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Abstract. Most current work on classification has been focused onilegifrom

a set of instances that are associated with a single labglgingle-label classi-
fication). However, many applications, such as gene funatiprediction and
text categorization, may allow the instances to be assatiaith multiple la-
bels simultaneously. Multi-label classification is a getieation of single-label
classification, and its generality makes it much more diffitusolve.

Despite its importance, research on multi-label clasgi6oas still lacking. Com-
mon approaches simply learn independent binary classffiersach label, and
do not exploit dependencies among labels. Also, severdl dispincts may ap-
pear due to the possibly large number of label combinat@md heglecting these
small disjuncts may degrade classification accuracy. & ghper we propose a
multi-label lazy associative classifier, which progreskivexploits dependencies
among labels. Further, since in our lazy strategy the dlagdbn model is in-
duced on an instance-based fashion, the proposed appraagravide a better
coverage of small disjuncts. Gains of up to 24% are obsenrahwhe proposed
approach is compared against the state-of-the-art naldéticlassifiers.

1 Introduction

The classification problem is to build a model, which, base@xternal observations,
assigns an instance to one or more labels. A set of exampigees as the training
set, from which the model is built. A typical assumption iasdification is that labels
are mutually exclusive, so that an instance can be mappedymoe label. However,
due to ambiguity or multiplicity, it is quite natural that staf the applications violate
this assumption, allowing instances to be mapped to meallgtiels simultaneously. For
example, a movie being mappedaotion or adventure or a song being classified as
rock or ballad, could all lead to violations of the single-label assumptio

Multi-label classification consists in learning a modelnfrinstances that may be
associated with multiple labels, that is, labels are naimesl to be mutually exclusive.
Most of the proposed approaches [7,1,3] for multi-labessification employ heuris-
tics, such as learning independent classifiers for each kahe employing ranking and
thresholding schemes for classification. Although simfilese heuristics do not deal
with important issues such amall disjunctandcorrelated labels
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In essence, small disjuncts are rules covering a small nuwbexamples, and
thus they are often neglected. The problem is that, alth@ugingle small disjunct
covers only few examples, many of them, collectively, mayet@ substantial fraction
of all examples, and simply eliminating them may degradssifization accuracy [4].
Small disjuncts pose significant problems in single-labasification, and in multi-
label classification these problems are worsened, bechesearch space for disjuncts
increases due to the possibly large number of label conibmatAlso, it is often the
case that there are strong dependencies among labels, emdliependencies, when
properly explored, may provide improved accuracy in mialtiel classification.

In this paper we propose an approach which deals with sgjlirtits while ex-
ploring dependencies among labels. To address the problgmsmall disjuncts, we
adopt a lazy associative classification approach. Instelbdiloling a single set oflass
association rulegCARs) that is good on average for all predictions, the psgpdazy
approach delays the inductive process until a test insteng&en for classification,
therefore taking advantage of better qualitative evideoeeing from the test instance,
and generating CARs on a demand-driven basis. Small disjane better covered, due
to the highly specific bias associated with this approachaddress the label correla-
tion issue by defininghulti-label class association ruldMCARSs), a variation of CARs
that allows the presence of multiple labels in the anteceaféhe rule. The search space
for MCARs is huge and to avoid an exhaustive enumeratiorchwvould be necessary
to find the best label combination, we employ a novel hegristlledprogressive label
focusing which makes feasible the exploration of associations antaimels.

The proposed approach was evaluated using two differedicatipns: text cate-
gorization and gene functional prediction. It consisteaithieves better performance
than the state-of-the-art multi-label classifiers, shawgains up to 24%.

2 Related Work

Typical approaches for multi-label classification are blase training an independent
binary classifier for each label. These independent classiire used to assign a proba-
bility of membership to each label, and then an instanceassified into the labels that
rank above a given threshold. Examples of this approachdecADTBoOST.MH [2]
(decision trees that can directly handle multi-label peoid), a multi-label general-
ization of SVMs [3], and a a multi-label lazy learning basedtioe KNN approach [7].
In [6] an approach based on independent associative ctassifas proposed. However,
this approach was only evaluated in single-label problemd,thus, the performance
of multi-label associative classifiers for multi-label ptems is still unknown.

The main problem with the binary approach is that it does nasider correlation
among labels. The direct multi-label approach exploresdhirelation by considering
a combination of labels as a new, separate label [1]. Foauirest, a multi-label problem
with 10 labels will be transformed to a single-label probleomposed of potentially
1,024 labels. The problem now is that a relatively small nendf examples may be as-
sociated with those new labels, specially if the combimationtains many labels. While
these approaches are able to capture dependencies amelsg tlé poor coverage of
small disjuncts may degrade overall accuracy.



3 Single-Label Associative Classification

A typical associative classifier, suitable for single-latlassification problems, is de-
scribed in this section. An associative classification nhisdeomposed o€lass associ-
ation rules(CARSs), which are defined in the following.

DEFINITION 1. [CLASS ASSOCIATIONRULES] CARs are rules of the formt’ 8, Ci
where the sek’ is allowed to contain only features (i.e¢, C Z, whereZ is the set of
all possible features), ang is one of then labels (i.e.¢; € C, whereC is the set of all
possible labels). A valid CAR has suppar) @nd confidenced) greater than or equal
to the corresponding thresholds,,;,, and6,,,;,.

Common approaches for associative classification emplbglaly modified algo-
rithm for mining valid CARs directly from the training datd/hen a sufficient number
of valid CARs are found, the model (denoted/e is finally completed, and it is used
to predict the label of the test instances. Due to class appithg, and since labels are
mutually exclusive, CARs may perform contradictory préidics. For example, leT”
be a test instance, and l&t and) be two subsets of . Also suppose that the valid
CARSX — c¢; andY — c¢; (with ¢ # j) are in M. These CARs are contradictory,
since they predict different labels for the same test irtggh. To address this prob-

lem, the rule-setM is interpreted as a poll, in which CAR 8, c; € M is avote
of weighto x 6 given by X’ for labelc; (note that other criteria for weighting the votes
can be used). Weighted votes for each label are then summeédhe score of label
¢; is given by the real-valued functionshowed in Equation 1. In the end, the label
associated with the highest score is finally predicted.

s(e) = Z ox6 1)
Ximie/\/t
Consider the set of instances shown in Table 1, used as angierample in this
paper. Each instance corresponds to a movie, and to eacle isoassigned a set of
labels (but for this example, which refers to single-ladeksification, only the first
label will be considered). If we set,,;, to 0.20 and,,;, to 0.66, then the modeit
will be composed of the following CARs:

0.30,0.75

———"— |abel=Drama
. 0.20,0.67

1. actor=T. Hanks

2. =L
3. actor=M. Damon >2%%7, japel=Crime

Now, suppose we want to classify instance 11. In this casl, fost and third
CARs are applicable, since featusetor=L. DiCaprio is not present in instance 11
(thus, second CAR is crossed out). According to Equation(rama)=0.225 and
s(Crime)=0.134, and thudramawill be predicted.

4 Multi-Label Lazy Associative Classification

In this section we extend the basic classifier describedérptievious section, allow-
ing it to predict multiple labels. We also propose an apphdac exploring correlated
labels, while dealing with small disjuncts, improving tHassification model.



4.1 Independent Classifiers

A heuristic employed for multi-label classification is toilduan independent classifier
for each label. This extension is natural, and it is basedssigaing a probability of
membership to each labgfl(c¢;). The probabilities are computed using the proportion
of scores associated with each label normalized by the bigitere (i.e.;max):

fle) = 24, @
max
Once all probabilities are computed, labels are insertedinankingC={l1, ..., },
so thatf(l1)>f(l2)> ... > f(l,) - Those labels that rank above a threshilg, (i.e.,
I|f(lx) > dmin) are assigned to the test instance. To illustrate this psamnsider
again the example shown in Table 1, but now each movie hagedtibels, which are
all considered when mining the CARs. If we g8}, to 0.20 and,;, to 0.66, then

M will be composed of the following CARSs:

1. actor=M. Damoanabel =Action

2&ete+c-L—D+eapﬁe—>—labe+-eHme

3 —TH 0.30,0.75 | =
’ ) 0.20,0.67
4. actor=M. Damon —> label=Crime

5aete+t-L—D+Gapﬁe—>—I&be+-DFama

Now, suppose we want to classify instance 12 apgl, is set to 0.66. Follow-
ing Equation 2,f(Action)=1.00 andf(Crime)=0.45, and therefore lab&ttionis pre-
dicted. Note that, although there is a strong associatibmdsn featureactor=B. Pitt
and labeRomanceCAR actor=B. Pitt—Romances considered a small disjunct, and
is neglected by the classifier, even being important to flagstance 12. We refer to
this classifier as IEACiidependent eager associative class)fier

| IE] Label | Title | Actors |
Training 1| Comedy/Romance¢  Forrest Gump T. Hanks
Set |2| Drama/Romance The Terminal T. Hanks
3 Drama/Crime |Catch Me If You Can  T. Hanks and L. DiCaprio
4 Drama/Crime | The Da Vinci Code T. Hanks
5 Drama/Crime Blood Diamond L. DiCaprio
6 Crime/Action The Departed L. DiCaprio and M. Damon
7 Crime/Action | The Bourne Identity M. Damon
8| Action/Romance Syriana M. Damon
9 Romance Troy B. Pitt
100 Drama/Crime Confidence E. Burns
Test [11] ? [Drama/Action] | Saving Private RiafiT. Hanks, M. Damon and E. Burhs
Set |12|? [Action/Romancg] Ocean’s Twelve B. Pitt and M. Damon
13| ?[Crime/Drama]| The Green Mile T. Hanks

Table 1. Training and Test Instances.



Like most of the eager classifiers, IEAC does not perform aeltomplex spaces.
This is because it generates CARs before the test instaegetisknown, and the diffi-
culty in this case is in anticipating all the different ditieois in which it should attempt
to generalize its training examples. In order to performergeneral predictions, com-
mon approaches usually prefer to generalize more frequgjondts. This can reduce
the performance in complex spaces, where small disjuncgdomamportant to classify
specific instances. Lazy classifiers, on the other hand rgkrethe examples exactly
as needed to cover a specific test instance.

In lazy associative classification, whenever a test ingtébeing considered, that
instance is used as a filter to remove irrelevant featuregrachples from the training
data. This process automatically reduces the size of tiv@rtgadata, since irrelevant
examples are not considered. As a result, disjuncts thatargequent in the original
training data, may become frequent in the filtered trainiagdproviding a better cov-
erage of small disjuncts. To illustrate this process, seppee want to classify instance
12. As shown in Table 2 only four examples are relevant toittsgnce. If we set ;.
to 0.20 and),,;,, to 0.66, thenM will be composed of the following CARs:

0.75,1.00 .
1. actor=M. Damon—=——- label=Action

2. actor=M. Damon% label=Crime
3. actor=B. Pitt 0-25,1.00, label=Romance

According to Equation 2f(Action)=1.00, f(Crime)=0.45 andf(Romance)=0.33,
and foré,,;, = 0.66, label combinatiorction/Romanceés predicted. We refer to this
classifier as ILAC ihndependent lazy associative classifier

4.2 Correlated Classifiers

Labels in multi-label problems are often correlated, andvaswill see in our experi-
ments, this correlation can be helpful for improving clésation performance. In this
section we describe CLAQ@¢rrelated lazy associative classifiewhich, unlike IEAC
and ILAC, explicitly explores interactions among label$ieTclassification model is
composed ofmulti-label class association ruldCARs), which are defined next.
DEFINITION 2. [MULTI-LABEL CLASS ASSOCIATION RULES] MCARSs are a special

type of association rules of the foriu F o8, ¢i, whereF C (C—¢;). Avalid MCAR
haso andd greater than or equal to the corresponding threshelds, andé,,.;,.

(Id] Label | Actors | [ld] Label | Actors |[id] Label | Actors |
6| Crime/Action |M. Damor] |1 |Comedy/Romangd@. Hankg| 2 |Drama/Romandd. Hanks
7| Crime/Action |M. Damor}|2| Drama/RomancéT. Hanks| 3| Drama/Crime |T. Hanks
8 |Action/RomanceM. Damon | 3| Drama/Crime |T. Hanks|4| Drama/Crime |T. Hanks
9 Romance B. Pitt ||4| Drama/Crime |T. Hanksg Table 4. Filtering accord-
Table 2. Filtering according tdable 3. Filtering according tang to Instance 13 and Label
Instance 12. Instance 13. Drama




The model is built iteratively, following a greedy heuristialledprogressive label
focusing which tries to find the best label combination by making llydaest choices.
In the firstiteration/F = (), and a set of MCARsA1,) of the formX’ — ¢; is generated.
Based onM 1, labell; is assigned to the test instance. In the second iteratjois,
treated as a new feature and ttfis= {l; }. A set of MCARs of the formk U{l1 } — ¢;
(M) is generated, and1, is then used to assign labkl to the test instance. This
process iterates until no more MCARSs are generated. The lolsi is to progressively
narrow the search space for MCARSs as labels are being agdigiiee test instance.

Consider againthe example in Table 1, and suppose that weaeassify instance
13. The first step is to filter the training data according ® figatures in instance 13.
The filtered training data is shown in Table 3, and if wesgt,, to 0.20 and,;, to
0.66, then the corresponding model (i.&1; ) is composed of the following MCAR:

0.75,0.75
1. actor=T. Hanks—>""> label=Drama

Label Dramais assigned to instance 13, and now this label is consideresiva
feature. The training data is filtered again, as shown in&dblThe corresponding
model (i.e.,M5) is composed of the following MCAR:

1. actor=T. Hanks\ IabeI:Dramam label=Crime

Thus, labeCrimeis also assigned to instance 13, and since no more MCARs can be
generated, the process stops. In summary, ldbetsancandCrimeare equaly related
to featureactor=T. Hanks(see Table 3). Therefore it may be difficult to distinguish
these two labels based solely on this feature. However, dngeonfident that a movie
starred byT. Hanksshould be classified d&3rama, then it is more likely that this movie
should be classified &rime, rather tharRomancédas seen in Table 4).

5 Experimental Evaluation

Three datasets were used in our experiments. The first datdseh is called ACM-
DL (first level), was extracted from the first level of the ACN@puting Classification
System (http://portal.acm.org/dl.cfm/), comprising & ®81,251 documents labeled
using the 11 first level categories of ACM. The second dat&g&-DL (second level)
contains the same set of documents of ACM-DL (first level},these documents are
labeled using the 81 second level categories. In both datase&ch document is de-
scribed by its title and abstract, citations, and authgrgiisulting in a huge and sparse
feature space. The third dataset, YEAST [5], is composedsef af 2,417 genes. Each
gene is described by the concatenation of micro-array espe data and phylogenetic
profile, and is associated with a set of functional classkerd are 14 possible class
labels, and the average number of labels for each gene is 4.24

Figure 1 shows the number of instances associated with eheh tombination
size for each dataset. The YEAST dataset presents very ¢argbinations of labels
(combinations of 11 labels). Figure 2 shows the associatfaach pair of labels for
each dataset (an association level of 0.8 between labatsl3, means that 80% of the
instances that belong td, also belong tad).
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Fig. 1. Number of Instances Associated with each Combinatidfig. 2. Association of
Size. each Pair of Labels.

The experiments were performed on a Linux-based PC witRT&l PENTIUM
I11' 1.0 GHz processor and 1.0 GB RAM. In all experiments with the afonetioaed
datasets, we used 10-fold cross-validation and the finaltsesf each experiment rep-
resent the average of the ten runs. We used three evaluatierecthat were proposed
in [5]: Hamming Loss (h), Ranking Loss (r) and One-Error (&l).the results to be
presented were found statistically significant based oteattat 5% significance level.

The proposed classifiers, IEAC, ILAC and CLAC are compareireg boosting-
style classifiers BOSTEXTER [5] and ADTBoosT.MH [2], and the multi-label ker-
nel method RNK-SVM [3]. We believe that these approaches are represeatati
some of the most effective multi-label methods availabte. BoosSTEXTERand ADT-
BoosT.MH, the number of boosting rounds was set to 500 and 50, c&sphy. For
RANK-SVM, polynomial kernels of degree 10 were used. For IEAGA@L,and CLAC,
Omins Omin @andd,,;,, were setto 0.01, 0.90 and 0.25, respectively.

Best results (including statistical ties) on each criteréde shown in bold face.
Table 5 shows results obtained using the YEAST dataset,hnikiconsidered com-
plex, with strong dependencies among labels. CLAC provaesgof 24% in terms of
one-error, considering@oSTEXTER as the baseline. The reason is that the simple de-
cision function used by BOSTEXTERIs not suitable for this complex dataset. Also, the
classification models employed by ILAC and CLAC are able fgiese many more as-
sociations than the model induced by AD®8sT.MH. CLAC performs much better
than RaNK-SVM since CLAC is able to explore dependencies betweerdabe

In the next set of experiments we compare IEAC, ILAC and CLA@ginst RNK -
SVM using the ACM-DL dataset (first and second levels). As banseen, CLAC
and ILAC are always superior than their eager counterpgd. RANK-SVM and
ILAC shown competitive performance, and CLAC is the besfqrener in the ACM-
DL datasets. To verify if the association between labels praperly explored by
CLAC, we checked if the explicitly correlated categorieswh in the ACM Com-
puting Classification System (http://www.acm.org/cla888/overview.html) were in-
deed used. We verified that some of these explicitly comdlattegories often appear
together in the predicted label combination (iféles and Database Managemeruar
Simulation/Modelingand Probability/Statistick We further verified that some of the
associated labels appear more frequently in the predgfenformed by CLAC than
was observed in the predictions of the other classifiers.



Evaluation Classifier
Criterion BOOSTEXTER ADTBoOSTMH RANK-SVM |IEAC ILAC CLAC

h 0.220 0.207 0.196 0.203 0.19D.179
r 0.186 — 0.163 0.178 0.164 0.150
0 0.278 0.244 0.217 0.2320.213 0.213
Table 5. Results for Different Classifiers using the YEAST Dataset.
First Level | Second Level
Evaluation Classifier
Criterion RANK-SVM IEAC ILAC CLAC]|RANK-SVM IEAC ILAC CLAC
h 0.225 0.295 0.2220.187 0.327 0.419 0.3190.285
r 0.194 0.276 0.2160.179 0.299 0.378 0.2940.273
o] 0.244 0.304 0.238 0.238 0.348 0.427 0.331 0.331

Table 6. Results for Different Classifiers using the ACM-DL Datasets

6 Conclusions and Future Work

In this paper we propose a novel associative classificapproach for multi-label clas-
sification. The model is induced in an instance-based fasimavhich the test instance
is used as a filter to remove irrelevant features from thaitigidata. Then a specific
model is induced for each test instance, providing a mudebetverage of small dis-
juncts. Also, the proposed approach properly exploresdhesiation among labels by
employing a greedy heuristic called progressive label $oay which allows the pres-
ence of multiple labels in the antecedent of the rule. Expenital results underscore
the benefits of covering small disjuncts (i.e., lazy moddLliction) and exploring cor-
related labels (i.e., progressive label focusing). As reitwork, we intend to further
explore correlated labels by also allowing the presenceutfipte labels in the conse-
quent of the rule.
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