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ABSTRACT
Computing frequent itemsets and maximally frequent item-
sets in a database are classic problems in data mining. The
resource requirements of all extant algorithms for both prob-
lems depend on the distribution of frequent patterns, a topic
that has not been formally investigated. In this paper, we
study properties of length distributions of frequent and max-
imal frequent itemset collections and provide novel solutions
for computing tight lower bounds for feasible distributions.
We show how these bounding distributions can help in gen-
erating realistic synthetic datasets, which can be used for
algorithm benchmarking.

1. INTRODUCTION
Mining frequent patterns or itemsets is a fundamental

task in many data mining applications. These include the
discovery of association rules, correlations, sequential rules,
episodes, multi-dimensional patterns, and many other im-
portant discovery tasks [11]. The problem is formulated as
follows: Given a large database of item transactions, find
the frequent itemsets, i.e., itemsets that occurs in at least a
user-specified percentage of the database.

Over the past decade many interesting algorithms have
been proposed for mining frequent itemsets [2, 16, 15, 6,
12]. Typically these methods show good performance with
sparse datasets, where the frequent patterns are relatively
short. However, in dense datasets with long frequent pat-
terns, which arise in many real world domains (e.g., DNA,
Protein sequences) mining all frequent sets quickly becomes
infeasible due to the combinatorial explosion; a frequent pat-
tern of length k implies the presence of 2k − 2 frequent sub-
sets. One solution is to mine the maximal frequent item-
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sets [4, 14, 1, 7, 9], which can be orders of magnitude fewer
than all frequent patterns.

In the final analysis, the performance of methods that
mine frequent or maximal patterns depends on the length
distribution of mined patterns. A natural question arises:
what are the feasible distributions of frequent and maximal
frequent itemsets? Put another way, what kinds of distri-
butions can one expect for sparse or dense, and synthetic
or real datasets? To the best of our knowledge this fun-
damental question has not been formally addressed. In a
seminal work on applying bounds, Goethals et. al. [8] gave
a tight upper bound on the number of candidate patterns
that can arise while mining in a level-wise fashion (e.g., in
Apriori [2]). Our work is motivated by a different prob-
lem which uses related combinatorial results. Gunopulos et.
al. [10] give lower bounds on the number of queries to the
database for computing support.

Given the multitude of algorithms for mining itemsets,
there has arisen a serious need for benchmarking [17]. It was
noted that performance on real world data did not reflect the
same trends as synthetic data (generated using the method
proposed in [2]). This is because the frequent/maximal item-
set distributions in real data ([3]) differ significantly from
those in synthetic data as depicted in figure 1. The reader
is referred to [9] for more details. Furthermore, datasets may
be sparse or dense depending on the length of the longest
pattern. Thus, there are two crucial problems that research
needs to address: 1) to formally characterize the kinds of
pattern distributions that may arise, and 2) to generate a
variety of benchmark datasets to compare the different al-
gorithms.

In this paper, we address both the problems: First, we
characterize properties of length distributions of frequent
and maximal frequent itemset collections and provide novel
solutions for computing tight lower bounds for feasible dis-
tributions. In particular, given a sequence S of non-negative
integers, 〈s1, s2, · · · , sl〉, we answer the question whether
there exists a frequent or maximal frequent itemset collec-
tion that has si frequent itemsets of length i, for 1 ≤ i ≤ l.
Second, we show how these bounding distributions can help
in generating realistic synthetic datasets, which can be used
for algorithm benchmarking. In particular, given a list of
sequences S = S1, S2, · · · , Sk, we show how to construct a
database (if it is feasible), such that, if one were to mine
frequent or maximal frequent patterns at k successively in-
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(a) Connect dataset (real) - minsup (50%)
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0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

0 2 4 6 8 10 12 14 16 18 20

#
 P

a
tt
e
rn

s

Length

F distribution

T40(0.25%)

0

20000

40000

60000

80000

100000

120000

0 2 4 6 8 10 12 14 16 18 20

#
 P

a
tt
e
rn

s

Length

MF distribution

T40(0.25%)

(d) T40 Synthetic dataset - minsup (0.25%)

Figure 1: Frequent (F) and Maximal Frequent (MF) Itemset Distributions

creasing values of user-specified minimum frequency thresh-
olds, one would get S as the sequence of pattern distribu-
tions.

2. PRELIMINARIES

Definition 1. [Itemsets] A positive integer is also called
a natural number. For any set X, its size (or length) is the
number of elements in X. Let (n) denote the set of natural
numbers {1, 2, · · · , n}. Each x ∈ (n) is called an item, and
we use I = (n) to denote a universal set of n items. A
non-empty subset of I is called an itemset. The power set
of I, denoted P(I), is the set of all possible itemsets of I.
An itemset of size k, X = {x1, x2, · · · , xk} is called a k-
itemset (for convenience we drop set notation and denote
X as x1x2 · · ·xk). The set of all possible k-itemsets of I,

i.e., itemsets of size (or length) k, is denoted by I(k). For
X, Y ∈ P(I) we say that X contains Y if Y ⊆ X.

Definition 2. [Itemset Collections] A set F ⊆ P(I) (with
∅ 6∈ F) is called an itemset collection. An itemset collection
F is called a Sperner collection if no itemset in it contains
another: X, Y ∈ F and X 6= Y , implies X 6⊂ Y . The
k-collection of F , denoted Fk, is the collection of all k-
itemsets in F , i.e., Fk = F ∩ I(k) (or equivalently Fk =

{X ∈ I(k) | X ∈ F}). On the other hand, the induced
k−collection of F , denoted [F ]k, is the set of k-itemsets

contained in some element of F . Formally, [F ]k = {X ∈
I(k) | X ⊆ Y for some Y ∈ F}, and [F ] =

⋃
k[F ]k. Let

fk = |Fk| denote the size of Fk. Let l ≤ n be the length of
the longest itemset in F , then the sequence representation
of F is the length distribution of itemsets in F , given as
〈F〉 = 〈f1, f2, · · · , fl〉.

Definition 3. [Transactions] A transaction Ti is an item-
set, where i is a natural number called the transaction iden-
tifier or tid. A transaction database, DB = {T1, · · · , TN},
is a finite, nonempty multi-set of transactions, with size
|DB| = N . The absolute support of an itemset X in DB
is the number of transactions in DB that contain X, given
as πA(X, DB) = |{Ti ∈ DB|X ⊆ Ti}|. The (relative) sup-
port of an itemset X in DB is the fraction of transactions

in DB that contain X, given as, π(X, DB) = πA(X,DB)
N

.

Definition 4. [Frequent and Maximal Frequent Itemsets]
An itemset X is said to be frequent if π(X, DB) ≥ πmin,
where πmin is a user-specified minimum support threshold,
with 0 < πmin ≤ 1. A collection of frequent itemsets is
denoted as F(πmin, DB) (or simply F). A frequent itemset
X ∈ F is maximal if it has no frequent superset, i.e., (@Y |
(X ⊂ Y ) ∧ (Y ∈ F)). A collection of maximal frequent
itemsets is denoted as MF(πmin, DB) (or simply MF).

Frequent itemsets are closed under ⊆, as given by the
following lemma.



Lemma 5. [2] Any subset of a frequent itemset is fre-
quent: X ∈ F and Y ⊆ X implies Y ∈ F.

By definition, F is a set system and MF is a Sperner system
on I. Also Fk = F∩I(k) and MFk = MF∩I(k) define the
frequent and maximal frequent k-collections of F and MF.

Lemma 6. Given DB and πmin, F = [MF]. Furthermore,
MF is the smallest collection of frequent itemsets from which
F can be inferred (provided only the frequent itemsets are
required and not their supports).

Proof. By definition ∀X ∈ F, ∃Y ∈ MF such that
X ⊆ Y . It follows that Fk = [MF]k, and F =

⋃
k Fk =⋃

k[MF]k. Now assume that there is a frequent itemset col-
lection M ′, such that F = [M ′], with |M ′| < |MF|. If
X ∈ MF, then X ∈ F. So there exists Y ∈ M ′ such that
X ⊆ Y . But X is maximal means X = Y , so X ∈ M ′. Thus
∀X, X ∈ MF ⇒ X ∈ M ′, contradicting the assumption
that |M ′| < |MF|. Thus MF has smallest cardinality.

Definition 7. [Lex and Colex Order] Let X, Y ∈ F ∩I(k)

be any two distinct k-itemsets in F , with X = x1x2 · · ·xk

and Y = y1y2 · · · yk. The lexicographic (or lex) ordering
�l is given as: X �l Y if and only if ∃z < k such that
∀i : 1 ≤ i < z, xi = yi and xz < yz. In contrast the colex 1

or squashed ordering �c is given as: X �c Y if and only if
∃z < k such that ∀i : z < i ≤ k, xi = yi and xz < yz. Both
lex and colex ordering are total orders on k-itemsets. We
define the rank of a k-itemset as its position in the ordering,
the first element having a rank of 1. We denote by C(k)(m)

the first m itemsets in I(k) in colex order.

Intuitively, the colex order “uses” as few elements from
I as possible to construct the elements of F . Let I =
(5). The colex order on I(2) is 12,13,23,14,24,34,15,25,35,45.
rank(12) = 1 and rank(24) = 5. Contrast this with the lex
order: 12,13,14,15,23,24,25,34,35,45. Notice that the rank of
itemsets in colex order is independent of |I| (with |I| ≥ 5).
This, however, is not true of lex order since rank(24) is 6 if
I = (5), but rank(24) is 11 if I = (10).

3. PROBLEM STATEMENT
In this paper, we address two main questions regarding

the feasibility of itemset collections. The unconstrained fea-
sibility question assumes no prior knowledge of I. The con-
strained feasibility question deals with the case when the
number of items in I is known. Furthermore, we address
the question whether one can construct a database which
would produce k given itemset distributions if mined at k
distinct (increasing) values of minimum support.

Problem 8. [Feasibility Problems for Itemset Collections]
Let F be an itemset collection over I, and let S be a sequence
of nonnegative integers, 〈s1, s2, . . . , sl〉. We address the fol-
lowing two existential questions for collections of frequent
(F = F) and maximal frequent (F = MF) itemsets:

1. Unconstrained Problem: Does there exist F such
that 〈F〉 = S, i.e., |F ∩ I(k)| = sk, for 1 ≤ k ≤ l?

1An alternate definition is given as: X �c Y if and only if
the largest item in symmetric difference of X and Y is in Y
only.

2. I-Constrained Problem Let I = (n), does there
exist F such that 〈F〉 = S?

Problem 9. [Feasibility Problem for Database Generation]
Let S1, S2, . . . , Sk be k sequences of nonnegative integers such
that Sj = 〈sj,1, sj,2, . . . , sj,nj 〉 i.e, there are nj nonnegative
integers in Sj. Does there exist (and if so, can we construct)
a database DB and k minimum support levels πmin

1 , . . . , πmin
k

such that

1. 0 < πmin
1 ≤ πmin

2 · · · ≤ πmin
k ≤ 1

2. Sj is the sequence representation of MF(πmin
j , DB) for

all 1 ≤ j ≤ k.

3. MF(πmin
j , DB) uses the minimum number of items, for

all 1 ≤ j ≤ k.

4. RELATED COMBINATORIAL RESULTS
Not all sequences of nonnegative integers can represent

distributions of frequent itemset collections. Lemma 5 which
states that frequent k-itemsets induce frequent itemsets of
lower cardinality, also implies that frequent k-itemsets im-
pose constraints on the number of frequent itemsets of lower
cardinality. Hence, to motivate the solution to feasibility
problems for itemset collections, it is necessary to study in-
duced subsets of itemset collections.

For this section, we assume h, l are natural numbers, I =
(n), and F = {F1, . . . Fh} is an l-collection of size h, i.e,

F ⊆ I(l). We use the notation ∂k(F) to denote the (l − k)-
itemsets induced by F , i.e., ∂k(F) = [F ]l−k, where 1 ≤ k <
l. We write ∂1(F) as ∂(F).

4.1 Previously Known Results
Let’s consider the following problem: Given l, h, find an

l−collection F of size h which induces the smallest number
of (l − 1)-itemsets, i.e., find the minimum value min |∂(F)|
over all possible collections F .

Lemma 10. [13] Given h and l, h can be uniquely written

in the form, h =
∑l

i=t

(
ai
i

)
=

(
al
l

)
+

(al−1
l−1

)
+

(al−2
l−2

)
+ · · ·+(

at
t

)
, where t ≥ 1, al > al−1 > · · · > at are natural numbers

and ∀i : ai ≥ i.

Lemma 10 says that any integer h can be uniquely writ-
ten as a sum of binomial coefficients, called the l−canonical
representation of h in [8]. Let LBl(h) =

∑l
i=t

(
ai

i−1

)
=(

al
l−1

)
+

(al−1
l−2

)
+ · · · +

(
at

t−1

)
. The following theorem gives

the lower bound for |∂(F)|.

Theorem 11. [13] Given 1 ≤ l ≤ n, and 1 ≤ h ≤
(

n
l

)
.

Then min |∂(F)| = LBl(h) over all systems F .

The numbers ai uniquely determined by lemma 10 can
be computed as follows. The integer al satisfies

(
al
l

)
≤

h <
(

al+1
l

)
. The integer al−1 satisfies

(al−1
l−1

)
≤ h −

(
al
l

)
<(al−1+1

l−1

)
, and so on. In general, ai satisfies

(
ai
i

)
≤ h −∑l

j=i+1

(
aj
j

)
<

(
ai+1

i

)
.

What do these numbers ai signify? These are the numbers
used in the construction of F that achieves the lower bound
given by theorem 11. Two cases need consideration:



1.
(

al
l

)
= h: here t = l and exactly al elements are needed

to construct the itemsets in F , i.e., F = (al)
(l).

2.
(

al
l

)
< h: here al + 1 elements are needed to con-

struct F as follows. First, construct all the possi-
ble l-subsets of (al). This accounts for

(
al
l

)
subsets

in F . The remaining h −
(

al
l

)
itemsets must contain

the element al + 1. For these sets to induce the min-
imum number of subsets, the construction argument
proceeds recursively. The problem now is to construct
an (l − 1)-collection of size h −

(
al
l

)
such that their

induced subsets are minimum. Hence, al−1 is the min-
imum number of elements needed to construct this
(l − 1)-collection. The recursion proceeds until either
a 1-collection needs to be constructed or when there
are no sets to be constructed. An example is provided
later in this section.

Lemma 12. [5] Let ∇ = C(l)(|F|) be the l−collection of
the first |F| itemsets in colex order. Then the (l−1)-itemsets
in ∂(∇) are the first |∂(∇)| itemsets in colex order and
|∂(∇)| ≤ |∂(F)|.

Theorem 13. [13] Given 1 ≤ l ≤ n, and
(

n
l

)
≤ h ≤ 2

(
n
l

)
.

Let G and H be disjoint sets of n items. If F = {F1, . . . , Fh}
with Fi ⊂ G or Fi ⊂ H and |Fi| = l, (1 ≤ i ≤ h), then
min |∂(F)| =

(
n

l−1

)
+ LBl(h−

(
n
l

)
).

Theorem 11 gives a lower bound on the size of induced
(l−1)-itemsets of F . A natural generalization is to deduce a
lower bound for the induced (l−k)-itemsets, with 1 ≤ k < l.

Let LBk
l (h) =

∑l
i=t

(
ai

i−k

)
=

(
al

l−k

)
+

( al−1
l−1−k

)
+ · · · +

(
at

t−k

)
,

where
(

a
b

)
= 0 if b < 0.

Theorem 14. [13] Given 1 ≤ l ≤ n and l ≤ h ≤
(

n
l

)
.

Then min |∂k(F)| = LBk
l (h) over all such F .

Example 15. To illustrate an example, consider the prob-
lem of constructing a 4-collection of size 10 that induces the
smallest 3-collection. Let 10 =

∑4
i=0

(
ai
i

)
. From the canon-

ical representation of 10, we obtain a4 = 5, a3 = 4, a2 =
2, a1 = a0 = 0. To construct the 4-collection (say A), at least
6 items are needed as

(
5
4

)
< 10 <

(
6
4

)
. Hence a4 = 5 and

we can set I = (6). With a4 = 5 elements, it is possible to
construct

(
5
4

)
= 5 elements of A. These are all the 4-subsets

of (5). There are 10− 5 = 5 remaining 4-itemsets in A that
need construction. In all the remaining 4-itemsets the item
6 is present (the combinations of (5) having been exhausted).
The remaining 4-itemsets induce the smallest number of 3-
itemsets if the itemsets are constructed by adding the item 6
to the 3-collection of size 5 which induce the smallest num-
ber of subsets. This construction recursively proceeds and is
illustrated in figure 2. Also note that the collection A that
contains the first 10 4-itemsets in colex order, induces the
smallest number of j-itemsets for 1 ≤ j < 4.

4.2 New Results

Lemma 16. Let ∇ = C(l)(|F|) be the l−collection of the
first |F| itemsets in colex order, and 1 ≤ k < l. Then the
(l − k)-itemsets in ∂k(∇) are the first |∂k(∇)| itemsets in
colex order, and |∂k(∇)| ≤ |∂k(F)|.

Proof. By induction on k.
Basis (k = 1): by lemma 12, ∂(∇) contains the first |∂(∇)|
subsets in colex order and |∂(∇)| ≤ |∂(F)|.
Inductive Step: Let ∂k(∇) contain the first |∂k(∇)| subsets
in colex order and |∂k(∇)| ≤ |∂k(F)| for some k ≥ 1. From

lemma 12, it follows that ∂(∂k(∇)) = ∂(k+1)(∇) contains
the first |∂k+1(∇)| subsets in colex order and |∂k+1(∇)| ≤
|∂(∂k(F))| = |∂k+1(F)|.

Theorem 14 gives a lower bound on the number of itemsets
of a given size induced by a single collection. In practice,
frequent itemsets of a given size may be induced by any
frequent itemset of a higher cardinality. Hence, if we are
looking at frequent j-itemsets, then these itemsets may be
induced by any k-collection where k > j. Hence it is natural
to generalize theorem 14 to two or more itemset collections
over a given universe of items.

Lemma 17. Let F1 be an l1-collection of size h1 and F2 be
a l2-collection of size h2 over I, with l2 < l1. For 1 ≤ k < l2,
let K be the jointly induced k-collection given by [F1]k ∪
[F2]k. Then min(|K|) = max(LBl1−k

l1
(h1), LBl2−k

l2
(h2)); the

minimum running over all such collections F1 and F2.

Proof. For any collection Fi, LBli−k
li

(hi) is the lower
bound on the size of the k-collection induced by Fi and this
lower bound is achieved by the first hi = |Fi| subsets in colex
order (by theorem 14 and lemma 16). Since both collections

are over I, min(|K|) = max(LBl1−k
l1

(h1), LBl2−k
l2

(h2)).

Theorem 18. Let Fi be a li−collection of size hi over I,
with li > k for 1 ≤ i ≤ w. The lower bound on the number
of jointly induced k-itemsets, is given by,

min(|
⋃w

i=1[Fi]k|) = maxw
i=1{LBli−k

li
(hi)},

the minimum running over all such collections Fi.

Proof. The proof is by induction on w.
Basis : For w = 1, the statement is the same as theorem 14.
For w = 2, the basis is true by lemma 17.
Inductive step: Let it be true that
min(|

⋃w−1
i=1 [Fi]k|) = maxw−1

i=1 {LB
li−k
li

(hi)}. This maximum is achieved

by some p, where 2 ≤ p ≤ w − 1. Hence,
min(|

⋃w
z=1[Fi]k|) = min(|[Fp]k

⋃
[Fw ]k|) = max{LB

lp−k

lp
(hp), LB

lw−k
lw

(hw)}.

But, LB
lp−k

lp
(hp) = maxw−1

i=1 {LB
li−k
li

(hi)}

⇒ min(|
⋃w

z=1[Fi]k|) = maxw
i=1{LB

li−k
li

(hi)}.

Example 19. Consider an example where A is a collec-
tion of 5-itemsets of size 3 and B is a collection of 3-itemsets
of size 25, both collections over I. As 2-itemsets are induced
by both A and B, the problem is to determine the lower bound
on the number of 2-itemsets jointly induced by both A and B
(over all such collections A and B). If we consider the col-
lections independently, the smallest 2-collection is induced
by the first |A| 5-itemsets in colex order and the first |B|
3-itemsets in colex order, respectively. This is illustrated in
figure 3. But it can be observed that the first LB2

5(3) itemsets
in B are already induced by A, as the collections are taken
from the same universe of items, and these itemsets are in
colex order by lemma 16. Hence, the lower bound on the size
of the 2-collection jointly induced by A and B is the maxi-
mum of the lower bound independently induced by A and B.
This construction is also illustrated in the figure.
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Figure 2: Constructing a 4-collection of size 10
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Figure 3: Two itemset collections A and B jointly inducing a Lower bound

5. SOLUTIONS TO FEASIBILITY PROB-
LEMS FOR ITEMSET COLLECTIONS

Let F be an itemset collection over I and let 〈F〉 =

〈f1, f2, · · · , fl〉 be its sequence representation (i.e., |F∩I(k)| =
fk for 1 ≤ k ≤ l), and let S = 〈s1, s2, . . . , sl〉 be a sequence of
nonnegative integers. We assume |I| ≥ l. We write 〈F〉 = S
iff fk = sk, for 1 ≤ k ≤ l. We address the following two
existential questions for collections of frequent (F = F)
and maximal frequent (F = MF) itemsets, as mentioned in
problem 8: 1) Does there exist (unconstrained) F such that
〈F〉 = S? 2) Given I = (n), does there exist (I-constrained)
F such that 〈F〉 = S?

5.1 Frequent Itemset Collections

Lemma 20. If fl ≥ 1, then fk ≥
(

l
k

)
, for 1 ≤ k ≤ l.

Proof. If fl ≥ 1, then there is at least one frequent
l−itemset, say X. By lemma 5, all subsets of X must be
frequent, i.e., X induces

(
l
k

)
k-itemsets. Hence, fk ≥

(
l
k

)
,

for 1 ≤ k ≤ l.

Lemma 21. If f1 ≥ 1, then fk ≤
(

f1
k

)
, 1 ≤ k ≤ l.

Proof. Without loss of generality we may assume that
I = (f1), since there are f1 single items in F . By definition,

[F ]k ⊆ I(k) = (f1)(k). Hence, fk ≤
(

f1
k

)
, for 1 ≤ k ≤ l.

Lemma 20 and 21 give a simple lower and upper bound on
fk by using length of the longest itemset (l), and number of

frequent items (f1), respectively. Below we develop tighter
bounds on fk.

Lemma 22. If fl ≥ 1, then fk ≥ LBl−k
l (fl), for 1 ≤ k < l.

Proof. By theorem 14, the size of the smallest k-collection
induced by any l-collection of size fl, with k < l, is given as
LBl−k

l (fl). Hence fk ≥ LBl−k
l (fl), for 1 ≤ k < l.

Lemma 22 gives a lower bound on k-itemsets induced by
only the l-itemsets. Hence this lower bound is tight only for
the induced (l − 1)-itemsets (i.e., for k = 1). For a tighter
lower bound on fk we have to consider the k-itemsets jointly
induced by all j-collections of size fj above level k, i.e., for
k < j ≤ l.

Theorem 23. fk ≥ maxl
j=k+1{LBj−k

j (fj)}, 1 ≤ k < l.

Proof. Frequent k-itemsets are induced by all frequent
j-itemsets, for k + 1 ≤ j ≤ l. Hence, by theorem 18, fk ≥
maxl

j=k+1{LBj−k
j (fj)}.

Theorem 24. [Unconstrained and I-Constrained Solution]
Given a sequence of non-negative integers S = 〈s1, s2, . . . , sl〉,
there exists a frequent itemset collection F over I, with 〈F〉 =
S iff:

1. sk ≤
(

s1
k

)
, 1 ≤ k ≤ l.

2. sk ≥ maxl
j=k+1{LBj−k

j (sj)} for 1 ≤ k < l.



3. (I-constraint) If I = (n), s1 ≤ n.

Proof. Suppose there exists a frequent itemset collection
F over I, such that |F

⋂
I(k)| = fk = sk, 1 ≤ k ≤ l. By

lemma 21, we have sk ≤
(

s1
k

)
and by theorem 23, sk ≥

maxl
j=k+1{LBj−k

j (sj)}. If I = (n) then at most n items can
be used to construct the itemsets, thus s1 ≤ n.

Suppose S satisfies the three conditions, then let [F]k =

C(k)(sk) be the collection of the first sk k-itemsets over I
(over (n) for the constrained case) in colex order, for 1 ≤
k ≤ l. By lemma 16, F = ∪l

k=1[F]k satisfies the conditions
of this theorem.

5.2 Maximal Frequent Itemset Collections

Fact 25. Let X ⊆ I(k) for any 1 ≤ k ≤ |I|. Then X is
a collection of maximal itemsets.

Theorem 26. [Unconstrained Solution] Given sequence S =
〈s1, s2, . . . , sl〉, there exists a collection of maximal frequent

itemsets MF, such that |MF ∩ I(k)| = sk, 1 ≤ k ≤ l.

Proof. Construct MF by adding exactly sk itemsets of
size k, 1 ≤ k ≤ l, such that any two itemsets X, Y , across
all levels k, are disjoint, i.e., X ∩ Y = ∅. By construction
each such itemset is maximal, giving |MF ∩ I(k)| = sk.

The above theorem states that it is feasible to generate
a maximal collection for any sequence S, provided there is
no constraint on I. The construction above uses

∑l
k=1 k ·

sk items for constructing MF. Let us call this solution a
direct solution to the feasibility problem for maximal itemset
collections. A natural question arises: what is the minimum
number of items, min |I|, such that 〈MF〉 = S? For the
following discussion let S = 〈s1, s2, · · · , sl〉, let rl = 0, and

let rk = maxl
j=k+1{LBj−k

j (rj +sj)} for 1 ≤ k ≤ l. Note that

r1 = maxl
j=2{LBj−1

j (rj + sj)}.

Theorem 27. Given S, construct an itemset collection F
as follows: For all 1 ≤ k ≤ l, add to F the sk itemsets of
I(k) in colex order with ranks rk+1, rk+2, · · · , rk+sk. Then
F is a maximal itemset collection, such that 〈F〉 = S, and
min |I| = r1 + s1 is the minimum number of items needed to
construct F .

Proof. We shall also prove by induction on k that ∪l
j=kFk

contains maximal j-itemsets for k ≤ j ≤ l, where Fk =
F ∩ I(k). Thus MF = F = ∪l

j=1Fj will be a maximal col-
lection. Let S2 = 〈r1 +s1, r2 +s2, · · · , rl +sl〉. We shall also
show that S2 is the sequence representation of all frequent
itemsets induced by F . For the basis step we consider 2
cases:

• Case I (k = l): By construction, Fl contains first sl

l-itemsets of I(l) in colex order. By lemma 16, Fl uses
the minimum number of items, and by fact 25, Fl is
a maximal collection. Note that at length l, there are
only rl + sl = 0+ sl = sl frequent (maximal) itemsets.

• Case II (k = l − 1): By lemma 16, Fl induces rl−1 =
LB1

l (sl) itemsets of size l − 1, which are the first rl−1

itemsets of I(l−1) in colex order. None of these in-
duced itemsets are maximal. The maximal (l − 1)-
itemsets which use the minimum number of items are
the next sl−1 itemsets in colex order after rank rl−1.

That is, we add to Fl−1 the sl−1 itemsets with colex
ranks rl−1 + 1, rl−1 + 2, . . . rl−1 + sl−1, respectively.
By fact 25 these new itemsets are maximal. Hence
∪l

k=l−1Fk is a maximal collection. By adding the rl−1

induced itemsets and the sl−1 maximal itemsets we get
rl−1 + sl−1 frequent itemset at level l − 1.

For the inductive hypothesis, assume that ∪l
j=k+1Fj is a

maximal collection using the minimum number of items, and
that there are rj +sj frequent induced j-itemsets for k+1 ≤
j ≤ l. Let j = k, then rk = maxl

i=k+1{LBi−k
i (ri +si)}, gives

the number of k-itemsets induced jointly by the i-collections,
for k+1 ≤ i ≤ l. By lemma 16 these are the first rk itemsets
in colex order, and are non-maximal since they are induced.
By fact 25, the sk itemsets with colex rank rk + 1, rk +
2, . . . , rk + sk are maximal, and use the minimum number
of items. Adding the rk induced itemsets with sk maximal
itemset we get a total of rk + sk frequent k-itemsets.

Therefore, the minimum number of items from I needed
to construct MF = F with 〈MF〉 = S is is given by r1 + s1.
Furthermore 〈[MF]〉 = S2.

Theorem 28. [I-Constrained Solution] Given S, let I =
(n), where n ≥ r1 +s1. Then there exists a maximal itemset
collection MF , such that 〈MF〉 = S.

Proof. By theorem 27, r1 + s1 is the minimum number
of items, min |I|, required to construct a maximal frequent

itemset collection satisfying |MF ∩ I(k)| = sk, 1 ≤ k ≤
|I|. Thus if n ≥ r1 + s1, then by the construction used in
theorem 27 we can generate MF = F .

Example 29. Figure 4 illustrates an example of construct-
ing a maximal frequent itemset collection using the direct
method and using the minimum number of items, whose
length distribution is given by the sequence S = 〈2, 0, 3, 4, 3〉.
The direct method is to construct the itemsets such that they
are pairwise disjoint. This method uses 42 items to construct
the maximal frequent itemset collection. For constructing
the collection using the minimum number of items, the 5-
itemsets are constructed first. Since there are 3 itemsets
of length 5 in the collection, these are precisely the first 3
itemsets in the colex ordering of 5-itemsets. These itemsets
induce 4-itemsets (which are the first LB5(3) 4-itemsets in
colex order). The next 4 itemsets in the colex ordering of
4-itemsets are 1456, 2456, 3456 and 1237 respectively. Now,
the 5-itemsets and the 4-itemsets jointly induce 3-itemsets
(which are in colex order). This procedure is repeated un-
til the itemsets are constructed for the entire sequence. The
minimum number of items used to construct the maximal
frequent collection for sequence S is 9.

6. SOLUTION TO FEASIBILITY PROBLEM
FOR DATABASE GENERATION

We now address the database generation problem, i.e.,
given a list of k sequences of non-negative integers, S =
S1, S2, · · · , Sk, generate a database DB and real numbers
πmin

i (1 ≤ i ≤ k), such that, mining maximal itemsets MFi

at minimum support πmin
i results in Si as the sequence rep-

resentation of MFi, for all 1 ≤ i ≤ k. A formal problem
statement appears in problem 9. We present solutions for
constructing DB for a single sequence S1, and for a pair of
sequences S1, S2, before giving a general solution for any k.



{1,2,3,4,5}   {6,7,8,9,10}  {11,12,13,14,15}

{16,17,18,19} {20,21,22,23}

{24,25,26,27} {28,29,30,31}

{32,33,34} {35,36,37} {38,39,40} {41} {42}

12345   12346   12356

Using minimum number of items : 

8    9

147  247  347

1456  2456  3456  1237

Number of items used = 9 Number of items used = 42 

Sequence S =    2, 0, 3, 4, 3

Using the Direct Method : 

Figure 4: Example - constructing maximal itemset collections

Let r be a natural number, and let Dr(F) be a database
generation operator on itemset collection F , defined as fol-
lows: For every X ∈ F , Dr generates r tids and adds the
transaction Ti = X,∀i = 1, · · · , r to the database. Further,
the tids are unique across all transactions. For convenience,
we write D1(F) as D(F). By construction Dr(F) has r×|F|
transactions, with r copies of each X ∈ F .

Theorem 30. Given sequence S and a maximal collection
MF constructed by procedure of theorem 26. Then at πmin =

1
|DB| , DB = D(MF) is a feasible database, provided there is

no constraint on the number of items used.

Proof. By construction every X ∈ MF appears once in
DB = D(MF). Thus mining at πmin = 1

|DB| yields MF, and

by theorem 26, 〈MF〉 = S.

Theorem 31. Given sequence S and a maximal collection
MF constructed by procedure of theorem 27. Then, DB =
D(MF) and πmin = 1

|DB| is a solution for problem 9, when

k = 1 (using minimum number of items).

Proof. By construction every X ∈ MF appears once in
DB = D(MF). Thus mining at πmin = 1

|DB| yields MF. By

theorem 27, 〈MF〉 = S, and MF uses the smallest number
of items.

Corollary 32. Given sequence S and a maximal collec-
tion MF constructed by procedure of theorem 27. Then,
DB = D([MF]) and πmin = 1

|D([MF])| is a solution for prob-

lem 9, when k = 1.

Proof. Recall that F = [MF] is the set of all induced
frequent itemsets of MF. Each X ∈ F appears once in
DB = D(F). Thus mining at πmin = 1

|DB| yields MF. By

theorem 27, 〈MF〉 = S, and MF uses the smallest number
of items.

Lemma 33. [Multiplicity Lemma] Given sequence S and a
maximal collection MF constructed by procedure of theo-
rem 27. Let N > 0 be a natural number denoting the desired
number of transactions. If |MF| ≤ N , then there exists a
database DB with |DB| = N and 0 < πmin ≤ 1, such that
MF(πmin, DB) has the sequence representation S.

Proof. Let r = b N
|MF|c and let m = (N mod |MF|). Let

MFm be any subset of MF of cardinality m. Let DB =
D(Dr(MF) ∪ D(MFm)) 2 and πmin = r

N
. Since every X ∈

MF, is replicated at least r times in DB, mining at πmin =
r/N yields MF.
2Let Z = Dr(MF) ∪ D(MFm). By setting DB = D(Z),
every transaction has a unique tid.

Lemma 34. Let DB be a transaction database and let 0 <
πmin

1 ≤ πmin
2 ≤ 1 be two levels of minimum support. Then,

F(πmin
2 , DB) ⊆ F(πmin

1 , DB).

Proof. Let X ∈ F(πmin
2 , DB). By definition, π(X, DB) ≥

πmin
2 ≥ πmin

1 . Hence X ∈ F (πmin
1 , DB).

Corollary 35. Let DB be a transaction database and
let 0 < πmin

1 ≤ πmin
2 ≤ 1 be two levels of minimum support.

Then, MF(πmin
2 , DB) ⊆ F(πmin

1 , DB).

Proof. From lemma 34 and MF(πmin
2 , DB) ⊆ F(πmin

2 , DB),
the corollary follows.

Corollary 36. Let DB be a transaction database and
let 0 < πmin

1 ≤ πmin
2 ≤ 1 be two levels of minimum support.

Then, ∀X ∈ MF(πmin
2 , DB),∃Y ∈ MF(πmin

1 , DB), such that
X ⊆ Y .

Proof. By corollary 35, MF(πmin
2 , DB) ⊆ F(πmin

1 , DB).
By definition of MF, ∀X ∈ F(πmin

1 , DB),∃Y ∈ MF(πmin
1 , DB)

such that X ⊆ Y .

The following theorem gives a solution to problem 9 when
the k sequences are all the same.

Theorem 37. [Equal Sequences] Given sequences S = S1 =
S2 = · · · = Sk and a maximal collection MF constructed by
procedure of theorem 27. Then the database DB = Dk(MF)
and πmin

i = i
|DB| , for 1 ≤ i ≤ k is a solution to problem 9.

Proof. Every X ∈ MF appears k times in DB. Mining
at πmin

i yields MF for all 1 ≤ i ≤ k.

Before considering the general case, let us consider the
case when k = 2. Suppose that we are given two distinct
sequences S1 = 〈s1

1, . . . , s
1
n1〉 and S1 = 〈s2

1, . . . , s
2
n2〉. Under

what conditions does a solution to problem 9 exist?

Theorem 38. Let DB be a transaction database and let
0 < πmin

1 ≤ πmin
2 ≤ 1 be two levels of minimum support. Let

MF(πmin
1 , DB) and MF(πmin

2 , DB) have the sequence rep-
resentations S1 and S2. For i = 1, 2, let ri

ni
= 0, and

ri
j = maxl

k=j+1{LBk−j
k (ri

k + si
k)}, for 1 ≤ j < ni. Then,

DB, πmin
1 , πmin

2 is a solution for problem 9 when k = 2 iff

1. n2 ≤ n1.

2. s2
j ≤ (r1

j + s1
j ) − r2

j for 1 ≤ j < n2. In the case when

n1 = n2, s2
n2 ≤ s1

n2 .

Proof. ⇒: Let DB, πmin
1 , πmin

2 be a solution to problem 9.



Algorithm K-DbGen 3. while(j < k){
Given: k sequences S1, . . . , Sk. Sequence Si (a) DBj = Daj−1+1(MFSj );

is of length ni, 1 ≤ i ≤ k (b) cj = aj−1 + 1;
Output: A database DB and k real numbers (c) DB = D(DB ∪ DBj);

πmin
1 , . . . , πmin

k (d) aj = msup(DB);
1. DB1 = D(MFS1); a1 = msup(DB1); c1 = 1; } //end while
2. j = 2;DB = DB1; 4. for(i = 0; i <= k; i + +) πmin

i = ci
|DB| ;

Figure 5: Construct Database given k sequences {S1, . . . , Sk}

1. To prove (n2 ≤ n1) : Suppose that n2 > n1. There ex-
ists an X ∈ MF(πmin

2 , DB) such that |X| = n2. Since
n2 > n1, @Y ∈ MF(πmin

1 , DB) such that X ⊆ Y , con-
tradicting lemma 34.

2. MF(πmin
1 , DB) has the sequence representation given

by S1 and uses the minimum number of items. Thus
MF corresponds to the maximal collection constructed
using theorem 27. Since πmin

1 ≤ πmin
2 , MF(πmin

2 , DB) ⊆
[MF(πmin

1 , DB)]. The number of j-itemsets in the col-
lection [MF(πmin

1 , DB)] is given by r1
j + s1

j , where r1
j

gives the j-itemsets induced by the higher cardinality
itemsets and s1

j gives the maximal itemsets in the col-

lection MF(πmin
1 , DB). Hence this is the upper bound

on the number of maximal j-itemsets at any level of
minimum support greater than πmin

1 . At support level
πmin

2 , the number of j-itemsets that are induced (and
hence non-maximal) by higher cardinality itemsets is
r2

j . These itemsets cannot belong to MF(πmin
2 , DB).

Hence the number of possible j-itemsets is given by
r1

j + s1
j − r2

j .

⇐: Let S1 and S2 be two sequences satisfying the two con-
ditions in the theorem. Denote by MFSi the maximal col-
lection with sequence representation Si. Let MFS1 be the
maximal itemset collection constructed using theorem 27.
This construction uses the minimum number of items to con-
struct the maximal itemsets. Construct the set MFS2 (from
the same universe of items) as follows. Add the first s2

n2 n2-
itemsets in colex order to MFS2 . For each 1 ≤ k < n2,
add to MFS2 the s2

k k-itemsets with ranks r2
k + 1, r2

k +
2, · · · , r2

k + s2
k in the colex order. Then, the database DB =

D(D(MFS1)∪D(MFS2)), πmin
1 = 1

|DB| , πmin
2 = 2

|DB| is a solu-

tion to problem 9. This is because by construction MFS2 ⊆
[MFS1 ]. The maximal itemset collection MF(πmin

1 , DB) is
precisely the set MFS1 and MF(πmin

2 , DB) is precisely the
set MFS2 .

Theorem 39. Let 1 ≤ i ≤ k, and Si = 〈si
1, s

i
2, · · · , si

ni
〉,

with k > 2. Let DB be a database and let 0 < πmin
1 ≤

πmin
2 ≤ · · · ≤ πmin

k ≤ 1 be k minimum supports, such that
MF(πmin

i , DB) has sequence representation Si. Let ri
j be as

defined in theorem 38, for 1 ≤ i ≤ k and 1 ≤ j < ni. Then,
DB, and πmin

1 , . . . , πmin
k give a solution to problem 9 iff

1. ni ≤ ni−1 for 1 < i ≤ k.

2. si
j ≤ (ri−1

j + si−1
j )− ri

j for 1 ≤ j < ni, 1 < i ≤ k.

Proof. ⇒: Let DB, πmin
1 , · · · , πmin

k as defined above be
a solution to problem 9. Since 0 ≤ πmin

1 ≤ πmin
2 ≤ · · · ≤

πmin
k , by lemma 34 MF(πmin

k , DB) ⊆ [MF(πmin
k−1, DB)] · · · ⊆

[MF(πmin
1 , DB)]. Being a solution to problem 9, MF(πmin

i , DB)

has sequence representation Si, for 1 ≤ i ≤ k. By applying
theorem 38 on each pair of sequences and composing the re-
sults, we have n1 ≥ n2 · · · ≥ nk and si

j ≤ (ri−1
j + si−1

j )− ri
j

for 1 ≤ j < ni, 1 < i ≤ k.
⇐: For 1 ≤ i ≤ k, let Si = 〈si

1, · · · , s1
n1〉 be k sequences

(k > 2) and let the elements in the sequence satisfy the con-
ditions given in the theorem. Let MFSi , 1 ≤ i ≤ k, be the
maximal itemset collections with sequence representation Si,
constructed by using theorem 27. Unlike theorem 38, find-
ing πmin

i is not straightforward. Let msup(DB) be the max-
imum over all the support values of individual items in DB
at that stage. The database DB is constructed in k stages
as shown in figure 5. From the algorithm, each itemset in
MFSj is replicated enough times and added to the database,
to make it the maximal frequent collection obtained at min-
imum support πmin

j and hence, by construction MFSj has
the sequence representation Sj .

Example 40. Consider an example where three sequences
S1 = 〈2, 3, 3, 4〉, S2 = 〈2, 3, 3〉 and S3 = 〈1, 3, 2〉 are given.
The problem is to generate a database DB and three val-
ues of minimum support πmin

1 < πmin
2 < πmin

3 such that the
maximal frequent itemsets obtained by mining DB at mini-
mum support level πmin

i has the sequence representation Si

(and hence the distribution given by Si) for i = 1, 2, 3. To
do so, the maximal frequent itemset collections correspond-
ing to the three sequences are constructed using theorem 27.
Let the collections be denoted as MF1, MF2 and MF3 re-
spectively. By the construction procedure, collection MFihas
a sequence representation Si, for i = 1, 2, 3. In the first
step, every itemset in MF1 is added as a transaction to the
database. The resulting database is denoted DB1. Then
the support of all the items in DB1 is computed and the
maximum of all these values is denoted msup(DB1). At
this stage, the absolute support of any item in DB1 is at
most msup(DB1). Hence, by replicating itemsets in MF2

one more than this value, we ensure that at absolute support
1+msup(DB1) the maximal itemsets obtained by mining the
database is MF2 which has the sequence representation S2

(and hence the distribution). The process is repeated once
more for the third sequence and the resulting database is the
final database. For computing the three levels of minimum
support, the msup values computed at each stage are used.
The values of minimum support at which each distribution

is obtained is calculated as 1+msup(DBi)
|DB| , where DBi is the

database after processing sequence i. This is illustrated in
figure 6. After processing sequence S1, the database contains
12 transactions, one for each itemset in MF1. The msup
value at this stage is 7 and hence, each itemset in MF2 is
replicated 1 + 7 = 8 times. At this stage, the database con-
tains 76 transactions and the msup value is 39. In the final
stage, the itemsets in MF3 are replicated 1+39 = 40 times to



Sequence 1: <2,3,3,4> Sequence 2: <2,3,3> Sequence 3: <1,3,2>

1234  1235  1245  1345 123  124  134

6  7

15  25  35

MF

123  124

34  15  25

6  7 MF
126  136  236

46  56  17 8  9

STEP 1 : DB1 = MF

Item 

N(x)

1  2  3  4  5  6  7  8  9

7  5  5  6  6  5  1  1  1

msup(DB1) = 7

STEP 2 : Replication factor = 1 + msup(DB1) = 8

Number of transactions in DB2 = 12 + (8 * 8) = 76

Final Database is DB.
support level 1 = 1 / 356
support level 2 = 8 / 356
support level 3 = 40 / 356

Item 

N(x) 39  29  29  22  30  13  9   1   1

  1    2    3    4    5    6  7   8   9

msup(DB2) = 39

STEP 3 : Replication factor = 1 + msup(DB2) = 40

Number of transactions in DB = 76 + (40 * 17) = 356

( N(x) − Denotes absolute support of item x )

MF
1

2 3

DB = DB2 U (40 new transactions for every itemset in MF   )

DB2 = DB1 U (8 new transactions for every itemset in MF  )

1

2

3

Figure 6: Generating a database for three given sequences

give the final database with 356 transactions. The minimum
support levels at which the three maximal itemset collections
are obtained as output are 1

256
, 8

256
and 40

256
respectively.

6.1 Analysis of the Database Generation Pro-
cedure

The K-DbGen algorithm was implemented in C++ fol-
lowing the approach given in figure 5. Given k user supplied
sequences satisfying the constraints of theorem 39, this im-
plementation uses procedure ColexListing in figure 7 and
minor variants to compute MFSi , for 1 ≤ i ≤ k. The algo-
rithm generates the database in k stages (iterations of step
3 in K-DbGen). The initial stage generates the database
with a replication factor of 1. Support counts are main-
tained for each individual item in the database generated
upto any given stage. At the end of stage 1, the support
counts are used to compute msup and replication factor val-
ues for stage 2. At any given stage j, (2 ≤ j ≤ k), the
replication factor value is used to generate transactions for
every maximal itemset in MFSj and the transactions are
written to the database. Support counts are updated for
each individual items during this process. After the genera-
tion process, a linear scan of the support values of individual
items is performed to compute msup and replication factor
values for stage j + 1. An illustrative example of database
construction using K-DbGen is given in figure 6. Proce-
dure ColexListing generates all the k-subsets of (n) in colex
order. A small modification to the input specification and
the termination condition is used to adapt this procedure to
generate MFSj in K-DbGen.

The complexity of procedure ColexListing can be analyzed
as follows. Step 1 takes O(k) time. Step 2 and 3 take con-
stant time (assuming that itemsets are stored in an array).
Step 4 takes O(k) time for each iteration. Hence the overall
complexity of procedure ColexListing is O(zk) where z is
the number of k-itemsets that are output (hence linear in
output size). The complexity of algorithm K-DbGen can be
analyzed as follows. Step 1 takes O(|DB1|) time since DB1

is identical to MFS1 which is generated using procedure
ColexListing. Step 2 takes constant time. Each iteration
of step 3 takes O(aj .|MFSj |) = O(|DBj |) time. Hence the
complexity of K-DbGen is O(|DB|) where DB is the database
output by the algorithm (linear in the output database size).

Even though algorithm K-DbGen is simple to implement,
it has some drawbacks. It can be observed from algorithm

K-DbGen that the msup values are monotonically increasing
during every stage of database generation. This could lead
to an inflation in the number of transactions in the database
(depending on the number of sequences and the number of
itemsets in each sequence), as discussed in the following ex-
ample.

As an example, consider the three sets of sequences shown
in figure 8. These sequences represent maximal frequent
itemset distributions found in real datasets at increasing lev-
els of minimum support (in this case CHESS, CONNECT
and MUSHROOM [3]).

Figure 9 lists the generation statistics for each stage of
database generation, for each of the examples in figure 8.
It can be observed that the number of transactions in the
generated databases are extremely large due to an inflation
in the replication factor at each stage. In the case of the ex-
ample from CHESS and CONNECT sequences, the number
is in the order of tens to hundreds of billions of transac-
tions while in the case of sequences from the MUSHROOM
dataset, the number is in the order of 1012 transactions.

Thus, naively generating databases by physical replication
can be prohibitively expensive due to large replication fac-
tors that occur in practice. One way to avoid the overhead
of physical replication is to logically replicate transactions
using transaction maps, which are defined as follows.

Definition 41. [Transaction Map] A transaction map is
a triple 〈C, i, T 〉, where C > 0 is a positive integer, i is a
nonnegative integer and T ⊂ I is an itemset. The non-
negative integer i is a unique identifier called the transac-
tion map identifier. The positive integer C denotes a count
value which gives the number of times the itemset T is repli-
cated. A transaction map database is a sequence of trans-
action maps where each map in the sequence has a unique
transaction map identifier.

Figure 10 shows an example of a transaction map database
for the three sequences in example 40. Generating transac-
tion map databases reduces the overhead in storage and time
by eliminating the costly physical replication factor over-
head. Figure 9 shows the number of transaction maps gen-
erated for the examples in figure 8. It can be observed that
the storage savings is significant (upto a factor of 108). The
number of transaction maps that are output by K-DbGen
is

∑k
j=1 |MFSj | =

∑k
j=1

∑nj

i=1 sj,i, where S1, S2, . . . , Sk are
k given sequences of nonnegative integers, such that Sj =



Procedure ColexListing
Given : integers n, k 0 < k < n

when k <= n

b) if (v[1] < n − k + 1){

a) PRINT v[1..n];

4. while(!done){

i) y = 0;

ii) do{ y++;} while(v[y+1] <= v[y] + 1);

iii) v[y] = v[y] + 1;

iv) for(i = 1; i < y; i++) v[i] = i;
} // end then part

c) else { done = true; }
} // end while3. done = false;

2. v[k+1] = n+1;

1. for(i = 1; i <= k; i++) v[i] = i;

STEPS:

Output : k−subsets of (n) in colex order

Figure 7: Prints out the k-subsets of the set {1, 2, . . . , n} in Colex Order

Example 1 : Number of Sequences = 4
Sequence 1 :  0,0,2,14,105,392,1099,2508,4482,6041,6997,6531,4871,3238,1145,436,58,10
Sequence 2 :  0,0,1,7,36,90,142,200,175,136,108,2,1
Sequence 3 :  0,0,2,3,16,36,45,71,49,4
Sequence 4 :  0,0,1,11,7,14,4

Example 2 : Number of Sequences = 5 (Sequences drawn from the CONNECT dataset)

(Sequences drawn from the CHESS dataset)

Sequence 1 :  0,0,0,0,0,0,3,6,3,17,52,120,175,270,248,227,95,4
Sequence 2 :  0,0,0,0,0,3,0,6,18,50,79,164,212,201,168,59,1
Sequence 3 :  0,0,0,0,0,0,5,15,41,47,118,142,177,104,24
Sequence 4 :  0,0,0,0,0,1,6,44,64,95,106,84,55
Sequence 5 :  0,0,0,0,5,2,9,27,76,72,30,1 

Example 3 : Number of Sequences = 4 (Sequences drawn from the MUSHROOM dataset)

Sequence 1 :  0,0,0,0,0,0,0,16,7,11,39,89,407,479,300,562,164,19,84,26403,5122
Sequence 2 :  0,0,0,0,3,4,19,34,141,408,809,1130,928,728,340,242,200,5069,1978,4
Sequence 3 :  0,0,0,2,6,5,22,101,378,663,1020,914,615,302,160,97,1179,1233,36
Sequence 4 :  0,0,0,9,21,50,158,250,400,269,110,45,11,1,11,93,24

Figure 8: Three Examples drawn from Real Datasets for Database Generation

Generation Statistics for Sequences from the CHESS dataset
STAGE msup(DB) Replication Factor Number of Transactions Number of Transaction Maps

1 - 1 37929 37929
2 23652 23653 21278323 38827
3 13857152 13857153 3152994901 39053
4 1938298517 1938298518 74870040067 39090

Generation Statistics for Sequences from the CONNECT dataset

STAGE msup(DB) Replication Factor Number of Transactions Number of Transaction Maps
1 - 1 1220 1220
2 1111 1112 1069852 2181
3 906089 906090 610868422 2854
4 595718053 595718054 271662582992 3309
5 2073330731 2073330732 731942005496 3531

Generation Statistics for Sequences from the MUSHROOM dataset

STAGE msup(DB) Replication Factor Number of Transactions Number of Transaction Maps
1 - 1 33702 33702
2 29643 29644 356858530 45739
3 316684050 316684051 2132590573913 52472
4 2047308738 2047308739 5105282862941 53924

Figure 9: Table showing values at each stage of database generation for the examples in figure 8

〈sj,1, sj,2, . . . , sj,nj 〉 (i.e, there are nj nonnegative integers in
sequence Sj).

Current mining algorithms [2, 16, 15, 12] can be altered
with little overhead to mine transaction map databases. In
the case of level wise mining algorithms like Apriori (and
variants), a data structure is used to store candidate pat-
terns and each time a transaction is processed, the counts
of the candidate patterns contained in the transaction is

incremented by 1. In the case of a transaction map, the in-
crement is done using the transaction map count instead of
incrementing by 1. This is a modification to the count step.
The same approach also applies to FP -tree methods where
the transactions are used to increment support counts for
frequent itemsets in the structure. In the case mining al-
gorithms that use tidlist intersection to count support (e.g.
Eclat), the transaction map ids are intersected and instead



Tansaction Map Database for Three Sequences

COUNT  MAP ID   ITEMSET

   1         1          1234
   1         2          1235
   1         3          1245
   1         4          1345

   1         6          136
   1         7          236

   1         5          126

   1         8          46
   1         9          56
   1       10          17
   1       11          8
   1       12          9

COUNT  MAP ID   ITEMSET

   8        13          123
   8        14          124
   8        15          134
   8        16          15
   8        17          25
   8        18          35
   8        19          6
   8        20          7

COUNT  MAP ID   ITEMSET

 40        21          123
 40        22          124
 40        23          34
 40        24          15
 40        25          25

 40        27          7
 40        26          6

Number of Tansaction Maps = 27 
Actual Number of Tansactions = 356

Figure 10: Transaction Map Database for the sequences in Example 40

of the length of the intersection, the sum of the counts asso-
ciated with each transaction map id in the intersection gives
the support. This causes little overhead, as only a vector of
counts need to be maintained with each transaction map id
in order to obtain their count values. This makes it practical
for algorithms to mine transaction map databases.

Figure 11 summarizes the results of the database genera-
tion procedure on the examples in figure 8. The experiments
were carried out on a Dell Inspiron 8100 laptop with a 1GHz
Intel Pentium III processor with 256 MB of RAM running
SuSE Linux 8.0. It can be observed that the generation pro-
cedure takes under 1 second in generating the transaction
map databases for these examples.

7. CONCLUSIONS AND FUTURE WORK
The distribution of frequent and maximal frequent item-

sets in a transaction database determines the resource re-
quirements of extant pattern mining algorithms. Hence,
empirical performance comparisons are needed for informed
algorithm selection among numerous alternatives. This re-
quirement motivated our study that serves as a long needed
step in characterizing maximal/frequent itemset length dis-
tributions in databases.

In this paper, we addressed two crucial issues in frequent
pattern mining problems. We characterized the length dis-
tribution of frequent and maximal frequent itemset collec-
tions. Tight bounds were developed to answer questions on
whether a given sequence representation is a feasible length
distribution of a frequent or a maximal frequent itemset col-
lection. We also characterized the conditions under which
one can embed such distributions in a database. This has di-
rect application in generating benchmark databases to com-
pare current association mining algorithms.

The paper also discusses issues related to database gen-
eration given k distributions of maximal itemsets and pro-
vides a technique to prevent an expensive blowup in the
number of transactions through transaction maps. However,
the generation procedure has some limitations. Currently,
all transactions or transaction maps that are added to the
database are maximal frequent itemsets. This constraint
causes database sizes to be huge. In practice, entire trans-
actions are themselves not maximal frequent itemsets but
contain them. The other observation is that all itemsets in
a given sequence have the same replication factor and this
factor is chosen conservatively. We plan to explore how the
number of transactions can be reduced by relaxing these
constraints.

Our ongoing study is also exploring the various ramifi-
cations of the problem. The algorithm presented in this
paper generates a database using the minimum number of
items but not necessarily the minimum number of transac-
tions. Work is in progress to provide generation techniques
(i) that use the minimum number of transactions and (ii)
that allows for use of relaxed constraints on the number of
items. Such approaches have potential applications in gener-
ation of synthetic databases which preserve the distributions
of patterns upto a certain number of support levels and yet
offer privacy preservation with respect to disclosure of infor-
mation. Answers to these questions will generate databases
that are more practical in terms of the pattern distributions
that can be found in real datasets.

Other applications of feasible distributions include how
one can exploit them in a mining algorithm. Goethals, et.
al. [8] already demonstrated one such method where a tight
bound on the expected space of candidate patterns was de-
rived and used in a level-wise mining algorithm. Can other
methods that perform heuristic search instead of level-wise
search benefit from these results? Finally, there is the issue
of extension of these bounds to other pattern spaces apart
from frequent and maximal frequent itemset collections.
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