
Parallel Data Mining on Shared-Memory

Multiprocessors

Rakesh Agrawal Ching-Tien Ho Leon Pauser Mohammed Zaki
IBM Almaden Research Center

In this talk, we will present parallel algorithms for generating decision-
tree classifiers, association rules and sequential patterns on shared-memory
systems. We will discuss the design, implementation issues, and performance
results on AIX RS/6000 SMP’s and OS/390 systems.

Classification is recognized to be a primary data mining task. The input
to a classification system consists of a set of example tuples, called a training

set, where each tuple consists of several attributes. One of the attributes,
called the class attribute, indicates the class to which each example belongs.
The goal of classification is to induce a model from the training set, that can
be used to predict the class of a new tuple that does not have a class label.

In the association rules, the user is given a database of transactions,
where each transaction consists of a set of items, and is interested in finding
all rules such that the presence of one set of items in a transaction implies
the presence of another set of items. In the sequential patterns, the user is
given a set of transactions over a period of time and is interested in finding
inter-transaction patterns such that the presence of a set of items is followed
by another set of items.

The parallel classification algorithms we propose span the gamut of data
and task parallelism. The data parallelism is based on attribute scheduling
among processors—scheduling work associated with different attributes to
different processors. This basic scheme is extended with task pipelining and
dynamic load balancing to yield more efficient schemes. The task parallel
approach uses dynamic subtree partitioning among processors. These algo-
rithms are evaluated on two different AIX RS/60000 SMP configurations:
one in which data is too large to fit in memory and must be paged from a

1



local disk as needed and the other in which memory is sufficiently large to
hold the whole input data and all temporary files. For the local disk config-
uration, the speedup ranged from 2.97 to 3.86 for the build phase and from
2.20 to 3.67 for the total time on a 4-processor SMP. For the large mem-
ory configuration, the range of speedup was from 5.36 to 6.67 for the build
phase and from 3.07 to 5.98 for the total time on an 8-processor SMP. We will
also present the implementation results on an OS/390 system, a 10-processor
SMP.

The parallel algorithm for association rules is the data-parallel versions of
Apriori algorithm. The input data file contains fix-size records of ASCII for-
mat: (transaction-id, item-id). They are read in, remapped and transformed
into a logical file of variable-size records of binary format: (transaction-id,
number-of-items, item-id, ..., item-id) during the first pass of the algorithms.
In addition, the logical file is partitioned in a cyclic manner into p tempo-
rary files so that each of the p threads can work on a different file in parallel
starting the second pass. The parallel algorithm for the sequential patterns is
similar. One exception is that the records also contain customer-id. Different
transactions of the same customer are partitioned into the same file to avoid
unnecessary synchronization between threads. We will present experimental
results for these algorithms on both AIX SMP and OS/390 systems.

All implementations use the POSIX threads (pthread) standard, making
them portable to different UNIX platforms and to OS/390 systems which
support an essential subset of pthreads.

2


