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Abstract Much of the existing work in machine learning and data mining has
relied on devising efficient techniques to build accurate models from the data.
Research on how the accuracy of a model changes as a function of dynamic up-
dates to the databases is very limited. In this work we show that extracting this
information: knowing which aspects of the model are changing; and how they
are changing as a function of data updates; can be very effective for interactive
data mining purposes (where response time is often more important than model
quality as long as model quality is not too far off the best (exact) model.

In this paper we consider the problem of generating approximate models within
the context of association mining, a key data mining task. We propose a new
approach to incrementally generate approximate models of associations in evolv-
ing databases. Our approach is able to detect how patterns evolve over time (an
interesting result in its own right), and uses this information in generating ap-
proximate models with high accuracy at a fraction of the cost (of generating the
exact model). Extensive experimental evaluation on real databases demonstrates
the effectiveness and advantages of the proposed approach.

1 Introduction

One of the main characteristics of the digital information era is the ability to store
huge amounts of data. However, extracting knowledge, often referred to as data mining,
from such data efficiently poses several important challenges. First, the volume of data
operated on is typically very large, and the tasks involved are inherently I/O intensive.
Second, the computational demands are quite high. Third, many of these datasets are
dynamic (E-commerce databases, Web-based applications), in the sense that they are
constantly being updated (evolving datasets).

Researchers have evaluated data stratification mechanisms such as sampling to han-
dle the first problem and memory efficient and parallel computing techniques to handle
the second problem. Simply re-executing the algorithms to handle the third problem
results in excessive wastage of computational resources and often does not meet the
stringent interactive response times required by the data miner. In these cases, it may
not be possible to mine the entire database over and over again. This has motivated
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the design of incremental algorithms, i.e., algorithms that are capable of updating the
frequent itemsets, and thus its associations, by taking into account just the transactions
recorded since the last mine operation. In this paper, we propose an approximate in-
cremental algorithm to mine association rules that advances the state-of-the-art in this
area.

Association mining is a key data mining task. It is used most often for market bas-
ket data analysis, but more recently it has also been used in such far-reaching domains
as bioinformatics [7], text mining [14] and scientific computing [9]. Previous research
efforts have produced many efficient sequential algorithms[6,1,8,18,19], several par-
allel algorithms[20,13,3], and a few incremental algorithms for determining associa-
tions [16,15,2 .4].

The majority of the incremental algorithms studied employ specific data structures
to maintain the information previously mined so that it can be augmented by the up-
dates. These techniques are designed to produce exact results, as would be produced
by an algorithm running on the entire original database. However, if response time is
paramount, these algorithms may still be unacceptable. In this case, it is needed is a way
to efficiently estimate the association parameters (support, confidence) without actually
computing them and thus saving on both computational and I/O time. Our approach
relies on extracting historical trends associated with each itemset and using them to es-
timate these parameters. For instance, if an itemset support is roughly constant across
time, it may not be necessary to compute its exact frequency value. An approximate
value may have the same effect. On the other hand, if an itemset shows a consistent
increase or decrease trend, its support may be estimated as a function of the number of
updates after the last exact count number and the slope associated with the trend.

The main contributions of this paper can be summarized as follows:

— We propose an approximate incremental algorithm, WAVE, for mining association
rules, based on trends of itemset frequency value changes.

— We evaluate the above algorithm based on the quality of its estimates (i.e., how
close they are from to the exact model) and its performance (when compared against
a state-of-the-art incremental algorithm) when mining several real datasets.

We begin by formally presenting the problem of finding association rules in the
next section. In Section 3 we present our approach for mining approximate models of
associations. The effectiveness of our approach is experimentally analyzed in Section
4. Finally, in Section 5 we conclude our work and present directions for future work.

2 Problem Description and Related Work
2.1 Association Mining Problem

The association mining task can be stated as follows: Let Z = {1,2,...,n} be a set
of n distinct attributes, also called items, and let D be the input database. Typically D
is arranged as a set of transactions, where each transaction 7' has a unique identifier
TID and contains a set of items such that T" C I. A set of items X C 7 is called an
itemset. For an itemset X , we denote its corresponding tidlist as the set of all T'I D's that
contain X as a subset. The support of an itemset X, denoted o (X), is the percentage
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of transactions in D in which X occurs as a subset. An itemset is frequent if its support
o(X) > minsup, where minsup is a user-specified minimum support threshold.

An association rule is an expression A A B , where A and B are itemsets. The
support of the rule is 0(A U B) (i.e., the joint probability of a transaction containing
both A and B), and the confidence p = 0 (AU B)/o(A) (i.e., the conditional probability
that a transaction contains B, given that it contains A). A rule is frequent if the itemset
A U B is frequent. A rule is confident if p > minconf, where minconf is a user-
specified minimum confidence threshold.

Finding frequent itemsets is computationally and I/O intensive. Let | Z |= m be
the number of items. The search space for enumeration of all frequent itemsets is 2™,
which is exponential in m. This high computational cost may be acceptable when the
database is static, but not in domains with evolving data, since the itemset enumeration
process will be frequently repeated. In this paper we only deal with how to efficiently
mine frequent itemsets in evolving databases.

2.2 Related Work

There has been a lot of research in developing efficient algorithms for mining frequent
itemsets. A general survey of these algorithms can be found in [17]. Most of these algo-
rithms enumerate all frequent itemsets. There also exist methods which only generate
frequent closed itemsets [18] and maximal frequent itemsets [6]. While these methods
generate a reduced number of itemsets, they still need to mine the entire database in
order to generate the set of valid associations, therefore these methods are not efficient
in mining evolving databases.

Some recent effort has been devoted to the problem of incrementally mine frequent
itemsets [10,15,16,2,4,5,12]. An important subproblem is to determine how often to
update the current model. While some algorithms update the model after a fixed number
of new transactions [16,15,2,4], the DELI algorithm, proposed by Lee and Cheung [10],
uses statistical sampling methods to determine when the current model is outdated. A
similar approach proposed by Ganti et al (DEMON [5]) monitors changes in the data
stream to determine when to update. An efficient incremental algorithm, called ULI,
was proposed by Thomas [15] et al. ULI strives to reduce the I/O requirements for
updating the set of frequent itemsets by maintaining the previous frequent itemsets and
the negative border [11] along with their support counts. The whole database is scanned
just once, but the incremental database must be scanned as many times as the size of
the longest frequent itemset.

The proposed algorithm, WAVE, is different from the above approaches in several
ways. First, while these approaches need to perform O(n) database scans (n is the
size of the largest frequent itemset), WAVE requires only one scan on the incremen-
tal database and only a partial scan on the original database. Second, WAVE supports
selective updates, that is, instead of determining when to update the whole set of fre-
quent itemsets, WAVE identifies specifically which itemsets need to be updated and
then updates only those itemsets. Finally, because WAVE employs simple estimation
procedures it has the ability to improve the prediction accuracy while maintaining the
update costs very small. The combination of incremental techniques and on-the-fly data
stream analysis makes WAVE an efficient algorithm for mining frequent itemsets and
associations in evolving, and potentially streaming databases.
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3 The ZIGZAG and WAVE Algorithms

In previous work [16] we presented the ZIGZAG algorithm, a method which efficiently
updates the set of frequent itemsets in evolving databases. ZIGZAGis based on maintain-
ing maximal frequent itemsets (and associated supports of all frequent itemset subsets)
across database updates. On an update, the maximal frequent itemsets are updated by
a backtracking search approach, which is guided by the results of the previous mining
iteration. In response a user query ZIGZAG uses the upto-date maximal frequent item-
sets' to construct the lattice of frequent itemsets in the database. As shown in[16] this
approach of maintaining and tracking maximal itemsets across database updates, results
in significant I/O and computational savings when compared with other state-of-the-art
incremental approaches.

WAVE is an extension to ZIGZAG. WAVE eessentially maintains the same data struc-
ture but adds the capability to determine when and how to update the maintained infor-
mation. It relies on its ability to detect trends and estimate itemset frequency behavior
as a function of updates. If an itemset can be well estimated, the exact frequency is
not computed, otherwise it will be computed. In comparison to ZIGZAG, WAVE can
significantly reduce the computation required to process an update but this reduction
comes at some cost to accuracy (since we often estimate rather than compute frequen-
cies). Contrasting to other incremental approaches [15,2,4,5] which generally monitor
changes in the database to detect the best moment to update the entire set of itemsets, we
choose instead to perform selective updates, that is, the support of every single itemset
is completely updated only when we cannot compute a good estimate of its frequency.

Figure 1 depicts a real example that motivates our selective approach. This figure
shows the correlation of two sets of popular itemsets. These popular itemsets are ranked
by support (i.e., popularity ranking) and their relative positions are compared. When the
set of popular itemsets is totally accurate, all the popular itemsets are in the correct posi-
tion. From Figure 1 we can see a comparison of a totally accurate set of popular itemsets
and a ranked set of itemsets which is becoming outdated as the database evolves. As we
can see in this figure, although there were significant changes in the support of some
popular itemsets, there are also a large number of popular itemsets which remain accu-
rate (i.e., in the correct position) and do not need to be updated, and also a large number
of popular itemsets which had evolved in a systematic way, following some type of
trend. Our method relies on accurately identifying and categorizing such itemsets. We
describe these categories next:

Invariant: The support of the itemset does not change significantly over time (i.e., it
varies within a predefined threshold) as we add new transactions. This itemset is
stable, and therefore, it need not be updated.

Predictable: Itis possible to estimate the support of the itemset within a tolerance. This
itemset presents a trend, that is, its support increases or decreases in a systematic
way over time.

Unpredictable: It is not possible, given a set of approximation tools, to obtain a good
estimate of the itemset support. Note, that it is desirable to have few unpredictable
itemsets as these are the ones that cannot be estimated.
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Figure 1. Evolution of Frequent Itemsets. The X-Axis represents a Totally Accurate Ranking,
while the Y-Axis represents an out-dated Ranking.

There are many techniques that can be used to estimate the support of a given item-
set. The search for such tools is probably endless, and is out of scope of this paper. We
believe that the use of costly (time-wise) and sophisticated tools is unlikely to be use-
ful, since their cost may approach or surpass the cost of executing an exact incremental
mining algorithm such as ZIGZAG.

Using simple prediction tools (discussed later in this section) one can classify the
set of all frequent itemsets across these three categories. Table 1 depicts the percentage
of itemsets in each category for the WCup and WPortal databases as an illustration of
the approximate approach’s potential. From this table we can see that both databases
present a significant number of invariant and predictable itemsets.

[Database[Invariant|Predictable] Unpredictable]

WCup | 72% 45.3% 47.5%
WPortal | 9.1% 52.1% 38.8%

Table 1. Ratio between Invariant, Predictable and Unpredictable Itemsets.

Note that there exists a major difference between invariant and predictable itemsets.
If there is a large number of invariant itemsets in the database, the set of popular itemsets
generated will remain accurate for a long time. On the other hand, if there is a large
number of predictable itemsets, the model will lose accuracy over time. However, using
simple models we show that one can generate pretty good estimates of these predictable
itemsets, potentially maintaining the accuracy of the support of the popular itemsets.

WAVE is comprised of two phases. The first phase uses the tidlists associated with
1-items whose union is the itemset whose support we want to estimate. The second
phase analyzes the sampled results to determine whether it is necessary to count the
actual support of the itemset. Each of these phases is described below.

Phase 1: Discretized Support Estimation — The starting point of Phase 1 is the tidlists
associated with 1-itemsets, which are always up-to-date since they are simply aug-
mented by novel transactions. Formally, given two tidlists I, and lg associated with

! The maximal frequent itemsets solely determine all frequent itemsets
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the itemsets o and 3, we define that the exact tidlist of a U B is loug = lo NIg. We
estimate the upper bound on the merge of two tidlists as follows. We divide the tidlists
into n bins. The upper bound of the intersection of corresponding bins is the smallest
of the two bin values (each bin value corresponding to the number of entries in the bin).
Note, that as long as transactions are ordered temporally, each bin gives us an approxi-
mate idea as to how a particular itemset behaved during a given time frame. The upper
bounds associated with the bins are then used as input to our estimation technique,
described next.

Phase 2: Support Estimation based on Linear Trend Detection — Phase 2 takes as input
the information provided by Phase 1 in order to detect trends in itemset frequency. Trend
detection is a valuable tool to predict the frequent itemsets behavior in the context of
evolving databases. One of the most widespread trend detection techniques is linear
regression, that finds a straight line that more closely describes the dataset. The model
used by the linear regression is expressed as the function y = a + bz, where a is the
y-intercept and b is the slope of the line that represents the linear relationship between
x and y. In our scenario the x variable represents the number of transactions while the
y variable represents the estimated support (obtained as a function of the upper bound
estimates from Phase 1). The method of least squares determines the values of ¢ and b
that minimize the sum of the squares of the errors, and it is widely used for generating
linear regression models.

To verify the goodness of the model generated by the linear regression, we use the
R? metric (which takes on values in the range 0 to 1) that reveals how closely the es-
timated y-values correlate to its actual y-values. A R? value close to 1 indicates that
the regression equation is very reliable. In such cases, WAVE provides an approximated
technique to find the support of predictable itemsets, an approach that does not have an
analog in the itemset mining research. Whenever an itemset is predictable, its support
can be simply predicted using the linear regression model, rather than recomputed with
expensive database scans. Figure 2 shows the R? distribution for the two databases used
in the experiments. This estimate technique achieves extraordinary savings in compu-
tational and I/O requirements, as we will see in Section 4.

WCup WPortal
07 0.9
minsup=1% ——— minsup=0.01%
minsup=2% - 0.85 minsup=0.05% -
0.65 minsup=5% 1 0.8 | minsup=0.1%

0.4

0 01 02 03 04 05 06 07 08 09 1 0O 01 02 03 04 05 06 07 08 09 1
Normalized Ranking Normalized Ranking

Figure 2. R* Distribution in WCup and WPortal Databases.
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4 Experimental Evaluation

In this section we evaluate the precision, performance and scalability of WAVE and
compare it to other incremental approaches. Real databases from actual applications
were used as inputs in the experiments. The first database, WCup, comes from click
stream data from the official site of the 1998 World Soccer Cup. WCup was extracted
from a 62-day log, comprising 2,128,932 transactions over 4,768 unique items with an
average transaction length of 8.5 items and a standard deviation of 11.2. The second
database represents the access patterns of a Web Portal. The database, WPortal, com-
prises 432,601 transactions over 1,182 unique items, and each transaction contains an
average length of 2.9 items. Our evaluation is based on three parameters given to WAVE:

Approximation tolerance— R?: the maximum approximation error acceptable.

Longevity: the number of transactions added to the database which triggers a complete
update process.

Base length: the number of transactions effectively mined before we start the estimat-
ing process.

Thus, for each minimum support used, we performed multiple executions of the
algorithm in different databases, where each execution employs a different combination
of R2, longevity, and base length. Further, we employed three metrics in our evaluation:

Precision: This metric quantifies how good the approximation is. It is the linear cor-
relation of two ordered sets of itemsets. The ranking criteria is the support, that is,
two ordered sets are totally correlated if they are of the same length, and the same
itemset appears in corresponding positions in both sets.

Work: This metric quantifies the amount of work performed by WAVE when compared
to ULI. We measure the elapsed time for each algorithm while mining a given
database in a dedicated single-processor machine. We then calculate the work as
the ratio between the elapsed time for our approach and the elapsed time for ULI.

Resource consumption: This metric quantifies the amount of memory used by each
algorithm. Observing this metric is interesting for the sake of practical evaluation
of the use of WAVE in large databases.

The experiments were run on an IBM - NetFinity 7SOMHz processor with 512MB
main memory. The source code for ULI [15], the state-of-the-art algorithm which was
used to perform our comparisons, was kindly provided to us by its authors. Timings
used to calculate the work metric are based on wall clock time.

4.1 Accuracy Experiments

Here we report the accuracy results for the databases described above. Firstly, we eval-
uate the precision achieved by WAVE. Next, we evaluate the gains in precision provided
by WAVE. We employed different databases, minimum supports, base lengths, longevi-
ties,and R?. Figure 3(a) depicts the precision achieved by WAVE in the WCup database.
From this figure we can observe that, as expected, the precision increases with the R 2
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used. Surprisingly, for this database the precision decreases with the base length used.
Further, the precision decreases with both the longevity and minimum support.

Slightly different results were observed for the same experiment using the WPortal
database. As expected the precision decreases with the longevity. For base lengths as
small as 50K transactions the lowest precision was achieved by the largest minimum
support. We believe that this is because these small base lengths do not provide suf-
ficient information about the database. For base lengths as large as 100K transactions,
the lowest precision was always achieved by the lowest minimum support. Interestingly,
the highest precision was initially provided by the highest minimum support, but as we
increase the R? value we notice a crossover point after which the second largest support
value was the most precise.

We also evaluate the gains in precision achieved by WAVE. From Figure 4(a) we
can observe that, using the WCup database, WAVE provides larger gains in precision
for smaller values of minimum support. The opposite trend is observed when we eval-
uate the precision varying the longevity, that is, in general larger gains are achieved
by larger longevities. It is obvious that WAVE loses precision over the time, but this
result shows that WAVE can maintain a more accurate picture of the frequent itemsets
for more time. Finally, the precision increases with the R? value, that is, increasing the
precision criteria results in improved prediction precision.

The gains in precision achieved by WAVE were also evaluated using the WPortal
database, and the results are depicted in Figure 4(b). In general we observe large gains
for smaller values of minimum support. We can also observe that, in all cases, the higher
the value of longevity, the larger is the gain in precision. One more time WAVE shows
to be very robust in preserving the precision.

4.2 Performance Experiments

Now we verify the amount of work performed by WAVE in order to generate an ap-
proximate model of associations. From Figure 5(a) we can observe the results obtained
using the WCup database. WAVE performs less work for smaller values of minimum
support. This is mainly because ULI spent much more time than WAVE in mining with
smaller values of minimum support. We can also observe that WAVE performs the same
amount of work when the R? threshold reaches the value 0.7, no matter how much the
minimum support value is. The reason is that there are only few itemsets with an ap-
proximation as good as 0.7, and all these itemsets have a support higher than 5%, which
was the highest minimum support used in this experiment.

We also verify the performance of WAVE using the WPortal database. In Figure 5(b)
we can observe that in general, for this database, WAVE performs less work for smaller
values of minimum support. This trend was observed when the database has a size of
50K transactions, but an interesting result arises for databases with larger sizes as 100K
transactions. For smaller values of R?, WAVE performs less work for larger values of
minimum support, but when we increase the value of R2, WAVE performs less work for
smaller values of minimum support. The reason is that when the minimum support is
too small, a great number of itemsets present a poor estimate. When the R ? value is also
small, even these poor estimates (not so poor as the R? value) are performed. However
the relative number of estimates and candidates generated is higher for higher values
of minimum support, and, as a consequence, more estimates were performed for higher
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Figure 3. Precision achieved by WAVE when varying minimum support, R?, base length, and
longevity for a) WCup Database (top row), and b) WPortal Database (bottom row).

values of minimum supports. For this database, in all cases, the larger the longevity,
the smaller is the work performed by WAVE. Finally, as we can observe in this figure,
WAVE performs less work for larger databases.

4.3 Scalability Experiments

In this section we compare the amount of memory used by WAVE and ULI, when we
employ different databases, minimum supports, base lengths, longevities, and R 2. Note
that the amount of memory used by ULI does not depend on the R ? employed. From
Figure 6(a), where we plot the relative amount of memory used by WAVE and ULI to
mine the WCup database, we can observe that in all cases WAVE uses less memory
than ULI. The amount of memory used by WAVE eexponentially decreases with the
R? used. This result was expected since for smaller values of R? a larger number of
estimates are performed. When we decrease the minimum support value, the relative
use of memory also decreases. This is because WAVE is more scalable than ULI, with
respect to memory usage. The relative memory usage is smaller when we employ larger
longevities. Finally, the larger the base length used, the less relative memory usage is
observed. As can be seen in Figure 6(b), similar results were observed when we used
the WPortal database.

5 Conclusions and Future Work

This paper introduced WAVE, an algorithm capable of generating highly accurate ap-
proximate models of associations in evolving databases. WAVE is able to efficiently
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Figure 4. Precision Gains provided by WAVE when varying minimum support, R?, base length,
and longevity for a) WCup Database (top row), and b) WPortal Database (bottom row).

maintain the model of associations up-to-date within a tolerance threshold value. The
resulting accuracy is similar to what would be obtained by reapplying any conventional
association mining algorithm to the entire database. Extensive empirical studies on real
and synthetic datasets show that WAVE yields very accurate models while at the same
time being space and time efficient.

We plan to apply WAVE to more real-world problems; its ability to do selective up-
dates should allow it to perform very well on a broad range of tasks. Currently WAVE
incrementally maintains the information about the previously frequent itemsets and dis-
cards the other ones, but in some domains these recently infrequent itemsets may be-
come useful down the line — identifying such situations based on trend detection and
taking advantage of them is another interesting direction for future work.
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Figure 6. Relative Memory Usage when varying minimum support, R?, base length, and
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