of the technique.

2.2 Middleware Interface

The interface exploits the similarity among parallel versions
of several data mining techniques, as described in the previ-
ous subsection. It assumes that data instances have already
been partitioned among the nodes.

The following functions need to be written by the appli-
cation developer using our middleware. Most of these func-
tions can be easily extracted from a sequential version that
processes memory resident datasets.

Initial Processing: Many data mining applications involve
an initial processing of the data instances to remove noise
or exceptional cases, or modify the format of certain fields,
etc. This processing is performed independently on each
data instance, and therefore, can be performed in parallel
and in an arbitrary order on each processor.

Specifying the Subset of Data to be Processed: In many
case, only a subset of the available data needs to be ana-
lyzed for a given data mining task. For example, while cre-
ating associations rules from customer purchase record at a
grocery store, we may be interested in processing records
obtained in certain months, or for customers in a certain age
groups, etc.

Local Reductions: The data instances owned by a proces-
sor and belonging to the subset specified are read. A local
reduction function specifies how, after processing one data
instance, a reduction object (declared by the programmer),
is updated. This processing must be independent of the or-
der in which data instances are processed on each processor.
The order in which data instances are read from the disks is
determined by the runtime system. The reduction object is
maintained in the main memory.

Global Reductions: The reduction objects on all processors
are combined using a global reduction function.

Iterator: A parallel data mining application comprises of
one or more distinct pairs of local and global reduction func-
tions, which may be invoked in an iterative fashion. An iter-
ator function specifies a loop which is initiated after the ini-

tial processing and invokes local and global reduction func-
tions.

2.3 Runtime Techniques

We now describe the basic functionality of our middleware
system. This system has been developed on top of the
Active Data Repository (ADR) developed at University of
Maryland [6, 7, 8]. ADR targeted strictly distributed mem-
ory parallel machines. We have implemented a framework
for runtime parallelization on shared memory machines that
allows us to use a cluster of SMP workstations. We are also
working on modifying the interface of ADR to make it more
suitable for parallel data mining algorithms.

We initially review the basic design and functionality of
ADR. Then, we present our producer/consumer framework
for runtime parallelization.

Active Data Repository (ADR) [6, 7, 8] is a runtime in-
frastructure that integrates storage, retrieval and process-
ing of multi-dimensional datasets on a distributed mem-
ory parallel machine. ADR runtime support has been de-
veloped as a set of modular services implemented in C++.
ADR allows customization for application specific process-
ing, while leveraging the commonalities between the appli-
cations to provide support for common operations such as
memory management, data retrieval, and scheduling of pro-
cessing across a distributed memory parallel machine. Cus-
tomization in ADR is achieved through C++ class inheri-
tance. That is, for each of the customizable services, ADR
provides a set of C++ base classes with virtual functions that
are expected to be implemented by derived classes. Adding
an application-specific entry into a modular service requires
the definition of a class derived from an ADR base class for
that service and providing the appropriate implementations
of the virtual functions.

Any task is executed in ADR using two phases: task
planning and task execution. The objective of task planning
is to determine a schedule to efficiently process the com-
putation, based on the amount of available resources in the
parallel machine. A task plan specifies how parts of the final
output are computed. The task execution service manages
all the resources in the system and carries out the task plan
generated by the task planning service. The primary feature
of the task execution service is its ability to integrate data
retrieval and processing for a wide variety of applications.
This is achieved by pushing processing operations into the
storage manager and allowing processing operations to ac-
cess the buffer used to hold data arriving from disk. As a
result, the system avoids one or more levels of copying that
would be needed in a layered architecture where the storage
manager and the processing belonged to different layers. To
further reduce task execution time, the task execution ser-
vice overlaps I/O, interprocessor communication and pro-
cessing as much as possible. It does this by maintaining
explicit queues for each kind of operation (data retrieval,
message sends and receives, data processing) and switches
between them as required. A dataset in ADR is partitioned
into a set of chunks to achieve high bandwidth data retrieval.
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A chunk consists of one or more data items, and is the unit
of I/O and communication.

2.4 Runtime Parallelization on SMPs

We now describe the framework we have implemented for
efficiently using multiple processors available on each node
of a SMP workstation for data mining applications.

The processors available on each node need to perform
the following tasks: 1) manage disk operations and file I/O,
2) manage communication with other nodes, 3) execute the
Iterator loop described earlier, 4) perform runtime schedul-
ing, i.e. assign local reductions on data items being pro-
cessed by the node to different processors, and 5) perform
local reductions.

To perform the above tasks, we use one producer thread
and one or more consumer threads. The producer thread is
responsible for the tasks 1, 2, 3, and 4 in the list above. Typ-
ically, one consumer thread is scheduled on a single proces-
sor, and perform local reductions (task 5) on the data items
assigned to it.

Output

\

\

Queue of Input Chunks

Disk(s) — ~—— Network

/

Figure 1. Producer / Consumer Framework for
Runtime Parallelization

The producer/consumer framework is shown in Figure 1.
As we mentioned earlier in this section, the unit for I/O in
ADR is a chunk, which is typically one disk block or a small
number of disk blocks. We use the same unit for dividing
the local reductions among processors on a node. The idea
is that chunk size can be chosen to be of sufficiently low
granularity to allow effective load balancing at runtime and
of sufficiently high granularity to keep the overhead of run-
time scheduling acceptable.

In the set of data mining algorithms this middleware is
targeting, the local reductions on data items are indepen-
dent operations, except for race conditions in updating the
same reduction object. For example, in the apriori associa-
tion mining algorithm [1], counts for one or more candidates
may be incremented after processing a data item. However,
the main complication is that the particular element(s) in the
reduction object that need to be modified after processing a
data item is not known until after performing the computa-
tion associated with the data item.

With this constraint, we have implemented four different
approaches for avoiding race conditions as different con-
sumer threads may want to update the same elements in the
reduction object. These techniques are: full locking, fixed
locking, full replication, and partial replication.

Full Locking: One obvious solution to avoiding race con-
ditions is to associate one lock with every element in the re-
duction object. After processing a data item, the consumer
thread needs to acquire the locks associated with all ele-
ments in the reduction object it needs to update. If the total
number of elements in the reduction object is large, the to-
tal number of locks required can be large and can result in
significant overheads.

Fixed Locking: To alleviate the overheads associated
with the large number of locks required in the full locking
scheme, we designed the fixed locking scheme. As the name
suggests, a fixed number of locks are used. The number of
locks chosen is a parameter to this scheme. If the number
of locks is [, then the element ¢ in the reduction object is
assigned to the lock ¢ mod [. Clearly, this scheme avoids
the overheads associated with supporting a large number of
locks in the system. The obvious tradeoff is that as the num-
ber of locks is reduced, the probability of one thread having
to wait for another one increases.

Full Replication: One simple way of avoiding race condi-
tions is to replicate the reduction object and create one copy
for every consumer thread. The copy for each consumer
thread needs to be initialized in the beginning. After the lo-
cal reduction has been performed using all the data items
on a particular node, the increments made in all the copies
are merged. The global reduction function specified by the
user can be used to perform this merge. After this merge.
the global reduction still needs to be performed across the
nodes.

Partial Replication: Full replication has the benefit of not
requiring any locks and not requiring any thread to wait
to acquire a lock. The disadvantages are memory require-
ments, the need for initializing the elements in the begin-
ning, and performing the merge in the end. To avoid this
overhead, we designed the partial replication scheme. In-
stead of creating copies of the reduction object for each con-
sumer thread, we create a buffer for every consumer thread.
The consumer thread stores the updates to elements of the
reduction object in this buffer. To keep the memory over-
head low, there is a fixed maximum size associated with
each buffer. A separate thread works on updating the reduc-
tion object using the values from the buffers. Only a single
lock is associated with the entire reduction object, so values
from only one buffer can be copied into the reduction object
at any time.
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3 Association Mining: Parallel Algorithm
and Implementation

In this section we describe the parallel association mining
algorithm we have implemented, and how the middleware
interface was used for implementing the algorithm on a
cluster of SMPs. We also briefly discuss how a number
of other association mining algorithms can be parallelized
using our middleware. Initially, we review the well known
sequential apriori association mining algorithm [2].

Lo =0
C1 = { 1-item subsets of all the transactions }
for(k=1,Cr #0;k++)

{ *support counting* }

for all transactions ¢ € D

for all k-subsets s of ¢
ifk € Cy
s.count + +

{ *candidates generation* }

Ly, = {c € Ci|c.count > min sup}

Cr4+1 = apriori_gen(Ly,)

Answer = Uk Ly

Figure 2. Sequential Apriori Association Min-
ing Algorithm

3.1 Sequential Apriori Algorithm

The high level structure of Apriori is shown in Figure 2. The
main observation in the Apriori technique is that if an item-
set occurs with frequency f, all the subsets of this itemset
also occur with at least frequency f. The algorithm employs
an iterative approach known as level-wise search. During
the k" iteration, the algorithm scans the input dataset, and
computes the frequent k-itemsets, L. There are two stages
in the processing of the k" iteration: the support counting
stage and the candidate generation stage. In the first stage,
each transaction in the dataset is processed to compute the
frequency of the members of the set C,. In the second stage,
the set of frequent k-itemsets Ly, is formed by including the
k-itemsets in C}, that satisfy the minimum support condi-
tion. Then, the candidate (k+1)-itemsets, C41, are gener-
ated for use in the next iteration.

3.2 Hierarchical Parallelization

We have used the middleware described in the previous sec-
tion for parallelizing apriori on a cluster of SMP worksta-
tions. Our implementation efficiently processes disk resi-
dent datasets. We started from a sequential apriori code that
processes datasets that fit in main memory. This sequential
code was developed by Borgelt [4] and uses a prefix tree to
represent candidate itemsets.

The dataset is partitioned between different nodes in the
cluster. On each node, the set of transactions is further di-
vided into chunks, which is the unit for processing in our

middleware.

The parallelization strategy we use across nodes is the
same as the well known count distribution scheme [1], ex-
cept that we use middleware for handling message passing.
We focus on parallelizing support counting only, as it is
the most time consuming part of the algorithm. The sup-
port counting stage in every iteration is completed by two
phases: the local count phase and the global count phase.
In the local count stage, every node computes the count
for each candidate among the set of transactions locally
owned. In the global count stage, the nodes exchange the
local counts with other nodes, to compute the final counts
for candidates.

The middleware’s producer/consumer framework is used
for parallelization within the node. The use of four mech-
anisms implemented in the middleware for avoiding race
conditions while updating candidate counts leads to a family
of new parallel apriori algorithms for hierarchical systems.
We use up to m threads on each node, where m = n + 1,
and n is the number of processors on each node. One thread,
referred to as the producer thread, is used to coordinate disk
operations, communication with other nodes, and perform-
ing global reductions. Other threads, referred to as con-
sumer threads, perform local reductions.

The shared memory parallelization we perform has
some similarities with the Common Candidate Partitioned
Database (CCPD) scheme developed by Zaki et al. [24], in
the sense that there is only one itemset tree stored in the
main memory. However, there are two main differences in
our approach. First, the use of middleware and a producer
thread allows asynchronous and efficient I/O, and therefore,
good performance on disk resident datasets. Second, de-
pending upon the scheme used for avoiding race conditions,
the candidate counts may be fully or partially replicated
across processors, enabling higher parallelism.

The major functions used in middleware specification
are shown in Figure 3. The function LocalReduc just
invokes the function prefixtree.count from the se-
quential implementation. After the local reduction, the re-
duction object on each processor (counts of all candidates)
are broadcasted to all other processors. The processing in
the GlobalReduc function is very simple. In the func-
tion shown in the figure, counts of all candidates received
from another processor are combined with the local counts.
This is repeated for the buffer received from each processor.
The Iterator function invokes local and global reduc-
tions and adds candidates to the prefix tree.

3.3 Discussion

The salient and novel charactestics of our parallel algorithm
and its implementation are as follows. First, we have used
a middleware for specifying the algorithm. The middleware
specification does not involve use of MPI, Posix threads,
or file I/O. We believe that our implementation is the first
hierarchical parallel implementation of apriori on disk res-
ident datasets. The runtime techniques implemented in the
middleware perform aggressive I/O optimization. Finally,
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LocalReduc(Chunk p, int k)

for (each transaction t in p)

{

prefixtree.count(c,t,k);

}
}

GlobalReduc(CountVector ¢, MessageReceiveBuffer buffer)

combine(c,buffer);

}

Iterator()

for (k = 1 ; not end_condition() ; k++)

}
}

Bool end_condition()

{
}

for (each chunk p)

LocalReduction(p,k);

GlobalCombination(c,buffer);
prefixtree.expand();

return prefixtree.newcandidate == 0;

Figure 3. Main functions used in Middleware Specification

by using the four techniques implemented in the middle-
ware for avoiding race conditions while updating candidate
counts, we have a new family of hierarchical parallel asso-
ciation mining algorithms.

Our basic scheme and the middleware can also be used
for parallelization of a number of other association mining
algorithms and variations of apriori, including SEAR [14],
DHP [15], Partition [19], and DIC [5]. These algorithm
differ from the apriori algorithm in the data structure used
for representing candidate itemsets, candidate space prun-
ing, or in reducing passes over the set of transactions. The
same distributed memory and shared memory paralleliza-
tion strategies can be applied on these algorithms.

4 [Experimental Results

In this section, we evaluate our implementation of apriori
association mining.

4.1 Experimental Platform

The experiments were conducted on a cluster of SMP work-
stations. We used 8 Sun Microsystem Ultra Enterprise
450’s, each of which has 4 250MHz Ultra-II processors.
Each node has 1 GB of main memory which is 4-way in-
terleaved. Each of the node have a 4 GB system disk and a
18 GB data disk. The data disks are Seagate-ST318275LC
with 7200 rotations per minute and 6.9 milli-second seek
time. The nodes are connected by a Myrinet switch with
model number M2M-OCT-SW8. We believe that our clus-
ter represents a common parallel processing configuration
using off-the-shelf nodes and network.

4.2 Evaluating Shared Memory Parallelization
Techniques

We designed a detailed experiment to both evaluate the
overall efficiency of our producer/consumer framework and
compare the four techniques for runtime parallelization. We
used a dataset with 8 million transactions, each with 20
items (on the average). The total number of distinct items in
the dataset is 1000. The total size of the dataset is 800 MB.
Because our focus in this experiment is on evaluating SMP

5

Figure 4. Comparing the Four Strategies for
SMP Parallelization (800 MB dataset): 2 nodes
(left), 8 nodes (right)

parallelization techniques, we choose a dataset that could fit
in the main memory of a single node.

The association mining implementation developed on
top of our middleware was executed using each of the four
techniques, on 1, 2, 4, and 8 nodes of the cluster and using 1,
2, 3 or 4 consumer threads per node. The performance com-
parison on 2 nodes is shown in the left of Figure 4 and the
performance comparison on 8 nodes is shown in the right of
Figure 4. The sequential version took 1639 seconds. The
threads per node listed in the Figures are consumer threads
performing actual computations. In each case, there is a
separate producer thread per node.

On 2 nodes and 1 thread per node, the speedups are 1.97
with full replication, 1.67 with partial replication, 1.07 with
full locking, and 1.27 with fixed locking. The performance
of full replication shows that distributed memory paral-
lelization is working very well and resulting in almost per-
fect speedups. The performance of the other three schemes
shows that there are significant overheads with shared mem-
ory parallelization using these schemes, even though only 1
thread is used on every node. The overhead of full lock-
ing is very high because of the large number of locks that
need to be used. The performance of fixed locking (using
1024 locks) is significantly better, though not comparable
with the performance of full replication or partial replica-
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tion. With only 1 thread, the fixed locking scheme reduces
the overhead associated with supporting a large number of
locks in the system, but does not loose any parallelism.

On 2 nodes and 2 threads per node, the speedups are 3.63
with full replication, 2.9 with partial replication, 1.85 with
full locking, and 1.87 with fixed locking. All the versions
have significant speedups compared to the 1 thread versions,
using the same scheme, on 2 nodes. The relative speedups
compared to 1 thread versions are 1.83 with full replication,
1.73 with partial replication, 1.72 with full locking, and 1.47
with fixed locking. The performance of full replication ver-
sion with 2 threads shows that the dynamic work assign-
ment as part of the producer/consumer framework is work-
ing without any significant overheads. The partial replica-
tion version incurs some overheads for updating the main
buffer and looses some performance. Its performance is still
significantly better than the two locking versions. One main
observation from the results with 2 threads per node is that
the performance of fixed locking and full locking is very
similar. Though fixed locking has lower overhead for sup-
porting the locks, it also results in some loss of parallelism.

On 2 nodes and 3 threads per node, the speedups are
4.94 with full replication, 3.6 with partial replication, 2.52
with full locking, and 2.5 with fixed locking. The trends are
very similar to the 2 threads per node case. All the schemes
are successfully exploiting the extra thread to improve per-
formance. Fixed locking actually performs worse than full
locking in this case, though the difference is less than 1%.

On 2 nodes and 4 threads per node, the speedups are
5.5 with full replication, 3.71 with partial replication, 2.9
with full locking, and 2.81 with fixed locking. The relative
performance improve because of adding an extra thread per
node is relatively small for each of the versions. This is be-
cause each node has 1 producer thread, in addition to the
1, 2, 3 or 4 consumer threads. When 4 consumer threads
are used, the total number of threads on 4 processors is 5,
resulting in some contention. The fourth consumer thread
still results in some additional speedups, which shows that
the producer thread is not active all the time.

The results from comparing the 4 schemes on 8 nodes,
with 1, 2, 3, and 4 threads per node, are shown in the right
of Figure 4, and are similar to the 2 node results.

4.3 Evaluating I/O Scalability

One of the obvious questions with any data mining im-
plementation is, “How does the performance scale with the
increase in the size of the dataset ?”. Particularly interesting
is the time required per data item or transaction when the
dataset is memory resident and when the dataset becomes
disk resident.

We designed an experiment to evaluate this for our im-
plementation of association mining. The main challenge
in evaluating the effect of disk resident data on the perfor-
mance is in keeping the amount of computation per trans-
action unchanged as the total number of transactions is in-
creased. The amount of computation per transaction de-
pends upon the number of candidates. To keep the number

Figure 5. /O Scalability of Association Min-
ing Algorithm: 0.5% support level (left), 1%
support level (right)

of candidates unchanged as the number of transactions is
increased, we created 4 different datasets as follows. We
initially created a 400 MB dataset, comprising 6 million
transactions, with an average of 15 items per transaction.
We then duplicated the data to create a 800 MB dataset,
repeated it three times to create a 1.2 GB dataset, and fi-
nally, repeated it four times to create a 1.6 GB dataset. If
the same support percentage is used, the number of candi-
dates considered during any iteration will be the same for
these 4 datasets. The first and the second datasets are mem-
ory resident while the third and the fourth dataset exceed the
main memory limit on 1 node.

Since we were only interested in evaluating the I/O per-
formance in this experiment, we use a single node. We used
1 or 4 threads on this node. We used two different sup-
port levels, 0.5% and 1%, on the same 4 datasets. The total
number of candidates that have to be considered with the
support level of 0.5% is very large, and 13 iterations of the
outer-loop in the apriori association mining algorithm are
required. With the support level of 1%, only 4 iterations of
the outer-loop are required.

The performance on the four datasets, with 1 and 4
threads on 1 node and the support level of 0.5%,is shown
in the left of the Figure 5. With 1 thread, the ratio of the
time spent on the 800 MB, 1.2 GB, and 1.6 GB dataset to
the time spent on the 400 MB dataset is 1.9, 2.9, and 3.67,
respectively. This shows that the time required per trans-
action is not increasing as we move from memory resident
dataset to disk resident dataset. Some of the computation
in the code is independent of the number of datasets pro-
cessed, which explains why the processing time increases
by a factor less than linear on the size of the dataset.

With 4 threads, the ratio of the time spent on the 800 MB,
1.2 GB, and 1.6 GB dataset to the time spent on the 400 MB
dataset is 2.15, 3.62, and 4.80, respectively. As more I/O is
required, the producer thread takes more cycles and slows
down the computation when 4 threads are used.

The performance with 1 and 4 threads on 1 node and
the support level of 1.0% is shown in the right of Figure 5.
With 1 thread, the ratio of the time spent on the 800 MB,
1.2 GB, and 1.6 GB dataset to the time spent on the 400 MB
dataset is 1.96, 3.10, and 3.93, respectively. With 4 threads,
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the ratio of the time spent on 800 MB, 1.2 GB, and 1.6 GB
dataset to the time spent on the 400 MB dataset is 2.64,
5.04, and 6.43, respectively. As the code becomes more I/O
dominated with the use of 1.0% support level, the process-
ing time increases by more than a linear factor as the dataset
size increases. However, the rate of increase is still within
reasonable levels, and we believe that it shows that our sys-
tem gives good performance on disk resident datasets.

4.4 Overall Performance

Figure 6. Performance of Apriori Association
Mining: 2GB dataset (left), sGB dataset (right)

In this subsection, we focus on the overall performance
achieved on the implementation of apriori association min-
ing. We have used two large datasets for this purpose. The
first dataset, which is referred to as the 2GB dataset in our
presentation, has 32 million transactions, each with (on the
average) 20 items, and with 1000 distinct items. The total
size of the dataset is 2.8 GB. Thus, this dataset does not fit in
the main memory when the code is executed on 1 or 2 nodes.
The second is referred to as the 8GB dataset. This dataset
has 64 million transactions, with an average of 30 items per
transaction. The total number of distinct items is 1000. The
support and confidence levels used in our experiments are
1% and 90%, respectively, for both the datasets. Since we
wanted to see the best performance than can achieved using
our system, we have used the full replication scheme in all
the experiments presented in this subsection.

The performance on the 2GB dataset is shown in the left
of Figure 6. Results from 1, 2, 4 and 8 nodes and 1, 2, 3,
and 4 threads per node are presented. This dataset results
in 8 iterations of the outer-loop in the apriori association
mining algorithm. The number of candidates whose support
is counted is 1,000, 278,735, 43,144, 4,354, 8,373, 949, 35,
and 1, for the first through eighth iterations, respectively.
Therefore, each node needs to send a total of nearly 1.3 MB
of data (broken over 8 messages) to every other node, and
needs to receive the same amount of data from every other
node.

The middleware achieves high parallel efficiency for
both distributed memory and shared memory paralleliza-
tion. Using only 1 thread per node, the speedups on 2, 4,
and 8 nodes are 1.93, 3.94, and 7.8, respectively. Note that
the dataset owned by each node becomes main memory resi-
dent in going from 2 to 4 nodes. This results in a superlinear
speedup in going from 2 to 4 nodes.

The shared memory parallelism is also exploited well on
up to 3 threads per node. Using 3 threads per node, the
speedups on 1, 2, 4, and 8 nodes are 2.43, 4.61, 9.31, and
19.32, respectively. Because of the producer thread, the
fourth consumer thread does not result in significantly bet-
ter performance. Using 4 threads per node, the speedups on
1,2, 4, and 8 nodes are 2.53, 4.80, 9.35, and 21.04, respec-
tively. The parallel efficiency in using 8 nodes and 3 threads
per node is 81%, and the parallel efficiency in using 8 nodes
and 4 threads per node is 66%.

The performance on the 8GB dataset is presented in the
right of Figure 6. This dataset resulted in 9 iterations of
the outer-loop of the apriori association mining algorithm.
The number of candidate whose support is counted during
these iterations is 1,000, 344,912, 858,982, 25,801, 22,357,
14,354, 6,257, 55, and 1, for the first through ninth itera-
tions, respectively. Each node has to broadcast and receive
5.1 MB of data (broken over 9 messages) during the course
of the execution.

Again, high distributed memory and shared memory par-
allel efficiency is achieved. With the use of 1 thread per
node, the speedups on 2,4, and 8 nodes are 1.99, 4.05, and
8.07, respectively. Note that for this dataset, the data is not
memory resident even on 8 nodes. However, as the data is
distributed over multiple nodes, the amount of I/O needed
on each node reduces, and helps achieve high speedups.

Use of up to 3 threads per node results in almost linear
performance improvements. With 3 threads per node, the
speedups on 1, 2, 4, and 8 nodes are 2.77, 5.50, 11.08, and
21.98, respectively. The parallel efficiency on 8 nodes with
3 thread per node is 91.6%. With 4 threads per node, the
speedups on 1, 2, 4, and 8 nodes are 3.0, 6.5, 13.03, and
25.50, respectively. As the I/O requirements per node de-
crease, the producer thread consumes fewer cycles, result-
ing in more substantial performance gains with the use of
the fourth consumer thread.

5 Related Work

We now compare our work with related research efforts.

Parallelization of association mining techniques is a well
studied area [1, 10, 11, 16, 17, 18, 20, 24, 22]. Our
work is unique in considering hierarchical parallelism on
disk resident datasets, and using a middleware to imple-
ment the algorithm without low-level parallel programming.
Our method for shared memory parallelization is signifi-
cantly different from the existing parallel association min-
ing algorithms on shared memory and hierarchical sys-
tems [10, 17, 18, 24, 22]. Through the use of our mid-
dleware, we combine task and data parallelism, and exploit
four new techniques for avoiding race conditions while up-
dating candidate counts.

One effort somewhat similar to our work is from Becuzzi
et al. [3]. They use a structured parallel programming envi-
ronment PQE2000/SKIE for developing parallel implemen-
tation of data mining algorithms. Our work is distinct at
least two important ways. First, they only target distributed
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memory parallelism (while they report results on an SMP
machine, it is using MPI). Second, I/O is handled explicitly
by the programmers in their approach.

Several runtime support libraries and file systems have
been developed to support efficient I/O in a parallel environ-
ment, most noticeable among these is the PASSION library
designed by Alok Choudhary’s group [21]. They usually
provide a collective I/O interface, in which all processing
nodes cooperate to make a single large I/O request. With
these collective I/O interfaces, the I/O requests still need to
be inserted by the programmers, and data processing usually
cannot begin until the entire collective I/O operation com-
pletes. The middleware we have presented is significantly
different, because the computation is an integrated part of
the specification. It is specifically targeted towards the kind
of computations arising in data mining algorithms and data
intensive reduction operations, whereas I/O libraries like
PASSION are more general.

Our middleware system has been developed out the Ac-
tive Data Repository (ADR) designed by Joel Saltz’s group
at University of Maryland [6, 7]. ADR could only be used
on a cluster of single-processor workstations, and is not tai-
lored for data mining techniques. Our middleware has been
tailored for data mining, and runs on a cluster of SMPs.

6 Conclusions

This paper has presented a case study in using our middle-
ware for developing a parallel implementation of apriori as-
sociation mining. The salient features of our implementa-
tion are:

1) Our implementation exploits both shared memory and
distributed memory parallelism. By using the four tech-
niques available for shared memory parallelization in our
middleware, we have created a new family of parallel asso-
ciation mining algorithms for hierarchical systems.

2) The parallel implementation can process disk resident
datasets, thus enabling data mining on large and realistic
datasets.

3) Experimental results have shown that i) distributed mem-
ory parallelization achieves very high efficiency, ii) shared
memory parallelization achieves good efficiency if the ap-
plication is not I/O bound, and iii) the processing time re-
quired per data item remains almost the same as the dataset
size is increased, establishing that efficient processing of
disk resident datasets is possible.
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Abstract

This paper proposes a parallel data-mining algorithm
and its implementation on a PC cluster. The decision tree is
a widely used data-mining algorithm for classifying records
in a database. Simple parallelization of decision tree gener-
ation is not efficient because of the load imbalance caused
by the form of the generated tree. The SPRINT algorithm
solves this problem by grouping a set of nodes in the same
level of the tree and balancing the load; however, frequent
disk access is required when the data size exceeds the mem-
ory size. We propose an improved parallel algorithm of
SPRINT by incorporating a dynamic scheduling. Dynamic
scheduling is effective in reducing the amount of disk access
for storing intermediate results; however, it may cause im-
balance in data distribution on PEs (Processing Elements).
We solved this problem by incorporating data redistribu-
tion. The evaluation result shows that our method realizes
an improvement in speed of 3.5 times, for the best case,
and equal performance even in the worst case, compared
with SPRINT. We also discuss how further performance en-
hancement may be possible by improving the communica-
tion performance.

1. Introduction

Data-mining tools have been used for decision support
in a wide range of business fields. According to the demand
for more speed, and the explosive growth in data size, an
efficient data-mining system which can rapidly deal with
huge amounts of data, is desired. In order to realize an effi-
cient data-mining system, parallel processing is a promising
approach. Recent remarkable advances in PCs and deploy-
ment of storage technology, enable the PC cluster to be a
cost effective solution for the parallel processing platform.
Much research has already been carried out on PC clusters

in scientific application fields. Since data-mining is a typi-
cal example of high performance computing in the business
application field, development of a parallel data-mining sys-
tem on the PC cluster is an important research target.

This paper describes parallel implementation of a deci-
sion tree generation algorithm on the PC cluster. The deci-
sion tree is a typical data-mining algorithm which is widely
used to classify database records. It is superior to the other
classification algorithms with respect to its accuracy and ex-
ecution speed.

Simple parallelization of decision tree generation is not
efficient because of the load imbalance caused by the form
of the generated tree. The SPRINT algorithm proposed by
Shafer et al.[10] solves this problem by grouping a set of
nodes in the same level of the tree. The grouping of nodes
to be processed is effective for balancing the load and de-
creasing the barrier synchronization count. The SPRINT al-
gorithm works efficiently when the data size of the grouped
nodes can be stored in memory; however, frequent disk ac-
cess is required when the data size exceeds the memory size.

In this paper, we propose an improved parallel algorithm
of SPRINT by incorporating dynamic scheduling. Dynamic
scheduling is defined to find an optimal set of nodes to
be grouped together in consideration of the memory size.
Dynamic scheduling is effective in reducing the amount of
disk access for storing intermediate results; however, it may
cause imbalance in data distribution on PEs. We solved this
problem by incorporating data redistribution.

We developed this parallel algorithm on the PC clus-
ter, and evaluated performance using benchmark data. The
results show that our method realizes an improvement in
speed of 3.5 times, in the best case, and equal performance
even in the worst case, compared with SPRINT. We also
discuss how further performance enhancement may be pos-
sible by improving the communication performance.

This paper is organized as follows. Section 2 describes
the basic algorithm for decision tree generation. Section 3
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Age Gender 0os Gender
1 23 F Win
2 28 M Linux
3 43 F Win
4 38 M Win
5 32 F Win
6 20 M Linux
(a) (b)

Figure 1. Training set and its decision tree.
(a) Training set. (b) Decision Tree.

explains the SPRINT algorithm. Section 4 describes the in-
troduction of dynamic scheduling to SPRINT together with
the redistribution technique. The PC cluster used for the ex-
periment is shown in Section 5. Section 6 shows the exper-
imental results, and they are discussed in section 7. Section
8 describes related works, and section 9 is the conclusion.

2. Decision tree generation algorithm
2.1. Decision tree

Decision tree generation is a typical method for classifi-
cation used in data-mining. A set of records called a train-
ing set is given as an input (Fig.1(a)). One record consists
of multiple attributes and one class. An attribute may have
a discrete value (Gender) or continuous value (Age). A de-
cision tree is a tree which determines the class of a record
from its attribute value. Fig.1(b) shows the decision tree
generated from the training set of Fig.1(a).

A decision tree is used to classify a test data set which
does not have a class value. A decision tree consists of
nodes and leaves. Each internal node has a condition which
tests an attribute value of a record. A leaf is labeled with a
class name. By applying a record to the decision tree from
a root node to a leaf node, the class of the record is deter-
mined at the leaf node.

2.2. Basic algorithm

The fundamental algorithm of the decision tree gener-
ation is shown in Fig.2. This is based on the divide and
conquer method. In node generation (FormTree), the eval-
uation values of all partitioning candidates are calculated
(Evalatt). When an attribute takes a category value, can-
didates are the division of node data into two or more sub-
sets by its categories. When an attribute takes a continuous
value, every possible division into two subsets are candi-
dates. The candidate which takes the greatest evaluation

FormTree( data ) /* node generation */
EvalAtt ( data ); /* evaluation */
DivData( data ); /* data division */

for each sub data i
FormTree ( subdatalil );

Figure 2. Decision tree generation algorithm.

value is selected, and the node data is divided(DivData).
FormTree is applied to the divided data recursively. Many
techniques have been proposed for calculating evaluation
values, such as the information entropy based method [9],
and the gini index based method [2]. In any case, the evalua-
tion value is calculated from the class histogram (the counts
of Win and Linux in Fig.1(a)).

3. SPRINT

SPRINT is the decision tree generation algorithm devel-
oped by Shafer et al., which is designed for parallel process-
ing. Large-scale data over the memory size can be treated.
The performance on the parallel computer SP2 is shown in
[10]. Here, its sequential algorithm and parallel algorithm
are explained. In this article, the explanation of the algo-
rithm is slightly different from the original paper for the
sake of introducing the dynamic scheduling in section 4.1.
Refer to [10] for the details of SPRINT.

3.1. Sequential SPRINT algorithm

The outline of the sequential algorithm is shown below.

e Step 1. Training set data is read from a file. An
attribute list for every attribute is generated from all
records. The structure of the attribute list consists of
the value (Val) of an attribute, a class (Class), and
a record number (Id). Fig.3(a) shows the attribute list
generated from the attribute (Age) of Fig.1(a).

o Step 2. The attribute list which corresponds to a con-
tinuous value is sorted by its value (Fig.3(b)).

e Step 3. All the nodes at the same depth of the tree are
grouped, and the processes from step 3-1 to step 3-5
are executed for each node.

— Step 3-1. Evaluation values are calculated for all
the possible partitioning. In SPRINT, only binary
division is taken.
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Age Class 1Id Age Class Id

23 Win 1 20 | Linux | 6

28 | Linux | 2 23 Win 1

43 Win 3 28 | Linux | 2

38 Win | 4 32 Win | 5

32 Win 5 38 Win | 4

20 | Linux | 6 43 Win 3
(a) (b)

Figure 3. Attribute lists of Age of Fig.1(a). (a)
Before presorting. (b) After presorting.

— Step 3-2. Division with the maximum evaluation
value in step 3-1 is chosen.

— Step 3-3. In order to divide the node data by the
division in step 3-2, a data structure called the
probe structure is generated. It is a hash table of
record numbers which correspond to one of the
divided data.

— Step 3-4. Two new child nodes are created, and
each record of the attribute list is assigned to one
of the child nodes using the probe structure.

— Step 3-5. If all the records in a child node have
the same class, the node becomes a leaf. A
class value is attached to the leaf, and records are
deleted from attribute lists. If an attribute list is
empty, go to step 5.

e Step 4. Increase the depth of the tree and return to step
3.

e Step 5. End.
The features of the SPRINT algorithm are as follows.

e Sortis executed only once for attribute lists with a con-
tinuous value at preprocessing. This enables execution
of large-scale data which exceeds memory size, within
practical time.

e The nodes of the same depth are grouped and calcu-
lated simultaneously.

o The form of any generated decision tree is restricted to
a binary tree.

In a decision tree generation program such as C4.5[9], sort
is necessary for calculating the evaluation value of each
continuous attribute on each node. Since an attribute list
keeps the sorted order of continuous attribute in SPRINT,
sorting is not necessary.

The grouping of nodes in SPRINT is shown in Fig.4.
In this figure, the nodes surrounded by the rectangles are

Depth 0 «—Node number

Figure 4. SPRINT and its node grouping.

Attribute List
Age Gender

PEO

PE1

PE2

PE3

Figure 5. Data placement in parallel SPRINT.

grouped together. This grouping balances the processing
load of each PE at parallel processing, and reduces the
counts of barrier synchronizations.

3.2. Parallel SPRINT Algorithm

In parallel SPRINT, each attribute list is divided and dis-
tributed to each PE (Fig.5). Like a sequential SPRINT, sort-
ing the attribute list of continuous values is performed first,
and the calculation of the evaluation value and data parti-
tioning using a probe structure are repeated. In the evalua-
tion of a continuous attribute, a class histogram is calculated
in each PE, and exchanged between each one prior to the ex-
ecution. This creates an independent calculation in each PE.
In the evaluation of a discrete attribute, class histograms for
each category value are calculated in each PE, and are sum-
marized prior to the execution. A probe structure is gener-
ated by merging the local probe structures generated in each
PE. A data division can be independently performed at each
PE based on a probe structure.
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4. Implementation of new parallel decision tree
generation algorithm

We propose a new method to incorporate dynamic
scheduling into SPRINT. We first incorporate dynamic
scheduling with a sequential SPRINT algorithm, and then
describe its parallelization. Next, we explain the data redis-
tribution method.

4.1. Dynamic scheduling

In Fig.4, the nodes with the same depth are grouped and
calculated simultaneously. However, their calculation re-
quires enough memory size to handle all the data contained
in these nodes. When memory size is insufficient, inter-
mediate data should be stored on a disk. If the data size
of a root node exceeds the memory size, the processing of
nodes in successive depths also exceeds the same memory
size. Hence, disk access occurs frequently. In order to de-
crease disk access, it is necessary to group nodes in con-
sideration of the memory size. We call this technique, dy-
namic scheduling. Two steps of the SPRINT algorithm are
changed to incorporate dynamic scheduling. Sentences in
bold represent the changed part.

e Step 3-4. Two new child nodes are created, and each
record of the attribute list is assigned to one of the child
nodes using a probe structure. From the record count
contained in each child node, the memory size re-
quired for the processing is calculated. When this
size is less than the memory size of a platform, the
node is stored in the node queue, and its records are
deleted from the attribute lists.

e Step 5. A set of nodes that satisfy the memory size
condition are fetched from the node queue, and are
processed by in-memory execution.

Fig.6 shows the processing of dynamic scheduling. In this
figure, processing of nodes surrounded by the white rect-
angle requires disk access, and processing of nodes sur-
rounded by the hatched rectangle can be performed in mem-
ory. For example, node 3 and node 6 at depth 2 are stored in
the node queue, and the processing of node 4 and node 5 are
executed with disk access. In the node processing of depth
3, the nodes of 9-12 can be processed in memory. Hence,
they are stored in the node queue to be processed later. In
the original SPRINT algorithm, all the node processings re-
quired disk access. However, this modification can reduce
the execution, with disk access at five nodes.

14

D Disk access On memory

Figure 6. Node grouping with dynamic
scheduling.

[T Node 1: With disk access
£22] Node 2: On memory

1 2

(a)
Attr list #1[ ] L1 L1 (I
Attr list #2[ | L] L1 L1
Attr list #3[ 1 (14 ] L]
Attr list #4[ | L1\ [ e [
PE1l PE2 PE3 PE4
(b)
Attr list #1[__] L 1E 1 B&E [
Attr ilst #2[_] L1 L L
ater list #3141 [ 184 (1 E [ E
Attr list #4[ ] C 1A 1 &z C1e
PE1 PE2 PE3 PE4

Q

Figure 7. Data distribution in each node. (a)
Node 1 and 2 are generated from node O.
(b) Data distribution before redistribution. (c)
Data distribution after redistribution.

4.2. Applying the dynamic scheduling to parallel
SPRINT

Dynamic scheduling can be similarly applied to the par-
allel SPRINT. A node can be stored in a node queue when
its data size is smaller than the sum of the memory size of
all the PEs. When dynamic scheduling is used in the case
of parallel processing, the data distribution among PEs be-
comes unbalanced as the calculation proceeds. Fig.7 shows
the data distribution when two nodes are generated after
processing of a root node. This data has four attribute lists.
Data of the root node is equally distributed to each PE. We
assume that node 1 cannot be processed in memory, but
node 2 can be processed in memory (Fig.7(a)). Fig.7(b)
shows the distribution of the attribute list of node 1 and
node 2 after root node division. The white rectangle corre-
sponds to node 1 and the hatched rectangle corresponds to
node 2. Note that the size of each attribute list on each PE
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differs each from the other. When a dynamic scheduling is
performed, processing of node 1 is continued, and node 2 is
stored in the node queue to be processed later. In both cases,
data distribution is not well balanced; hence, efficient paral-
lel execution cannot be expected. Moreover, the processing
of node 2 may not be executed in memory, if the number
of records allocated on a PE is large. In order to avoid this,
it is necessary to redistribute the data of each node evenly
(Fig.7(c)). This technique is called redistribution of data.
Redistribution enables efficient parallel processing owing to
the evenly balanced load, but the merit of the redistribution
will be lost when the time for data movement between the
PEs exceeds the time caused by the data imbalance. Hence,
we determine a threshold value, and when the largest record
number of a node exceeds this value, we perform the redis-
tribution. The redistribution coefficient is defined as the rate
of threshold value to the means of the record number of each
PE. The threshold value is the multiplication of the means
of the record number by the coefficient. Redistribution is
performed for each attribute list.

The nodes stored in the node queue can be processed in
any order. Each node may be processed individually or may
be combined into one task. The number of PEs for node
processing can be freely decided in the range within which
processing can be performed in memory. Here, we decide
that as many nodes as possible are combined into a task to
be processed by all PEs under the condition of in-memory
processing. This strategy aims to avoid the overhead in-
crease when the node with a small number of data records
is individually processed by all PEs.

4.3. Data structures and implementation

Although the decision tree generated by SPRINT is a bi-
nary tree, trees with three or more branches are feasible, in
general. In order to generate an n-ary tree, we use a new
data structure called a translation table, instead of a probe
structure. The translation table is the array of node num-
bers, and its index shows a record number. There are two
methods for placing the translation table on the PEs. One
is to divide the translation table into the number of PEs,
and distribute them to all PEs. The other is to copy the
whole translation table to all PEs. Currently, we use the lat-
ter method. In table generation, a partial table is generated
in each PE and a whole table is generated combining the
partial tables. If the size of the training set becomes large,
a part of the translation table and/or attribute list should be
stored on a disk. To avoid the decrease in performance in
this situation, the structure of an attribute list was changed
from Fig.3 to Fig.8. Node and Flag are added, and Node
expresses the node number to which the record belongs.

Tree generation using a translation table is explained in
Fig.9. Fig.9(a) shows a training set which has eight records

| Val | Class | Id | Node | Flag |

Figure 8. New data structure of attribute list.

Figure 10. PC cluster.

with two attributes. A tree after the division of the root node
into node 1 and node 2 is shown in fig.9(b). The record
numbers are attached to the nodes to which they belong.
The attribute list at the time of Fig.9(b) is shown in Fig.9(c).
Here, the class and flag field of an attribute list are omitted.
Two attribute lists Attr#1 and Attr#2 have eight records, and
they are distributed to 4 PEs. Assume that (Attr#1 < 14)
for node 1 and (Attr#2 < 3.3) for node 2 are selected as
the dividing condition. According to these conditions, par-
tial translation tables are calculated in each PE in Fig.9(d).
The partial translation table of PE O shows that the records
3 and 4 belong to node 3. The partial translation table of
PE 1 shows that the records 1 and 7 belong to node 4, and
the record 5 and 8 belong to node 5. By merging the partial
translation table generated by each PE, the whole transla-
tion table is generated as shown in Fig.9(e). Merging is
implemented by an all-to-all communication function. The
decision tree and attribute lists which are updated using the
translation table are shown in Fig.9(f). This update can be
performed by each PE.

5. PC cluster for data-mining

We selected a PC cluster as a platform for parallel pro-
cessing because of the cost/performance and scalability.
Our PC cluster consisted of 16 PE nodes. The specification
of the node PC was determined in consideration of handling
of large-scale data. Each node had two CPUs, one of which
was used in this experiment. The memory was 256 MB.
Since the motherboard, Tyan S1837UANG, with a 440GX
chip set, was chosen, the main memory could be extended
to 2 GB per node. Each PC was connected by a Switch-
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Figure 9. Node generation and translation table update.
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F2 F7

Figure 11. Shape of generated trees. (a) F2.
(b) F7.

ing HUB (Catalyst3500) which had 24 ports. LINUX Red-
Hat6.1 (2.2.12kernel) was used as the OS. A photograph is
shown in Fig.10.

6. Performance evaluation

Basic performance and the effect of dynamic scheduling
of our parallel decision tree was investigated. The effect of
the communication performance of a PC cluster to the total
processing time of a parallel decision tree is discussed.

6.1. Benchmark data

F2 and f7 of the synthetic database as shown in refer-
ence [1], were used as benchmark data. 10 M records with
a file size of about 400 MB were used in order to evaluate
the effect of dynamic scheduling. The effect of dynamic
scheduling tends to be large when the generated nodes can
be processed in memory at an early stage. Data for 10 M
records cannot be processed in memory with 8 PEs; how-
ever, they can be processed in memory with 16 PEs. There-
fore, in the case of 8 PEs, it was expected that the node
could be processed in memory, in the early stages.

An unbalanced tree was generated from f2, and a bal-
anced tree was generated from {7 (Fig.11). The size of the
circle shows the data size in each node. The height of the
tree generated from f2 was 26, and the number of nodes
was 207. The height of the tree generated from f7 was 36,
and the number of nodes was 25267. Since the large data
size node remains until the late stages in f2, the effect of
dynamic scheduling cannot be expected. On the other hand,
the node is divided evenly in f7. Hence the data size of a
node becomes small in the early stages, and the effect of
dynamic scheduling can be expected.

6.2. Experimental conditions

MPI (mpichl.2.0) was used as the communication li-
brary. The input data was placed on the local disk of each

Table 1. Execution time of f2 (sec)

PEs Tree Calc. | Table | Rebal.
10966 | 10966 | 0 0
I 110750 | 10750 | © 0

5520 | 5406 55 59
2 6139 | 5952 59 128
2593 | 2443 109 41
4 2802 | 2589 113 100
1502 1307 162 33
8 | 1413 | 1206 | 144 | 63
535 306 208 21
16 | 529 | 306 | 206 17
Upper: Non-scheduled version

Lower: Scheduled version

Table 2. Execution time of {7 (sec)

PEs Tree Calc. | Table | Rebal.
37073 | 37073 | O 0
1128525 | 28525 | 0 0
18397 | 18171 | 196 30
2 114774 | 14517 | 186 71

9662 | 9196 375 91
4 | 3398 | 2935 | 356 | 107
4846 | 4229 552 65
8 | 1839 | 1210 | 550 | 79
1295 536 717 42
16 1 1291 | 536 | 716 | 39
Upper: Non-scheduled version

Lower: Scheduled version

PE at first, and then preprocessed. Although the prepro-
cessing execution time is not little, we omit the preprocess-
ing discussion and focus on the tree generation phase. The
number of PEs was changed with 1, 2, 4, 8, and 16. The us-
able total memory size in each case was 256 MB, 512 MB,
1024 MB, and 2048 MB, respectively. The redistribution
coefficient was set to 1.2.

Two programs are used for the experiment. One is the
parallel decision tree program without dynamic scheduling,
and the other is the program with dynamic scheduling. We
call them the non-scheduled version and scheduled version,
respectively.

6.3. Parallel efficiencies

The processing time of two programs by changing the
number of PEs is shown in Tables 1 and 2. Tree gener-
ation consists of computation, table generation, and redis-
tribution. Tree generation time is influenced by the shape
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Figure 13. Efficiency for {7. (a) Tree generation. (b) Computation.

and the depth of the tree. The tree generation time of both
programs for {2 took about 11,000 seconds, and that for {7
took about 28,000 - 37,000 seconds with 1 PE. The paral-
lel efficiency of tree generation and computation of f2 and
f7 are shown in Fig.12-13. The efficiency represents the
ratio of the execution time to the execution of 1 PE of the
non-scheduled version. F2 and f7 can get super-linear per-
formance enhancement in both programs, with 16 PEs. This
is because the data can be processed in memory from a root
node execution. In f2, the tree generation became about 20
times faster, and the computation became about 35 times
faster. In f7, the tree generation became about 29 times
faster, and the computation became about 70 times faster. In
2, both programs showed almost equivalent performance in
any number of PEs. This is because a node with large data
size remained in the deep level, and the size of the other
nodes at the same depth was small enough. In f7, com-
pared with the non-scheduled version, the performance of

the scheduled version was enhanced with 4 PEs and 8 PEs.
This is the effect of the dynamic scheduling. Although each
node can be processed in memory in the early stages of tree
generation with 4 PEs and 8 PEs in {7, it cannot be pro-
cessed in memory by the non-scheduled version because of
the grouping. The difference in computation performance
between the non-scheduled version and scheduled version
was 3.1 to 3.5 times, and that of tree generation was about
2.6 to 2.8 times.

6.4. Influence of communication performance

The breakdown of the tree generation time of f2 and
f7 is shown in Fig.14. It can be shown that the time for
generating a translation table increases as the number of
PEs increases. For both programs with 16 PEs, the table-
generation processing time occupied about 20% in f2, and
occupied about 60% in f7. It is expected that the table-
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Figure 14. Breakdown of tree generation time. (a) F2. (b) F7.

generation processing time would increase further as the
number of PEs increases. Since the communication be-
tween PEs takes the major amount of time for translation
table generation and redistribution, performance improve-
ment in communication facility on the PC cluster can con-
tribute to the speed increase of the tree-generation time.

7. Discussion

In the translation table generation, reduction of big ar-
rays is required. It can be accelerated by extending the
communication bandwidth of a platform. Currently, our PC
cluster uses the 100 Base-TX network. By replacing this
with a gigabit ether network or myrinet[3], it is possible
that the processing time for table generation could be accel-
erated by more than 10 times. Another speed improvement
point is the processing overlap. An overlap of file I/O and
computation, and an overlap of communication and compu-
tation are possible. By using these techniques, this parallel
decision tree generation might be further accelerated.

A dual CPU machine was used for the node of the PC
cluster in consideration of the cost performance. It is pos-
sible to assign a process for each CPU for parallelization.
But, since our program may consume too much memory,
parallel efficiency may decrease. Instead, thread program-
ming seems to be more effective.

In the implementation of our parallel decision tree gen-
eration, a whole translation table is copied to all PEs. Scal-
ability to the amount of data is lost by this method. If a
translation table is divided for every PE, the amount of table
to be held by each PE is decreased to 1/PE. However, extra
processing is necessary. There is an approach whereby a
PE accesses the distributed translation table by remote ac-

cess. By this method, scalability to the data size is achieved.
If there is a high-speed communication facility for remote
access, practical performance is possible by the distributed
translation table method.

8. Related works

There are various sequential decision tree algorithms:
Cart [2] and ID3 [8]. ID3 is the predecessor of C4.5. Cart
and C4.5 were improved by NASA to IND-Cart and IND-
C4, respectively [6]. Darwin system is the parallelized ver-
sion of Cart. Mehta et al. developed SLIQ [5] and Shafer
et al. developed SPRINT [10]. SLIQ and SPRINT are par-
allelized for distributed memory parallel computers. Joshi
el al. improved SPRINT to ScalParC, which guarantees its
algorithmic scalability. SPRINT was also parallelized for
SMP [12]. In Srivastava’s work [11], efficient paralleliza-
tion based on formulation of execution and communication
speed is discussed. In the survey paper [7] by Provost et al.,
works for scalability in inductive algorithms is summarized.

We developed and evaluated a parallel decision tree sys-
tem, which is a parallelized version of C4.5 for SMPs([4]).
In this paper, a parallel decision tree generation algorithm
was implemented for a PC cluster, and its performance was
evaluated. A dynamic scheduling technique with consider-
ation of the memory size was proposed, and its effect was
investigated.

9. Conclusion

In this paper, a decision tree algorithm was parallelized
for a PC cluster. We implemented a parallel decision tree
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generation algorithm based on a SPRINT algorithm, incor-
porated with a dynamic scheduling function and data redis-
tribution.

The effect of the dynamic scheduling was influenced
by the record number and the tree shape generated. From
the experiments, the performance was almost the same as
SPRINT algorithm in the unbalanced tree, and a maximum
speed increase of 3.5 times was achieved in the balanced
tree. It was clear that improvement of the communication
performance of the platform was important for the speed
increase in tree generation for the large number of PEs.

We are planning to evaluate our algorithm by studying
the influence of parameters including number of PEs, mem-
ory size, data size, and algorithmic variables such as the
redistribution coefficient. We are also planning to improve
the algorithm on a platform with high communication per-
formance, and develop a system which can treat data from
several hundred Giga bytes to several Tera bytes, in practi-
cal time.
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Distributed data mining algorithms executing on a
shared network of workstations often suffer from unpre-
dictable performance problems due to limited network re-
sources that are being shared. We show that data min-
ing algorithms, which have an approximate nature, can
adapt to network-resource constraints. We argue that exist-
ing network monitoring and quality of service mechanisms
are insufficient to support the needs of such applications.
We then discuss the mechanisms (systems support) needed
to support such network-aware applications. Finally, we
describe the current status (work-in-progress) of the sys-
tem under development and discuss some general issues
involved in developing resource-aware data mining algo-
rithms.

Keywords: Flexible QoS, Resource-Monitoring, Dis-
tributed Data Mining, Shared Cluster Computing

1 Introduction

As our ability to collect, store, and distribute huge
amounts of data increases with advancing technology,
discovering the knowledge hidden in these ever-growing
databases has become a pressing problem. This prob-
lem referred to as data-mining, an effort to derive inter-
esting conclusions from large bodies of data, is an in-
teractive process. In fact, interactivity is often the key
to facilitating effective data understanding and knowledge
discovery. In such an environment response time is cru-
cial because lengthy time delay between responses of two
consecutive user requests can disturb the flow of human
perception and formation of insight. However, extracting
knowledge from these massive databases is a compute and
data intensive process which makes the task of guarantee-
ing quick response times difficult. In order to solve this
problem researchers have taken a two pronged approach.
To minimize the I/O traffic involved in these applications
researchers have evaluated the viability of using data re-
duction techniques such as discretization, wavelet trans-
forms, and sampling, while sacrificing little in terms of
result quality. Simultaneously to compute results faster,

researchers are turning to effective parallelization of exist-
ing data mining algorithms [19, 23, 3].

Modern-day enterprises usually contain a cluster of
shared memory workstations connected by some (intra-
enterprise) network. Such a cluster of shared-memory
symmetric multi-processors (SMPs) can be a cost effective
powerful computational resource. However, the perfor-
mance achieved by parallel programs on a non-dedicated
network of workstations is unpredictable and often leaves
a lot to be desired. This is because the performance
is affected by dynamic contention for processors, net-
work links, and I/O resources. As an example, for pro-
grams using the transmission control protocol/internet pro-
tocol (TCP/IP for short), a small amount of contention
can play havoc with performance, due to TCP/IP’s inbuilt
contention-avoidance mechanisms that can reduce com-
munication rates drastically resulting in many idling pro-
CEessors.

One approach to deal with such resource contention is
to police the allocation of such resources and having ap-
plications adapt to resource constraints. Policing resources
requires appropriate mechanisms [12, 21], to arbitrate, al-
locate, and enforce resource reservations while providing
feedback to applications regarding available resources, so
that they may adapt. In this paper we focus on how this ap-
proach can be adopted for data mining applications when
network resources are at a premium.

The availability of network monitoring services [5], and
quality-of-service (QOS) aware network protocols [6, 4] to
police network resources, suggests a natural solution. The
problem with directly using existing QOS mechanisms is
that they are based on some assumptions that do not hold in
the data mining context. These mechanisms have largely
been developed for constant bit-rate, low-bandwidth me-
dia flows in unreliable network protocols [13, 7]. Inter-
active data mining applications often exhibit bursty traf-
fic patterns, operate on large remote datasets, and are typ-
ically implemented on top of reliable networking proto-
cols. Therefore existing mechanisms are unlikely to suf-
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fice. Also, QOS mechanisms for accessing large remote
data stores has not been considered in the literature. For
data mining applications which operate on tera-bytes of
data, this is extremely important.

In this paper we make the following contributions. We
demonstrate that data mining applications that are cog-
nizant of network constraints can take advantage of know-
ing about these constraints and can adapt accordingly. We
then consider what mechanisms are lacking and therefore
necessary for application adaptability and improvement
in overall application performance (on a non-dedicated
network of workstations). This latter aspect is work-in-
progress.

In the next section (Section 2) we sketch our distributed
architecture and describe existing QOS work in the IP con-
text, upon which we are building our network QOS-aware
support . Then in Section 3 we present how two repre-
sentative distributed data mining applications can adapt to
fluctuations in network performance, motivating the need
for effective systems support. Also in this section we pin-
point some of the unpredictable traffic patterns that argues
for providing a more flexible Network QOS-aware inter-
face than is currently supported for media applications.
In Section 4 we describe the details of the system under
development. In this section we describe an overview of
the overall resource-aware system, then describe the in-
tended QOS support for local networks and remote data
access, including a very preliminary interface. In Sec-
tion 5 we highlight some critical research issues in translat-
ing application-level QOS to system-level QOS. Section 6
documents relevant related work pertaining systems sup-
port for data mining applications. Finally we conclude in
Section 7.

2 Background
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Figure 1. System Architecture

We envision an environment in which a cluster is shared
amongst multiple users in a voluntary and cooperative

fashion rather than one which is centrally managed and
operates on the single program executing at anytime con-
straint. The latter scenario typically suffers from a gross
under-utilization of resources.

In this section we sketch (see Figure 1) the architecture
of the distributed data mining system we have in mind.
The design of our system took into account the interac-
tivity and large datasets involved in mining applications.
The design also takes into account the fact that in many of
these applications it is often possible to provide succinct
descriptions of the input required (e.g.“partition dataset X
into 4 clusters” or ‘discretize the continuous attributes in
dataset Y”). This enabled us to decouple task description
from the actual data required by the task and is reflected in
our decoupled architecture. This decoupling is important
as it potentially enables different tasks to obtain data from
multiple sources simultaneously.

Our architecture consists of the following logical com-
ponents:

o Clients (C#) consisting of the GUI, a task manager
that directs the mining process, and a local cache (not
shown) of data/results of prior computations. It is
responsible for the interacting with the data mining
engine in terms of invoking, guiding and monitoring
computations as well as visualization of the results.

o Compute Servers (Cs#), each consisting of a task
manager (not shown), a compute module, which is
the core data mining engine, and a local data cache.
The compute servers and the clients are typically in-
terconnected with each other on a high bandwidth low
latency interconnect (Intranet).

e Data Server (Ds#) consisting of a data distiller and
the source database. The data distiller reads data from
the database and performs appropriate data com-
paction transformations if required (more on this in
Section 4.3). We envision that these data servers may
be accessible via the local Intranet or via the com-
modity Internet (low bandwidth, high latency). Al-
though the data servers in the figure are represented
by a single box, we envisage that the data servers are
based on a cluster architecture, and we take advantage
of this assumption, when we describe QOS support
for remote data access (Section 4.3).

The physical layout of these logical components de-
pends on available resources. In a fully distributed mode
the components, i.e. the client, each compute server and
the data server are physically separated. When the data
sets are relatively small and the client is relatively pow-
erful, all components could be resident on the client. A
hybrid model may combine the compute and data server
operations keeping the clients distinct.
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As mentioned earlier it is our intention to provide a set
of mechanisms that can enable data mining applications
to dynamically adapt to network (Intranet and Internet)
resource constraints on such an architecture. Since most
distributed mining applications are implemented on top of
TCP/IP we next discuss existing mechanisms within the
context of TCP/IP.

2.1 QoSinIP

We briefly review the current state-of-art in network
QOS mechanisms within the context of IP. In IP, pack-
ets typically make their way from source to destination
via a series of routers. Each individual router must decide
which, of usually several packets, to forward as a function
of the perceived QOS. The two most common approaches
to QOS that have been proposed is the Integrated Services
approach [6] and the Differentiated Services [4] approach.

The Integrated Services Approach, requires reserva-
tions to be placed by end points on a router by router ba-
sis. Each router is responsible for and treating for iden-
tifying and treating each application-flow separately ac-
cording to individual QOS requirements. The Differen-
tiation Services approach, limits the burden on routers by
having only edge routers classify which packets should re-
ceive better services and then place the class label in in
the header. For instance, if a better quality service is to be
provided to video-on-demand packets, the edge router will
mark it accordingly. Then interior network nodes simply
need to aggregate packets based on classes of service and
ship them out according to their level of importance. This
approach improves over the Integrated Services approach
by simplifying the task of routers.

In addition to classifying and marking packets, edge
routers may perform policing and shaping, to ensure that
senders do not send too much high quality traffic too
fast, and to handle bursty traffic, respectively. Policing
is accomplished normally by a token bucket mechanism.
The size or number of tokens in the bucket controls how
quickly an application can send data. Policing is very use-
ful for enforcing quality of service. Shaping is accom-
plished by smoothing out bursty traffic and is done to re-
duce packet loss.

Mapping these parameters (bandwidth, token depth) for
media applications that generate a fixed amount of data
(say 8Kb) per frame, at a fixed rate (say 15 frames a sec-
ond) is pretty straightforward (bandwidth 120 Kbps, token
depth 8Kb). The communication patterns associated with
data mining applications, described in the next section, are
significantly more complex, while the requirements often
may be less stringent.

3 Application Adaptability

Data mining applications and the human user driving
them, often have varying needs in terms of quality and
performance. However, applications (and users) can of-
ten adapt to resource constraints by trading off result qual-
ity for performance (improved response time), when re-
sources are constrained. In other words the result quality
can be sacrificed in a controlled manner when resources
are at a premium and response time is crucial. Below we
give specific examples of how two applications, discretiza-
tion and dataset clustering implemented on our architec-
ture can adapt to constraints in network resources.

3.1 Discretization

In the process of growing a decision tree [17], the prob-
lem is to determine which leaf node to split and for each
leaf node, which attribute to use for the decision at that
node. Consider the computation at a node. While typ-
ically, a single attribute is used as the decision variable,
one can well consider extensions to more than one base
attribute (e.g., X > 5 A'Y < 6) as long as the decisions
remain simple [15]. Limiting oneself to selecting base at-
tributes pair-wise, the problem is to determine f(X;, X;)
for all X; and for all pairs X;, X;, where {X;} are the at-
tributes and f(X;, X;) measures the goodness of X;, X
as a decision attribute. This problem is referred to as 2-
Dimensional Discretization and is computed by the follow-
ing algorithm:

FOR each pair of attributes
Step 1: Compute the probability density function (pdf)
induced by the 2 base attributes.
Step 2: Compute optimal discretization (based on
some goodness function like entropy)
Step 3: Score (entropy value) and save result
END FOR
Step 4: Sort results and display top scoring attribute-pairs
and corresponding discretizations.

Next we consider how to map this algorithm on to our
distributed architecture. Step 1 will typically be computed
by the corresponding data server, since this step distills
the pairwise attribute columns to a much smaller summary
(pdf), that can then be economically transmitted to remote
compute servers. Steps 2 and 3 are naturally computed by
the local compute servers. Once all the results have been
scored and saved, the final step (Step 4) can be executed
on the client machine and displayed to the user.

3.2 Network Aware Discretization

This application can adapt to a bandwidth limited en-
vironment (as may be the case when the data servers are
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| Grid Size(MB) | Classification Error |

0.00155 13.5%
0.00625K B 12.8%
0.025 12.47%
0.1 12.22%

04 12.19%
1.55 12.15%
6.25 12.12%

Figure 2. Network-Aware Discretization

truly remote over the commodity Internet) in the follow-
ing way. The pdf can be computed at different levels of
granularity'. The finer the granularity the greater the ac-
curacy of the results (lower the classification error). How-
ever, at finer granularities the amount of data that needs to
be transmitted increases proportionally. We evaluated this
tradeoff (results in Figure 2) for a pair of attributes from
the LL dataset (described in [15]). From the figure we see
that the most accuracy at the highest granularity (grid size
= 6.25MB). However, the drop-off in accuracy at a sig-
nificantly smaller granularity (grid size = 0.1MB) is just
0.1%. This demonstrates that this application can adapt
to a bandwidth limited environment by trading off quality
(classification error) for significant performance gains (re-
duction in communication). Note that the total amount of
data that needs to be transferred from the data server(s) to
the compute servers is equal to N(N + 1)/2 x gridsize
where N is the total number of attributes in the dataset.
Therefore, the total savings in communication is extremely
significant, and comes with a minimal sacrifice to qual-
ity. Also note that the top-scoring PDF’s are transferred a
second time from compute servers to the client (Step 4) re-
sulting in further performance benefits (from working with
smaller grid sizes).

3.3 Hierarchical Dataset Clustering

In [14], we define the similarity between two datasets
(say D;, and Dj) to be a function of the difference be-
tween the set of associations (A; and A; respectively) in-
duced by them (Sim(D;, D;) = f(A;, Aj)), weighted by
the supports of each association. We also show how such
measures of similarity can be used effectively for for clus-
tering homogeneous datasets. The basic structure of this
clustering algorithm is shown below:

Step 1 is typically computed by the corresponding data
server, since this step distills the datasets to a much smaller
summary (association sets A;). The summaries are then

I'The granularity of the pdf estimate is a function of the number of dis-
crete locations at which the pdf is estimated, i.e., the finer the granularity
the more the number of discrete locations.

Step 1: Compute associations sets A; for each dataset.

FOR each pair of datasets D;, D;
Step 2: Compute Sim(D;, Dj) from A;, A;

END FOR

REPEAT (initially treating each dataset as a cluster)
Step 3: Merge closest pair of clusters

UNTIL Desired number of clusters

Step 4: Display data clusters and similarity matrix

communicated to the compute servers. Steps 2 and 3 are
naturally computed by the local compute servers. Once
the dataset clusters have been computed, Step 4 can be ex-
ecuted on the client machine and displayed to the user.

3.3.1 Network Aware Dataset Clustering

| TIE (MB) | Accuracy |

36 100%
18 99.3%
9 99.0%
7.2 98.9%
5.4 98.4%
3.6 97.8%
1.8 91.5%

Figure 3. Network-Aware Dataset Clustering

In step 2 it is possible to sample the association sets,
to limit the amount of information that is being commu-
nicated at a cost to accuracy. Table 3 shows the im-
pact of using sampling (which affects the total informa-
tion exchanged (TIE)) to compute the similarities amongst
12 datasets [14]. Clearly, when the total information ex-
changed (TIE) is more, the similarity metric is more ac-
curate. However, the loss in accuracy when a tenth of the
data is exchanged (3.6MB) is about 2%, which may be tol-
erated by the user if it does not affect the actual clustering
of the datasets (which happens to be the case for this exper-
iment). The merging procedure (step 3) also involves ex-
changing of complete or partial information (in the spirit of
step 2) to compute (or estimate) the association sets for the
merged clusters. Similar results, from trading off quality
for communication efficiency, was observed for this step
as well.

3.4 Other Applications

Classical parallel implementations of various data min-
ing tasks where the data is either centralized or distributed
and there is no notion of a separable data server can also
adapt to system resources. For association mining [1]
researchers have described I/O sensitive techniques that:
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trade off disk traffic [18] or communication [23] for ex-
tra computation (it is important to realize that quality need
not always be sacrificed); trade off disk traffic for qual-
ity [22]. Since sequence mining is essentially associa-
tion mining over temporal data, the same trade-offs can
be made for it as well. The same is true for clustering al-
gorithms as well. Recently, we described methods [16] by
which the Expectation Maximization algorithm can adapt
to various resource constraints. We described how this
algorithm: can adapt to bandwidth limited environments
via lossy and lossless compression; can adapt to available
cache and memory sizes via program and data transforma-
tions, and can adapt to computational resource constraints
via appropriate program transformations.

3.5 Traffic Patterns

In this section we isolate the traffic patterns of dis-
tributed data mining algorithms in general while paying
particular attention to the two applications we have de-
scribed. More importantly we identify how these appli-
cations differ from typical media applications. As pointed
out earlier media applications usually have an easy to spec-
ify communication pattern. The communication patterns
of data mining applications differ in the following respects:

e Unpredictable Message Sizes: The amount of in-
formation communicated depends largely on the data
characteristics, and input parameters (or user interac-
tion). In some cases the exchange of information is
minimal and in yet others it is a large amount. For
instance, between Step 1 and 2 of the hierarchical
dataset clustering algorithm, the association sets are
communicated from the remote data server(s) to the
compute cluster. The number of actual associations in
a given association set is completely dependent on the
characteristics of the dataset 2, as well as on the input
parameters (minimum support), and is therefore dif-
ficult to predict in advance. Distributed versions [3]
of the Apriori [1] algorithm that exchange candidate
itemsets also exhibit this property. Here, the num-
ber of candidate itemsets, and therefore the amount
of information communicated, depends on the char-
acteristics of the dataset and input parameters.

e Bursty Communication: As we see from the al-
gorithm descriptions above, data mining applications
may compute for a bit, then communicate informa-
tion, and then compute again. In many applica-
tions (such as discretization; when multiple pdf’s are
mapped to the same compute server) communication
(receiving pdf’s from data servers) can be overlapped

21t depends on the average number of items per transaction, total num-
ber of items in the dataset, and actual associativity of the dataset.

with computation (computing the optimal discretiza-
tion on the pdfs that have already been received). In
other cases computation ceases until communication
completes. This results in bursty communication pat-
terns that can overwhelm network resources, espe-
cially in the case of data intensive applications like
data mining, resulting in poor performance.

e Varied Communication Models: In media applica-
tions the normal communication model is a simple
synchronous, and continuous producer-consumer or
one-on-one streaming communication pattern. Data
mining applications exhibit a range of communi-
cation patterns such as synchronous, asynchronous,
pairwise (one-on-one) and one-many (broadcast) and
many-one (slave-master).

e Dependency on Reliable Communication: Data
mining applications by and far rely on reliable net-
work protocols unlike media applications. Commu-
nication in such applications is typically achieved via
reliable protocols such as TCP/IP. TCP’s flow control
and congestion control mechanisms while critical to
the effectiveness of TCP in shared networks have the
unfortunate consequences of making TCP traffic sen-
sitive to the loss of individual packets.

The above issues notwithstanding data mining applica-
tions are typically more flexible than media applications
and can often place slightly less stringent QOS require-
ments on the network resources. For example in video-
on-demand applications if a certain frame rate cannot be
guaranteed, then the quality fallout may be unacceptable.
On the other hand in data mining applications, there is of-
ten, and specifically in the case of the two examples we
outlined above, no strict bandwidth requirements (as in re-
quiring X bits per second). Therefore, the system can be
more flexible in terms of bandwidth guarantees, and ad-
mission control. As a result even when the traffic patterns
are bursty, mining applications are conducive to fairly ag-
gressive shaping policies. The caveat here is that some
mining applications, especially active mining applications,
that operate on time-varying data might require strict band-
width, and anti-shaping guarantees. Therefore, data min-
ing applications can benefit from a system that can sup-
port both conventional (strict) and more flexible classes of

QoS.
4 System Details

In this section we consider the details of the system un-
der development to support network-aware data mining.
We first briefly overview how we envision our system will
process and control resource reservations. We then discuss
the flexible QOS classes that we plan to support, for data
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mining applications, within the local compute cluster. We
then describe how we support QOS for remote data access.

4.1 Overview of the System

Static information available to the system includes the
type of connection within the compute cluster (peak band-
width, minimum latency),and similar information for con-
nections to the the data servers. Dynamic information
available to the system include current resource utilization,
and future resource utilization (from application reserva-
tions). At any given point the network resource scheduler
can receive a resource reservation request from a client.
The scheduler can also simultaneously receive similar in-
formation from other clients. Based on all the new re-
quests, existing client priorities (briefly described in the
next section) and the available resources at the cluster, the
scheduler needs to decide on the optimal set of services
to be scheduled. Depending on the optimization function
(some combination of maximizing throughput of the sys-
tem, best response time for prioritized clients, and guaran-
teeing QOS) the scheduler needs to derive the final set of
resources (and corresponding QOS) that can be reserved.
Once the scheduling decision is made, the admitted client
applications are notified of the resources that are avail-
able and the corresponding QOS available. The sched-
uler also informs the resource enforcer about the admit-
ted jobs which in return enforces the respective QOS for
the clients. Based on this information, especially if the
reserved resource is not at the desired QOS requested by
the client, the application can adapt to the available service
from the cluster. Once the reservation related to a particu-
lar resource is no longer required, the resource is released
back to the cluster. We next describe the QOS interface for
the compute cluster and the QOS interface for remote data
access.

4.2 QOS for Local Networks

The QOS classes that we intend to support for data min-
ing applications are short low latency, premium (2), best-
effort and O-priority. Short low latency messages are for
short high priority messages that can be used for sending
signals or for collective synchronization operations like
barriers. Premium messages can be used for high pri-
ority messages that are too large to be supported by the
low latency class of service. Based on the discussion pre-
sented in Section 3.5 we plan to support two forms of pre-
mium messages, i.e., with and without bandwidth guar-
antees. Data mining applications, requiring a strict QOS
requirement, can use the former class (with bandwidth
guarantees). Other applications, where the bandwidth re-
quirements are not as stringent (or unknown), can use the
more flexible premium message class (without bandwidth

guarantee) while still getting a reasonable level of QOS.
Under the latter class, the system also has the flexibility
(within moderation) to police and shape according to dy-
namic network information. Best effort messages can be
used to indicate which messages do not require QOS ser-
vice and can therefore be aggressively shaped or policed
by the system. O-priority messages are messages that can
be dropped when contention in the system becomes an is-
sue. Such messages can be used in data mining in appli-
cations where the arrival or non-arrival of a message does
not affect the produced results. For instance in association
rule mining, pruning of candidate itemsets can improve the
search speed [1], however, if there is heavy contention in
the network then the information required by the pruning
algorithm may be delayed, thus delaying the overall algo-
rithm. If instead one were to send all pruning information
using a one-way asynchronous O-priority message, then if
there is heavy contention this information would not get
through else it will. The algorithm can tolerate this mes-
sage loss, with no loss to result quality at the cost of extra
computation.

There are other parameters involved when placing a net-
work resource reservation. The bandwidth parameter is
required, for one class of premium messages, and it re-
flects the amount of information that needs to be sent per
unit time. The total message size (if known or if it can be
estimated?), can allow the system to compute the the pro-
jected reservation time based on current system state. This
is useful for admitting other reservations (much like how
restaurant reservation systems work).

There is also a need to provide mechanisms which
would allow applications to monitor reservation requests.
If the requested class of service is unavailable the system
will return the next best available class of service that it can
currently guarantee. The application can query the reser-
vation, and if the desired QOS level is not available, then
it can decide how to adapt. A sample piece of code below
describes how a programmer could take advantage of the
current interface.

QOS_OBJECT *QO = QoS_adv._reservation(PREMIUM1, bw, message_sz,...)
/* ... other information such as source, destination etc. */

IF (!QOR->got_requested_reservation())
Read what we got
Adapt accordingly
QO->Send(*msg_ptr);

ELSE
Continue as per plan
QO->Send(*msg_ptr);

ENDIF

QO->relinquish(); /* required for PREMIUMI service, implicit for others */

3We have pointed out in Section 3.5 that the total message size is
difficult to guess apriori in many data mining applications. However, in
some cases this information can be estimated, either via sampling or from
historical performance data, slightly in advance of when the message is
actually sent.
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The code first places an asynchronous advance QOS
request (in the spirit of asynchronous I/O requests) with
the desired class of service (PREMIU M1), the desired
bandwidth (bw) and the estimated size of the message
(message_sz). Placing advance reservations is recom-
mended especially if requesting premium or low-latency
class of service as the system has more time to make a de-
cision. Such requests will return a communicator object
handle (QOS_-OBJECT), along with the exact QOS that
will be guaranteed. The application can view the guar-
anteed reservation (using the get_reserved_in fo() func-
tion). This information can be used by the application if it
needs to adapt to a lower than expected guarantee of ser-
vice. The Send() function is used to send the correspond-
ing message(s). Relinquishing reservations are implicitly
handled by the system once the message has been sent, for
all classes of service except premium messages with band-
width requirements. For this class of service the reserva-
tion will have to be relinquished explicitly (as shown in the
code fragment using the relinquish() function).

4.3 QOS for Remote Data Access

QOS over the commodity Internet is difficult to guar-
antee. Perhaps the most challenging aspect of a remote
storage server design lies in the bandwidth barrier repre-
sented by the wide area link protocols. Theoretically the
bandwidth on the (wide-area) Gigabit Ethernet is compara-
ble to that of a local (campus-wide) cluster. However, the
well documented overhead of conventional TCP/IP pro-
tocol stacks limits the link data rate to values around 50
MB/s, no matter how fast the wire.

To overcome this problem, we have adopted a parallel
communication approach in the spirit of [10] and [2]. The
basic idea is to communicate by striping data over parallel
TCP/IP connections. Our scheme improves on the above
in that each of the connections can use distinct endpoint
nodes since we envision that each individual data server
is basically a cluster architecture. Basically, by taking ad-
vantage of the presence of clusters on both ends of the geo-
graphical link, we get around the bottleneck by effectively
parallelizing the TCP/IP protocol processing. The scheme
scales up with the number of nodes used for each cluster,
up to the physical limit of the intervening link. An addi-
tional software layer is in charge of striping and de-striping
on the two ends, while taking advantage of the fast user-
level communication available on the local clusters.

The above approach also enables applications to specify
a quality of service in terms of the number of striped con-
nections. The quality of service can be controlled by in-
creasing or decreasing the number of striped connections
in response to changes in application requirements. The
two classes of service that we support here are best effort
and premium (with striping parameters). When requesting

the premium class the application can specify the striping
parameters that will correspond to the number of striped
connections per node as well as the number of nodes in-
volved for each cluster. The network scheduler will de-
termine whether the request can be met (which will in-
volve communicating with its corresponding unit at the
data server end).

Table 1 presents some preliminary experiments in
which we evaluate the the impact of the above approach.
The first column (#CS), represents the number of compute
server nodes involved in the experiment. The second col-
umn (#RS) represents the number of remote data server
nodes involved in the experiment. The third column (#PC),
represents the number of parallel communication channels
between the remote server(s) and compute server(s). The
second row of the table represents an experiment involv-
ing four parallel connections between one compute server
node and one remote server node. Finally, the fourth col-
umn represents the total time for the data transfer. This in-
cludes the time for communication, de-striping, and stor-
ing on the local file system. We assume that the data is
already striped on the remote servers.

#CS | #RS | #PC | Total Time (s)
1 1 1 26.4
1 1 4 24.1
1 2 4 22.6
1 4 4 21.1
2 1 4 22.1
2 2 4 21.3
2 4 4 20.1
4 1 4 21
4 2 4 20.3
4 4 4 18.6

Table 1. Evaluating Striping for Remote Data
Access

Our experimental set-up consisted of compute servers
located in the Ohio-State University. The data servers were
located at Rochester, NY. The communication was over the
commodity Internet. In all the experiments 16MB of data
was transmitted. The overall performance was severely in-
hibited by the fact that compute cluster has to make con-
nections to the outside world via a single gate-way node.
In spite of this limitation we observed encouraging results.
On going from 1 (row 1 (best-effort)) to 4 (row 2) paral-
lel connections for one compute node and one data node
we see that there is a 10% improvement in performance.
As we pointed out earlier, increasing both the number of
remote server nodes (rows 2-4), and the number of com-
pute nodes (rows 5-11) resulted in further improvements
in performance (10-35%).
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Another form of QOS that we plan for remote data ac-
cess is data-preprocessing time at the data-server end. As
we pointed in Section 3, many data mining applications
can use data reduction operations like wavelet transforms,
pdf generation, various time/frequency transforms, sam-
pling, etc., to reduce the amount of data that needs to be
transferred thereby ensuring that even with lower band-
width reservations the reduced data can be obtained in a
timely fashion. However, these data reduction operations
can be computationally intensive. In order for the data re-
duction operations to be effective the sum of the time taken
to compute the reduction and the time taken to send the re-
duced data must be less than the time to send the original
data. Therefore, the application needs to place an appropri-
ate QOS reservation for computational resources [12, 21]
on the data server.

4.4 Current Implementation Status and Issues

We are clearly at the very early stages of implement-
ing the ideas presented in the previous few sections. We
are in the process of implementing the interface for local
area networks based on the Differentiated Services-based
system, where the QOS class labels (premium, short-low
latency etc.) are placed in packet headers, so that polic-
ing can be enforced and shaping of messages can be car-
ried out where appropriate. After the basic interface has
been implemented we will implement the meat of the sys-
tem, viz., the resource scheduler. For remote data access,
we have implemented the quasi-QOS protocol as outlined
above and are evaluating it.

One interesting research issue we are investigating is to
identify a mechanism that can handle premium messages
with bandwidth guarantees effectively. One possible so-
lution we are investigating is to estimate and dynamically
adjust the optimal depth of the token bucket at the edge
routers. We are evaluating the viability of estimating this
information using current premium bandwidth reservation
information coupled with dynamic network performance
data.

5 Translation of user level QoS to System-
level QOS

To provide a particular level of user/application level
QoS, there is a need to translate the user QoS to the un-
derlying system-level QoS presented in the previous sec-
tion. This translation will naturally have to be done in
an application-specific manner. Below we discuss the re-
search issues involved in this translation process.

For data mining applications, the user’s requirements
are mostly specified in terms of performance and quality
of results (Table 2 and Table 3). Performance is usually

described as the amount of time that is allowed to fulfill
the user’s request, i.e., response time. Based on the al-
gorithm that is involved, this response time specification
can be translated into the deadline for completing the re-
quested operation. This “execution deadline” information
can be used by the scheduler to prioritize among com-
peting clients requesting network resource reservations.
To specify the quality requirement, the user can typically
specify the amount of error (E) that is tolerated. The rela-
tionship (network resources = f(E)) between the error tol-
erance and the required network resources is application-
specific. This relationship can often via static or run-time
profiling on sampled data be estimated. For instance on
knowing the maximum tolerated classification error for
building a decision tree one can, after sampling the data
at runtime, estimate the amount of data that needs to be
communicated in order to guarantee this error tolerance
requirement. By knowing the amount of data that needs to
be communicated, and in conjunction with response time
requirements of the client, one can compute the appropri-
ate bandwidth requirements needed, which can then be re-
served.

6 Related Work

Several systems have been developed for distributed
data mining. The JAM [20](Java Agents for Meta-
learning) and the BODHI [11] system assume that the data
is distributed. They employ local learning techniques to
build models at each distributed site, and then move these
models to a centralized location. The models are then com-
bined to build a meta-model whose inputs are the outputs
of the various models and whose output is the desired out-
come. The Kensington [9] architecture treats the entire dis-
tributed data as one logical entity and computes an overall
model from this single logical entity. The architecture re-
lies on standard protocols such as JDBC to move the data.
The Id-Vis [21] architecture is a general-purpose architec-
ture designed with single data mining applications in mind
to work with clusters of SMP workstations. Both this sys-
tem and the Papyrus system [8] are designed around data
servers, compute servers, and clients as is the system pre-
sented in this work. The Id-Vis architecture explicitly sup-
ports interactivity through the interactive features of the
Distributed Doall programming primitive. However, the
interactions supported are limited to partial result report-
ing and bare-bones computational steering. Our work is
complementary to the above distributed data mining sys-
tems. Their focus is on how to build data mining systems
or specific data mining applications when the data and pro-
cessing capacity is distributed. Our focus is on how to
build systems support for resource-aware data mining.
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7 Conclusions

Many data mining algorithms have unpredictable per-
formance on shared computational environment, due to re-
source constraints. In this paper we present preliminary re-
sults showing how data mining algorithms can effectively
adapt to network resource constraints if proper systems
support and a flexible interface to control and enforce net-
work resource acquisition were available. We have argued
that existing QOS mechanisms for media applications are
not appropriate for data mining algorithms since the com-
munication needs and application properties are very dif-
ferent. We have then outlined a desired (wish-list) set
of QOS mechanisms that ought to be supported in order
that adaptable data mining algorithms can monitor and ac-
quire resources to get predictable and desired performance
and have described how we are attempting to achieve this
goal.
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Abstract

By using cardinality and relevance information about
a set of attributes and concept hierarchies, a top-down
incremental data partitioning method is proposed for
quantitative rule derivation from database in paral-
lelism. Based on sequential incremental approach, we
proposed two parallel versions of incremental parti-
tioning algorithms. These two parallel algorithms are
multidimensional-based to partition data set into mul-
tiple independent subsets for further rule derivation
process. The second version of the parallel algorithm
improves the first in terms of load balance.

1 Introduction

Rule derivation has been considered as one of the im-
portant research subjects in knowledge discovery and
data mining in database systems and machine learn-
ing. From academic research point of view, knowledge
discovery is referred to as non-trivial extraction and
identification of implicit, previously unknown, poten-
tially useful, and ultimately understandable patterns
from raw data in database systems [6, 7]. From prac-
tical or industrial perspective, data mining is a step in
the KDD process consisting of applying data analysis
and discovery algorithms that, under acceptable com-
putational efficiency limitations, produce a particular
enumeration of patterns over the data [7].

With various methods in knowledge discovery and
data mining, these potentially useful and previously un-
known knowledge can be discovered and derived from
large databases and/or data warehouses. The discov-
ered knowledge from the relevant sets of data in data-
bases can be correspondingly used for information man-
agement and monitoring, decision support and making,
query processing, OLAP (online analytic processing),
and many others.

Huge data volumes in gigabytes, terabytes, and
petabytes are no longer fictitious numbers but become
real challenge to XDD. The size of today’s databases
requires not only efficient and effective storage and re-
trieval of the data for online transaction processing
(OLTP), but also for online analytic processing (OLAP)
and KDD. The intensive process of knowledge discov-

ery process in large databases, data warchouses, and
information repositories requires efficient and intelli-
gent methods that are different from those developed
in the fields of artificial intelligence and machine learn-
ing [6, 7, 13, 14]. It requires and obligates methods to
scale up data mining algorithms, which includes devel-
opment of novel data mining algorithms, or adaptation
and integration of existing data mining algorithms, in
order to deal with huge data volumes in KDD process.

Besides alternatives to develop new data mining al-
gorithms, adapting existing ones, or integrating, some
approaches try to exploit emerging hardware technol-
ogy such as massively parallel computer machines that
are becoming more popular. Hence, many research en-
deavors have scaled up data mining algorithms by ei-
ther changing existing sequential algorithms into par-
allel versions or developing new parallel data mining
algorithms [1, 2, 23, 24]. In this paper, we will pro-
pose a top-down incremental data partitioning method
for parallel rule derivation which derives a set of multi-
level quantitative rules from a relational database table.
A multidimensional data structure is used to store not
only the derived quantitative rule information, but also
to facilitate the update of the quantitative rule infor-
mation.

2 Literature Review

Sequential approaches for rule derivation from earlier
research can be found from the literatures in artificial
intelligence, machine learning [13, 14, 15, 18], and data
mining and knowledge discovery (2, 3, 6, 7, 8, 9, 10, 11,
12, 17, 21].

The primary research on knowledge discovery in
database systems has been the focus on deriving rules
such as association [2, 3, 8, 12, 16, 17, 21], classification,
characterization, discriminant, description [9, 10], etc.
Association rule mining finds all rules in the database
that satisfying some minimum support and minimum
confidence constraint [3]. Classification rule mining is
to discover a set of rules in the database to form an
accurate classifier [18].

In many cases, it is hard to find a single crisp rule to
classify and to characterize the association among entire
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set of data due to complex combination of properties in
existing data. So quantitative measurements are used
to discern the data set and to derive rules from the
data in the sense of probability of the truthfulness with
respect to the set of derived rules [3, 9].

Typical quantitative description rule derivation ap-
proaches in a universal relational data-base table can
be found in [9, 10], where a set of concept hierarchies
is used to guide the rule derivation process. The set
of rules derived by the methods in [9, 10] is complete
by augmenting each of derived rules with quantitative
vote in order to classify overlapped data tuples from
different classes. Various related research work in min-
ing association rules has been given in [2, 3, 12, 17, 21].
The key issue in mining association rules is how to find
the large item sets, i.e., all item sets that have the sup-
port above a threshold value: the predefined minimum
support, and to use the large item sets to discover the
set of associate rules. With support s and confidence ¢
values [2, 3], only the association rules whose support
values are greater than the threshold values will be fi-
nally generated. The rule derivation approaches can be
classified into: supervised [9, 10], unsupervised [3], or
semi-supervised {21]. For semi-supervised approaches,
they utilize hash functions or pre-defined categorization
to classify attributes with numerical data type.

The computation of the rule derivation process is
intensive due to huge volume of data, and sometimes
exhaustive in order to discover the complete set of all
useful rules {2, 3]. Because of these, many parallel and
scalable algorithms have been proposed for fast rule
derivation [1, 2, 23, 24].

3 Background and Previous Research

In order to facilitate further discussion and problem
formulation, we would like to give the following defini-
tions.

3.1 Definitions
Definition 3.1 Let R(A,...,Ap) or R={A4,..., Ap}

be a universal relational database schema, where A; is
an attribute or a dimension in the schema, and n is the
number of attributes or dimensions in schema R for
1<i<D.

Definition 3.2 Let CH = {ch{A;) | i < D} be a set
of concept hierarchies or concept hierarchy trees which
specifies tazonomy of concepts on top of primitive data
in a database.

Definition 3.3 Let ch(A;) or ch; be a set of h; jxs,
and each h; ;1 is a concept element in the concept hier-
archy corresponding to a node in the concept hierarchy
tree, where j is the j** level in a concept hierarchy, and
k is the k** specialized element (attribute) for a given
j at the same level of a concept hierarchy ch(A;).

Without loss of generality, it is assumed that all the
concept trees are in the form of balanced tree.

Definition 3.4 Let card(A;) be the  cardi-
nality (the number ofdistinct values) for attribute A;
denoted as | A |. Let chij = {hijk |1 <k <card(R)}
be set of specialized concept elements of at the 7% level
in the concept hierarchy ch(A;) for A; in R, and | ch; ; |
be the cardinality for ch; ;.

Definition 3.5 Let height(ch(A;)) be the height for
the concept hierarchy ch(A;) and max(height(CH)) be
the mazimal height for the set of concept hierarchies
such that:

max(height(CH)) = max{height(ch(A;))}
where 1 <1 < D,

Definition 3.6 Let C be a set of dimension cycles such
that:

C={C;|1<j<max(height(CH))}.
Each C; is an ordered set such that:

Cj = {dl,dg, ey i, }

where C; C N, |C; ] <D,0<d;<D-1, d; <diyq,
and dip1 — d; > 1.

Definition 3.7 Suppose n is a node. Let T; ;1, T; ; 2,
..., Tj 4.1 be trees with roots ny ,na, ..., ng respectively. A
new tree with n being the parent of nodes ny,,ng, ..., Nk
is constructed in a way such that: n is the root of the
tree, and T j1, Ti 52, ..., Tijn are the subtrees of the
root. Nodes ni,na,...,nk are the children of the node
n. i is the dimension or attribute in the schema, j
is the level in the concept hierarchy corresponding to
the dimension i, and k is the number of partitions or
classifications corresponding to i and j. Without loss of
generality, the height of the tree is bound by: height(T)

<Y |Cil

Definition 3.8 IfT; ;x is an internal node, then Tj ;
s a n-tuple such that:

< count, i, J, k, Sweight, Cweight, {0try, ptra, ...}, ... >

where count is used for computing sweight and Cueight
stored at each level of the tree, and {ptry,ptre,...} is a
set of pointers. If T; ; 1, is an internal node, then the set
of pointers that link the partitioned subtrees to the next
level. If T; ;1 is a leaf node, then the set of pointers
that link to buckets where the set of data tuples belong
to the partition associated with T; ;.

3.2 Previous Related Research

Most relevant research in quantitative rule derivation
is the concept hierarchy based and attribute-oriented
induction method proposed by Han et al. [9, 10].
The relational database table used in the rule deriva-
tion process can be a subset of the universal database
schema. In the bottom-up quantitative rule approaches
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in [9, 10], the set of concept hierarchies is used to guide
the process of rule derivation, and the generalization
process selectively picks the attribute with larger reduc-
tion rate, which means larger support s value and/or
implies larger confidence ¢ value [2, 3]. The center of
their approach is attribute-removal and concept ascen-
sion. The purpose of concept ascension [9, 10] is to
remove duplicate tuples by substituting the attribute
value with the corresponding one at the next higher
level of the concept hierarchy. Attribute-removal is
to drop the attributes that are impossible to general-
ize and to support further concept ascension. One of
heuristics used in [9, 10] is to find the attribute col-
umn with the larger reduction ratio. The importance
of using the set of concept hierarchies as background
knowledge is to guide the generalization process in the
correct direction.

4 Sequential Incremental Partitioning

We start with illustration of our sequential incre-
mental rule derivation method in order to introduce
and understand the parallel version of the sequential
algorithm. Our sequential incremental partitioning ap-
proach for quantitative description rule derivation is dif-
ferent from the data-driven method [9, 10] as described
in the following:

1. The previous approach in [9, 10] is bottom-up data
driven method. Our method, presented in this pa-
per, is a top-down, goal-driven approach. One of
the advantages of the top-down approach is the
scalability, i.e., as long as the partition is done
along a dimension at one level with a given con-
cept hierarchy, the partitioning at the next dimen-
sion can be processed parallelly.

2. Similar to the approach given in [9, 10], our top-
down method selectively picks an attribute for data
partitioning and derivation with a small cardinal-
ity value of the attribute. If an attribute has a
smaller cardinality, then more tuples in a table
share the same attribute value, the attribute value
has a higher frequent appearance or count, and
the attribute is more representative as a predicate.
The smaller the cardinality value for the attribute
is, more relevant the attribute is to the set of de-
rived rules. The smaller the cardinality value is,
the larger the support s value is such as: ([2, 3])

1

1
cardinality o ~ or 8 X ——m—ee
s cardinality

(1)

3. Each time an attribute or a dimension is picked for
partitioning or classifying, the data tuples from the
same category will be grouped together for further
partitioning or classifying along next attribute or
dimension.

4. The partitioning or classifying process is cycled
based on the cardinality values of attributes or di-
mensions, and the next dimension next_d in the
cycle is determined by:

(i+1) mod D

o J < height(ch(A;))
next_d(l) - { next_dim(i + 1)

otherwise

. . (2)
where ¢ is the current attribute or dimension for
partitioning, D is the total number of dimensions
and attributes involved in the process.

5. Since the partitioning or classifying method is a
top-down process, the first cycle of partitioning or
classifying will be based on the classifications at
the first level of all the concept hierarchies. It will
move down to the next level of the concept hierar-
chies in the next dimensional cycle i = 1,2, ..., D.
The next level L; j(7) of the concept hierarchy for
a corresponding dimension or an attribute A; in
the next dimension cycle can be determined by the

following:
j if (i+1) mod D > i mod D
& j§ < height(ch(Ay))
Lij(j) =4 j+1 4f (i+1) mod D <imod D
& j < height(ch(4;))
%) otherwise

3)
where 1 < j < max(height{CH)).

Since it may be true that height(ch(4;)) #
height(ch(A;)) for i # j, the partition along dimen-
sion A; will be skipped if j > height(ch(4;)).

4.1 Sequential Partitioning Algorithm

The top-down partitioning approach for quantitative
rule derivation is multidimensional based, and it scans
the data and classifies the knowledge along each dimen-
sion or attribute by dimension cycling and concept hi-
erarchy descending.

1. The algorithm first generates a set of ordered n
attributes A;s such that:

lAil <[4, i<j<n

This implies the classification process will start
with the dimension with the least number of spe-
clalized attribute values, which has the smallest
cardinality value. If | A; |=| A;y1 |, then the order
will be determined by the value of | ch;; | such
that:

lchij| < |chipiy|
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As soon as the sequence of attributes is determined,
the classification or partition can be performed
based on the watershed attributes corresponding
to the elements at the highest level in the concept
hierarchy.

3. As soon as the partition or classification is done
along the attribute or dimension 4; at the 5% level
(j = 1), attribute A;;4 is chosen for the partition
or classification at the same level of the concept
hierarchy of A;;;. The partition process on each
attribute A;s is cycled based on the function such
as: {i+ 1) mod D for a given j < height(ch(4;))
till it is stopped.

4. After each cycle of partitioning on attribute A;s,
the algorithm will start a new cycle on the at-
tribute A;s and perform further specialized clas-
sification based on the set of elements at the next
level of the concept hierarchy such that: the level
J < height(ch(A;)).

5. As soon as the partitioning or classifying is com-
pleted at the current level of its corresponding con-
cept hierarchy along the attribute or dimension,
the relevant information about the quantitative
rule is stored correspondingly in a node in terms of
multidimensional data structure. The multidimen-
sional data structure used here is similar to the k-d
tree 5], k-d-b tree [19], and other multidimensional
trees {20].

6. The algorithm will recursively partition and will
not stop the process until either the threshold val-
ues are not satisfied or the partition or classifica-
tion reaches all the bottom levels of the concept
hierarchies. The set of threshold values T;s is de-
fined and can be used to control the depth in a tree
or the number of levels of rules. If the threshold
values are not used, then partition process will de-
rive the complete set of rules along each dimension
corresponding to each level of the concept hierar-
chies.

7. At each level of classification or partition along at-
tribute A;, a set of quantitative rules can be de-
rived and the information about the set of derived
rules is stored correspondingly in a node T ;x at
each level of the tree. The number of derived rules
depends on the number of elements at the corre-
sponding level of the concept hierarchy. The water-
shed, boundary range information, and the number
of tuples in that range are stored at each level of
the tree.

4.2 Definitions for syeign: and cCyeign: in
Quantitative Rules

The partitioning process is to classify the data tuples
in multidimensional space according to the given set of

concept hierarchies. The quantitative rule information
can be calculated along the partitioning process and
stored in the multidimensional tree as defined in Defi-
nition 3.7.

In general, a derived quantitative rule can be ex-
pressed as follows:

V(z)target_class(z) <> conditions(z)[s : w,c: w'] (4)

The symbol ¢+’ indicates that conditions(z) are
both the sufficient and necessary conditions for the de-
rived rules [9].

The value of sy.cign: indicates the percentage of data
tuples in a partitioned node satisfying the conditions of
the rule out of the total population in R:

3> count(z)

Ye€pi ik
Sweight = card(R) (5)
where

1. pijk is the k' class (partition) from the dimension

(¢ — 1) with respect to h; ;1 at the j* level of the
knowledge tree for attribute A;.

2. pi i is the partition derived from the subtree at
the level of (i — 1). For any given node or sub-
tree t;_1, there might be more than one partitions
derived from ¢;_; that belong to h; ;.

3. card(R) is the total number of data tuples in the
data set.

The value of cyeight describes percentage of data tu-
ples satisfying the conditions of the rule out of all the
tuples in the partitions derived from the same subtree
root.

> count(x)

YeEp;, i,k

IDDY

Yk vmepi,j,k

c.weight =

(6)

count(z)

The value of >
VTEPi,j,k
tuples that belong to the k** class (partition) at the
4" level of the knowledge tree for attribute A;. The
partition p; jx contains k classifications or partitions
from the same subtree.
Thevalueof . >
vk Vwepi,j,k
of tuples in these k partitions p; ; ks derived from the
subtree with respect to h; j k.

count(x) is the total number of

count(z) is the total number
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5 Parallel Partitioning Algorithm

The rule derivation process is goal-driven and
attribute-oriented data partition with the assistance of
the set of concept hierarchies. As soon as the partition
of data tuples for classification is done at each level,
each partitioned set of data tuples is independent. The
partitioning process at the next level can be done in a
parallel fashion, and so on in further deep level. The
process of the rule derivation can speed up.

Given a set of predetermined order for the set of at-
tributes participating in the partitioning process, the
parallel version of the partitioning algorithm scans the
data and classifies the knowledge along each dimension
or attribute by dimension cycling and concept hierar-
chy descending. As soon as the partitioning is done
at each dimension, the next partitioning can be per-
formed parallelly. Each processor Py receives a parti-
tioned set of data tuples, and performs further parti-
tioning based on corresponding concept hierarchy as
rule derivation process. At the end of partitioning
process, the quantitative rule information is derived and
stored. Data tuples in partitioned sets from current par-
titioning process can be treated as subtasks and sent to
other available processors for further processor in par-
allel.

5.1 Parallel Top-Down Partition

Assume that there are N processors Py, Ps, ..., Py,
and the corresponding algorithm as well as the input
to and output from the algorithm is described in Al-
gorithm 5.1 .

5.2 Control Mechanism in Parallel Top-
Down Partitioning

Each processor Py in the free pool is always wait-
ing for the message sent to. As soon as it finishes the
current partition, the processor will send K messages
making corresponding K procedure calls with the k par-
titioned groups 7{R)i,j,1, r(R)ij2, - T(R)ijk and re-
lease itself. When each processor Py is released from
the current execution of the procedure call, it will start
a cycle by waiting for a new message sent to it. When
the number of free processors Prs is greater then the
number of partitioned groups K, there is no procedure
call with a partitioned group r(R)i,j,k that needs to wait
for processor to be released. Otherwise, the procedure
call with a partitioned group r(R); ;& will wait for a re-
leased processor. Since a processor will release itself as
soon as the end of execution of the current procedure,
the called procedure that waits for the processor will
always be assigned to a newly released one.

5.3 The Cost Analysis for Parallel Top-
Down Partition Algorithm

Since the parallel partitioning at each level is em-
ployed, the partitioning cost at each level will be deter-
mined by the following:

The universal database schema R
The set of tuples r(R); jx in T; ; 1.
The set of concept hierarchies CH

The ordered set of cardinalities CARD

The specification of a learning task

The set of attributes A;s € R - TA such that:
| As| < | Aigrland | chij| < | chipy |
The set of threshold values 7 = { 7y, ..., }

Input:

Output: A set of learning quantitative rules R

Algorithm 5.1 Parallel Top-Down Partition

begin

1. processor Pr receives v(R); ;k and partitions the
set of tuples in r(R)i;x in T, j i for giveni, j, and
k with h; ;1.

2. compute the values of i and j for the partitioning
at the newt level of the tree T; j 1 by Equation 2
and 3:

repeat
if (i4+1) mod D <imod D &
J < height{cit1) then
j=7+1 /* start a new dimension cycle */
endif
i=(i+1) mod D
until § < height(ch(A;))

3. generate a set of newly partitioned groups r(R); ;1,
r(R)sj,2, --or T(R)i 40 based on the computed i and
7.

4. count the number of tuples in each h; j .

5. compute the Sweight ANd Cweight N each partitioned
group T(R)ij1, T(R)ij2, -y 7(R)ijh-

6. store the corresponding derived rule related infor-
mation for each partitioned group in each corre-
sponding tree node T j k.

7. if i < D and j < max(height(c;)) then

(a) generate and initialize all the child nodes for
each T; ; 1 for the partition in the next cycle.

(b) Assign the set of partitioned group r(R); 1,
r{R)ij2, -, T(R)ijk to the set of processors
Py, Py ,..., Py, and generate k calls to Paral-
lel Top-Down Partition.

endif

end
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O(max(i/o_time(r(R)i i) + wtime(r(R)i )+

p-time(r(R)ijk))) (7)

where w._time is the time for the process assigned
with r(R); ; k to wait for a released processor, p_time is
the processing time to partition 7(R); jk, and

(R)ijk | Xs;'gzeof(tuple(R))] (8)

The total cost of the parallel partition process from all
the levels is:

i/otime = [I .

L
0" max(i/o_time(r(R)i,;x) + w-time(r(R)i )+
=1 .

p-time(r(R)i k) (9)
where L =1, ..., ZE__O i * height(ch;).

Although Algorithm 5.1 independently partitions
the set of tuples according to the given set of concept
hierarchies in parallel, the load allocated among each
processor may not be balanced since the number of tu-
ples in each partitioned set that corresponds to h; ;5 in
a chi ; is not necessarily equalized. In order to resolve
this issue, we will present the following algorithm that
will allow each processor to work not only in indepen-
dence but also in balanced load.

6 Load Balance Parallel Partitioning

Assume that there are N processors Py, P, ..., PN,
and the corresponding algorithm as well as the input
to and output from the algorithm is described in Al-
gorithm 6.1.

6.1 Load Balance Partitioning Algorithm
in Parallelism

Algorithm 6.1 is based on MPI (message passing
interface) and SPMD model (single processor multiple
data), and can be divided into two parts: master proces-
sor Pp and set of slave processors {Py, Pz, ..., Py — 1}.

FEach processor Pr,1 < I < N —1 is assigned with
equal load from r(R) such as:

| r(R) |
br = [(_N———T)]

Each processor Pr,1 < I < N — 1 maintains a local
tree Ty that corresponds to the set by with derived rule
information. Processor Py maintains a global tree T
that corresponds to r(R) with derived rule information.
All the trees in Pr,0 < I €< N — 1 have the identical
structures with same height, dimension cycle, levels,
etc.

Initial, Py sends all bys to each Pr,1 < I < N —1.
As soon as each Pr,1 < I < N — 1 receives the equally
partitioned data set by, it starts local partition process
in cycles 1 < j < max(height(CH)). At the end of
each cycle, each processor Pr,1 < I < N — 1 sends
Py the corresponding derived rule information stored in
local T;. When Py receives set of derived information
in T7s from each Pr,1 < I < N -1 for a given cycle or
level j, it will update the tree T on Py accordingly.

6.2 Cost Analysis for Load Balance Parti-
tioning Algorithm

The analysis will be based the cost on the both Py
and Pr,1 < I < N — 1. For each processor P, 1 <
I £ N — 1, the knowledge tree Tt and its associated
derived rule information are stored in the main memory.
The initial construction of the knowledge tree needs to
retrieve the data set from the secondary memory, and
there are input/output costs involved.

Since the data tuples in r(br) only need to be par-
titioned based on their corresponding classifications or
categories, the partition process at each level for each
attribute can be done in a single pass of table scan. For
each partition process, a list of hash buckets in the main
memory can be allocated corresponding to the number
of partitions at each of concept hierarchy. Each bucket
is used to store the partitioned tuples belonging to that
classification or partition. The data tuples in each hash
bucket will be flushed into the secondary memory when
the bucket is full. Double buffering techniques can be
used to reduce the contention and to improve the per-
formance. For each pass of table scan, it is necessary to
read all the data tuples in the data set r(br) from the
secondary memory, so I/O costs in the partition process
will be dominant by the number of data blocks fetched
as follows:

| 7(br) | x sizeof (tuple(R))
B

where | by | is the number of tuples in the data set
by, sizeof(tuple(R)) is the size of a tuple in terms of
bytes in R, and B is the size of a data block.

Since each slave processor works independently on
each equally partitioned set of data, the total I/O cost
of the partition process in each partition cycle for each
Pr,1 < I < N -1 will be bound by the following:

(10)

| r(br) | xsiz;of(tuple(R))] <165 |

(11
The cost involed in the partioning processing for each
P;,1 <1< N —1 can be summerized as:

1/0r,; = O(]

COStjyj = I/O],j + Waitj,j

where Waity ; is the cost for Py to wait for receiving
Ty ; from each Pr,1<T <N - 1.

We assume the set of received information in each
T;; can be buffered and queued, and also I/O cost is
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Algorithm 6.1 Load Balance Partitioning Algo-
rithm

begin
if Pr’s rank ==0 then ({
for Pr;I=1,.., Np—1 pardo

send r(br) to Pr such that: | r(br) |= [%@%‘]
endfor

for j=1,.., max(height(CH)) do
for Pr;I=1,.., Np -1 pardo
recetve the derived rule information in
each Tt ; w.r.t. C;.
expand and update the tree T with each T ;
from each Py.
endfor
endfor

}

else { /*Pr’srank =1, ..., Np—-1*/
1. receive by from Py

2. initialize local tree Ty

3. for j=0; j++; j < max(height(CH)) do

fori=0; i++; i< |C;]| do

if T; <7 & j < height(ch;) then

(a) partitioning the data tuples in by along the di-
mension i for attribute A;, and generating k
partitioned groups r; ; x(R) based on the cor-
responding to concept hierarchy ch(A;), where
k=1,2,... for the given i and j.
/¥ partition and group the tuples according to
the values of hi,j,k € Chi,j */

(b) count the number of tuples in each h; ;.

(c) compute the Syeight and Cyeight for each par-
titioned group.

(d) store the corresponding derived rule related in-
formation for each partitioned group in each
tree node T; ;1 in the local tree.

(e) generate and initialize all the child nodes of
T;,5,% for partitioning in the next cycle.

endif

endfor

send the derived rule information in T; w.r.t C;
to Pr.

endfor

end

dominant comparing to CPU cost. So the cost to build
the tree T on processor Py side is ignored.

The total I/O cost for the entire partitioning process-
ing is as follows:

IC|

O(Zmax(Costl,j,CostQ,j,...,CostN,l,j) (12)
j=1

where | C | is the number of dimension cycles in the
partitioning processing.

Since Py sends N — 1 messages, and each Pr,1 <
I < N — 1 sends one message in each dimension cycle,
the total number of messages sent during the execution
of Algorithm 6.1 is: (N-1)+ (N -1)x | C | =
(N-1)x (| C|+1).

7 Discussions and Summary

Based on serial incremental algorithm, we presented
two parallel algorithms for top-down quantitative rule
derivation. These two algorithms have not been imple-
mented yet. Although Algorithm 6.1 was proposed
as load balance oriented, we are planning to implement
Algorithm 6.1 and provide further study and analysis
from performance point of view to validate this prop-
erty.

Because the partitioning approaches presented are
guided by a set of concept hierarchies, each partitioned
set of data tuples is independent to each other. As
soon as the partitioning is done at the current dimen-
sion and/or current level of the concept hierarchy, the
further partitioning in the next step can be done in a
parallel fashion. This property makes the incremental
algorithm scalable to perform rule derivation process in
paralllel.

From analytical point of view, Algorithm 6.1 im-
proves Algorithm 5.1 in terms of total number of mes-
sages sent during parallel rule derivation process. The
total number of messages sent in Algorithm 6.1 is:
(N-1D)+(N-1)x | C|=(N-1)x (| C| +1) instead
of T T2 | A |

Since the multidimensional tree data structure is em-
ployed to store the derived quantitative rule informa-
tion, the partition topology of the tree in terms of mul-
tidimensional data space, corresponds to the given set
of concept hierarchies. As for the invariant concept hi-
erarchies, the partitioned topology of the multidimen-
sional space is invariant. From this, the set of data
tuples within each partition corresponds to a concept
element or branch in a concept hierarchy. Since internal
nodes of the tree are stored in the main memory, the set
of quantitative rules stored in the multi-level tree can
be retrieved without extra I/O cost. The set of quanti-
tative rules stored in the main memory can be used for
OLAP process. Further, the quantitative information
about the set of derived rules can be updated within the
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main memory whenever a database undergoes updates
[4, 22].
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