
September 24, 2007 22:4 Proceedings Trim Size: 9in x 6in main

TRELLIS+: AN EFFECTIVE APPROACH FOR INDEXING
GENOME-SCALE SEQUENCES USING SUFFIX TREES ∗

BENJARATH PHOOPHAKDEE AND MOHAMMED J. ZAKI

Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, 12180
E-mail: {phoopb,zaki}@cs.rpi.edu

With advances in high-throughput sequencing methods, and the corresponding
exponential growth in sequence data, it has become critical to develop scalable
data management techniques for sequence storage, retrieval and analysis. In this
paper we present a novel disk-based suffix tree approach, called Trellis+, that
effectively scales to massive amount of sequence data using only a limited amount of
main-memory, based on a novel string buffering strategy. We show experimentally
that Trellis+ outperforms existing suffix tree approaches; it is able to index
genome-scale sequences (e.g., the entire Human genome), and it also allows rapid
query processing over the disk-based index. Availability: TRELLIS+ source code
is available online at http://www.cs.rpi.edu/∼zaki/software/trellis

1. Introduction

Sequence data banks have been collecting and disseminating an exponen-
tially increasing amount of sequence data. For example, the most recent
release of GenBank contains over 77 Gbp (giga, i.e., 109, base-pairs) from
over 73 million sequence entries. Anticipated advances in rapid sequenc-
ing technology, applied to metagenomics (i.e., study of genomes recovered
from environmental samples) or rapid, low-cost human genome sequencing,
will yield a vast amount of short sequence reads. Individual genomes can
also be enormous (e.g., the Amoeba dubia genome is estimated to be 670
Gbp a). It is thus crucial to develop scalable data management techniques
for storage, retrieval and analysis of complete and partial genomes.

In this paper we focus on disk-based suffix trees as the index structure
for effective massive sequence data management. Suffix trees have been
used to efficiently solve a variety of problems in biological sequence analysis,
such as exact and approximate sequence matching, repeat finding, and
sequence assembly (via all pairs suffix-prefix matching) 9, as well as anchor
finding for genome alignment 4. Suffix trees can be constructed in time
and space linear in the sequence length 16, provided the tree fits entirely in
the main memory. A variety of efficient in-memory suffix tree construction
algorithms have been proposed 8,6. However, these algorithms do not scale
up when the input sequence is extremely large.

Several disk-based suffix tree algorithms have been proposed recently.
Some of the approaches 11,12,15 completely abandon the use of suffix links

∗This work was supported in part by NSF Career award IIS-0092978, and NSF grants
EIA-0103708 and EMT-0432098.
aDatabase of Genome Sizes: http://www.cbs.dtu.dk/databases/DOGS/

September 24, 2007 22:4 Proceedings Trim Size: 9in x 6in main

and sacrifice the theoretically superior linear construction time in exchange
for a quadratic time algorithm with better locality of reference. Some ap-
proaches 11,12,2 also suffer from the skewed partitions problem. They build
prefix-based partitions of the suffix tree relying on a uniform distribution
of prefixes, which is generally not true for sequences in nature. This results
in partitions of non-uniform size, where some are very small, and others are
too large to fit in memory. Methods that do not have the skew problem and
that also maintain suffix links, have also been proposed 1,3. However, these
methods do not scale up to the human genome level. The only known suffix
tree methods that can handle the entire human genome include TDD 15 and
Trellis 13. Trellis was shown to outperform TDD by over 3 times. How-
ever, these methods still assume that the input sequence can fit in memory,
which limits their suitability for indexing massive sequence data. Other
suffix trees variants 10, and other disk-based sequence indexing structures
like String B-trees 7 and external suffix arrays 5,14 have also been proposed
to handle large sequences. A comparison between TDD 15 and the DC3 5

method for disk-based suffix arrays suggests that TDD is twice as fast 15.
In this paper we present a novel disk-based suffix tree indexing algo-

rithm, called Trellis+, for massive sequence data. Trellis+ effectively
handles genome-scale sequences and beyond with only a limited amount of
main-memory. We show that Trellis+ is over twice as fast as Trellis,
especially with restricted amount of memory. Trellis+ is able to index
the entire human genome (approx. 3Gbp) in about 11 hours, using only
512MB of memory, and on average queries take under 0.06 seconds, over
various query lengths. To the best of our knowledge these are the fastest
reported time with such a limited amount of main-memory.

2. Preliminary Concepts
0

1

[0,2]
ACG

2

[1,2]
CG

3

[2,2]
G

6

[6,6]
$

0

[3,6]
ACG

3

[6,6]
$

1

[3,6]
ACG

4

[6,6]
$

2

[3,6]
ACG

5

[6,6]
$

Figure 1. Suffix tree TS for S = ACGACG$.

Let Σ denote a set of characters
(or the alphabet), and let |Σ|
denote its cardinality. Let Σ⋆

be the set of all possible strings
(or sequences) that can be con-
structed using Σ. Let $ 6∈ Σ be
the terminal character, used to
mark the end of a string. Let
S = s0s1s2 . . . sn−1 be the in-
put string where S ∈ Σ⋆ and
its length |S| = n. The ith suf-
fix of S is represented as Si = sisi+1si+2 . . . sn−1. For convenience, we
append the terminal character to the string, and refer to it by sn. The
suffix tree of the string S, denoted as TS , stores all the suffixes of S in a
tree structure, where suffixes that share a common prefix lie on the same
path from the root of the tree. A suffix tree has two kinds of nodes: in-
ternal and leaf nodes. An internal node in the suffix tree, except the root,

September 24, 2007 22:4 Proceedings Trim Size: 9in x 6in main

has at least 2 children, where each edge to a child begins with a different
character. Since the terminal character is unique, there are as many leaves
in the suffix tree as there are suffixes, namely n + 1 leaves (counting $ as
the “empty” suffix). Each leaf node thus corresponds to a unique suffix Si.

Let σ(v) denote the substring obtained by concatenating all characters
from the root to node v. Each internal node v also maintains a suffix link
to the internal node w, where σ(w) is the immediate suffix of σ(v). A suffix
tree example is given in Fig. 1; circles represent internal nodes, square
nodes denote leaves, and dashed lines indicate suffix links. Internal nodes
are labeled in depth-first order, and leaf nodes are labeled by the suffix
start position. The edges are also shown in the encoded form, giving the
start and end positions of the edge label.

3. The Basic Trellis+ Approach

Trellis+ follows the same overall approach as Trellis 13. Let S denote
the input sequence, which may be a single genome, or the string obtained
by concatenating many sequences. Trellis+ follows a partitioning and
merging approach to build a disk-based suffix tree. The main idea is to
maintain a complete suffix tree as a collection of several prefix-based sub-
trees. Trellis+ has three main steps: i) prefix creation, ii) partitioning,
and iii) merging.

r−1

R0
TR1

TRr−1

TR0,P0
TR1,Pm−1

TR0,P

S

DISK

R0 R

TRr−1,P

T

j j

Pj

for Ri

prefix Pj in Ri

a) Sequence Partitioning

b) Suffix trees

c) Sub−trees for d) Merging

R1

T

Figure 2. Overview of Trellis+

In the prefix cre-
ation phase Trellis+
creates a list of variable-
length prefixes {P0, P1,-
· · · , Pm−1}. Each
prefix Pi is chosen
so that its frequency
in the input string
S does not exceed
a maximum frequency
threshold, tm, deter-
mined by the main-
memory limit, which guarantees that the prefix-based sub-tree TPi

, com-
posed of all the suffixes beginning with Pi as a prefix, will fit in the available
main-memory. The variable prefix set is computed iteratively; in each it-
eration prefixes up to a given length are counted (those that exceed the
frequency threshold tm in the last iteration).

In the partitioning phase, the input string S is split into r = ⌈n+1

tp
⌉

segments (Fig. 2, step a), where n = |S| and tp is the segment size threshold,
chosen so that the resulting suffix tree TRi

for each segment Ri (Fig. 2, step
b) fits in main-memory. Note that TRi

contains all the suffixes of S that
start only in segment Ri; TRi

is constructed using the in-memory Ukkonen’s
algorithm 16. Each resulting suffix tree TRi

from a given segment is further
split into smaller subtrees TRi,Pj

(Fig. 2, step c), that share a common

September 24, 2007 22:4 Proceedings Trim Size: 9in x 6in main

prefix Pj , which are then stored on the disk.
After processing all segments Ri, in the merging phase, Trellis+

merges all the subtrees TRi,Pj
for each prefix Pj from the different par-

titions Ri into a merged suffix subtree TPj
(Fig. 2, step d). Note that TPj

is guaranteed to fit in memory due to the choice of tm threshold. The merg-
ing for a given prefix Pj proceeds in steps; at each stage i, let Mi denote
the current merged tree obtained after processing subtrees TR0,Pj

through
TRi,Pj

for segments R0 through Ri. In the next step we merge TRi+1,Pj
from

segment Ri+1 with Mi to obtain Mi+1, and so on (for i ∈ [0, r − 1]). The
merging is done recursively in a depth-first manner, by merging labels on
all child edges, from the root to the leaves. The final merged tree Mr−1 is
the full prefixed suffix tree TPj

, which is then stored back on the disk. The
complete suffix tree is simply a forest of these prefix-based subtrees (TPj

).
Note that Trellis+ has an optional suffix link recovery phase, but we omit
its description due to space limitations; see 13 for additional details.

4. Trellis+: Optimizations for Massive Sequences

In this section, we introduce two optimizations to the original Trellis.
The first optimization is based on a simple observation that larger suffix
subtrees can be created in the partitioning phase under the same memory
restriction. As a result, there is less disk management overhead, and fewer
merge operations are required, speeding up the algorithm. The second
optimization is a novel string buffering strategy. The buffer is based on
several techniques, which together remove the limitation of Trellis that
requires the input sequence to fit entirely in memory. This means Trellis+
can index sequences that are much larger than the available memory.

4.1. Larger Segment Size

Trellis+ uses two thresholds, tp and tm, to ensure that the suffix subtrees
for a given segment TRi

and a given prefix TPj
, respectively, can fit in

memory. Let |S| = n be the sequence length, M be the available main-
memory (in bytes), and let si and sl be the size of an internal and leaf
node. Typically, the number of internal nodes in the suffix tree is about 0.8
times the number of leaf nodes. During the partitioning phase, the sequence
corresponding to the segment Ri is kept in memory in a compressed form,
costing tp/4 bytes space (since we use 2 bits to encode each of the 4 DNA
bases). Since TRi

has tp leaf nodes and 0.8tp internal nodes, tp is chosen to
satisfy the following equation:

M ≥
tp
4

+ (0.8si + sl)tp =⇒ tp ≤
M

1

4
+ (0.8si + sl)

(1)

During the merging phase, we use the threshold tm to ensure that TPj

can fit in memory. Tpj
has tm leaf and 0.8tm internal nodes. Additionally,

new internal nodes, on the order of 0.6tm, are created during the edge merge

September 24, 2007 22:4 Proceedings Trim Size: 9in x 6in main

operations. Furthermore, since all segments can be accessed, we would need
to keep the entire input string S in memory, taking up space n/4 bytes (this
limitation will be removed in Sec. 4.2). Thus tm is chosen to satisfy the
following equation:

M ≥
n

4
+ (0.8si + sl + 0.6si)tm =⇒ tm ≤

M − n
4

(1.4si + sl)
(2)

Trellis uses a global threshold t = min(tp, tm) to control the overall
memory usage. However, note that tm is always smaller than tp (since
t ≪ n), and this means that as the input sequence length increases, Trel-

lis must choose smaller and smaller thresholds, resulting in a corresponding
increase in the number of segments, degrading the overall index construc-
tion time.

Our first optimization is based on a simple but effective observation
that the partitioning phase need not use the global t threshold. Trellis+
uses the larger tp value for the partitioning phase, since Eq. (1) already
guarantees that TRi

will fit in M bytes. For the merging phase Trellis+
uses the smaller tm value given by Eq. (2) to guarantee that each TPj

fits
under M . This means that Trellis+ uses fewer, larger partitions, resulting
in fewer tree merge operations, and fewer disk I/O operations, yielding
faster overall running times. Note however that there is no difference in the
number of variable length prefixes, since the same threshold t = tm is used.

4.2. The String Buffer

During the partitioning phase Trellis+ needs to keep the current input
string segment Ri in memory. However, for the merging phase, without any
optimization, Trellis+ would require the entire input string in memory.
To remove this memory bottleneck, Trellis+ uses a novel string buffering
technique, which requires only a small amount of memory to be assigned
to the input string during the merging phase, thus enabling Trellis+ to
scale to extremely large sequences. The string buffering strategy relies on
several different techniques, each uniquely important because of its impact
on the buffer hit rate. The basic idea behind the buffer design is to keep
the characters most likely to be accessed in memory, and to load the rest
from disk as needed.

4.2.1. Edge Index Shifting

The goal of the index shifting technique is to restrict the character accesses
during the merging phase to a small region of the input sequence. This
small region of the input string can then be kept in memory as a part of
the string buffer, hence increasing the buffer hit rate. Recall that a suffix
tree edge is represented by two indexes, [start, end], denoting its edge label
S[start . . . end]. The basic observation is that these indexes need not be
unique so long as they denote the same string label.

September 24, 2007 22:4 Proceedings Trim Size: 9in x 6in main

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000
Fr

eq
ue

nc
y

Edge Length

Figure 3. Distribution of internal edge lengths

For example, an edge with
label “AT ” may use the in-
dexes [0, 1] or [1000, 1001] to
encode its label, as long as
S[0] = A, S[1] = T , and
S[1000] = A, S[1001] = T . An-
other important observation is
that the edge lengths between
two internal nodes, i.e., inter-
nal edge lengths, are generally
short. For example, using Hu-
man Chromosome I (approx. 200Mbp), we found that most internal edge
lengths fall between 1 and 25 characters, and the majority are only a few
characters long (the mean length is only 6.7), as shown in Fig. 3.

(a) (b)

Figure 4. (a) Index Shifting, (b) Percentage of Indexes Shifted

To implement the index shifting technique, a small “guide” suffix tree
is independently maintained, built from the first 2Mbp of Human Chromo-
some I. Prior to writing each internal edge in any subtree TRi

to the disk,
we search for its string label in the guide suffix tree. If found, we switch
the edge’s current indexes to the indexes found in the guide tree. The edge
index shifting is illustrated in Fig. 4(a); here, two edges from the partition
R50 have their edge indexes shifted to indexes at the beginning of the input
string.

Based on the data from all the partitions for the complete Human
genome (using 512MB memory), as shown in Fig. 4(b), we found that
on average 97% of the internal edge label indexes can be shifted to the
range [0 . . . 2 × 106) via this optimization. This behavior is not entirely
surprising, since the genome contains many short repeats, most of which
are likely to have been encountered in the first 2Mbp segment of the genome
(which is confirmed by Fig. 4(b)). In addition to the guide tree, the string
S[0 . . . 2 × 106) is also stored in the memory (requiring 0.5MB space after
compression) as part of the string buffer because it will be heavily accessed
during the merging step. The guide suffix tree requires about 70MB mem-

September 24, 2007 22:4 Proceedings Trim Size: 9in x 6in main

ory. Furthermore, as mentioned previously, additional internal nodes are
created during the subtree merging phase. Trellis+ also shifts these in-
dexes to be in the range [0 . . . 2 × 106).

4.2.2. Buffering Internal Edge Labels

Fig. 4(b) shows that approximately 3% of the internal edge labels are still
not found in the guide suffix tree. These leftover pairs of internal edge
indexes are recorded during the partitioning phase whenever index shifting
cannot be applied. Then, during the merging phase, the substrings corre-
sponding to these index ranges are loaded directly into the main memory.
These strings are also compressed using 2 bits per character. In all of our
experiments (even for the complete human genome), the memory required
to keep these substrings consumes at most 20MB.

4.2.3. Buffering Current Segment

Subtrees TRi,Pj
are always merged starting from segment R0 to the last par-

tition Rr−1 for each prefix Pj . When the ith subtree is being merged with
the intermediate merged prefix-subtree Mi−1 (from partitions R0 through
Ri−1), the substring from partition Ri is more heavily accessed than those
of the previous partitions. Based on this observation, Trellis+ always
keeps the string corresponding to the current partition Ri in memory, which
requires

tp

4
bytes of space.

4.2.4. Leaf Edge Label Encoding

The index shifting optimization can only be applied to internal nodes, and
not to the leaf nodes, since the leaf edge lengths are typically an order
of magnitude longer than internal node edge lengths. Nevertheless, we
observed that generally only a few characters from the beginning of the
leaf edges are accessed during merging (before a mismatch occurs). This
is because leaves are relatively deep in the tree and lengthy exact matches
do not occur too frequently. Therefore, merging does not require too many
leaf character accesses. To guarantee that the more frequently accessed
characters are readily in memory, we allow 64 bits to store the first 29
characters (which require 58 bits, with 2 bits per character) of each leaf
label. The last 6 bits are used as an offset to denote the number of current
valid characters for the leaf edge. Initially all 29 characters are valid, but
characters towards the end become invalid if an internal node is created as
a result of merging the leaf edge with another edge. The encoded strings
are stored with their respective leaf nodes, and not actually in the memory
buffer. Since disk accesses are expensive, the encoded strings are loaded on
an as needed basis (we found that 15 – 35% of leaves are not accessed at all
during the merge). The memory required for leaf edge label encoding is at
most 8tm bytes per prefix. We found that about 93 – 97% of leaf characters
accessed during the merge can be found using the encoded labels.

September 24, 2007 22:4 Proceedings Trim Size: 9in x 6in main

4.2.5. String Buffer Summary

As for the rest of the characters that are a buffer miss (i.e., not captured
by any of the above optimizations), they are directly read from the disk.
We found that the input sequence disk access pattern resulting from the
buffer misses during the merge has very poor locality of reference, i.e., it is
almost completely random, with the exception that short consecutive range
of characters are accessed together. These short ranges represent the labels
of the edges being merged. Therefore, we keep a small label buffer of size
256KB to store the characters that require a direct disk access: each disk
read fetches 256KB consecutive characters at a time.

The total amount of memory required for all of the optimization consti-
tuting the string buffer can be calculated by adding the amounts of memory
required for each technique: 0.5MB for the index shifting, 70MB for the
guide tree, 20MB for buffering internal edge labels,

tp

4×106 MB for buffering

current segment, 8tm

106 MB for leaf edge label encoding, and 0.25MB for the
small label buffer. The total string buffer size is thus well under 100MB,
using 512MB memory limit (using Eqs.(1) and (2) to compute tp and tm).
Note that like Trellis, Trellis+ has O(n) space and O(n2) time com-
plexity in the worst case, due to the O(n2) worst-case merging phase time.
In practice the running time is O(n log n); see 13 for a detailed complexity
analysis of Trellis.

5. Experiments

We now present an experimental study on the performance of Trellis+.
We compare Trellis+ only against Trellis since we showed 13 that
Trellis outperforms other disk-based suffix methods like TDD 15, Dy-
naCluster 3, TOPQ 1 and so on. TDD 15 was in turn shown to have much
better performance than the Hunt’s method 11, and even a state-of-the-art
suffix array method, DC3 5. Note that we were not able to compare with
ST-Merge 15 (an extension of TDD, designed to scale to sequences larger
than memory), since its implementation is not currently available from its
authors. All experiments were performed on an Apple Power Mac G5 ma-
chine with 2.7GHz processor, 512KB cache, 4GB main-memory, and 400GB
disk space. The maximum amount of main-memory usage across all exper-
iments was restricted to 512MB; this memory limit applies to all internal
data structures including those for the suffix tree, memory buffers and the
input string. Both Trellis+ and Trellis were compiled with the GNU
g++ compiler v. 3.4.3 and were run in 32-bit mode; they produce identical
suffix trees. The sequence data used in all experiments are segments of the
human genome ranging from size 200Mbp to 2400Mbp, as well as the entire
human genome. To study the effects of the two optimizations, we denote
by Trellis+nb the version of Trellis+ that only has the large segment
size optimization but no string buffer, and we denote by Trellis+b, the
version that has both the larger segment and string buffer optimizations.

September 24, 2007 22:4 Proceedings Trim Size: 9in x 6in main

5.1. Effect of Larger Segment Size

Here we study the effects of the larger segment size, without the string
buffer. Trellis+nb has larger and therefore fewer partitions than Trel-

lis, since for Trellis the number of partitions is O(n
tp

) and the value of tp
decreases as the sequence length n increases, resulting in many partitions
(as shown in Fig. 5(a)). Therefore, when indexing a very large sequence,
the performance of Trellis suffers when tp is small, because of a large
number of partitions. In contrast, since the partitioning threshold tp for
Trellis+nb remains constant regardless of n, its number of partitions
increases at a much slower rate, as shown in Fig. 5(b).

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 200 600 1000 1400 1800

P
ar

tit
io

ni
ng

 P
ha

se
 T

hr
es

ho
ld

 (
t p

)

Sequence Length (Mbp)

TRELLIS+NB/B
TRELLIS

(a) Partitioning Threshold (tp)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 200 600 1000 1400 1800 2200

P

ar
tit

io
ns

Sequence Length (Mbp)

TRELLIS
TRELLIS+B

TRELLIS+NB

(b) Number of Partitions

Figure 5. Effect of Larger Segment Size on Partitioning Phase

 0

 100

 200

 300

 400

 500

 600

 700

 200 600 1000 1400 1800 2200

T
ot

al
 T

im
e

(m
in

s)

Sequence Length (Mbp)

TRELLIS
TRELLIS+B

TRELLIS+NB

(a) Total Running Time (mins)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 200 600 1000 1400 1800 2200

P
a

r
ti
ti
o

n
in

g
 T

im
e

 (
m

in
s
)

Sequence Length (Mbp)

TRELLIS
TRELLIS+B

TRELLIS+NB

(b) Partitioning Time

 0

 50

 100

 150

 200

 250

 300

 350

 400

 200 600 1000 1400 1800 2200

M
e

r
g

in
g

 T
im

e
 (

m
in

s
)

Sequence Length (Mbp)

TRELLIS
TRELLIS+B

TRELLIS+NB

(c) Merging Time

Figure 6. Running Time Comparison

The timings of Trellis+nb in comparison to Trellis are shown in
Figs. 6(a), 6(b), and 6(c), which show the total time, partitioning phase
time, and merging phase time for Trellis+nb versus Trellis, as we
increase the sequence length from 200Mbp to 1.8Gbp. We find that
Trellis+nb consistently outperforms Trellis, especially when the in-
put sequence size is much larger than the available memory (which is only
512MB). For example, Trellis+nb is about twice as fast as Trellis for
the 1.8Gbp input sequence. This is directly a consequence of the larger,

September 24, 2007 22:4 Proceedings Trim Size: 9in x 6in main

fewer partitions used by Trellis+nb, which result in a much faster par-
titioning phase (see Fig. 6(b)). The impact of larger segment sizes on the
merging phase is not much (see Fig. 6(c)), but Trellis+nb still has faster
merge times, since there are fewer partitions to be merged for each prefix-
based subtree TPj

.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20

B
uf

fe
r

H
it

P
er

ce
nt

ag
e

Partition Number

ALL
SI+SM+BI

SI+SM
SI+BI

SI

(a) Buffer Hit Rate

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

S
I

S
+ B

I

S
I +S

M

S
I +S

M +B
I

ALL

M
er

ge
 T

im
e

(s
ec

)

Optimizations

(b) Buffer Optimizations Times

Figure 7. Effect of String Buffer Optimizations

5.2. Effect of String Buffer

We now investigate the effect of the string buffering strategy. First we
report the difference in the buffer hit rate and merging phase time for
Trellis+b using the different combinations of buffering optimizations.
Fig. 7(a) shows the buffer hit rate for all the characters accessed during
the subtree merging operations, using as input string Human Chromosome
I (with length approx. 200Mbp), with the 512MB memory limit. The hit
rates are shown only for the first 20 partitions, but the same trend continues
for the remaining partitions. In the figure, SI denotes the internal edge
index shifting, SM denotes index shifting during merge phase, BI denotes
buffering internal labels, and ALL denotes all the buffering optimizations.
We can clearly see that internal edge index shifting alone yields a buffer hit
rate of over 50%. Combination of optimizations yield higher hit rates, so
that when all the optimization are combined we achieve a buffer hit rate
of over 90%. Fig. 7(b) shows effect of the improved buffer hit rates on the
running time of the merging phase in Trellis+b. All the optimizations
results in a four-fold decrease in time.

Comparing the total running time, and the times for the partitioning
and merging phases (shown in Figs. 6(a), 6(b), and 6(c)), we find that
initially Trellis+nb (that does not use the string buffer) outperforms
Trellis+b (that uses string buffer). However, as the input sequence be-
comes much larger, Trellis+nb is left with less memory to construct the
tree, because it has to maintain the entire compressed input string in mem-
ory. Consequently, beyond a certain sequence length, Trellis+b starts to
outperform Trellis+nb. In fact, without string buffer, we were not able
to run Trellis+nb on an input of size larger than 1.8Gbp, whereas with
the string buffer Trellis+b can construct the disk-based suffix tree for

September 24, 2007 22:4 Proceedings Trim Size: 9in x 6in main

the entire Human genome. For a 2.4Gbp sequence, Trellis+b took about
8.3 hrs (500 mins, as shown in Fig. 6(a)), and for the full Human genome
(with over 3Gbp length), Trellis+b finished in about 11 hours using only
512MB memory! b

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 200 600 1000 1400 1800 2200

M
er

gi
ng

 P
ha

se
 T

hr
es

ho
ld

 (
t m

)

Sequence Length (Mbp)

TRELLIS
TRELLIS+NB

TRELLIS+B

(a) Merging Threshold (tm)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 200 600 1000 1400 1800 2200

V

ar
ia

bl
e

Le
ng

th
 P

re
fix

es

Sequence Length (Mbp)

TRELLIS
TRELLIS+NB

TRELLIS+B

(b) Number of Prefixes

Figure 8. Effect on the Merging Threshold and Number of Variable Length Prefixes

Fig. 8(a) shows the merging phase threshold tm, and Fig. 8(b) shows
the number of variable-length prefixes for Trellis+b and Trellis+nb.
Since Trellis+nb has to retain the entire input string in memory during
the merging phase, with increasing sequence length Trellis+nb has less
amount of memory remaining, resulting in smaller tm and many more pre-
fixes. On the other hand, for Trellis+b the number of prefixes grows very
slowly. Overall, as shown in Figs. 6(b) and 6(c), the suffix buffer allows
Trellis+b to scale gracefully for sequence much larger than the available
memory, whereas Trellis+nb could not run for an input string longer
than 1.8Gbp (with 512MB memory).

5.3. Query Times

 0.05

 0.055

 0.06

 0.065

40 60 80 100
200
400
600
800
1000
2000
4000
6000
8000
10000

Q
ue

ry
 T

im
e

(s
ec

s)

Query Length (bp)

Query Times on the Human Genome

Figure 9. Average Query Times

We now briefly discuss the query
time performance on the disk-based
suffix tree created by Trellis+ on
the entire human genome (which
occupies about 71GB on disk). 500
queries of different lengths ranging
from 40bp to 10,000bp were gen-
erated from random starting posi-
tions in the human genome. Fig-
ure 9 shows the average query times
over the 500 random queries for each query length (using 2GB memory).
The average query time for even the longest query (with length 10,000bp)
took under 0.06s, showing the effectiveness of disk-based suffix tree indexing
in terms of the query performance (see 13 for more details).

bWe showed earlier 13 that Trellis can index the entire human genome in about 4 hours
with 2GB memory.

September 24, 2007 22:4 Proceedings Trim Size: 9in x 6in main

6. Conclusion

In this paper we have presented effective optimization strategies which
enable Trellis+ to handle genome-scale sequences, using only a limited
amount of main memory. Trellis+ is suitable for indexing entire genomes,
or massive amounts of short sequence read data, such as those resulting from
cheap genome sequencing and metagenomics projects. For the latter case,
we simply concatenate all the short reads into a single long sequence S and
index it. In addition we maintain an auxiliary index on disk that allows
one to look up for each suffix position Si, the corresponding sequence id,
and offset into the short read. Using all pairs suffix-prefix matching 9, our
disk based suffix tree index can enable rapid sequence assembly, and can
also enable other next generation sequence analysis applications.

References

1. S.J. Bedathur and J.R. Haritsa. Engineering a fast online persistent suffix
tree construction. In 20th Int’l Conference on Data Engineering, 2004.

2. A.L. Brown. Constructing genome scale suffix trees. In 2nd Asia-Pacific
Bioinformatics Conference, 2004.

3. C.-F. Cheung, J.X. Yu, and H. Lu. Constructing suffix tree for gigabyte
sequences with megabyte memory. IEEE Transactions on Knowledge and
Data Engineering, 17(1):90–105, 2005.

4. A.L. Delcher, A. Phillippy, J. Carlton, and S.L. Salzberg. Fast algorithms
for large-scale genome alignment and comparison. Nucleic Acids Research,
30(11):2478–2483, 2002.

5. R. Dementiev, J. Kärkkäinen, J. Mehnert, and P. Sanders. Better external
memory suffix array construction. In Workshop on Algorithm Engineering
and Experiments, 2005.

6. M. Farach-Colton, P. Ferragina, and S. Muthukrishnan. On the sorting-
complexity of suffix tree construction. J. of the ACM, 47(6):987–1011, 2000.

7. P. Ferragina and R. Grossi. The string B-tree: a new data structure for
string search in external memory and its applications. Journal of the ACM,
46(2):236–280, 1999.

8. R. Giegerich, S. Kurtz, and J. Stoye. Efficient implementation of lazy suffix
trees. Software Practice & Experience, 33(11):1035–1049, 2003.

9. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge Uni-
versity Press, 1997.

10. K. Heumann and H. W. Mewes. The hashed position tree (HPT): A suffix
tree variant for large data sets stored on slow mass storage devices. In 3rd
South American Workshop on String Processing, 1996.

11. E. Hunt, M.P. Atkinson, and R.W. Irving. A database index to large biolog-
ical sequences. In 27th Int’l Conference on Very Large Data Bases, 2001.

12. R. Japp. The top-compressed suffix tree: A disk-resident index for large
sequences. In BNCOD Bioinformatics Workshop, 2004.

13. B. Phoophakdee and M. J. Zaki. Genome-scale disk-based suffix tree index-
ing. In ACM SIGMOD Int’l Conference on Management of Data, 2007.

14. K. Sadakane and T. Shibuya. Indexing huge genome sequences for solving
various problems. Genome Informatics, 12:175–183, 2001.

15. Y. Tian, S. Tata, R.A. Hankins, and J.M. Patel. Practical methods for con-
structing suffix trees. VLDB Journal, 14(3):281–299, 2005.

16. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3), 1995.

