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Abstract—Vector representation concept proves its success in
solving many real-world problems from a variety of applications.
In this paper, we built a novel vector representation model
for avionics system for two types of fault messages called
MERIT. This new model aims to identify the relationship between
the flight deck effects (FDEs) and the maintenance messages
(MMSGs) through calculating the embedding co-occurrence ma-
trix between them within a predefined flight leg window. The
a vector space embeddings representation of MERIT is able to
differentiate between the strong and weak relationship between
messages. Moreover, we benefit from the negative sampling
method to incorporate the weak relationship between the FDEs
and MMSGs from different subsystems (chapters) in assessing
this relationship precisely. We called the developed MERIT with
specialized negative sampling approach subsystem-wise MERIT.
Both developed models can be used as descriptive and predictive
tasks based on the flight leg window used (one and three,
respectively). The main advantage of the proposed latent aircraft
system model (MERIT) is that it needs to be trained only once
and can be easily queried using any similarity measurements
between the embedding vectors, which means it is more feasible
and computationally efficient than traditional machine learning
algorithm, where it necessitates building a different model each
time for every target FDE. We tested both models on a real
Boeing dataset and the experimental results demonstrate the
effectiveness of the proposed model in exhibiting the embedded
relationships between fault messages and extracting the most
relevant predictors.1

I. INTRODUCTION

Inspired by the success of existing unsupervised machine
learning techniques in the natural language processing (NLP )
discipline, we have adapted the Word2Vec model to the
aviation discipline. Our goal is to advance understanding
of avionics systems and more specifically to identify the
embedded structure of aircraft faults. Applying traditional

1Mohamed Elshrif et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

machine learning models, like logistic regression (LR), require
that we build a different model for each target Flight Deck
Effect(FDE), which is not feasible when the number of
FDE’s is large. However, using the Word2Vec model we
require one model which provides sufficient flexibility to
query and identify correlations between FDEs and MMSGs.
We refer to our model as MERIT (eMbEddings foR the
idEntification of aIrcraft faulTs model).

Prognostics and health management (PHM ) is a field
of study, which focuses on enhancing the availability and
reliability of a device. More specifically, prognostic assesses
the degradation of a device through comparing the expected
value of monitored parameters under normal conditions with
the device’s actual parameters. This will yield a warning of an
impending failure in early stages of operation and helps with
planning for taking a corrective action before failure.

In this paper we focus on two types of fault messages.
The first one is called maintenance messages (MMSGs). It
tells the aircraft ground engineers parts which maybe have
malfunctioned (door area heater does not follow command
on, or off). These kind of faults have a low priority because
they are generated at an early stage of parts degradation
process. The second type of fault is called the flight deck
effects (FDEs) and it informs the flight crew that the aircraft
has a serious problem. This type of faults is considered a
high priority and the underlying cause must be identified and
rectified before the aircraft is allowed to fly again.

An aircraft is composed of different subsystems, called
chapters. Example subsystems include landing gear and flight
controls. Each generated MMSG, or FDE fault belongs to
a specific subsystem, as it appears by a pair of code, which
carries the subsystem number, and a brief description of the
fault, as defined by engineers. Fig. 1, depicts a schematic
diagram of three different subsystems in an aircraft An aircraft
is designed in a way such that MMSGs and FDEs faults
within a subsystem are more correlated than those that reside



Fig. 1: Schematic diagram of three different subsystems from
the Boeing avionics system.

in different subsystems.
In the Word2Vec model, the objective is to compute condi-

tional probabilities of the form P (w|c), where w is a word and
c is the context, or P (c|w). In the analysis of text, the context
(c) is often the set of words surrounding w. In our proposed
framework, the MERIT model, the words can be FDEs and
the context can be MMSGs, or vice-versa. The analogue of
a text document will be one or several flight legs.

The contributions of this paper can be summarized as
follows:

1) We introduce a model for embedding aircraft faults in
a high-dimensional vector space to identify correlations
between faults. Our system is called MERIT.

2) We can use MERIT to build a model for fault prediction.
Unlike standard classification, MERIT provides a unified
way to query faults and determined correlations between
them.

3) Experiments on real data sets shows that the predictions
obtained from MERIT are accurate and consistent with
the expectations of domain engineers.

II. RELATED WORK

As best of our knowledge, there is no previous work that
has been done on distributional embeddings of MMSGs and
FDEs faults, which may due to the scarceness of accessible
avionics data sets. Therefore, our focus in this section will
be on two aspects: (1) How the vector representation concept
was exploited in other different applications to unravel the
embedding structure of the given data in a specified disci-
pline, especially in the Natural Language Processing (NLP )
discipline where this technique was discovered. (2) Review
previous related work, which tackles the problem from differ-
ent perspectives.

This emerged field of research was inspired by the work
of Mikolov and his colleagues [1], when they built novel

architecture models from a collection of word vectors and
gave it a general name Word2Vec. The designed architectures
were based on the skip-gram (SG) model and the continuous-
bag-of-words (CBOW) model to learn the continuous word
embeddings from a huge repository of data. The main ad-
vantage of these models is their ability to accurately repre-
sent the syntactic and semantic meanings in different space
windows without considering the order of the words. Their
results beat all previous neural network (NN) models with
less computational cost. Furthermore, these models possess an
interesting point where the constructed vectors hold semantic
relations. For example, suppose we aim to find the semantic
relationship between a country and its capital. Given the vector
representations of “England”, “London”, and “Spain”. Then,
the vector embeddings of these words are algebraically related
as follows:

v(“England”) + v(“London”)− v(“Spain)” ≈ v(“Madrid”)

The same group extended their previous work, [1], to lever-
age the accuracy of vector representations and to accelerate
the training speed by presenting different extensions of the
skip-gram model, [2]. More importantly, they introduced the
idea of negative sampling to their old model, which allows
this new model to recognize idiomatic phrases. [3] Argued
that even [2] advanced the negative sampling method to
efficiently adapt word embeddings. Yet, it is not optimizing
the same objective function. [4] explicated, analyzed, and
compared to the negative sampling technique [2] and the
noise contrastive estimation method [5], [6]. It proves that
negative sampling works better for binary classification models
for learning word vectors. [7] Provided a detailed explanation
and equation derivation of the skip-gram model as well as the
negative sampling technique.

While the Word2Vec model was introduced in the NLP
community, it was exploited in many different domains. For
example, one application where the vector representation tech-
nique was exploited is the bioinformatics discipline. Asgari
and Mofrad [8] were pioneered in applying distributed vector
representation to the biological sequence by introducing a new
model named bio-vectors, or BioVec, which can represent both
the proteins, also called amino-acid, and gene sequences. Their
main aim were to find a distinguishable patterns from the
biological sequences and facilitate interpreting the biochem-
ical and biophysical meanings. They designed their model
architectures to represent protein sequences ProtVec and gene
sequences GeneVec, and used skip-gram model to train both
types of sequences. The analogy of this structured models
and the originated work, Word2Vec, is that each biological
sequence deals with it as a sentence and every k-mers, which
is all possible sub-sequences that can be extracted from the
biological sequence with length k, as a word. In addition, the
suggested models considered to include negative examples to
generalize their models.

Previous work, which tackles the problem of aircraft mes-
sages faults are limited. Chérière [9], suggested a novel air-
craft preventive diagnosis for airlines using failure conditions



Fig. 2: An example of flight leg fault messages.

graphs. The proposed method was tested on the landing gear
system of an Airbus fleet. The method introduces customized
measurements such as the remaining distance. These measure-
ments were used to get precise diagnosis and identify serious
upcoming dispatch conditions. However, the proposed method
is more deductive than inductive. Tsui and his colleagues,
[10], present recent approaches for prognostics and health
management (PHM) settings with fault diagnosis on gear
crack expansion. IN addition, it predicts the remaining useful
life (RUL) of rotational bearings and lithium-ion batteries
applications. In a more recent work, Vogl et al., [11], carry
out a risk analysis of production systems performance based
on diagnostics and forecasting for maintenance of production
systems.

III. FORMULATION OF MERIT

For each flight leg, the Boeing AHM platform receives and
displays many uncorrelated MMSGs from different subsys-
tems over time before an FDE appears, as illustrated in Figure
(2), informing for a failure, which may cause a catastrophic
effect on the flight safety. This FDE belongs to a specific
subsystem, e.g. pneumatics. Our aim is to exploit the vector
representation approach to extract the most related MMSGs
from a large amount of uncorrelated MMSGs. In doing so, as
an analogy to the Word2Vec model, we dealt with an FDE as
a word w, a MMSG as a context c, and the flight leg as a text
corpus. Therefore, our MERIT algorithm can be formulated
as:

• Given: Flight leg dataset 2 in terms of MMSGs and FDEs,
which appear in every flight leg.

• Objective: Build a model, which can be utilized predict-
ing the target FDE from MMSGs.

• Constraints: For a given flight leg, MMSGs and FDEs
from many subsystems usually appear during the same
time period. Therefore, the prediction of the target FDE
must depend on “true”, from an engineering perspective,
and not false correlation.

Let M be the set of all MMSGs and F be the set of all
FDEs. We define a co-occurrence matrix flight leg (FL) of
dimensionality |F | × |M | as follows:

FL(i, j) = #(flight legs where fi and mj co-occur)

2The dataset was collected from a fleet of Boeing 777 aircrafts comprising
in total 63,356 flight legs.

Subsystem1 Subsystem2

m1 m2 m3 m4

Subsystem1
f1 2 1 1 0
f2 1 1 0 0

Subsystem2 f3 1 0 1 0

TABLE I: Example of co-occurrence matrix with color coded
sampling areas for V-MERIT . Green: positive sample and
orange: negative sample.

Subsystem1 Subsystem2

m1 m2 m3 m4

Subsystem1
f1 2 1 1 0
f2 1 1 0 0

Subsystem2 f3 1 0 1 0

TABLE II: Example of co-occurrence matrix with color coded
sampling areas for SW-MERIT . Green: positive sample and
orange: negative sample. Red: not considered as positive
sample and white: not considered as negative sample.

Example: Suppose M = {m1,m2,m3,m4} and
F = {f1, f2, f3} be the set of all MMSGs and FDEs,
respectively. Furthermore, assume that there are two
subsystems, where Subsystem1 consists of {f1, f2,m1,m2}
and Subsystem2 consists of {f3,m3,m4}. Then, we
constructed the co-occurrence matrix as shown in Tables I
for vanilla MERIT and II subsystem-wise MERIT .

Similar to Word2Vec, the objective in MERIT is to create
an embedding, which will map each MMSG and FDE into
a vector space with the property that maintenance messages
and flight deck effects that tend to co-occur are mapped close
to each other in the embedding space. Similarly, we want to
encourage MMSGs and FDEs that do not co-occur in flight
legs to be faraway from each other in the embedding space.

We used the skip-gram model as the core model to build the
MERIT . Let f be an FDE and m a MMSG, the conditional
probabilities p(f |m), and given a flight legs of fault messages,
the goal is to set the parameters θ of p(f |m; θ) so as to
maximize the fault message pairs probability:

arg max
θ

∏
m∈FL

[ ∏
f∈C(m)

p(f |m; θ)

]
(1)

In the previous equation (1), C(m) is the set of contexts of
MMSG m. Alternatively, the objective function can be written
as:

arg max
θ

∏
(f,m)∈F

p(f |m; θ) (2)

where F is a collection over all fault message pairs, i.e.
FDE-MMSG pairs, appearing in flight legs. We will denote
the embedding of each message x as vx ∈ Rd, where d
is the dimensionality of embedding space. The parameter θ
corresponds to the set of all embedding vectors. Now,



Algorithm 1 SUBSYSTEM-WISE NEGATIVE SAMPLING

1: train skipgram pair(MMSG,FDE,m)
2: {
3: /* Use this MMSG (positive sample) plus
m other random MMSGs not from this
subsystem (negative samples) */

4: while ‖negatives‖< m do
5: /* Randomly pick a MMSG from the n

MMSGs in the flight legs accordingly
to their frequencies */

6: negM = flightlegs.MMSGOccurrence(random(0,n))
7: if subsystem(negM) = subsystem(FDE) then
8: continue
9: else

10: negatives.add(negM)
11: end if
12: end while
13: }

P (f |m; θ) =
p(f,m)

p(m)

=
evf .vm∑

f ′∈F e
vf′ .vm

Hence, the number of unknowns are (|F | + |M |) × d, i.e.
an embedding for each FDE and MMSG. Now, taking logs of
the objective function in the aforementioned equation, we get:

arg max
θ

∑
(f,m)∈F

log p(f |m) ≡ (3)

arg max
θ

∑
(f,m)∈F

(log evf .vm)− log
∑
f ′∈F

evf′ .vm (4)

The above optimization is the standard word2vec formula-
tion. The reason the optimization problem is hard to solve is
due to the second term, where the summation is taken over
all FDEs. One popular approach that has been proposed to
approximately solve the optimization is to use the concept
of negative sampling. As we show next, we will incorporate
subsystem information in the negative sampling process. In [3]
it is shown that the use of negative sampling is equivalent to
optimizing the following objective function:

arg max
θ

∑
(f,w)∈F

log σ(vf ·vw)+
∑

(f,w)∈F ′
log σ(−vf ·vw) (5)

where σ(x) = 1
1+e−x is the sigmoid function and F ′ is the

set of negative samples or pairs of (f, w) which have a low
probability of occurring in the training set.

IV. MERIT NEGATIVE SAMPLING

Negative sampling is an efficient approach to estimate the
parameters of the Word2Vec model by drawing only a subset

Fig. 3: Frequency of MMSGs and FDEs.

of all the possible contexts [2]. In the Word2Vec model every
word is a context. For MERIT , we use (f,m) pairs. Note
that the goal of negative sampling is to generate pairs of
(f,mj), which are unlikely to appear together. For each
pair of (f,m) that occur together in the dataset, k negative
samples (f,m1), ..., (f,mk) are randomly drawn from M and
F according to their frequency distribution.

Intuitively, by enforcing negative sampling from different
subsystems, MMSGs from a different subsystem than the
FDE’s are penalized, in the sense that their embedding vector
representations will be more dissimilar from the embedding
vector representation of the FDE. Conversely, the MMSGs
are in the same subsystem of the FDE will have a vector
representation more similar to the FDE’s vector representation,
because they are never taken as negative samples for FDEs
of the same subsystem. Algorithm (1) explains the negative
sampling function for the skip-gram model.

V. EXPERIMENTS AND RESULTS

We evaluate the MERIT model performance on the data
set, which was recorded by the Boeing fleet of aircrafts.

A. Data Set

The data set used in this paper was taken from the log
files recorded during flight legs. This data set was recorded
from 63,356 flight legs from 42 different airplanes. Out of
these flight legs, there are 22,433 flight legs, which recorded
FDEs along with MMSGs, while the rest of the flight legs
(40,923) contain only MMSGs. The data set contains a total
of 450,209 MMSGs with 3,889 unique MMSGs and 95,732
FDEs with 677 unique FDEs. The frequency of these FDEs
ranges between 1 - ∼3,200 times and the frequency of total
FDEs per subsystem ranges between 1 - ∼24,000 times. Sim-
ilarly, the frequency of the recorded MMSGs ranges between
1 - ∼120×104 times. Figure 3 exhibits the frequency of both
MMSGs and FDEs.

The collected data set represents 30 subsystems out of
the total 80 subsystems. Each subsystem is composed of a
collection of units (modules). The number of these units varies
from one subsystem to another, where it ranges between 1 and
14 units. The total number of these units is 83.



B. Types of Experiments and Data Pre-Processing

In this study, we have carried out two types of experiments
based on the way of extracting the features of the data set,
which can be summarized as follows:

1) Descriptive (one flight leg): we consider each flight leg
fault messages as one sentence, like vanilla MERIT .
The sentence includes all MMSGs and FDEs of the
chosen flight leg.

2) Predictive (three flight legs): the featured dataset, which
represents the prediction task was built as follows:
• Let F = [set of all unique FDEs from the flight

leg(x+3)].
• Let M = [set of all unique MMSGs from the

previous flight legs: leg(x), leg(x+1), leg(x+2)]
• For each target FDE in the F, we built a sentence

as [f, M].

C. Experimental setup and evaluation

For both types of designed experiments, we use the vanilla
Word2Vec model (applied to the Boeing fleet of aircrafts
dataset) and the subsystem-wise model. We refer to the vanilla
model and subsystem-wise models as V-MERIT and SW-
MERIT , respectively. The settings for both models can be
summerized as follows:

1) Vanilla MERIT model, which has the following setup:
• Skip-gram model with a window length = 500.
• Embedding features = 300.
• Negative sampling = 5.
• Random reduced window.

2) Subsystem-wise MERIT model, which has the follow-
ing setup:
• Skip-gram model with a window length = 500.
• Embedding features = 300.
• Negative sampling = 5 and SHOULD be from

subsystem different from the target FDE.
• No reduced window.
• Positive sampling: pairs (M1, M2) both SHOULD

belong to the same subsystem as the target FDE.

D. Results: description experiments and semantic preserva-
tion

The evaluation of the Word2Vec model is a challenging
task. Therefore, for description experiments, we depend on
the novel property “semantic preservation” of the Word2Vec
model by observing the algebraic relationships in the
embedding space:

AR1 : FDEi + FDEj −MMSGj ≈ MMSGi

AR2 : MMSGi + MMSGj − FDEj ≈ FDEi

Here, i and j represent subsystems. We proceed this ex-
periment as follows: For each triple (fi, fj ,mj), we compute
the vector representation of x as: x ≡ v(fi) + v(fj)− v(mj).
Then, we obtain the nearest MMSG vector representation to

v(fi) + v(fj)− v(mj) ' v(mi)

v(“32904092”) + v(“23042949”) - v(“23-82074”) ' v(“32-94228”)
v(“27006860”) + v(“32491565”) - v(“32-47230”) ' v(“27-08113”)
v(“34342027”) + v(“78177761”) - v(“34-35480”) ' v(“78-12350”)
v(“32430068”) + v(“23269848”) - v(“32-44210”) ' v(“23-28408”)
v(“32590288”) + v(“23160444”) - v(“23-18482”) ' v(“32-59533”)

TABLE III: WS-MERIT examples for validating algebraic
relationship AR1.

v(mi) + v(mj)− v(fj) ' v(fi)

v(“28-97432”) + v(“32-02368”) - v(“32070948”) ' v(“28921409”)
v(“23-36953”) + v(“52-65977”) - v(“52615696”) ' v(“23384752”)
v(“23-89146”) + v(“32-33748”) - v(“32374071”) ' v(“23812005”)
v(“34-56438”) + v(“23-73528”) - v(“23790642”) ' v(“34551608”)
v(“32-07304”) + v(“24-85942”) - v(“24854730”) ' v(“32081629”)

TABLE IV: WS-MERIT examples for validating algebraic
relationship AR2.

x in the embedding space. If the resultant vector representation
belongs to the same subsystem as i, then we consider this
algebraic relationship (AR1) as a success, as it indicates that
both fault messages are semantically related through subsys-
tem information. Similarly, we evaluate the second algebraic
relationship AR2 (mi,mj , fj).

Table III shows examples for operation AR1 and Table IV
for operation AR2 across different subsystems. In each case,
we were able to recover the fault message from the correct
subsystem.

Figure 4(a) shows the complete analysis for all the subsys-
tems for V-MERIT and Figure 4(b) for SW-MERIT . Both
rows and columns of the images are indexed by subsystems.
Since the diagonals of the matrix in Figure 4(b) dominate for
many subsystems, it indicates that SW-MERIT is superior
to V-MERIT in recovering semantic relationships between
faults based on algebraic relationship AR1.

Moreover, we performed a more generalization experiments
for D-EXP and algebraic operations. Figure 5 shows two
illustrating examples of general algebraic operation v(‘target
FDE’) + v(‘FDEm’) - v(‘MMSGm’) = ?. In this operation, we
only fix the target FDE and the remaining objects are randomly
chosen. The only constraint is that the selected FDE and
MMSG should belong to the same subsystem, i.e. m. Figure 5
(a) shows the predicted percentage of MMSGs, which belong
to subsystem 28, as the target FDE. For the V-MERIT model
(left bar), it predicts <10%, while the SW-MERIT model
(right bar) is able to predict >65% MMSGs that belong to
subsystem 28. Similarly, figure 5 (b) depicts another example
when the target FDE belongs to subsystem 22. In this case,
the V-MERIT and SW-MERIT models predict ∼15% and
>80% MMSGs from subsystem 22, respectively.



(a) (b)

Fig. 4: Heat map of subsystem to subsystem relationship for V-
MERIT (a) and SW-MERIT (b) for algebraic relationship
AR1. The dominating diagonals of the right figure shows
that SW-MERIT is more accurate in recovering semantic
relationships than V-MERIT .

(a) 28921409+FDEi-MMSGi=? (b) 22103200+FDEl-MMSGl=?

Fig. 5: General examples of an arithmetic operations to predict
the MMSGs from the same subsystem as the target FDE for
the vanilla and subsystem-wise MERIT models. Here, i and
l were chosen randomly.

E. Results: Original Embedding Space

Table V illustrates the average compactness ratio, which
is the ratio of average distances between all fault messages
in a specific subsystem. We randomly choose five different
subsystems. The first row shows that subsystem 12 has 8 fault
messages in total for both V and SW MERIT models. How-
ever, there is a huge difference between both models, where
the average distance calculated using the V-MERIT model is
224.3 times larger than the average distance calculated using
the SW-MERIT model. Similar observation can be seen for
other subsystems.

F. Results: Dimensionality Reduction of Embedding Space

Another perspective on the clustering quality of V-MERIT
and SW-MERIT is provided by carrying out a dimensionality
reduction of the embedding space. The results presented in
Figure 6 illustrate visualizations for both types of data, that

SUBSYSTEM # TOTAL # OF MESSAGES AVR. COMP. RATIO

S CA S VS. CA

12 8 8 224.3 TIMES

21 272 221 5.3 TIMES

24 313 130 4.1 TIMES

30 66 60 2.8 TIMES

73 221 151 8.6 TIMES

TABLE V: Average compactness ratio (the ratio of average
distances between all fault messages) within a subsystem in the
vanilla and subsystem-wise MERIT models for three flight
legs window.

(a) 1-Leg V-MERIT (b) 1-Leg SW-MERIT

(c) 3-Leg V-MERIT (d) 3-Leg SW-MERIT

Fig. 6: A two-dimensional visualization, using Dimensionality
reduction, of the embedding space using both V-MERIT
andSW-MERIT . The color codes represent subsystems:
‘21’:white, ‘22’:green, ‘28’:red, ‘34’:blue, ‘32’:magenta. The
plots show that the SW-MERIT provides superior clustering
quality compared to V-MERIT .

is data corresponding to co-occurrence matrices created both
(a, b) on one flight leg and (c, d) on three flight legs.

G. Results: Interpretation of the Embedding Space

In Table VI, we show that the dimensions of the embedding
space can be interpreted as representing subsystems. We have
chosen four dimensions at random and ranked all faults (both
MMSGs and FDEs) by their coordinate values. This was car-
ried out on both the V-MERIT and SW-MERIT . It is clear
that SW-MERIT is much better in associating dimensions
with subsystems. For example, the top 35 ranked faults of
embedding dimension 5 (for three leg data) are associated with
subsystem 34.

H. Results: Prediction Experiments

The accuracy of predictions is one of our goals. Meanwhile,
in working with the subject matter experts we learned that
there are cases when prediction rules (or prediction models)



Window size One flight leg Three flight legs
Model Rank 1 20 5 267

V-MERIT

1 36504838 27-61115 31-55370 23-31871
2 34844049 28-47893 26-95706 26-17068
3 31-04909 28-92091 31-82888 32-80088
4 31-18795 28-27340 26-59794 32-76884
5 31-89550 28-98500 24-20273 24-88854
6 32651785 23-21594 24-54010 41-89259
7 31-27500 23-85682 31-95004 34-96331
8 30-15186 28-09845 24-36144 26-75152
9 34669103 36-62847 21-24135 26-55078

10 31-53234 27-35885 27-04655 24-41597
... ... ... ...

31 36-72056 28-39753 49-28780 22-64617
32 31-99940 31-29184 31-99719 34-24103
33 27-19571 27-56147 23-43512 28-13864
34 31-54302 28-42444 31-79937 21-38172
35 28758598 27-29886 34-55775 34-88078

SW-MERIT

1 31-92501 34619741 34-64320 22964135
2 31-13605 34876093 34-92906 22280530
3 31-48853 34395433 34-24912 22-10526
4 31-06387 34337981 34-05685 22-14268
5 31-30954 34-91838 34-58979 22-36295
6 31-17322 34633014 34-26681 22-42553
7 32387343 34139081 34-52721 22-13841
8 31-59130 34305937 34-26272 22-23124
9 32074993 34-56994 34-56589 22-41889

10 31-28154 34-21341 34-67783 22-11964
... ... ... ...

31 31-08372 34235213 34-28920 22-26753
32 31-16405 34761190 34-49738 22-34817
33 31-74192 34-84614 34-81782 22-46825
34 31-00232 34-73933 34-62279 22-90106
35 31-77801 34566334 34-46162 22-96623

TABLE VI: Top ranked MMSGs and FDEs in two different
coordinates randomly selected from the 300 dimensional em-
bedding space in the vanilla (top rows) and subsystem-wise
(bottom rows) MERIT models for one and three flight leg
messages.

may not make physical, technical or logical sense, and those
rules had to be eliminated from the final model. An aircraft
is an engineered system where internal subsystems obey the
laws of mechanics. Our interaction with aerospace engineers
has led to the following conclusion: while it is possible that
occasionally a MMSG from one subsystem will cause an FDE
in another subsystem, in most cases the dominating predictive
variables (for an FDE) should be from the same subsystem.

The three leg data, where we use MMSGs from three
previous legs to predict an FDE was designed to test the
particular hypothesis that the most important predictors of
an FDE are within the subsystems. The results are shown
in Table VII. Both the V-MERIT and the SW-MERIT
models are superior to logistic regression with both L1 and
L2 regularizers. Furthermore, note that the logistic regression
models were built one FDE at a time, while MERIT models
were built ALL AT ONCE to predict all the FDEs. Thus,
the MERIT models are easier to use in practice and more
relevant for the integration into a predictive maintenance tool.
Moreover, they are able to handle more elegantly the skewed
input data distributions.

VI. CONCLUSION

In this paper, we proposed a new MERIT model, which is
a distributed representation paradigm for aircraft faults. We il-
lustrated the benefits of our framework by utilizing the learned
embeddings for describing the MMSG-FDE relationship and
predicting a target FDE fault. The contribution of this work can
be summarized in these points: (1)- Pioneering in deploying
the Word2Vec model into an avionics discipline and named
this novel model MERIT . (2)- Identifying the embedded
structure of the Boeing aircraft aviation system through finding
the correlation between the FDEs and MMSGs, which belong
to the same subsystem. (3)- Exploiting the existing sequential
information regarding the MMSGs from the prior flight legs to
predict the top predictors MMSGs of a specific FDE. (4)- The
MERIT model outperform logistic regression algorithm and
computationally faster because it needs to be train once. (5)-
We developed a specialized negative sampling method called
subsystem-wise negative sampling to advance understanding
the relationship between MMSGs and FDEs and leverage the
prediction accuracy.

The future work can be moved in many directions: for
example, we take one step further in depth by predicting the
associated component within a subsystem for the target FDE,
instead of predicting the MMSG from the same subsystem.
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TABLE VII: Top-5 MMSGs predictors of the target FDE using logistic regression and MERIT models for three leg data.
Recall we use three previous flight legs to predict the FDE in the current flight leg.

MODEL WINDOW SIZE FDE SUBSYSTEM # TOP-5 MMSGS

LOGISTIC REGRESSION L1 - 21833368 21 24-58024 28-62555 75-02076 21-56956 33-65760
28263212 28 22-92463 26-12353 24-52683 28-58283 31-64692

LOGISTIC REGRESSION L2 - 21833368 21 24-20639 28-68301 75-25575 21-86459 33-39056
28263212 28 28-95667 26-72573 22-07012 24-94195 31-11285

V-MERIT THREE LEGS

21833368 21 21-75373 21-74305 31-04213 34-10621 21-77914
22327300 22 32-93127 22-34784 34-53751 52-02740 34-30511
23886774 23 23-63623 23-61228 23-67896 23-68964 23-60824
23900047 23 23-30252 23-33716 23-37988 23-31579 73-01008
27323255 27 27-98872 27-90327 32-58687 27-90990 27-99276
28263212 28 28-81118 28-88595 28-84322 23-31320 58-09958
34889366 34 34-62998 34-66202 34-65134 34-68339 34-67675
34277939 34 34-07196 34-04251 34-05319 34-01046 34-07860
34288620 34 34-74084 34-73016 34-72611 34-78356 34-71543
36113673 36 74-21966 74-39865 21-17030 74-93531 31-01413
52594333 52 52-42040 52-49112 52-49921 30-96515 52-46717

SW-MERIT THREE LEGS

21833368 21 21-78577 21-76846 21-79424 21-79020 21-70475
22327300 22 22-32022 22-37104 22-34967 22-39499 22-39240
23886774 23 23-65096 23-61892 23-62960 23-64983 23-69256
23900047 23 23-65388 23-67524 23-62184 23-63252 23-69920
27323255 27 27-17986 27-13049 27-14118 27-11318 27-14781
28263212 28 28-81669 28-82737 28-82478 28-81005 28-83805
34889366 34 34-91687 34-91282 34-91282 34-95555 34-99568
34277939 34 34-85278 34-83142 34-84873 34-87414 34-86346
34288620 34 34-11981 34-14522 34-11577 34-16917 34-15590
36113673 36 36-30544 36-30500 36-30348 36-30212 36-38280
52594333 52 52-29735 52-24799 52-25462 52-25203 52-20931


