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Abstract. Graph clustering, the process of discovering groups of similar
vertices in a graph, is a very interesting area of study, with applications
in many different scenarios. One of the most important aspects of graph
clustering is the evaluation of cluster quality, which is important not
only to measure the effectiveness of clustering algorithms, but also to
give insights on the dynamics of relationships in a given network. Many
quality evaluation metrics for graph clustering have been proposed in
the literature, but there is no consensus on how do they compare to each
other and how well they perform on different kinds of graphs. In this
work we study five major graph clustering quality metrics in terms of
their formal biases and their behavior when applied to clusters found by
four implementations of classic graph clustering algorithms on five large,
real world graphs. Our results show that those popular quality metrics
have strong biases toward incorrectly awarding good scores to some kinds
of clusters, especially seen in larger networks. They also indicate that
currently used clustering algorithms and quality metrics do not behave as
expected when cluster structures are different from the more traditional,
clique-like ones.

1 Introduction

The problem of graph clustering consists of discovering natural groups (or clus-
ters) in a graph [17]. Graph clustering has become very popular recently, given
the large number of applications it has in areas like social network analysis
(finding groups of related people), e-commerce (doing recommendations based
on relations in a group) and bioinformatics (classifying gene expression data,
studying the spread of a disease in a population).

What is the basic structure of a group is open to discussion, but the most
classical and adopted view is the one based on the concept of homophily: similar
elements have a greater tendency to group with each other than with other
elements [16]. When working with graphs, homophily is usually viewed in terms
of edge densities, with clusters having more edges linking their elements among
themselves (high internal density) than linking them to the rest of the graph
(sparser external connections). However, discovering those edge-dense clusters
in graphs is a complex task since, by this definition, a cluster can be anything
between a connected subgraph and a maximal clique.

When a graph has only a small number of vertices, the result of its clustering
can be evaluated manually. However, as the size of the graph grows, manual



evaluation becomes unfeasible. For those cases, evaluation metrics, such as mod-
ularity [14] and conductance [8], which try to encapsulate the most important
characteristics expected from a good cluster, may be used as indicative of clus-
ter quality. The quality of a clustering algorithm is then estimated in terms of
the values its output gets for that metric. That allows researchers to compare
different proposed clusterings to each other in order to find the best one among
them.

Still, as much as those metrics try to identify good clusters by quantifying
the quality of a grouping, they are not perfect. It is actually very difficult to
determine whether a given quality metric gives the expected answer for a given
clustering of a graph, since typically there is no ground truth for comparison.
That is particularly true for larger datasets derived from the relationships of real
groups.

In this work we compare some of the most popular quality metrics for graph
clustering. We evaluate if those metrics really represent the classical view of what
a cluster should be and how do they behave in larger, less predictable cases. Our
results show that the currently used quality indexes for graph clustering have
a series of structural anomalies that cause them to be biased and unreliable in
bigger, real world graphs. Also, we observed that the type of network (social,
technological, etc) can cause the structure of its clusters to become different
from what is typically expected by the clustering algorithms and quality metrics
studied.

2 Related Work

Many papers have focused on the problem of comparing the effectiveness of
clustering algorithms. To do so, they use different cluster quality evaluation
metrics. The problem is that, in general, authors just assume those metrics are
good enough to represent good clusters, without concerning themselves with the
evaluation of such claims. Most of the related work presented here falls into this
category.

Brandes et al. [1] compared three algorithms for graph clustering: Markov
clustering, iterative conductance cut and geometric MST clustering. To evaluate
their results, they used three validation metrics, namely, conductance, coverage
and performance. Their experiments used synthetic clusters with 1000 nodes.
However, the goal of that work was to compare the results from the three algo-
rithms, assuming that the validation metrics used represented the ground truth
for the “real” clustering of the graphs. Because of that, they do not compare
metrics against each other. Our work differs from theirs in that we want to know
whether those validation metrics in fact identify a good clustering correctly.

Gustafson and Lombardi [7] compare K-means and hierarchical clustering
using modularity and silhouette index as quality metrics. They use Zachary’s
karate club, the American college football, the gene network of yeast and syn-
thetic graphs as the datasets for their work. Once again, the focus of their work



is on the clustering algorithms, while ours is on the quality of the validation
metrics.

Danon et al. [2] compare many different algorithms for graph clustering, in-
cluding agglomerative, divisive and modularity maximization techniques. How-
ever, the only quality metric used to compare those algorithms is modularity.
They use very small (128 vertices) synthetic datasets for evaluation.

One paper by Good et al. [6] discusses the effectiveness of modularity max-
imization methods for graph clustering. This is interesting because, in a way,
they are evaluating how good modularity is as a quality index. However, they
use a different formula to calculate modularity than the one we use in this paper,
one that clearly generates unbounded scores and is, therefore, inadequate as a
validation index. Unbounded scores can be used to compare clusterings, but are
of no use to evaluate the quality of a single cluster in terms of its own structure,
since there are no upper or lower bounds of metric values to compare its result
to.

Another work, by Leskovec et al. [10], uses external conductance to evaluate
the quality of clusters in terms of their size, to determine if there is a maximum
or expected size for well formed clusters. The problems with this approach is
that, similarly to other works discussed, it assumes that conductance is the best
quality index to evaluate said clusters. In a follow-up work, Leskovec at al. [11]
use other quality metrics to evaluate the same problem, but those new metrics
also focus only on the external sparsity of the clusters.

Tan et al. [20] present a very interesting comparison between many metrics
used to determine the “interestingness” of association metrics like lift, confidence
and support, widely used in data mining. They show that there is no single
metric that is consistently better than the others in different scenarios, so that
the metrics should be chosen case-by-case to fit the expectations of the domain
experts. Our work does a similar comparison for graph clustering validation
metrics.

3 Quality Metrics

The most accepted notion of a cluster is based on the concept of assortative
mixing: elements have a greater tendency to form bonds with other elements with
whom they share common traits than with others [15]. Applying this concept
to graphs, a cluster’s elements will display stronger than expected similarity
among themselves, while also having sparser than expected connections to the
rest of the graph. Element similarity can be derived from many graph or vertex
characteristics, such as edge density [5], vertex distance [21] or labels [24].

In this section we will present some of the most popular cluster quality met-
rics present in the literature. We will also discuss if those metrics behave con-
sistently with what is expected of good clusterings, that is, high internal edge
density and sparse connections with other clusters. The metrics studied in this
paper use only a graph’s topological information, like vertex distance or edge
density, to evaluate the quality of a given cluster.



3.1 Graph Definitions

A graph G = (V,E) is composed of a set V of vertices and a set E = (u, v)|u, v ∈
V of edges. If nothing is said in opposition, assume that the graphs discussed are
undirected, so that (u, v) = (v, u). The number of edges of a graph G is |E(G)| =
m, and the number of edges linked to a given vertex v is represented as deg(v).
Edges may have an associated weight w(u, v). In unweighted cases, we assume
that w(u, v) = 1 for all (u, v) ∈ E. Also, consider E(Ci, Cj)|i 6= j as the set of
edges linking clusters Ci and Cj and E(Ci) as the set of edges (u, v)|u, v ∈ Ci.
Then, E(C) is the set of all internal edges for all clusters in C, and Ē(C) is the
set of all inter-cluster edges in the graph ((u, v)|u ∈ Ci, v ∈ Cj , i 6= j).

A clustering C is the set of all clusters of a graph, so that C = C1, C2, . . . , Ck,
and the number k of clusters may be a parameter of some clustering algorithms.
Also, unless stated otherwise, Ci∩Cj = ∅,∀i 6= j. A cluster Ci that is composed
by only one vertex is called a singleton. The weight of all internal edges of a single
cluster is given by w(Ci), a shortcut for

∑
e∈E(Ci)

w(e). By the same logic, w̄(C)
is the sum of the weights of all inter-cluster edges.

A graph cut K = (S, S̄), where S̄ = V \ S), divides a set of vertices V
into two disjoint groups (S ∩ S̄ = ∅). The cost of a cut is given by the sum of
the weights of the inter-cluster edges. Another important concept is that of an
induced graph, which is a graph formed by a subset of the vertices and edges of
a graph so that G[Ci] = (Ci, E(Ci)).

3.2 Modularity

One of the most popular validation metrics for topological clustering, modularity
states that a good cluster should have a bigger than expected number of internal
edges and a smaller than expected number of inter-cluster edges when compared
to a random graph with similar characteristics [14]. The modularity score Q for a
clustering is given by Equation 1, where e is a symmetric matrix whose element
eij is the fraction of all edges in the network that link vertices in communities i
and j, and Tr(e) is the trace of matrix e, i.e., the sum of elements from its main
diagonal.

Q = Tr(e)− ||e2|| (1)

The modularity index Q often presents values between 0 and 1, with 1 repre-
senting a clustering with very strong community characteristics. However, some
limit cases may even present negative values. One example of such cases is in
the presence of clusters with only one vertex. In this case, those clusters have 0
internal edges and, therefore, contribute nothing to the trace. Sufficiently large
numbers singleton clusters in a given clustering might cause its trace value to be
so low as to overshadow other, possibly better formed, of its clusters and lead
to very low modularity values regardless.



3.3 Silhouette Index

This metric uses concepts of cohesion and separation to evaluate clusters, using
the distance between nodes to measure their similarity [21]. The silhouette index
for a given vertex i is given by Equation 2

S(Ci) =

∑
v∈Ci

Sv

|Ci|
, where Sv =

bv − av
max(av, bv)

(2)

Where av is the average distance between vertex v and all the other vertices
in the same cluster as it is, and bv is the average distance between v and all
the vertices in the nearest cluster that is not v’s. The silhouette index for a
given cluster is the average value of silhouette for all its member vertices. The
silhouette index can assume values between −1 and 1, with a negative value
being undesirable, as it means that the average internal distance of the cluster
is greater than the external one.

The silhouette index presents some limitations, though. First of all, it is a
very expensive metric to calculate, requiring an all pairs shortest path execution.
The other is how it behaves in the presence of singleton clusters. Since a singleton
possesses no internal edges, its internal distance will be 0, causing its silhouette
to wrongly score a perfect 1. This way, clusterings with many singletons will
always have high silhouette scores, no matter the quality of the other clusters.

3.4 Conductance

The conductance [8] of a cut is a metric that compares the size of a cut (i. e.,
the number of edges cut) and the weight of the edges in either of the two sub-
graphs induced by that cut. The conductance φ(G) of a graph is the minimum
conductance value between all its clusters.

Consider a cut that divides G into k non-overlapping clusters C1, C2 . . . Ck.
The conductance of any given cluster φ(Ci) can be obtained as shown in Equa-
tion 3, where a(Ci) =

∑
u∈Ci

∑
v∈V w(u, v) is the sum of the weights of all edges

with at least one endpoint in Ci. This φ(Ci) value represents the cost of one cut
that bisects G into two vertex sets Ci and V \Ci. Since we want to find a number
k of clusters, we will need k − 1 cuts to achieve that number. In this paper we
assume the conductance for the whole clustering to be the average value of those
(k − 1) φ cuts, as formalized in Equation 4.

φ(Ci) =

∑
u∈Ci

∑
v 6∈Ci

w({u, v})
min(a(Ci), a(C̄i))

(3)

φ(G) = avg(φ(Ci)) , Ci ⊆ V (4)

Based on this information, it is possible to define the concept of intra-cluster
conductance α(C) (Eq. 5) and the inter-cluster conductance σ(C) (Eq. 6) for a
given clustering C = C1, C2, . . . , Ck.



α(C) = mini∈{1,...,k}φ(G[Ci]) (5)

σ(C) = 1−maxi∈{1,...,k}φ(Ci) (6)

The intra-cluster conductance will be the minimum conductance value of the
graphs induced by each cluster Ci, with a low value meaning that at least one
of the clusters may be too coarse to be good. The inter-cluster conductance is
the complement of the maximum conductance value of the clustering, so that
lower values might show that at least one of the clusters have strong connections
outside of it, i. e., the clustering might be too fine. So, a good clustering should
have high values of both intra- and inter-cluster conductance.

(a) Two clusters. (b) Three clusters.

Fig. 1: Two possible clusterings of a same graph.

Although the use of both internal and external conductance gives a better,
well rounded view of both internal density and external sparsity of a cluster,
many works use only the external conductance while evaluating cluster qual-
ity [10, 11]. So, in this paper we will likewise use only the external conductance,
referred from now on simply as conductance, to evaluate if it is a good enough
quality metric by itself. One negative characteristic of conductance that can be
pointed out is that it might have a tendency of giving better scores to clusterings
with fewer clusters, as more clusters will probably have more cut-edges. Also, the
lack of internal edge density information used in this kind of conductance may
cause problems, as can be seen in Figure 1, where both clusterings presented
would have the same conductance score, even though the one in Figure 1b is
obviously better.

3.5 Coverage

The coverage of a clustering C (where C = C1, C2, . . . , Ck) is given as the fraction
of the weight of all intra-cluster edges with respect to the total weight of all edges
in the whole graph G [1], as shown in Equation 7:

coverage(C) =
w(C)

w(G)
, where (7)

w(C) =

k∑
i=1

w(E(vx, vy)); vx, vy ∈ Ci

Coverage values usually range from 0 to 1. Higher values of coverage mean
that there are more edges inside the clusters than edges linking different clusters,



which translates to a better clustering. From its formulation, we can observe
that the main clustering characteristic needed for a high value of coverage is
inter-cluster sparsity. Internal cluster density is in no way taken into account
by this metric, and it probably causes a strong bias toward clusterings with less
clusters. This can be seen in the example on Figure 1, where the clustering with
two clusters would receive a better score than the clearly better clustering with
three clusters.

3.6 Performance

This metric counts the number of internal edges in a cluster along with the edges
that don’t exist between the cluster’s nodes and other nodes in the graph [22],
as can be seen in Equation 8

perf(C) =
f(C) + g(C)
1
2n(n− 1)

, where (8)

f(C) =

k∑
i=1

|E(Ci)|

g(C) =

k∑
i=1

∑
j>i

| {{u, v} 6∈ E|u ∈ Ci, v ∈ Cj}|

This formulation assumes an unweighted graph, but there are also variants
for weighted graphs [1]. Values range from 0 to 1, and higher values indicate that
a cluster is both internally dense and externally sparse and, therefore, a better
cluster. However, if we consider that complex networks tend to be sparse in
nature, when performance is applied to larger graphs, there is a great possibility
that g(C) becomes so high that it will dominate all other factors in its formula,
awarding high scores indiscriminately.

4 Clustering Algorithms

To be able to compare different clusterings with the validation metrics avail-
able, we selected representatives from four different, representative categories of
clustering algorithms. The chosen algorithms were Markov clustering, bisection
K-means, spectral clustering and normalized cut.

4.1 Markov Clustering

The Markov clustering algorithm (MCL) [22, 4] is based on the simulation of
stochastic flows in a graph. The basic idea behind MCL is that the distances be-
tween vertices are what identify a cluster, with small distances between vertices
indicating that they should belong to the same cluster and large distances mean-
ing the opposite. By that logic, a random walker would have greater probability



to stay inside a cluster than to wander to neighboring ones, and the algorithm
explores that to identify clusters.

The clustering process of MCL consists of two iterative steps: expansion and
inflation. The expansion step of the algorithm is done taking the power of the
normalized adjacency matrix representing the graph using traditional matrix
multiplication. The inflation step consists in taking the Hadamard power of the
expanded matrix, followed by a scaling step to make the matrix stochastic again,
with the elements of each column corresponding to a probability value. MCL does
not need to have a pre-defined number of clusters as input, it’s only parameter
being the inflation value, which affects the coarsening of the graph (the lower
the value, the coarser the clustering).

4.2 Bisecting K-means

In the traditional K-means algorithm, k elements are chosen as the centroids
of each one of the k clusters to be found and other elements closer to a given
centroid than to others are added to that cluster. With this basic cluster in hand,
a new centroid is calculated for each cluster, reflecting their new “centers”, and
the process is repeated until the centroids calculated do not change anymore.

Bisecting K-means [19] differs from the traditional algorithm in the following
way: the whole graph is considered to be a cluster, which we bisect using tradi-
tional K-means, the topological distance between the nodes acting as the vertex
similarity function. One of the new clusters is chosen to be once more bisected
and the process repeats until the desired number of clusters is found.

4.3 Spectral clustering

Spectral clustering [8, 17] is a technique that uses the eigenvectors (spectrum)
and eigenvalues of a matrix to define cluster membership. It is based on the fact
that if a graph is formed by k disjoint cliques, then it’s normalized Laplacian will
be a block-diagonal matrix with eigenvalue of zero and multiplicity k. Also, its
eigenvectors function as indicators of cluster membership. More than that, small
perturbations like adding a few edges linking clusters or removing edges from
inside the clusters will make the eigenvalues become slightly higher than zero
and change its eigenvectors, but not enough to cause the underlying structure
to be lost. This clustering technique requires the number of desired clusters as
an input.

4.4 Normalized Cut

This method, proposed By Shi and Malik [18], tries to find the best possible
clustering through the optimization of an objective function, in this case, a cut.
Consider the cost of cut(A,B), that divides the vertices V of a graph G = (V,E)
in two sets A,B|A ∪ B = V,A ∩ B = ∅, as the sum of the weights of all edges
linking vertices in A to vertices in B. We want to find the cut that minimizes



the cost function given by Equation 9, where the volume of a set is the sum of
the weights of all edges with at least one endpoint inside it.

cut(A,B) =

(
1

V ol(A)
+

1

V ol(B)

)
(9)

This cost function is designed to penalize cuts that generate subsets with
highly different sizes. So, by minimizing the normalized cut of a graph, we are
dividing sets of vertices with low similarity and that potentially have high inter-
nal similarity. This technique also requires the desired number of clusters to be
given as an input.

5 Experiments

This section presents the experiments used to help evaluating the quality metrics
studied. We will briefly describe our methodology and graphs used, following
with a discussion of the obtained results.

5.1 Methodology

We implemented the five quality metrics discussed in Section 3. To evaluate their
behavior, we applied them to clusters obtained through the execution of the four
classical graph clustering algorithms discussed in Section 4 on five large, real
world graphs that will be briefly discussed in the next subsection. This variety
of clustering algorithms and graphs is necessary to minimize the pollution of
the results by possible correlations between metrics algorithms and/or graph
structures.

We used freely available implementations for all clustering algorithms: the
MCL implementation by Van Dongen, which is available within many Linux dis-
tributions, the implementation of bisecting K-means available in the Cluto3 suite
of clustering algorithms, the spectral clustering algorithm implementation avail-
able in SCPS, by Nepusz [13] and the normalized cut clustering implementation
GRACLUS, by Dhillon [3].

Three different inflation indexes where chosen for the MCL algorithm, based
on the values suggested by the algorithm’s documentation: 1.5, 2, and 3. The
number of clusters found by each MCL configuration was used as the input for
the other algorithms, so that we could compare clusterings with roughly the
same number of clusters.

Graphs We used 7 different datasets derived from real complex networks. Two
of them are smaller, but with known expected partitions that could be used for
comparison, and the other five are bigger and with unknown expected partitions.
All graphs used are undirected and unweighted.

3 http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview



The first small dataset is the Karate club network. It was first presented
by Zachary [23] and depicts the relationships between the students in a karate
dojo. During Zachary’s study a fight between two teachers caused a division of
the dojo in two, with the students more related to one teacher moving to his
new dojo. Even though this dataset is small (34 vertices), it is interesting to
consider because it possesses information about the real social partition of the
graph, providing a ground truth for the clustering.

The other small dataset used was the American College football team’s
matches [5]. It represents a graph where the vertices are football teams and an
edge links two teams if they have played against each together. Since the teams
play mostly with other teams in the same league as theirs, with the exception
of some military school teams, which belong to no league and can play against
anyone, there is also an expected clustering already known for this graph. It is
composed of 115 vertices and 616 edges.

The five remaining networks were obtained from the Stanford Large Network
Dataset Collection4. Two of them represent the network of collaborations in
papers submitted to the arXiv e-prints in two different areas of study, namely
Astrophysics and High Energy Physics. In those networks, researchers are the
vertices, and they are linked by edges if they collaborated in at least one paper.
The Astrophysics network is composed by 18,772 vertices and 396,160 edges,
while the High Energy Physics has 12,008 vertices and 237,010 edges. Another
network based on the papers submitted to the arXiv e-prints was used, but
covering the citation network of authors in the High Energy Physics category.
In this case, an edge links two authors if one cites the other. This network has
34,546 vertices and 421,578 edges.

The last two networks are snapshots from a Gnutella P2P file sharing net-
work, taken in two different dates. Here the vertices are the Gnutella clients and
the edges are the overlay network connections between them. The first snapshot
was collected in August, 4 2002 and comprises 10,876 vertices and 39,994 edges.
The second one was collected in August, 30 2002 and has 36,682 vertices and
88,328 edges.

5.2 Results

We first used the smaller datasets, the karate club and the college football, in
order to check how the algorithms and quality metrics behaved in small net-
works where the expected result was already known. The results for the Karate
club dataset can be seen on Table 1. The College Football dataset gave similar
results and was omitted for brevity. The results shown represent the case with
two clusters, which is the expected number for this dataset. It can be observed
that the scores obtained were fairly high. Also, the resulting clusters were very
similar to the expected ones, with variations of 2 or 3 wrongly clustered vertices.
However, those two study cases were very small and classical, so good results

4 http://snap.stanford.edu/data/



here were more than expected, as most of the quality metric biases we pointed
out in Section 3 were connected to bigger networks with many clusters.

Algorithm SI Mod Cov Perf Cond

MCL 0.13 ± 0.02 0.29 0.71 0.55 0.55 ± 0.15

B. k-means 0.081 ± 0.001 0.37 0.87 0.62 0.26 ± 0.13

Spectral 0.13 ± 0.02 0.36 0.87 0.61 0.30 ± 0.15

Norm. Cut 0.14 ± 0.017 0.18 0.68 0.56 0.65 ± 0.32

Table 1: Karate Club dataset and its quality indexes for two clusters.

Now, for the larger datasets. The quality metric values for the Astrophysics
Collaboration network are available in Table 2. It’s already possible to observe
some trends on the quality metrics’ behavior, no matter what clustering algo-
rithm is used. For example, modularity, coverage and conductance always give
better results for smaller numbers of clusters. Also, we can see that, as expected
from our observations in Section 3, performance values have no discriminating
power to compare any of our results. The silhouette index presents a somewhat
erratic behavior in this case, without a clear tendency of better or worse results
for more or less clusters.

Algorithm # Clusters SI Mod. Cover. Perf. Cond.

MCL 1036 -0.22 ± 0.038 0.35 0.42 0.99 0.55 ± 0.02

MCL 2231 -0.23 ± 0.026 0.28 0.31 0.99 0.70 ± 0.006

MCL 4093 0.06 ± 0.015 0.19 0.27 0.99 0.82 ± 0.003

B. k-means 1037 -0.73 ± 0.017 0.25 0.28 0.99 0.70 ± 0.002

B. k-means 2232 -0.48 ± 0.005 0.21 0.24 0.99 0.70 ± 0.002

B. k-means 4094 -0.21 ± 0.01 0.17 0.19 0.99 0.76 ± 0.001

Spectral 1034 -0.15 ± 0.036 0.34 0.38 0.99 0.53 ± 0.015

Spectral 2131 -0.26 ± 0.027 0.25 0.28 0.99 0.66 ± 0.007

Spectral 3335 0.04 ± 0.017 0.19 0.21 0.99 0.78 ± 0.004

Norm. Cut 1037 -0.69 ± 0.021 0.23 0.25 0.99 0.66 ± 0.006

Norm. Cut 2232 -0.51 ± 0.019 0.17 0.19 0.99 0.73 ± 0.015

Norm. Cut 4094 -0.31 ± 0.006 0.13 0.15 0.99 0.81 ± 0.0004

Table 2: Astrophysics collaboration network clusters and their quality indexes.

For the High Energy Physics Collaboration network, as we can see on Table 3,
the tendencies observed in the last network are still true. Also, silhouette index
shows a more pronounced bias toward larger numbers of clusters. If we look at
the cumulative distribution function (CDF) of cluster sizes (as shown in Figure 2
for just two instances of our experiments, but that is consistent with the rest of
the obtained results), we can see that bigger clusterings tend to have a larger
number of smaller clusters. So, this bias of the silhouette index is expected from
our observations in Section 3. Those same tendencies occur in the High Energy
Physics Citation network, as seen in Table 4.

The quality metric scores for one of the Gnutella snapshot networks can be
seen in Table 5. The scores for the other one were very similar to it, so we
suppressed them for brevity. It is possible to notice that the results for those
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Fig. 2: Some cluster size’s Cumulative Distribution Functions (bisecting k-
means).

graphs still present the same tendencies shown in the other cases, but with a
key difference: while silhouette and performance results show no big difference
from the other datasets, as they are easily fooled by high numbers of singleton
clusters and network size, respectively, modularity, coverage and conductance
give abysmally low quality results. This happens because the structure of a
Gnutella network, with common peers connected only to “superpeers”, and those
superpeers also connected with each other. This structure leads to a very low
occurrence probability of 3-cliques (0.5% for the Gnutella networks against 31.8%
for the Astrophysics Collaboration network, for example). Also, the Gnutella
networks presented here are way sparser than the other studied networks, with
only 6.76% of all possible edges present in the graph for the 08/04/2002 snapshot
against 32.88% for the High Energy Physics citation one, for example.

Discussion For all the generated cases, coverage, modularity and conductance
have better values for smaller numbers of clusters. This behavior is expected
from the formulation of coverage, since it observes the number of inter-cluster
edges, which tends to be smaller if there are less clusters to link to. The same
thing happens to conductance, as more inter-cluster edges mean more expensive
cuts. Without balancing the external conductance with the internal conductance,
results will only give us a partial and biased results.

Concerning modularity, we already know that singleton clusters have a very
bad impact on the modularity score, and the more the clusters, the bigger the
chance for singletons to occur. It is interesting to notice that giving low scores
to singleton clusters is not wrong per se, but since those scores will influence in
the overall score, they can obfuscate the existence of well scored clusters in the
final tally.

Silhouette Index generally gives better results for more clusters, which can
also be attributed to the larger occurrence of singletons, clusters that wrongly
give optimal results for SI.



Algorithm # Clusters SI Mod Cov Perf Cond

MCL 1002 -0.17 ± 0.037 0.35 0.52 0.99 0.51 ± 0.016

MCL 1742 -0.17 ± 0.028 0.33 0.42 0.99 0.62 ± 0.009

MCL 2650 0.005 ± 0.019 0.22 0.27 0.99 0.73 ± 0.005

B. k-means 1005 -0.54 ± 0.012 0.33 0.41 0.99 0.61 ± 0.007

B. k-means 1744 -0.30 ± 0.004 0.30 0.37 0.99 0.61 ± 0.006

B. k-means 2652 -0.14 ± 0.016 0.25 0.31 0.99 0.68 ± 0.003

Spectral 1005 -0.16 ± 0.037 0.34 0.44 0.99 0.53 ± 0.015

Spectral 1710 -0.04 ± 0.025 0.29 0.35 0.99 0.64 ± 0.009

Spectral 2525 0.019 ± 0.019 0.25 0.29 0.99 0.71 ± 0.006

Norm. Cut 1005 -0.59 ± 0.025 0.26 0.33 0.99 0.64 ± 0.02

Norm. Cut 1744 -0.37 ± 0.01 0.18 0.21 0.99 0.70 ± 0.01

Norm. Cut 2652 -0.25 ± 0.014 0.18 0.23 0.99 0.76 ± 0.015

Table 3: High energy physics collaboration network clusters and their quality
indexes.

For performance, as we already expected from the observations we did on the
formula itself, the sheer size of the networks we worked with here eclipsed any
kind of meaningful results we could gather from the clusterings themselves. The
results here serve as a confirmation that the expected behavior really happens
on real networks.

Algorithm # Clusters SI Mod Cov Perf Cond

MCL 814 -0.07 ± 0.037 0.41 0.43 0.98 0.58 ± 0.015

MCL 3898 -0.039 ± 0.017 0.26 0.26 0.99 0.81 ± 0.003

MCL 12911 0.41 ± 0.005 0.12 0.12 0.99 0.93 ± 0.0006

B. k-means 814 -0.71 ± 0.014 0.25 0.25 0.99 0.71 ± 0.005

B. k-means 3898 -0.64 ± 0.008 0.14 0.14 0.99 0.80 ± 0.004

B. k-means 12911 -0.077 ± 0.01 0.06 0.056 0.99 0.90 ± 0.0008

Spectral 812 -0.236 ± 0.04 0.34 0.35 0.99 0.59 ± 0.014

Spectral 3490 0.043 ± 0.016 0.20 0.21 0.99 0.81 ± 0.003

Norm. Cut 814 -0.74 ± 0.006 0.25 0.25 0.99 0.65 ± 0.003

Norm. Cut 3898 -0.70 ± 0.005 0.10 0.10 0.99 0.82 ± 0.002

Norm. Cut 12845 -0.004 ± 0.006 0.06 0.06 0.99 0.92 ± 0.0006

Table 4: High energy physics citation network clusters and their quality indexes.

Another important point raised by our experiments is that networks of dif-
ferent origins might have clusters with very different characteristics. Clusters
obtained from technological networks (in our case, the Gnutella snapshots) got
markedly poor quality metric results, especially when compared to the results
from social networks (all the other networks used). It could be argued those
technological networks in particular might not have clusters, but we know that
there should be community-like structures in a Gnutella network: a superpeer
and its neighboring peers form a fairly cohesive subset, even though it is a sparse
one.



Algorithm # Clusters SI Mod Cov Perf Cond

MCL 2189 -0.81 ± 0.039 0.0004 0.001 0.99 0.99 ± 0.0

MCL 4724 -0.037 ± 0.015 0.0003 0.0007 0.99 0.99 ± 0.0

MCL 6089 0.10 ± 0.011 0.00003 0.0003 0.99 1.00 ± 0.0

B. k-means 2189 -0.88 ± 0.0001 0.0004 0.001 0.99 0.99 ± 0.00034

B. k-means 4724 -0.52 ± 0.02 0.00007 0.0004 0.99 0.99 ± 0.0

B. k-means 6089 -0.18 ± 0.01 -0.00006 0.0002 0.99 1.00 ± 0.0

Spectral 2158 -0.90 ± 0.0006 0.0004 0.001 0.99 0.99 ± 0.0

Spectral 4079 -0.94 ± 0.0005 0.0001 0.0005 0.99 0.99 ± 0.0

Spectral 6089 -0.30 ± 0.02 -0.00007 0.0002 0.99 1.00 ± 0.0

Norm. Cut 2189 -0.90 ± 0.002 0.0003 0.001 0.99 0.99 ± 0.0

Norm. Cut 4616 -0.2 ± 0.012 0.00025 0.0006 0.99 0.99 ± 0.0

Norm. Cut 5690 0.1 ± 0.012 0.0002 0.0005 0.99 0.99 ± 0.0

Table 5: Gnutella peers network (08/04/2002) clusters and their quality indexes.

It seems that the network structure in this case, with its non clique-like
communities, affects very negatively the ability of both clustering algorithms and
quality metrics to identify said clusters. This observation that different kinds of
cluster structures exist and that the usual clustering methods wouldn’t work
with them was already discussed by Nepusz [12]. In that case, she defended
that, in a bipartite graph, each one of the sides of the bipartition should be
considered as a cluster. Kumar et al. [9] also cite the existence of this kind of
cluster structure, pointing out that there are many on-line communities that
behave as bipartite subgraphs and giving the websites of cellphone carriers as an
example: they represent the same category of service, but will not have direct
links to each other.

It is interesting to notice that even the most simple instances of a bipartite
graph would score poorly on the quality metrics studied in this paper, as their
internal density is nonexistent and all their edges connect to other clusters. For
example, consider a small, 10 vertex bipartite graph with two 5 vertex partitions
connected by 11 edges. This simple case would give scores such as −0.29 for
silhouette index, −5 for modularity, 0 for coverage, 0.31 for performance and 2
for conductance, results that are indeed very poor.

6 Conclusion

In this paper we presented a study of some of the most popular quality met-
rics for graph clustering, namely, the Silhouette Index, Modularity, Coverage,
Performance and Conductance. To evaluate those metrics, we compared their
results for clusters generated by four different clustering algorithms: Markovian,
Bisecting K-means, Spectral and Normalized Cut. We used seven different real
datasets in our experiments, with two of them having an already known opti-
mal clustering based on the semantics of the relationships between the elements
represented by their graphs.



Based on our experiments, we could identify some interesting behaviors for
those cluster quality assessing metrics. For example, Modularity, Conductance
and Coverage have a bias toward giving better results for smaller numbers of
clusters, while the other studied metrics have a completely opposite bias. This
indicates that all those metrics do not share a common view of what a true
clustering should look like.

Our results suggest that there is no such a thing as a “best” quality metric
for graph clustering. Even more, the currently used quality metrics have strong
biases that do not always point in the direction of what is assumed to be a
well-formed cluster. Also, those biases can get even more pronounced in large
graphs, which are the ones that depend on those metrics the most, as they are
the hardest to manually evaluate any results.

Another point observed was that the structure of clusters can be different for
graphs with different origins. In our case, we saw clear differences in the results of
technological and social networks. Current clustering and evaluation techniques
seem to be inadequate to tackle those different kinds of complex networks.

As future work, we intend to study how particular aspects of a graph topology
can affect the structure of a cluster, so that we can evaluate clusters with different
characteristics, and not only the clique-like ones. We will also consider adding
other dimensions to the graph, such as weights and labels.
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