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Abstract. Most current work on classification has been focused on learning from
a set of instances that are associated with a single label (i.e., single-label classi-
fication). However, many applications, such as gene functional prediction and
text categorization, may allow the instances to be associated with multiple la-
bels simultaneously. Multi-label classification is a generalization of single-label
classification, and its generality makes it much more difficult to solve.
Despite its importance, research on multi-label classification is still lacking. Com-
mon approaches simply learn independent binary classifiersfor each label, and
do not exploit dependencies among labels. Also, several small disjuncts may ap-
pear due to the possibly large number of label combinations,and neglecting these
small disjuncts may degrade classification accuracy. In this paper we propose a
multi-label lazy associative classifier, which progressively exploits dependencies
among labels. Further, since in our lazy strategy the classification model is in-
duced on an instance-based fashion, the proposed approach can provide a better
coverage of small disjuncts. Gains of up to 24% are observed when the proposed
approach is compared against the state-of-the-art multi-label classifiers.

1 Introduction

The classification problem is to build a model, which, based on external observations,
assigns an instance to one or more labels. A set of examples isgiven as the training
set, from which the model is built. A typical assumption in classification is that labels
are mutually exclusive, so that an instance can be mapped to only one label. However,
due to ambiguity or multiplicity, it is quite natural that most of the applications violate
this assumption, allowing instances to be mapped to multiple labels simultaneously. For
example, a movie being mapped toaction or adventure, or a song being classified as
rock or ballad, could all lead to violations of the single-label assumption.

Multi-label classification consists in learning a model from instances that may be
associated with multiple labels, that is, labels are not assumed to be mutually exclusive.
Most of the proposed approaches [7,1,3] for multi-label classification employ heuris-
tics, such as learning independent classifiers for each label, and employing ranking and
thresholding schemes for classification. Although simple,these heuristics do not deal
with important issues such assmall disjunctsandcorrelated labels.
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In essence, small disjuncts are rules covering a small number of examples, and
thus they are often neglected. The problem is that, althougha single small disjunct
covers only few examples, many of them, collectively, may cover a substantial fraction
of all examples, and simply eliminating them may degrade classification accuracy [4].
Small disjuncts pose significant problems in single-label classification, and in multi-
label classification these problems are worsened, because the search space for disjuncts
increases due to the possibly large number of label combinations. Also, it is often the
case that there are strong dependencies among labels, and such dependencies, when
properly explored, may provide improved accuracy in multi-label classification.

In this paper we propose an approach which deals with small disjuncts while ex-
ploring dependencies among labels. To address the problem with small disjuncts, we
adopt a lazy associative classification approach. Instead of building a single set ofclass
association rules(CARs) that is good on average for all predictions, the proposed lazy
approach delays the inductive process until a test instanceis given for classification,
therefore taking advantage of better qualitative evidencecoming from the test instance,
and generating CARs on a demand-driven basis. Small disjuncts are better covered, due
to the highly specific bias associated with this approach. Weaddress the label correla-
tion issue by definingmulti-label class association rules(MCARs), a variation of CARs
that allows the presence of multiple labels in the antecedent of the rule. The search space
for MCARs is huge and to avoid an exhaustive enumeration. which would be necessary
to find the best label combination, we employ a novel heuristic calledprogressive label
focusing, which makes feasible the exploration of associations among labels.

The proposed approach was evaluated using two different applications: text cate-
gorization and gene functional prediction. It consistently achieves better performance
than the state-of-the-art multi-label classifiers, showing gains up to 24%.

2 Related Work

Typical approaches for multi-label classification are based on training an independent
binary classifier for each label. These independent classifiers are used to assign a proba-
bility of membership to each label, and then an instance is classified into the labels that
rank above a given threshold. Examples of this approach include ADTBOOST.MH [2]
(decision trees that can directly handle multi-label problems), a multi-label general-
ization of SVMs [3], and a a multi-label lazy learning based on the kNN approach [7].
In [6] an approach based on independent associative classifiers was proposed. However,
this approach was only evaluated in single-label problems,and thus, the performance
of multi-label associative classifiers for multi-label problems is still unknown.

The main problem with the binary approach is that it does not consider correlation
among labels. The direct multi-label approach explores this correlation by considering
a combination of labels as a new, separate label [1]. For instance, a multi-label problem
with 10 labels will be transformed to a single-label problemcomposed of potentially
1,024 labels. The problem now is that a relatively small number of examples may be as-
sociated with those new labels, specially if the combination contains many labels. While
these approaches are able to capture dependencies among labels, the poor coverage of
small disjuncts may degrade overall accuracy.



3 Single-Label Associative Classification

A typical associative classifier, suitable for single-label classification problems, is de-
scribed in this section. An associative classification model is composed ofclass associ-
ation rules(CARs), which are defined in the following.

DEFINITION 1. [CLASS ASSOCIATIONRULES] CARs are rules of the formX
σ,θ
−−→ ci,

where the setX is allowed to contain only features (i.e.,X ⊆ I, whereI is the set of
all possible features), andci is one of then labels (i.e.,ci ∈ C, whereC is the set of all
possible labels). A valid CAR has support (σ) and confidence (θ) greater than or equal
to the corresponding thresholds,σmin andθmin.

Common approaches for associative classification employ a slightly modified algo-
rithm for mining valid CARs directly from the training data.When a sufficient number
of valid CARs are found, the model (denoted asM) is finally completed, and it is used
to predict the label of the test instances. Due to class overlapping, and since labels are
mutually exclusive, CARs may perform contradictory predictions. For example, letT
be a test instance, and letX andY be two subsets ofT . Also suppose that the valid
CARsX → ci andY → cj (with i 6= j) are inM. These CARs are contradictory,
since they predict different labels for the same test instance,T . To address this prob-

lem, the rule-setM is interpreted as a poll, in which CARX
σ,θ
−−→ ci ∈ M is a vote

of weightσ × θ given byX for labelci (note that other criteria for weighting the votes
can be used). Weighted votes for each label are then summed, and the score of label
ci is given by the real-valued functions showed in Equation 1. In the end, the label
associated with the highest score is finally predicted.

s(ci) =
∑

X
σ,θ
−−→ci∈M

σ × θ (1)

Consider the set of instances shown in Table 1, used as a running example in this
paper. Each instance corresponds to a movie, and to each movie is assigned a set of
labels (but for this example, which refers to single-label classification, only the first
label will be considered). If we setσmin to 0.20 andθmin to 0.66, then the modelM
will be composed of the following CARs:

1. actor=T. Hanks
0.30,0.75
−−−−−→ label=Drama

2. actor=L.DiCaprio
0.20,0.67
−−−−−→ label=Drama

3. actor=M. Damon
0.20,0.67
−−−−−→ label=Crime

Now, suppose we want to classify instance 11. In this case, only first and third
CARs are applicable, since featureactor=L. DiCaprio is not present in instance 11
(thus, second CAR is crossed out). According to Equation 1,s(Drama)=0.225 and
s(Crime)=0.134, and thusDramawill be predicted.

4 Multi-Label Lazy Associative Classification

In this section we extend the basic classifier described in the previous section, allow-
ing it to predict multiple labels. We also propose an approach for exploring correlated
labels, while dealing with small disjuncts, improving the classification model.



4.1 Independent Classifiers

A heuristic employed for multi-label classification is to build an independent classifier
for each label. This extension is natural, and it is based on assigning a probability of
membership to each label,f(ci). The probabilities are computed using the proportion
of scores associated with each label normalized by the highest score (i.e.,max):

f(ci) =
s(ci)

max
. (2)

Once all probabilities are computed, labels are inserted into a rankingL={l1, ...,ln},
so thatf (l1)≥f (l2)≥ . . . ≥ f (ln) . Those labels that rank above a thresholdδmin (i.e.,
lk|f(lk) ≥ δmin) are assigned to the test instance. To illustrate this process, consider
again the example shown in Table 1, but now each movie has multiple labels, which are
all considered when mining the CARs. If we setσmin to 0.20 andθmin to 0.66, then
M will be composed of the following CARs:

1. actor=M. Damon
0.30,1.00
−−−−−→ label=Action

2. actor=L.DiCaprio
0.30,1.00
−−−−−→ label=Crime

3. actor=T.Hanks
0.30,0.75
−−−−−→ label=Drama

4. actor=M. Damon
0.20,0.67
−−−−−→ label=Crime

5. actor=L.DiCaprio
0.20,0.67
−−−−−→ label=Drama

Now, suppose we want to classify instance 12 andδmin is set to 0.66. Follow-
ing Equation 2,f (Action)=1.00 andf (Crime)=0.45, and therefore labelAction is pre-
dicted. Note that, although there is a strong association between featureactor=B. Pitt
and labelRomance, CAR actor=B. Pitt→Romanceis considered a small disjunct, and
is neglected by the classifier, even being important to classify instance 12. We refer to
this classifier as IEAC (independent eager associative classifier).

Id Label Title Actors

Training 1 Comedy/Romance Forrest Gump T. Hanks
Set 2 Drama/Romance The Terminal T. Hanks

3 Drama/Crime Catch Me If You Can T. Hanks and L. DiCaprio
4 Drama/Crime The Da Vinci Code T. Hanks
5 Drama/Crime Blood Diamond L. DiCaprio
6 Crime/Action The Departed L. DiCaprio and M. Damon
7 Crime/Action The Bourne Identity M. Damon
8 Action/Romance Syriana M. Damon
9 Romance Troy B. Pitt
10 Drama/Crime Confidence E. Burns

Test 11 ? [Drama/Action] Saving Private RianT. Hanks, M. Damon and E. Burns
Set 12 ? [Action/Romance] Ocean’s Twelve B. Pitt and M. Damon

13 ? [Crime/Drama] The Green Mile T. Hanks
Table 1.Training and Test Instances.



Like most of the eager classifiers, IEAC does not perform wellon complex spaces.
This is because it generates CARs before the test instance iseven known, and the diffi-
culty in this case is in anticipating all the different directions in which it should attempt
to generalize its training examples. In order to perform more general predictions, com-
mon approaches usually prefer to generalize more frequent disjuncts. This can reduce
the performance in complex spaces, where small disjuncts may be important to classify
specific instances. Lazy classifiers, on the other hand, generalize the examples exactly
as needed to cover a specific test instance.

In lazy associative classification, whenever a test instance is being considered, that
instance is used as a filter to remove irrelevant features andexamples from the training
data. This process automatically reduces the size of the training data, since irrelevant
examples are not considered. As a result, disjuncts that arenot frequent in the original
training data, may become frequent in the filtered training data, providing a better cov-
erage of small disjuncts. To illustrate this process, suppose we want to classify instance
12. As shown in Table 2 only four examples are relevant to thisinstance. If we setσmin

to 0.20 andθmin to 0.66, thenM will be composed of the following CARs:

1. actor=M. Damon
0.75,1.00
−−−−−→ label=Action

2. actor=M. Damon
0.50,0.67
−−−−−→ label=Crime

3. actor=B. Pitt
0.25,1.00
−−−−−→ label=Romance

According to Equation 2,f (Action)=1.00,f (Crime)=0.45 andf (Romance)=0.33,
and forδmin = 0.66, label combinationAction/Romanceis predicted. We refer to this
classifier as ILAC (independent lazy associative classifier).

4.2 Correlated Classifiers

Labels in multi-label problems are often correlated, and aswe will see in our experi-
ments, this correlation can be helpful for improving classification performance. In this
section we describe CLAC (correlated lazy associative classifier), which, unlike IEAC
and ILAC, explicitly explores interactions among labels. The classification model is
composed ofmulti-label class association rules(MCARs), which are defined next.
DEFINITION 2. [MULTI -LABEL CLASS ASSOCIATION RULES] MCARs are a special

type of association rules of the formX ∪F
σ,θ
−−→ ci, whereF ⊆ (C−ci). A valid MCAR

hasσ andθ greater than or equal to the corresponding thresholds,σmin andθmin.

Id Label Actors

6 Crime/Action M. Damon
7 Crime/Action M. Damon
8 Action/RomanceM. Damon
9 Romance B. Pitt

Table 2. Filtering according to
Instance 12.

Id Label Actors

1 Comedy/RomanceT. Hanks
2 Drama/RomanceT. Hanks
3 Drama/Crime T. Hanks
4 Drama/Crime T. Hanks

Table 3. Filtering according to
Instance 13.

Id Label Actors

2 Drama/RomanceT. Hanks
3 Drama/Crime T. Hanks
4 Drama/Crime T. Hanks

Table 4. Filtering accord-
ing to Instance 13 and Label
Drama.



The model is built iteratively, following a greedy heuristic calledprogressive label
focusing, which tries to find the best label combination by making locally best choices.
In the first iteration,F = ∅, and a set of MCARs (M1) of the formX −→ ci is generated.
Based onM1, label l1 is assigned to the test instance. In the second iteration,l1 is
treated as a new feature and thusF = {l1}. A set of MCARs of the formX ∪{l1} −→ ci

(M2) is generated, andM2 is then used to assign labell2 to the test instance. This
process iterates until no more MCARs are generated. The basic idea is to progressively
narrow the search space for MCARs as labels are being assigned to the test instance.

Consider again the example in Table 1, and suppose that we want to classify instance
13. The first step is to filter the training data according to the features in instance 13.
The filtered training data is shown in Table 3, and if we setσmin to 0.20 andθmin to
0.66, then the corresponding model (i.e.,M1) is composed of the following MCAR:

1. actor=T. Hanks
0.75,0.75
−−−−−→ label=Drama

Label Drama is assigned to instance 13, and now this label is considered anew
feature. The training data is filtered again, as shown in Table 4. The corresponding
model (i.e.,M2) is composed of the following MCAR:

1. actor=T. Hanks∧ label=Drama
0.67,0.67
−−−−−→ label=Crime

Thus, labelCrimeis also assigned to instance 13, and since no more MCARs can be
generated, the process stops. In summary, labelsRomanceandCrimeare equaly related
to featureactor=T. Hanks(see Table 3). Therefore it may be difficult to distinguish
these two labels based solely on this feature. However, if weare confident that a movie
starred byT. Hanksshould be classified asDrama, then it is more likely that this movie
should be classified asCrime, rather thanRomance(as seen in Table 4).

5 Experimental Evaluation

Three datasets were used in our experiments. The first dataset, which is called ACM-
DL (first level), was extracted from the first level of the ACM Computing Classification
System (http://portal.acm.org/dl.cfm/), comprising a set of 81,251 documents labeled
using the 11 first level categories of ACM. The second dataset, ACM-DL (second level)
contains the same set of documents of ACM-DL (first level), but these documents are
labeled using the 81 second level categories. In both datasets, each document is de-
scribed by its title and abstract, citations, and authorship, resulting in a huge and sparse
feature space. The third dataset, YEAST [5], is composed of aset of 2,417 genes. Each
gene is described by the concatenation of micro-array expression data and phylogenetic
profile, and is associated with a set of functional classes. There are 14 possible class
labels, and the average number of labels for each gene is 4.24.

Figure 1 shows the number of instances associated with each label combination
size for each dataset. The YEAST dataset presents very largecombinations of labels
(combinations of 11 labels). Figure 2 shows the associationof each pair of labels for
each dataset (an association level of 0.8 between labelsA andB, means that 80% of the
instances that belong toA, also belong toB).
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The experiments were performed on a Linux-based PC with a INTEL PENTIUM

III 1.0 GHZ processor and 1.0 GB RAM. In all experiments with the aforementioned
datasets, we used 10-fold cross-validation and the final results of each experiment rep-
resent the average of the ten runs. We used three evaluation criteria that were proposed
in [5]: Hamming Loss (h), Ranking Loss (r) and One-Error (o).All the results to be
presented were found statistically significant based on a t-test at 5% significance level.

The proposed classifiers, IEAC, ILAC and CLAC are compared against boosting-
style classifiers BOOSTEXTER [5] and ADTBOOST.MH [2], and the multi-label ker-
nel method RANK -SVM [3]. We believe that these approaches are representative of
some of the most effective multi-label methods available. For BOOSTEXTER and ADT-
BOOST.MH, the number of boosting rounds was set to 500 and 50, respectively. For
RANK -SVM, polynomial kernels of degree 10 were used. For IEAC, ILAC and CLAC,
σmin, θmin andδmin were set to 0.01, 0.90 and 0.25, respectively.

Best results (including statistical ties) on each criterion are shown in bold face.
Table 5 shows results obtained using the YEAST dataset, which is considered com-
plex, with strong dependencies among labels. CLAC provide gains of 24% in terms of
one-error, considering BOOSTEXTER as the baseline. The reason is that the simple de-
cision function used by BOOSTEXTER is not suitable for this complex dataset. Also, the
classification models employed by ILAC and CLAC are able to explore many more as-
sociations than the model induced by ADTBOOST.MH. CLAC performs much better
than RANK -SVM since CLAC is able to explore dependencies between labels.

In the next set of experiments we compare IEAC, ILAC and CLAC,against RANK -
SVM using the ACM-DL dataset (first and second levels). As canbe seen, CLAC
and ILAC are always superior than their eager counterpart, IEAC. RANK -SVM and
ILAC shown competitive performance, and CLAC is the best performer in the ACM-
DL datasets. To verify if the association between labels wasproperly explored by
CLAC, we checked if the explicitly correlated categories shown in the ACM Com-
puting Classification System (http://www.acm.org/class/1998/overview.html) were in-
deed used. We verified that some of these explicitly correlated categories often appear
together in the predicted label combination (i.e.,Files andDatabase Management, or
Simulation/ModelingandProbability/Statistics). We further verified that some of the
associated labels appear more frequently in the predictions performed by CLAC than
was observed in the predictions of the other classifiers.



Evaluation Classifier
Criterion BOOSTEXTER ADTBOOST.MH RANK -SVM IEAC ILAC CLAC

h 0.220 0.207 0.196 0.203 0.1910.179
r 0.186 − 0.163 0.178 0.164 0.150
o 0.278 0.244 0.217 0.2320.213 0.213

Table 5.Results for Different Classifiers using the YEAST Dataset.

First Level Second Level
Evaluation Classifier
Criterion RANK -SVM IEAC ILAC CLAC RANK -SVM IEAC ILAC CLAC

h 0.225 0.295 0.222 0.187 0.327 0.419 0.319 0.285
r 0.194 0.276 0.216 0.179 0.299 0.378 0.294 0.273
o 0.244 0.304 0.238 0.238 0.348 0.427 0.331 0.331

Table 6.Results for Different Classifiers using the ACM-DL Datasets.

6 Conclusions and Future Work

In this paper we propose a novel associative classification approach for multi-label clas-
sification. The model is induced in an instance-based fashion, in which the test instance
is used as a filter to remove irrelevant features from the training data. Then a specific
model is induced for each test instance, providing a much better coverage of small dis-
juncts. Also, the proposed approach properly explores the correlation among labels by
employing a greedy heuristic called progressive label focusing, which allows the pres-
ence of multiple labels in the antecedent of the rule. Experimental results underscore
the benefits of covering small disjuncts (i.e., lazy model induction) and exploring cor-
related labels (i.e., progressive label focusing). As future work, we intend to further
explore correlated labels by also allowing the presence of multiple labels in the conse-
quent of the rule.

References

1. M. Boutell, J. Luo, X. Shen, and C. Brown. Learning multi-label scene classification.Pattern
Recognition, 37(9):1757–1771, 2004.
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