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Abstract

The leading partitional clustering technique, k-means, is one of the most computa-
tionally efficient clustering methods. However, it produces a local optimal solution
that strongly depends on its initial seeds. Bad initial seeds can also cause the split-
ting or merging of natural clusters even if the clusters are well separated. In this
paper, we propose, ROBIN, a novel method for initial seed selection in k-means
types of algorithms. It imposes constraints on the chosen seeds that lead to better
clustering when k-means converges. The constraints make the seed selection method
insensitive to outliers in the data and also assist it to handle variable density or
multi-scale clusters. Furthermore, they (constraints) make the method determinis-
tic, so only one run suffices to obtain good initial seeds, as opposed to traditional
random seed selection approaches that need many runs to obtain good seeds that
lead to satisfactory clustering. We did a comprehensive evaluation of ROBIN against
state-of-the-art seeding methods on a wide range of synthetic and real datasets. We
show that ROBIN consistently outperforms existing approaches in terms of the
clustering quality.
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1 Introduction and Background

Clustering is one of the most fundamental tasks in exploratory data analysis
that groups similar points in an unsupervised fashion. The clustering prob-
lem has been studied in many disciplines such as statistics, pattern recog-
nition, signal processing (e.g., vector quantization), biology, and so on. As
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a consequence numerous clustering algorithms have been proposed in these
different communities, spanning different clustering paradigms such as parti-
tional (Forgy, 1965; Lloyd, 1982; MacQueen, 1967), hierarchical (Jardine et.
al., 1967), spectral (Shi & Malik, 2000), density-based (Ester et. al., 1996),
mixture-modeling (Jain & Dubes, 1988), and so on. Subspace clustering meth-
ods (Parsons, 2004) have also been proposed, but in this paper our focus is on
full-dimensional clustering methods.

k-means is one of the earliest clustering algorithms which has been proposed
independently in (Forgy, 1965; MacQueen, 1967) and in (Lloyd, 1982). The
typical formulation of k-means is as follows: Given k, the number of clusters
to find, and a set of n data points in R

d, the goal is to choose k points as
centers so as to minimize the sum of the distance between each point and its
closest center. This formulation, which we adopt in this paper, is also named as
distortion minimization clustering. Considered in an optimization framework,
the objective function is non-convex and hence, it is difficult to obtain a global
optimal solution. In fact, if we require that the cluster centers be actual data
points, the problem is NP-Hard even for k = 2 (Garey & Johnson, 1979).

Even though it is difficult to obtain a global optimal solution for k-means,
finding a local optimal solution is very cheap. Lloyd’s algorithm (Lloyd, 1982)
can be used to obtain such a solution. It chooses a set of random k data points
as centers. All the remaining data points are assigned to their nearest centers.
This forms the initial clusters. Then, for each cluster, its center is recomputed
as the center of mass of all points assigned to it. These two steps, cluster
assignment and center recomputation, are repeated until the clusters assign-
ments converge. It is easy to show that every successive iteration improves the
distortion, and the algorithm terminates with a local optimal solution.

Though not optimal in the global sense, k-means is still the most popular clus-
tering method for a variety of applications (Berkhin, 2002). Recently k-means
was even voted as one of the top ten algorithms in data mining (Wu et. al.,
2008). The main reason for the popularity of k-means is its simplicity and
efficiency. In fact, it has been shown that the convergence rate of k-means is
comparable to Newton’s method, which is quadratic (Bottou & Bengio, 1995).
Moreover, it does not require the computation of O(n2) distances/similarities
as in hierarchical or spectral clustering algorithms. Many distance computa-
tions can also be saved by using triangular inequality (Elkan, 2003).

The enormous popularity of k-means has motivated research to remedy its
limitations, specially safeguarding against bad local optimal solutions. Note
that the solution space of any clustering is just a k-partition of the data
points, so a neighborhood consists of other k-partitions that are very similar
to it. Hence, once a k-partition is obtained by k-means, random re-shuffling
of a few points across different clusters generally does not produce a better
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(a) Merging/splitting of natural clusters

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-0.2  0  0.2  0.4  0.6  0.8  1  1.2  1.4

(b) Cluster composed of only noise points

Fig. 1. Random initialization produces poor clustering. The dark triangles indicate
the initial cluster seeds. Points with the same symbol belong to the same cluster.

clustering, since the modified partition, most likely, would actually be in the
neighborhood of the previous k-partition. To get around the local minima,
a common practice is to run the k-means algorithm repeatedly, each time
starting with a different set of random initial centers. With a high probabil-
ity, different runs (with different seeds) would explore different regions of the
solution space and thus increasing the likelihood of escaping local minima.
The solution that achieves the best objective function value is finally reported
as the clustering solution. However, for large datasets, repeated runs can be
costly. Previous research (Arthur & Vassilvitskii, 2007; Astrahan, 1970; Ball
& Hall, 1967; Bradley & Fayyad, 1998; Katsavounidis, 1994; Khan & Ahmad,
2004) has thus attempted to intelligently choose the initial centers (seeds)
such that the clustering is substantially better than that obtained by just ran-
dom seeding. The success of these approaches depend on finding seeds that
yield an initial partition which is close to a reasonably good local optimal.
Based on our extensive experimental evaluation, we found that while previous
approaches fare better than random initialization, they are very sensitive to
outliers, as well as variable density regions.

In this research, we propose a novel seed initialization algorithm, named
ROBIN (ROBust INitialization) that outperforms previous approaches in
terms of the clustering quality (distortion), and it is also simple and efficient.
As the name suggests ROBIN is robust to outliers or variable density. It works
by imposing hard constraints on the seeds as they are selected. Other than k,
the number of centers to choose, it takes only one other parameter, mp, the
number of neighbors to consider, which is used when computing a measure
of the degree to which a potential center is an outlier. Furthermore, we also
show that ROBIN is not very sensitive to the choice of mp. We made exten-
sive experiments on synthetic and real world dataset. In synthetic cases, we
found that ROBIN finds solutions which are nearly as good as the (known)
global optimal solutions. For real world datasets, it typically obtains superior
distortion scores compared to other methods.
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2 k-means Initialization

Most of the seed selection ideas emerged from the analysis of poor clustering
solutions obtained by k-means. In the following, we explain the reasons why
k-means may fail to produce a good clustering solution and how different
seed selection strategies attempt to safeguard against those. However, we also
like to clarify that for k-means, the poor seed selection is just one reason
that result in poor clustering. The objective function that k-means optimize
can also be responsible for this fact. For example, if a small cluster is in
close proximity to a large cluster, a k-means algorithm that minimizes the
distortion, will always merge a set of nearby points from the large cluster
with the small cluster. This is inevitable even for the case when the geometric
centers of the clusters are chosen as the initial seeds. Similar problem also
arises when the clusters are of non-globular shape. In those cases, a cluster
may contain points that are very far from each other, whereas the points that
lie on the intersecting line of the above points belong to a different cluster
(think of a circular cluster surrounded by a u-shape cluster). So, general k-
means algorithm will always fail for the above cases irrespective of the seed
selection methods. So, throughout our discussion, we assume clusters with
comparable sizes and nearly globular shapes. We also assume that the user
has the correct guess about the value of k.

In k-means, a poor clustering solution is obtained if two seeds are in close
proximity. In such cases k-means can end up partitioning a natural cluster,
and as a consequence, since k is fixed, it merges a pair of distant clusters
into one. Figure 1(a) shows an example when this happens. As we can see
two random seeds were chosen from the top left cluster, which results in that
cluster being partitioned into two, and the center and top right clusters are
merged into one. A poor solution can also be obtained when a chosen seed is
actually an outlier. In such cases k-means can form a cluster which is not a
natural cluster, but a set of noise points. As a consequence, some real cluster
will be merged or missed. For example, we can see in Figure 1(b) that the
initial seed on the top right results in a cluster composed solely of outliers,
whereas the two larger clusters on the left are merged into one. Certain other
traits of the dataset are responsible for poor performance of k-means. For
instance, if the sizes of the clusters are substantially different, the likelihood is
small that a seed would be chosen from the smaller cluster; as a result, in the
final clustering solution, the smaller cluster may be merged with an adjacent
large cluster. Different densities of the data points in different clusters, also
called multi-scale clusters, can also have adverse affects on the initialization
and clustering quality.

Many of the problems discussed above can be avoided by applying constraints
in the seed selection process. If the clusters are globular and their sizes are
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comparable, the splitting or merging of clusters can be entirely eliminated by
adopting the constraints that the seeds are well separated. Formation of a
noise cluster can also be avoided by constraining that a seed point is not an
outlier point. However, seed selection is just an initialization step for k-means,
so it has to be inexpensive. We list below the desiderata for a good cluster
seed selection scheme:

(1) It should be computationally inexpensive.
(2) It should ideally be parameter free. For the parameters it does require,

it should not be very sensitive to the parameter values. Furthermore, it
should be intuitive to set reasonable parameter values.

(3) It should ideally be deterministic and should be insensitive to the order
in which the data points are considered.

(4) It should not be sensitive to outliers, i.e., a noise point should not be
selected as a center.

(5) It should be robust in presence of multi-scale (varying densities) clusters.

We now briefly discuss previous initialization schemes and the extent to which
they fulfill the above criteria. One of the first schemes of center initialization
was proposed by Ball and Hall (Ball & Hall, 1967). They suggested the use of
a user defined threshold, d, to ensure that the seed points are well apart from
each others. They consider each point in the dataset in an arbitrary order. The
first point is chosen as a seed, and for any subsequent point considered, it is
selected as a seed if it is at least d distance apart from the already chosen seeds,
until k seeds are found. With a right choice of the value of d, this approach
can restrict the splitting of natural clusters, but guessing a right value of d is
very difficult and the quality of seeds depends on the order in which the data
points are considered. Note that, it only satisfies the criteria (1) above, since
its complexity is just O(kn). A similar approach was also suggested by Tou
and Gonzales under the name Simple Cluster Seeking (SCS) (Tou & Gonzales,
1974).

Astrahan (Astrahan, 1970) suggested using two distance parameters, d1 and
d2. The method first computes the density of each point in the dataset, which
is given as the number of neighboring points within the distance d1. It then
sorts the data points according to decreasing value of density. The highest
density point is chosen as the first seed. Subsequent seed point are chosen in
order of decreasing density subject to the condition that each new seed point
be at least at a distance of d2 from all other previously chosen seed points.
This step is continued until no more seed points can be chosen. Finally, if more
than k seeds are generated from the above approach, hierarchical clustering
is used to group the seed points into the final k seeds. The main problem
with this approach is that it is very sensitive to the values of d1 and d2.
Furthermore, users have very little knowledge regarding the good choices of
these parameters, and the method is computationally very expensive. A range
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search query needs to be made for every data point followed by a hierarchical
clustering of a set of points. Small values of d1 and d2 may produces enormously
large number of seeds, and hierarchical clustering of those seeds can be very
expensive (O(n2 log n) in the worst case). This method also performs poorly
when there exist different clusters in the dataset with variable density and
size. In summary, this approach satisfies only criteria (3) and (4) above.

Katsavounidis et. al. (Katsavounidis, 1994) suggested a parameterless ap-
proach, which we call the KKZ method based on the initials of all the authors.
KKZ chooses the first center near the “edge” of the data, by choosing the vec-
tor with the highest norm as the first center. Then, it chooses the next center
to be the point that is farthest from the nearest seed in the set chosen so far.
This method is very inexpensive (O(kn)) and is easy to implement. It does
not depend on the order of points and is deterministic by nature; as single
run suffices to obtain the seeds. Thus KKZ satisfies criteria (1), (2), and (3)
above. However, KKZ is sensitive to outliers, since the presence of noise at the
edge of the dataset may cause a small set of outlier/noise points to make up
a cluster (e.g. the dataset in Figure 1(b)). Note here that the KKZ method is
similar to the 2-approximation solution of the k-center problem (Hochbaum
& Shmoys, 1985).

Bradley and Fayyad (Bradley & Fayyad, 1998) proposed an initialization
method that is suitable for large datasets. We call their approach Subsam-
ple, since they take a small subsample (less than 5%) of the dataset and
use k-means clustering on the subsample and record the cluster centers. This
process is repeated and cluster centers from all the different iterations are ac-
cumulated in a dataset. Finally, a last round of k-means is performed on this
dataset and the cluster centers of this round are returned as the initial seeds
for the entire dataset. This method generally performs better than k-means
and converges to the local optimal faster. However, it still depends on the
random choice of the subsamples and hence, can obtain a poor clustering in
an unlucky session. Among the criteria above, Subsample satisfies (1) and (2),
and also (4) with high probability.

More recently, Arthur and Vassilvitskii (Arthur & Vassilvitskii, 2007) pro-
posed the k-means++ approach where the seed selection is similar to the
KKZ method. However for seed, k-means++ does not take the farthest point
from the already chosen seeds, but it selects a point with a probability pro-
portional to its distance from the already chosen seeds. Thus, in KKZ the
farthest point is chosen with probability 1, but in k-means++, probability
of this selection is proportional to the minimum distance of this point from
already chosen seeds. k-means++ satisfies criteria (1) and (2), and also (4)
with high probability. Note that due to the probabilistic selection of points,
different runs have to be performed to obtain a good clustering.
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The problem of obtaining poor local optimal solution by k-means is also ad-
dressed in the domain of fuzzy clustering (Bezdek et. al., 2005). The most
notable method in this domain named “Competitive Agglomeration”(CA) is
proposed by Frigui and Krishnapuram (Frigui & Krishnapuram, 1997). CA
starts with a large number of cluster seeds that provide a good initial sampling
of the entire dataset. As the algorithm progresses, adjacent clusters compete
for data points, and the weaker ones progressively disappear. Authors show
that the remaining seeds (and the final clustering) has enhanced ability to
overcome the poor local optimal solution of regular k-means that generally
arises from the bad seed selection. In this article we, however, restrict our
discussion on hard (non-fuzzy) seed selection methods.

Our proposed method, ROBIN, satisfies all of the criteria that we discuss at
the beginning of this section. It is computationally inexpensive. It takes only
one parameter mp, the number of neighboring points to consider, and is not
very sensitive to the value of this parameter. It is deterministic, insensitive to
outliers, and is robust against variable density.

3 The ROBIN Approach

The ROBIN approach to seed selection is essentially tied to the concept of
avoiding outliers as seeds. For this ROBIN first computes the degree to which
a point is an outlier, which in turn must consider the local density of the
neighboring points. Outliers are those points whose density is very different
compared to neighbor densities. In essence the local outlier measure automati-
cally takes into account variable density regions and variable size clusters. The
key aim here is to avoid the computation of outlier measure for each point in
the dataset, which would yield a worst case O(n2) method, but rather the
challenge is in keeping the complexity very close to linear in n.

Subject to the outlier measure, ROBIN ensures that the seeds are as far apart
as possible. More formally, let D be a set of n points in R

d. Given 2 ≤ k < n,
we wish to find a maximally separated subset I ⊆ D of size k, for which the
minimum distance among the

(

k
2

)

pairs of points in I is as large as possible.
The decision problem associated with this is to determine whether there exists
I ⊆ D, with |I| = k, so that all

(

k
2

)

distances in I are at least 2. The decision
version arises from the following transformation. Let us place a d-dimensional
unit ball at each point. We can then construct an intersection graph G that
has an edge between a pair of points, if the corresponding unit balls have a
non-empty intersection. The set of seeds I is then an independent set in the
graph G. Clearly, if G has an independent set of size k, we have |I| = k, where

all the
(

k
2

)

distances are at least 2 (since the unit radius balls do not intersect,

they are at least a distance of 2 apart). For a given k the problem whether
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an independent set of size k exists is known to be NP-Complete. Hence, the
maximally separated point-set problem is also NP-Complete when k is part
of the input (Clark et. al., 1990). ROBIN’s seed selection is therefore just a
greedy solution to the above problem.

3.1 Local Outlier Factor

To compute the degree to which a point is an outlier, we use the notion of
local outlier factor (LOF) which was proposed in (Breunig et al., 2000). For
a point x ∈ D, define the local neighborhood of x, given the minimum points
threshold mp as follows:

N(x,mp) = {y ∈ D | distance(x, y) ≤ distance(x, xmp)}

where xmp is the mp-th nearest neighbor of x. Thus N(x,mp) contains at least
mp points. The density of x is then computed as follows:

density(x,mp) =

(

| N(x,mp) |
∑

y∈N(x,mp) distance(x, y)

)

Essentially, the lower the distance between x and neighboring points, the
higher the density of x. The average relative density (ard) of x, is then com-
puted as the ratio of the density of x and the average density of its nearest
neighbors, given as follows:

ard(x,mp) =
density(x,mp)

(
∑

y∈N(x,mp)
density(y,mp)

|N(x,mp)|

)

Finally the LOF score of x is just the inverse of the average relative density
of x:

LOF (x,mp) = ard(x,mp)−1

If a point is in a low density neighborhood compared to all its neighbors, then
its ard score is low and hence its LOF value is high. Thus LOF value represents
the extent to which a point is an outlier. A point that belongs to a cluster has
an LOF value approximately equal to 1, since its density and the density of
its neighbors is approximately the same.

LOF has two excellent properties: (1) It is very robust when the dataset has
clusters with different sizes and densities. (2) Even though the LOF value may
vary somewhat with mp, it is generally robust in making the decision whether
a point is an outlier or not. That is, for a large range of values of mp, the
outlier points will have LOF value well above 1, whereas points belonging to
a cluster will assume an LOF value close to 1.
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3.2 The ROBIN Algorithm

ROBIN(D, k,mp):
1. Take any reference point, r (origin suffices)
2. m = 0;
3. while (| C |≤ k)
4. if (m == 0)
5. sort the points in D in decreasing order of

distances from r

6. else

7. sort the points in D in decreasing order of
minimum distances from points in C

8. endif

9. for each x in sorted order
10. if (LOF(x,mp) ≈ 1)
11. insert x in C
12. break

13. endif

14. endfor

15. m++;
16. endwhile

17. return C

Fig. 2. ROBIN: Robust Initialization Algorithm

Unlike previous work in seed selection (Astrahan, 1970), or the work in outlier
detection (Breunig et al., 2000), we do not desire to compute the density or
LOF value of all the points, since that is computationally expensive. Our
aim is to judiciously compute the LOF values on demand, while selecting the
seeds. The ROBIN robust initialization algorithm is outlined in Figure 2. In
the figure, D is the dataset; k is the number of clusters or seeds desired, and
mp is the number of neighbors to consider while computing the LOF.

For any reference point r, ROBIN first sort the points in decreasing order of
their distances from r (line 5). In this sorted order, it selects the first point
that is not an outlier as validated through its LOF value. Note that the point
r is not a center, it is only used to find the first seed center, which we take to
be the point at the “edge” of the dataset, i.e., one having the largest distance
from r and one which also has an LOF value close to one.

The subsequent seed points are obtained in a similar manner, by first sort-
ing the points in decreasing order of their minimum distance to seed centers
already in the set C (line 7). Note that computing the distances of all points
from a chosen seed center is not an overhead, as the k-means algorithm would
compute these distances anyway in its first iteration; we can simply skip that
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step in the subsequent k-means run. In each iteration of the while loop in
line 3, ROBIN finds a new seed center. The inner for loop (line 9) considers
the points in sorted (decreasing) order of distance, and breaks as soon as it
obtains a point which has an LOF value approximately equal to one (in our
implementation, this threshold is kept fixed at 1.05). Once k center points are
found, the algorithm breaks. Note that if the initial reference point is chosen as
the origin, the output of ROBIN is deterministic and point order insensitive.

Complexity: In terms of the computational complexity of ROBIN, we can
see that the while loop (lines 3-16) is repeated k times. Thus, in aggregation,
line 5 (and line 7) takes O(knd) time to compute the distances of each point
to each of the seeds in C. Running the sort routine (on the same lines) for
k times takes O(kn log n) time. At first glance, the for loop (line 9) appears
to be expensive, since it can potentially loop over the O(n) points in sorted
order of distance, when all points are outliers; and also, computing the LOF
value for x (line 10) can also take time O(n), for a total of O(n2) time. In
fact, this will never happen because of the definition of LOF, which computes
the outlier factor locally; so a point is outlier with respect to other points in
the neighborhood that are not outlier. So, in realistic cases, the for loop in
line 9 is in fact repeated only a few times, which can practically be estimated
to be a constant, L. Of-course, for very noisy dataset, L will assume a higher
value, but is still negligible with respect to n. Computing the LOF takes O(n)
in high dimensions, but in lower dimensions one can use a range search index
like kd-trees (Samet, 2006), which can compute the mp nearest neighbors
in O(n1−1/d + mp) time, where d is the dimensionality of the dataset. Since,
mp ≪ n (for example, mp is 25, whereas n is in the order of 10k), we can ignore
the mp in the above complexity term, and aggregating for the k runs, yields an
overall complexity of the for loop to be of O(k · n1−1/d ·L). Combining all the
three costs (distance computation, sorting and LOF computation) together,
the total complexity is equal to O(ndk + kn · log n + kL · n1−1/d) Thus, the
total worst case computation complexity is O(n log n) in terms of n and linear
in terms of k, and d.

ROBIN Seed Selection: In Figure 3(a) we show an example dataset that
has five clusters. We also show the initial seeds (triangles) chosen by ROBIN
with mp = 10. We see that exactly one seed is chosen from each cluster.
ROBIN can also handle clusters with different densities. Since LOF considers
a point as outlier based only on the local density, it does not penalize any
low density cluster while selecting a seed from that cluster. For example Fig-
ure 3(b) shows 3 clusters, with sizes 1000, 1000 and 100 points, respectively.
ROBIN chose three different seeds (triangles), one from each of these clusters.
Also, ROBIN always avoids the noise points while choosing the seeds. In Fig-
ure 3(c), there are three clusters and a few noise point at the upper left corner;
ROBIN initialization did not consider any of those noise points as seeds.

10



 1

 2

 3

 4

 5

 6

 7

-1  0  1  2  3  4  5

(a) No merging/splitting
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(b) Density Insensitive
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(c) Outlier Insensitive

Fig. 3. ROBIN seeds (triangles)

4 Empirical Results

We performed extensive experiments to evaluate the benefits of ROBIN ini-
tialization scheme using synthetic and real life datasets. All the experiments
were performed on Mac G5 machine with 1.66 GHz processor, running the
Mac 10.4 OS.
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Table 1
Comparison on synthetic datasets. The distortion scores are shown for each method.

d k Optimal ROBIN Random Subsample k-means++ KKZ

min avg min avg min avg

8 10 7738 7755 7904 8421 7887 8092 8008 8508 9204

25 9365 9382 9774 10185 9639 10044 9641 9951 10743

50 8694 8754 9244 9565 9136 9407 9289 9598 17042

16 10 16865 16882 17406 18496 17356 18314 16870 17951 19346

25 17241 17261 18298 19219 17647 18812 17732 18550 20567

50 17580 17622 18866 19507 18469 19084 18974 19661 21632

24 10 26149 26150 26706 28733 26150 28340 26755 28860 29413

25 22233 22261 23241 24582 23034 23942 22803 23787 27052

50 21453 21467 22838 23818 22477 23387 23003 23762 26599

The synthetic datasets were generated as follows: For a given k (number of
clusters) and d (number of dimensions), we generate k Gaussian clusters, each
having m data points, where m is chosen uniformly between 100 to 1000. So,
it is possible that the size of one cluster is about ten times larger than that
of another. Each Gaussian cluster is obtained from a mean (µ) and a covari-
ance matrix (Σ). Each component/dimension of the mean (µi) was chosen
uniformly within 0 and 10. So, all the cluster means reside in the length 10
hypercube in d-dimensions. The covariance matrix, Σ was first chosen as a di-
agonal matrix, which was later rotated with a random rotation matrix. Each
entry along the diagonal of Σ is chosen randomly in the interval [0.2∗w, 0.8∗w],
where w = s∗

√
d, and s is a parameter that can be used to control the cluster

width. With higher w, the generated clusters are more noisy; i.e., the points
are further away from the mean point. w is also used to separate the means of
the clusters, i.e., when generating the cluster means, if the distance between
a mean is within 2w of an already generated mean, the new mean is ignored,
until all k mean points are obtained that are somewhat separated. The

√
d

part in w stretches the clusters in higher dimensions, so that the clusters
cover the space uniformly over different dimensions. We also injected about
2% noise points in the dataset, which are distributed uniformly in the length
10 hypercube.

12



4.1 Results on Synthetic Datasets

The experimental results for the synthetic datasets are shown in Table 1. The
distortion value is used to compare the performance of ROBIN against random
initialization and other different initialization schemes: KKZ (Katsavounidis,
1994), Subsample (Bradley & Fayyad, 1998), and KMeans++ (Arthur & Vas-
silvitskii, 2007). We present the result for three different dimensions (d): 8, 16
and 24, and for three different number of clusters (k): 10, 25 and 50. For algo-
rithms that are not deterministic, like k-means, Subsample and KMeans++,
each algorithm was executed for 50 different runs. We show the minimum and
average distortion values over these runs. For ROBIN, we set the minimum
points threshold mp = 10. In fact, the clustering score does not vary much
with different choices of mp, as we show in the sensitivity section below. For
Subsample, we always take a 5% sample of the dataset.

Since these datasets were generated synthetically, the actual mean of each
cluster is known. To obtain a benchmark score of distortion, we ran k-means
algorithm with those known means as the initial seeds. The distortion score
obtained from this run is recorded as the optimal score in Table 1. Note that,
without the presence of noise, the above seeds indeed obtain the global optimal
clustering. However, all the dataset in the above experiments had 2% noise,
so, in some cases, the actual global optimal clustering mean may deviate from
the generated means. Since, the noise level is not significant, we consider the
score obtained with the known seeds as the optimal distortion value.

Table 1 shows that for all the dimensions and number of clusters, the random
initialization could not find a clustering with a distortion score as good as
ROBIN in 50 different random runs. In fact, ROBIN achieves about 2% to
5% better (lower) distortion scores than the best of random, and 5% to 10%
better than the average random score. Further, ROBIN is deterministic, hence
is executed only once to achieve these clustering solutions. ROBIN also yields
a distortion score close to the global optimal, which suggests that the cluster
means obtained via ROBIN seeding are actually in very close proximity to
that of the original cluster means. Comparing to other initialization schemes,
ROBIN scores are much better.

4.2 Results on Real Datasets

Table 2 shows the comparison of ROBIN with the random, Subsample, k-
means++ and KKZ approaches. These datasets were taken from the UCI ma-
chine learning archive (http://archive.ics.uci.edu/ml/). These datasets
are generally small, with the exception of poker, which has one million points.
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Since we do not know the optimal distortion score for these, we simply com-
pare the distortion values across the methods. Random, Subsample and k-
means++ were run 50 times. For these datasets, the performance of ROBIN
is as good as the best result obtained by subsample, KKZ, and k-means++.
On the small datasets, Subsample does better, but for the large poker dataset,
ROBIN is the best.

4.3 Sensitivity Experiments

4.3.1 Noise Sensitivity

We performed experiments to check how the performance of ROBIN varies
with the noise level of the dataset. We define the noise from two standpoints:
(1) completely random noise, where the random points are spread uniformly
over the entire space; (2) cluster noise, where the noise level deviates a data
point from the mean of a cluster. The second kind of noise can be controlled
by varying the cluster width parameter of the synthetic data generator. We
analyze the performance of ROBIN in the presence of both these kinds of
noise.
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Fig. 4. Noise Sensitivity: ROBIN vs. Random

For the random noise experiment, we first generated a dataset without any
noise. Then, we construct ten different datasets by adding an increasing num-
ber of noise points to the above dataset. The noise level of different datasets
ranged from 1% to 10%. In Figure 4(a), we compare the distortion scores of
random initialization with that of ROBIN. Over the 50 runs for k-means, we
show minimum, average and maximum distortion scores. For ROBIN mp = 10
as before. In the base dataset used above, we set d = 8, and k = 10. Similar
result were obtained for other values of dimensions and clusters, and hence
are not shown. It is evident that the performance superiority of our ROBIN
method over random prevails for different noise levels of the dataset, since the
distortion score is always better (lower) than the minimum of random seeds
distortion score.
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For the cluster noise experiments, we generated datasets with different values
of s for different noise levels of a cluster: we used s values of 0.03, 0.06, 0.09,
and 0.12. As s value is increased, clusters will have more noise. Figure 4(b)
shows that ROBIN performs better than the best of fifty runs of random
seeding of k-means for all different cluster noise levels.

4.3.2 Parameter Sensitivity

ROBIN takes the minimum points parameter mp, to compute the LOF value of
a point, to decide whether the point is an outlier or not. We observed that for a
good range of values for mp, identical clustering solutions are obtained in both
synthetic and real world datasets. In cases when different clustering solutions
are obtained, they produce similar distortion values (clustering scores), which
are mostly better than distortion score of random initialization. In (Breunig
et al., 2000), the authors provided a guideline to choose the value of mp; the
summary of their suggestions is that mp should not be higher than the smallest
sized cluster and should not be lower than the largest sized noise cluster. For
typical dataset, the difference of these two estimates is comfortably large; and,
what is more important is that a reasonable guess of these values can be easily
made. Note that cluster seed initialization methods that depends on a distance
threshold to keep the seeds well apart do not have this flexibility and are very
sensitive to the choice of parameter values. Moreover, it is hard for a user
to guess such a value without data visualization, which is effectively possible
only for low dimensional datasets. Although, one can visualize high dimension
data using techniques like ISOMAP, but guessing a right value of distance
threshold from such view is as hard as random guessing.

The range of acceptable values of mp varies depending on the noise level of a
dataset. Intuitively, the acceptable range of values can be well characterized by
the signal-to-noise-ratio (SNR), where the signal represents the clusters, and
the noise the set of outlier points. The larger the SNR, the more flexible it is
to choose the mp value. In Figure 5 we show the distortion scores for different
values of mp for increasing dimensions, keeping the number of clusters fixed
at k = 15. In each of the plots, we also show the random seeding scores: the
minimum, the average and the maximum for 50 different runs. We observe
that for a large range of mp values the distortion score for ROBIN does not
change much, and more importantly ROBIN produces clusterings that have
distortion scores less than the minimum of the random seeding.
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Fig. 5. Distortion scores with varying values of mp

4.4 Scalability Experiments

We also compared how ROBIN scales with the number of points in the dataset.
The experimental results for the scalability tests are shown Table 3. These
results are for 16 dimension, 30 clusters and 5% random noise. The minimum
and average scores for the random seeding approach are shown, as well as the
average time for a single run. For ROBIN the table shows the distortion score
and total time for mp = 5 and mp = 10. We can see that as the number
of points increases, both methods scale linearly, as expected. Furthermore,
ROBIN, still has the best distortion scores, which are not much different for
mp = 5 or mp = 10. However in terms of time, we do see a big improvement
when ROBIN uses mp = 5, a reduction by a factor of 3, since the lower the
mp value the cheaper the LOF computation.

Comparing the time with the random seeding, we plot in Figure 6(a) the ratio
of the running time of ROBIN to the average running time for a single run
of the random seeding. In general, we see that a single random seeding run
is about 10 times faster than our approach. On the other hand, if we let the
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Fig. 6. Running time comparison of ROBIN with a single (6(a)) and 50 runs of
random seeding (6(b)).

random seeding to run for 50 runs, in Figure 6(b), which plots the ratio of the
total time of ROBIN versus the total of 50 random runs, we see that overall
ROBIN is 10 times faster, and of course yields a much better distortion score.
If we let the random seeding run over many more iterations, it will likely
improve the score, but at the cost of even more time. These results confirm
that ROBIN is indeed robust, efficient, and scalable.

5 Conclusions

In this paper we proposed a new method, ROBIN, for robust initialization
of seed centers for use in a partitional clustering method like k-means. We
studied the state-of-the-art initialization methods, and noticed that either they
were computationally expensive, or they were not able to handle outliers or
multi-scale clusters with variable density of points. We outlined the desiderata
for good seed selection methods, and showed that ROBIN satisfies all those
criteria by imposing explicit constraints on the seeds to be chosen.

An extensive evaluation on real and synthetic datasets confirms that ROBIN
is computationally efficient. It takes only one parameter mp, the number of
neighboring points to consider, and is not very sensitive to the value of this
parameter. It is deterministic, insensitive to outliers, and is robust against
multi-scale clusters.
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Table 2. Comparison on real datasets

Dataset |D| d k ROBIN Random Subsample k-means++ KKZ

minimum average minimum average minimum average

Yeast 1484 8 10 2465 2467 2564 2418 2514 2500 2525 2472

poker-hand 1000000 10 10 6.18 6.27 6.34 6.28 6.33 6.26 6.32 6.22

×106 ×106 ×106 ×106 ×106 ×106 ×106 ×106

ecoli 336 7 8 65.34 67.17 67.29 64.36 67.63 64.20 66.38 67.41

wdbc 569 30 2 2402 2402 2407 2402 2410 2402 2434 2411

wine 178 13 3 500 500 505 500 505 500 527 510

Pendigit 7494 15 10 17051 16932 17776 16977 17706 16992 17477 17823

OptDigit 3823 64 10 110289 108699 111912 108557 111926 108940 112911 114673
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Table 3
Scalability with varying number of data points

|D| Random ROBIN (mp = 5) ROBIN (mp = 10)

min. score avg. score time score time score time

4986 17060 18019 0.29 16284 3.01 16287 6.98

11685 39073 42707 0.68 38505 5.07 37491 10.68

49043 159392 170279 2.99 155660 17.84 155630 65.92

108721 354538 374245 7.04 354835 34.98 343131 144.97

289517 934897 1007988 18.79 937745 70.99 943050 177.46

472385 1505000 1598921 31.91 1522880 137.46 1515540 405.66

767964 2477390 2621665 53.79 2564730 260.60 2462570 778.93

1048225 3356920 3491258 69.80 3298390 344.16 3344840 900.80
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