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Abstract. We present VOGUE, a new state machine that combines two
separate techniques for modeling long range dependencies in sequential
data: data mining and data modeling. VOGUE relies on a novel Variable-
Gap Sequence mining method (VGS), to mine frequent patterns with
different lengths and gaps between elements. It then uses these mined
sequences to build the state machine. We applied VOGUE to the task of
protein sequence classification on real data from the PROSITE protein
families. We show that VOGUE yields significantly better scores than
higher-order Hidden Markov Models. Moreover, we show that VOGUE’s
classification sensitivity outperforms that of HMMER, a state-of-the-art
method for protein classification.

1 Introduction

Many real world applications, such as in bioinformatics, web accesses, and text
mining, encompass sequential/temporal data with long and short range depen-
dencies. Techniques for analyzing such types of data can be classified in two
broad categories: sequence pattern mining [12], and data modeling via Hidden
Markov Models (HMMs) [4, 8]. HMMs depend on the Markovian property, i.e.,
the current state i in the sequence depends only on the previous state j, which
makes them unsuitable for problems where general patterns may display longer
range dependencies. For such problems, higher-order and variable-order HMMs
[8–10] have been proposed, where the order denotes the number of previous
states that the current state depends upon. However higher-order HMMs often
suffer from a number of difficulties, namely, high state-space complexity, reduced

coverage, and sometimes even low prediction accuracy [3].
In this paper we present a new approach to temporal/sequential data analysis

via a novel state machine, VOGUE (Variable Order Gaps for Unstructured
Elements). The first step of our method uses a new sequence mining algorithm,
called Variable-Gap Sequence miner (VGS), to mine variable-length frequent
patterns, that may contain different gaps between the elements. The second
step of our technique uses the mined variable-gap sequences to build the VOGUE
state machine. In fact, VOGUE models multiple higher order HMMs via a single
variable-order state machine. Although VOGUE has a much wider applicability,
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in this paper we apply it to a problem in biological sequence analysis, namely,
multi-class protein classification. Given a database of protein sequences, the
goal is to build a statistical model so that we can determine whether a query
protein belongs to a given family (class) or not. Statistical models for proteins,
such as profiles, position-specific scoring matrices, and hidden Markov models
[4] have been developed to find homologs. However, in most biological sequences,
interesting patterns repeat (either within the same sequence or across sequences)
and may be separated by variable length gaps. Therefore a method like VOGUE
that specifically takes these kind of patterns into consideration can be very
effective. We show experimentally that VOGUE’s modeling power is superior
to higher-order HMMs while reducing the latter’s state-space complexity, and
improving their prediction capabilities. VOGUE also outperforms HMMER [4],
a HMM model especially designed for protein sequences.

2 Related Work

HMMs have been proposed to model longer range dependencies. However, such
models suffer from high state-space complexity, since a k-th order HMM, with
alphabet Σ, can potentially have |Σ|k states. Estimating the joint probabilities
of each k-th order state is also difficult. The all-k-order Markov model was
proposed in [8], where one has to maintain a Markov model of order j (where
the current state depends on the j previous states) for all 1 ≤ j ≤ k. Three
post-pruning techniques were proposed in [3] to improve the prediction accuracy
and coverage, and to lower the state complexity of the all k-order Markov model.
However, multiple models still have to be maintained.

In [9], mixed order Markov models were proposed. However, they rely on
Expectation Maximization (EM) algorithms that are prone to local optima. Fur-
thermore, mixed order Markov models depend on a mixture of bigrams over k
consecutive previous states, whereas VOGUE automatically ignores irrelevant
states. Another approach combines the mining of sequences with a Markov pre-
dictor for web prefetching [7], but it is tuned specifically for web usage mining
since it relies on the knowledge of the site structure. In [10], a suffix tree is
incorporated in the training of the HMM which is done by an EM algorithm.
Although this algorithm reduces the state space complexity of an all-k-order
HMM, it still uses the previous k states and relies on an EM method. The
Episode Generating HMM (EGH) [6] is especially relevant. However, there are
notable differences in the EGH approach versus VOGUE. Instead of building
EGHs per subsequence, VOGUE is a single variable-order state machine incor-
porating all the frequent sequences. In VOGUE, the gap states have the notion
of duration which enables our system to account for long range dependencies.
The Hierarchical HMM (HHMM) approach in [2] extracts episodes (using se-
quence alignment methods) from which (left-to-right) HMMs are built. HHMM
also emits a random or “any” symbol in a gap state. In contrast, VOGUE si-
multaneously models all non-consecutive patterns, as well as gap symbol and
duration statistics.
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3 VOGUE State Machine

As noted earlier, building higher order HMMs is not easy, since we have to
estimate the joint probabilities of the previous k states in a k-order HMM. Also,
not all of the previous k states may be predictive of the current state. Moreover,
the training process is extremely expensive and suffers from local optima due
to the use of an EM (also known as Baum-Welch) algorithm for training the
model. VOGUE addresses these limitations. It first uses the VGS algorithm to
mine variable-gap frequent sequences that can have g other symbols between any
two elements; g varies from 0 to a maximum gap (MAXGAP ). These sequences
are then used as the estimates of the joint probabilities for the states used to
seed the model.

Consider a simple example to illustrate our main idea. Let the alphabet be
Σ = {A, · · · ,K} and the sequence be S = ABACBDAEFBGHAIJKB. We
can observe that A → B is a pattern that repeats frequently (4 times), but with
variable length gaps in-between. B → A is also frequent (3 times), again with
gaps of variable lengths. A first-order HMM will fail to capture any patterns
since no symbol depends purely on the previous symbol. We could try higher
order HMMs, but they will model many irrelevant parts of the input sequence.
More importantly, no fixed-order HMM for k ≥ 1 can model this sequence, since
none of them detects the variable repeating pattern between A and B (or vice
versa). This is easy to see, since for any fixed sliding window of size k, no k-
letter word (or k-gram) ever repeats! In contrast our VGS mining algorithm is
able to extract both A → B, and B → A as frequent subsequences, and it will
also record how many times a given gap length is seen, as well as the frequency
of the symbols seen in those gaps. This knowledge of gaps plays a crucial role
in VOGUE, and distinguishes it from all previous approaches which either do
not consider gaps or allow only fixed gaps. VOGUE models gaps via gap states

between elements of a sequence. The gap state has a notion of state duration
which is executed according to the distribution of length of the gaps and the
intervening symbols.

The training and testing of VOGUE consists of three main steps: 1) Pattern
Mining via the novel Variable-Gap Sequence (VGS) mining algorithm. 2) Data
Modeling via our novel Variable-Order state machine. 3) Interpretation of
new data via a modified Viterbi method, called VG-Viterbi, to model the most
probable path through a VOGUE model. Details of these steps appear below.

3.1 Mining: Variable-Gap Sequences (VGS)

VGS is based on cSPADE [11, 12], a method for constrained sequence mining.
Whereas cSPADE essentially ignores the length of and symbol distributions in
gaps, VGS is specially designed to extract such patterns within one or more
sequences. Note that whereas other methods can also mine gapped sequences [1,
11], the key difference is that during mining VGS explicitly keeps track of all
the intermediate symbols, their frequency, and the gap frequency distributions,
which are used to build VOGUE.
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Table 1. VGS: Subsequences of
Length 1

A B C D E F G H I

frequency 4 3 2 2 1 1 1 1 1

Table 2. VGS: Subsequences of
Length 2

subsequence freq g = 0 g = 1 g = 2

A → C 2 1 1 0

A → B 3 0 1 2

A → D 2 1 0 1

C → B 2 2 0 0

C → D 2 0 1 1

C → A 2 0 1 1

B → D 2 1 1 0

B → A 2 1 1 0

D → A 2 1 0 1

VGS takes as input the maximum gap
allowed (maxgap), the maximum sequence
length (k), and the minimum frequency
threshold (minsup). VGS mines all se-
quences having up to k elements, with a gap
of at most maxgap length between any two
elements, such that the sequence occurs at
least minsup times in the data. For exam-
ple, let S = ACBDAHCBADFGAIEB be
an input sequence over the alphabet Σ =
{A, · · · , I}, and let maxgap = 2, minsup =
2 and k = 2. VGS first mines the frequent
subsequences of length 1, as shown in Ta-
ble 1. Those symbols that are frequent are
extended to consider sequences of length 2,
as shown in Table 2. For example, A → B is a
frequent sequence with frequency freq = 3,
since it occurs once with gap of length 1
(ACB) and twice with a gap of length 2
(AHCB and AIEB). Thus the gap length
distribution of A → B is 0, 1, 2 as shown under columns g = 0, g = 1, and
g = 2, respectively. VGS also records the symbol distribution in the gaps for
each frequent sequence. For A → B, VGS will record gap symbol frequencies as
C(2), E(1),H(1), I(1), based on the three occurrences. Since k = 2, VGS would
stop after mining sequences of length 2. Otherwise, VGS would continue mining
sequences of length k ≥ 3, until all sequences with k elements have been mined.

3.2 Modeling: Variable-Order State Machine

VOGUE uses the mined sequences to build a variable order/gap state machine.
The main idea here is to model each non-gap symbol in the mined sequences as
a state that emits only that symbol and to add intermediate gap states between
any two non-gap states. The gap states will capture the distribution of the gap
symbols and length. Let F be the set of frequent sequences mined by VGS, and let
k be the maximum length of any sequence. While VOGUE can be generalized
to use any value of k ≥ 2, for clarity of exposition and lack of space we will
illustrate the working of VOGUE using mined sequences of length k = 2. Let F1

and F2 be the sets of all frequent sequences of length 1 and 2, respectively, so
that F = F1∪F2. Thus, each mined sequence si ∈ F2 is of the form si : vf → vs,
where vf , vs ∈ Σ. Let Γ = {vf |vf → vs ∈ F2} be the set of all the distinct
symbols in the first position, and Θ = {vs|vf → vs ∈ F2} be the set of all the
distinct symbols in the second position, across all the mined sequences si ∈ F2.
The VOGUE model is specified by the 6-tuple λ = {Q,Σ,A,B, ρ, π} where each
component is defined below.
Alphabet (Σ): The alphabet for VOGUE is Σ = {v1, · · · vM}, where |Σ| = M
is the number of observations emitted over all states. The alphabet’s size is
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g1

C

 0.31

A

 0.36

D

 0.1

B

  0.21

g2

 0.012

g3

 0.012

g4

 0.012

g5

0.012

g6

0.012

g7

0.012

g8

0.012

g9

0.012

B

  0.33

  0.33  0.33

D

  0.14

C

  0.14

 0.42   0.14   0.14

A

  0.5

  0.5

 0.25 0.25

 0.25 0.25  0.01

 0.31   0.36   0.1  0.2

   0.01 

 0.31  0.1  0.360.2

0.01 

 0.31 0.1  0.36  0.2

  0.01

  0.31 0.1  0.360.2

 1 1 1    1   1  1 1 1

Fig. 1. VOGUE State Machine for Running Example

defined by the number of symbols that occur at least once in the training data,
obtained as a result of the first iteration of VGS, as shown in Table 1. For our
example S in Section 3.1, we have nine distinct frequent symbols, thus M = 9.
Set of States (Q): The set of states in VOGUE is given as Q = {q1, · · · , qN},
where |Q| = N = Nf+Gi+Ns+Gu. Here, Nf = |Γ | and Ns = |Θ| are the number
of distinct symbols in the first and second positions, respectively. Each frequent
sequence si ∈ F2 having a gap g ≥ 1 requires a gap state to models the gaps. Gi

thus gives the number of gap states required. Finally Gu = 1 corresponds to an
extra gap state, called universal gap, that acts as the default state when no other
state satisfies an input sequence. For convenience let Q = Qf∪Qi∪Qs∪Qu be the
partition of Q where the first Nf states belong to Qf , the next Gi states belong
to Qi, and so on. For our example S in Section 3.1, we have Nf = 4, since there
are four distinct starting symbols in Table 2 (namely, A,B,C,D). We also have
four ending symbols, giving Ns = 4. The number of gap states is the number of
sequences of length 2 with at least one occurrence with gap g ≥ 1. Thus Gi = 8,
C → B is the only sequence that has all consecutive (g = 0) occurrences. With
one universal gap state Gu = 1, our model yields N = 4 + 8 + 4 + 1 = 17 states.
Transition Probability Matrix (A): The transition probability matrix be-
tween the states, A = {a(qi, qj)|1 ≤ i, j ≤ N}, where a(qi, qj) = P (qt+1 =
qj |q

t = qi), gives the probability of moving from state qi to qj (where t is the
current position in the sequence). The probabilities depend on the types of states
involved in the transitions. The basic intuition is to allow transitions from the
first symbol states to either the gap states or the second symbol states. The
second symbol states can go back to either the first symbol states or to the uni-
versal gap state. Finally the universal gap state can go to any of the starting
states or the intermediate gap states. We discuss these cases below.
Transitions from First States: Any first symbol state qi ∈ Qf may transition to
either a second symbol state qj ∈ Qs (modeling a gap of g = 0) or to a gap
state qj ∈ Qi (modeling a gap of g ∈ [1,maxgap]). Let siy : vi → vy ∈ F2 be
a subsequence mined by VGS. Let freqg

i (y) denote the frequency of siy for a
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given gap value g, and let freqi(y) denote the total frequency of the sequence,

i.e., freqi(y) =
∑maxgap

g=0 freqg
i (y). Let R =

freq0
i (j)

P

y∈Qs
freqi(y) denote the fraction

of gap-less transitions from qi to qj over all the transitions from qi to qy ∈ Qs.
The transition probabilities from qi ∈ Qf are given as:

a(qi, qj) =











R for qj ∈ Qs
freqi(j)

P

y∈Qs
freqi(y) − R for qj ∈ Qi

0 for qj ∈ Qf ∪ Qu

Transitions from Gap States: Any gap state qi ∈ Qi may only transition to
second symbol state qj ∈ Qs. For qi ∈ Qi we have:

a(qi, qj) =

{

1 for qj ∈ Qs

0 for qj ∈ Q\Qs

Transitions from Second States: A second symbol state qi ∈ Qs may transition
to either first symbol state qj ∈ Qf (modeling a gap of g = 0), or to the universal
gap state qj ∈ Qu (modeling other gaps). Let T =

∑

sx∈F2
freq(sx) be the sum

of frequencies of all the sequences in F2. For qi ∈ Qs we have:

a(qi, qj) =











0.99 ×

P

qy∈Qf
freqj(y)

T for qj ∈ Qf

0.01 for qj ∈ Qu

0 for qj ∈ Qi ∪ Qs

Note that the transitions to universal gap have a small probability (0.01). Tran-
sitions back to first states are independent of qi, i.e., the same for all qi ∈ Qs. In
fact, these transitions are the same as the initialization probabilities described
below. They allow the model to loop back after modeling a frequent sequence.
Note that the values 0.99 and 0.01 above were chosen to allow (via pseudo-
counts) for unseen symbols.
Transitions from Universal Gap: The universal gap state can only transition to
the first states or the intermediate gap states. For qi ∈ Qu we have:

a(qi, qj) =











0.9 ×

P

qy∈Qf
freqj(y)

T for qj ∈ Qf

0.1 × 1
Gi

for qj ∈ Qi

0 for qj ∈ Q\Qf

Since the first states can emit only one symbol, we allow transitions from uni-
versal gap to intermediate gap states, to allow for other symbol emissions. This
probability is at most 10% (empirically chosen) across all the gap states. In the
remaining 90% cases, the universal gap transitions to a first state with proba-
bilities proportional to its frequency.

Figure 1 shows transitions between states and their probabilities in VOGUE
for our running example. Each gap state’s duration is considered explicitly within
a state. The notation gi (e.g., g3) is the name of the gap state between the
elements of the sequence, (e.g., C → D), and not the value of the gap. The
symbol states, on the other hand, are named after the only symbol that can be
emitted from them, for example C is the only symbol that is emitted from the
first symbol state.
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Symbol Emission Probabilities (B): The symbol emission probabilities are
state specific. We assume that each non-gap state (qi ∈ Qf ∪Qs) outputs only a
single symbol, whereas gap states (qi ∈ Qi ∪Qu) may output different symbols.
The emission probability matrix is then given as: B = {b(qi, vm) = P (vm|qi), 1 ≤
i ≤ N and 1 ≤ m ≤ M}, where b(qi, vm) = P (vm|qi) is the probability of
emitting symbol vm in state qi. b(qi, vm) differs depending on whether qi is a
gap state or not. Since there is a chance that some symbols that do not occur in
the training data may in fact be present in the test data, we assign them a very
small probability of emission in the gap states.

Non-gap States: If qi ∈ Qf ∪ Qs, then b(qi, vm) = 1 for the distinct symbol that
can be emitted for that state, and b(qi, vm) = 0, otherwise. For example, the
first and second states are labeled by their emission symbol in Figure 1.

Universal Gap: For qi ∈ Qu we have b(qi, vm) =
(

freq(vm)
P

vm∈Σ freq(vm)

)

× 0.99 + c′,

where c′ = 0.01/M . This means that vm is emitted with probability proportional
to its frequency in the training data. The c′ term handles the case when vm does
not appear in the training set.

Gap States: If qi ∈ Qi, its emission probability depends on the symbol distribu-
tion mined by VGS. Let Σqi

be the set of symbols that were observed by VGS

in the gap qi. We have b(qi, vm) =

(

P

g≥1 freqg(vm,qi)
P

vm∈Σqi

P

g≥1 freqg(vm,qi)

)

×0.99+c, where

c = 0.01/|Σqi
|.

Note that the above summations are for gap ranges g ∈ [1,maxgap], since
gap g = 0 is treated as a direct transition from one state to another. Note that
the values 0.99 and 0.01 above arise from the pseudo-count approach used for
previously unseen symbols. In our running example, for the symbol vm = C and
the gap state g4 between the states that emit A and B, we have the frequency of
C as 2 out of the total number (5) of symbols seen in the gaps (see Section 3.1).
Thus C’s emission probability is 2

5 × 0.99 + 0.01
4 = 0.399.

Gap Duration Probabilities (ρ): The probability of generating a given num-
ber of gaps from the gap states Qi is given by the gap duration probability
matrix: ρ = {ρ(qi, g)|qi ∈ Qi, g ∈ [1,maxgap]}. Let qi be the gap state be-
tween a state qx ∈ Qf and a state qy ∈ Qs corresponding to the sequence
s : vx → vy ∈ F2. The gap duration probability is proportional to the frequency

of observing a given gap value for s, i.e., ρ(qi, g) =
freqg

i
(y)

P

g∈[1,maxgap] freqg
i
(y)

; and

ρ(qi, g) = 1 for qi ∈ Q\Qi. In our running example, for the gap state g4 between
the states that emit A and B, we have ρ(g4, 2) = 2

3 = 0.67, since we twice observe
a gap of 2, out of three occurrences.

Initial State Probabilities (π): The probability of being in state qi initially
is given by π = {π(i) = P (qi|t = 0), 1 ≤ i ≤ N}, where

π(i) =











0.99 ×

P

qy∈Qf
freqi(y)

T for qi ∈ Qf

0.01 for qi ∈ Qu

0 for qi ∈ Qi ∪ Qs
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We use a small value for the Universal Gap state as opposed to the states in
Qf to accentuate the patterns retained by VGS while still providing a possibility
for gaps after and before them.

3.3 Interpretation: Variable-Gap Viterbi

Once VOGUE is built, given a new test sequence of observations O = o1o2 · · · oT ,
there is a need to interpret the sequence given the model. This problem is equiv-
alent to finding the best sequence of states, i.e., the most probable path, through
the VOGUE model λ, for the test sequence O. That is finding a sequence of states
q∗ = {q1

∗
, q2

∗
, · · · , qT

∗
} from the model λ such that: q∗ = arg maxq P (q|λ,O), over

all such sequence of states q. The algorithm that is most often used to solve this
problem for biosequences, is the Viterbi algorithm [4]. Due to the unique struc-
ture of VOGUE, where gap states have a notion of duration, we adjusted Viterbi
to take this into account. We call our new method Variable-Gap Viterbi (VG-
Viterbi). For the lack of space, we omit the algorithmic details of VG-Viterbi.

4 Experimental Results and Analysis

In recent years, a large amount of work in biological sequence analysis has fo-
cused on methods for finding homologous proteins. Given a database of protein
sequences, the goal is to build a statistical model so that we can determine
whether a query protein belongs to a given family or not. HMMER [4], a profile
HMM, is one of the state-of-the-art approaches to this problem that depends
heavily on a good multiple sequence alignment. It models gaps, provided they
exist in the alignment of all the training sequences. However, if a family of se-
quences has several overlapping motifs which may occur in different sequences,
these sequences will not be aligned correctly and HMMER will not perform
well. Here, we analyze the performance of VOGUE compared to HMMER and
higher-order HMMs with various orders k ∈ [1, 10].

Dataset: The data used in our experiments is a set of 9 families downloaded
from the PROSITE (http://www.expasy.org/prosite) database of protein fam-
ily and domains, namely, PDOC00662, PDOC00670, PDOC00561, PDOC00064,

PDOC00154, PDOC00224, PDOC00271, PDOC00397, PDOC00443. We will refer
to these families as F1, F2, · · · , F9, respectively. The number of sequences in
each family is, respectively: N1 = 45, N2 = 225, N3 = 85, N4 = 56, N5 = 119,
N6 = 99, N7 = 150, N8 = 21, N9 = 29. The families consist of sequences of
lengths ranging from 597 to 1043 characters, taken from the alphabet of the
20 amino acids: Σ = {A,C,D,E, F,G,H, I,K,L,M,N, P,Q,R, S, T, V,W, Y }.
Each family is characterized by a well-defined motif. Family F1, for example,
shares the consensus motif [G] − [IV T ] − [LV AC] − [LV AC] − [IV T ] − [D] −
[DE]− [FL]− [DNST ], which has 9 components. Each component can contain
any of the symbols within the square brackets. For example, for the second com-
ponent, namely [IV T ], either I, V or T may be present in the sequences. We
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treat each PROSITE family as a separate class. We divided the data set of each
family Fi, into two subsets: the training data N i

train consists of 90% of the data,
while the test data N i

test contains the remaining 10%. For example, N1
train = 40

and N1
test = 5. There are a total of 103 test sequences across all families.

Evaluation and Scoring: We built three models for each family, namely VOGUE,
HMMER and k-th order HMMs, using the training set of that family. We score
the test sequences against the model for each of the nine families, and after
sorting the scores in decreasing order, we use a threshold on the scores to assign
a sequence to a given family.

For evaluation of the classifiers, we use Receiver Operating Characteristic
(ROC) curves [5], that represent the relationship between the false positive
rate and true positive rate across the full spectrum of threshold values. Fur-
ther, we plot the Area Under the Curve (AUC), to evaluate the goodness of
the classifiers. The AUC is calculated using the following equation [5]: AUC =
1

pn

∑p
i=1

∑n
j=1 ϕ(Ri, Rj). Here Ntest = n + p is the number of test sequences, p

is the number of sequences from a given class and n is the number of sequences
that don’t belong to the class. These sequences are ranked based on their score
from 1 to Ntest, assigning 1 to the test sequence with the highest score and Ntest

to the one with the lowest score. Ri, i = 1 · · · p represent the rankings of the
p sequences and Rj , j = 1 · · ·n represent the rankings of the n sequences and
ϕ(Ri, Rj) = 1if Ri < Rj , or else ϕ(Ri, Rj) = 0. AUC for each class is calculated
separately, by treating each class as p, and the remaining as n.

We score the test sequences by computing the log-odds score, i.e., the ra-
tio of the probability of the sequence using a given model, to the probabil-
ity of the sequence using a Null model, given as follows: Log-Odds(seq) =

log2

(

P (seq/Model)
P (seq/Null)

)

. P (seq/Model) is computed using the Viterbi algorithm that

computes the most probable path through the model, as Viterbi is the default
method used for scoring in HMMER. The Null model is a simple one state HMM
that emits the observations (the amino acids) with equal probability (1/|Σ|).
Since we have 20 amino acids, the emission probability for each symbol is 1/20.
The log-odds ratio measures whether the sequence is a better match to the given
model (if the score is positive) or to the null hypothesis (if the score is negative).
Thus, the higher the score the better the model.

4.1 Comparing VOGUE, HMMER & k-th Order HMMs

We built VOGUE state machines with different values of minsup correspond-
ing to 50%, 75% and 100% of the number of instances in the training data,
and maxgap (10, 15, 20, 25, 30) but with the constant k = 2 for the length
of the mined sequences in VGS. We then choose the best set of parameters
and fix them for the remaining experiments. For HMMER, we first need to align
the training sequences using CLUSTAL-W (http://www.ebi.ac.uk/clustalw). We
then build a profile HMM using the multiple sequence alignment and compute
the scores for each test sequence using HMMER, which directly reports the



10

log-odds scores with respect to the Null model mentioned above. We also built
several k-th order HMMs for various values of k using an open-source HMM soft-
ware (http://www.cfar.umd.edu/∼kanungo/software). We tried different values
for the number of states ranging from the size of the protein alphabet (20) to
roughly the size of VOGUE (500) and HMMER (900). A k-th order HMM is
built by replacing each consecutive subsequence of size k with a unique symbol.
These different unique symbols across the training and test sets were used as
observation symbols. Then we model the resulting sequence with a regular 1st
order HMM.

Table 3. Test Sequence Log-Odds Scores for VOGUE, HMMER and k-th Order HMMs

Seq VOGUE HMMER k = 1 k = 2 k = 4 k = 8 k = 10
M = 20 M = 394 M = 17835 M = 20216 M = 19249

S1 7081 912.4 −4 × 103 −1.3 × 104 −2.3 × 104 −2 × 104 −2.6 × 104

S2 7877 155 −3.4 × 103 −1.3 × 104 −2.2 × 104 −1.9 × 104 −2.9 × 104

S3 2880 −345 −2.2 × 103 −1 × 104 −1.8 × 104 −1.6 × 104 −2.3 × 104

S4 5763 9.8 −4.7 × 103 −1.5 × 104 −2.4 × 104 −2.2 × 104 −3.0 × 104

S5 5949 −21.3 −4.7 × 103 −1.5 × 104 −2.4 × 104 −2.2 × 104 −3.1 × 104

Score Comparison: We first compare VOGUE with k-order HMMs and HM-
MER. Table 3 shows the comparison on the 5 test sequences for family F1 when
scored against the model for F1. For VOGUE we used minsup = 27(75%) and
maxgap = 20. For k-order HMMs we tried several values of the order k (shown
as k = 1, k = 2, k = 4, k = 8 and k = 10) in the table with 20 states for each
k-th order HMM. The number of observations M for the k = 1 case was set to
20 since it is the number of amino acids. M = 394; 17835; 20216; 19249 were the
number of observations used for, respectively, k = 2; 4; 8; 10. These values were
obtained from a count of the different new symbols used, as described earlier,
for each value of k. The best score for each sequence is highlighted in bold. In
Table 3, we find that k-th order HMMs were not able to model the training
sequences well. All their scores are large negative values. HMMER did fairly
well, which is not surprising, since it is specialized to handle protein sequences.
However, for all the 5 test sequences VOGUE vastly outperforms HMMER. This
is a remarkable result when we consider that VOGUE is completely automatic
and does not have explicit domain knowledge embedded in the model, except
what is recovered from relationship between symbols in the patterns via mining.

Table 4. Run Times

VOGUE HMMER k = 1 k = 2 k = 4 k = 10

4.6s 34.42s 2s 5.29s 6.40s 11.46s

Time Comparison: In Table 4, we
show the execution times for family
F1. The time for VOGUE includes
the mining by VGS, and for HM-
MER, the alignment by CLUSTAL-
W. We can see that VOGUE’s execution time is in general much better than
HMMER and is also better than higher-order HMMs (except for k = 1). Thus,
not only is VOGUE more accurate in modeling the input, but it also executes
faster.
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Fig. 2. ROC Curve of VOGUE and HMMER for the 9 families.

Full Comparison (ROC Curves and AUC): Figure 2 presents the ROC
curves of the 9 families generated from all the test sequences. Here we focus on
comparing HMMER and VOGUE, since k-th order HMMs gave highly negative
scores for all the test sequences. The ROC curves represent the trade-off between
coverage (TPR on the y-axis) and error rate (FPR on the x-axis) of a classifier.
A good classifier will be located at the top left corner of the ROC graph. A trivial
rejector will be at the bottom left corner of the ROC graph and a trivial acceptor
will be at the top right corner of the graph. Each one of the graphs in Figure
2 has two ROC curves for VOGUE and HMMER, respectively, for different
threshold values. The total AUC for the two methods is given in the legend.
VOGUE was run with parameter typical values of minsup = 75% and maxgap =
20; there were some minor variations to account for characteristics of different
families. The ROC curves of all the families show clearly that VOGUE improved
the classification of the data over HMMER because the AUC of VOGUE is
constantly higher than HMMER. In the case of family F9 the AUC of both
VOGUE and HMMER were comparable. In two cases, for families F1 and F6,
the AUC was 1 for VOGUE showing that VOGUE was able to capture the
patterns of those families perfectly. Moreover, in 6 out 9 families the AUC for
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VOGUE was higher than 0.9 as opposed to HMMER whose AUC was greater
than 0.9 in only 3 out of 9 families. This again shows that VOGUE outperforms
HMMER.

5 Conclusions and Future Work

One of the main contribution of VOGUE is that it can simultaneously model

multiple higher-order HMMs. We showed experimentally on protein sequence
data that VOGUE’s modeling power is superior to higher-order HMMs, as well
as a domain-specific algorithm HMMER. To generalize VOGUE for sequences
of k > 2 (after VGS), a special topology will be needed to handle interleav-
ing patterns. Furthermore, some patterns mined by VGS are artifacts of other
patterns, for example, if A → B is frequent, then there is a good chance that
B → A will be frequent as well. We need special pruning mechanisms to separate
primary patterns from artifacts. Moreover, there are applications where there is
not always an exact match for the subsequences to be mined. In future work we
plan to allow for approximate matches for the mined sequences and states.
Acknowledgments: This work was supported in part by NSF CAREER Award
IIS-0092978, and NSF grant EIA-0103708.
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