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Abstract 

 Approaches for indexing proteins, and for fast and scalable searching for structures 

similar to a query structure have important applications such as protein structure and 

function prediction, protein classification and drug discovery. In this paper, we developed 

a new method for extracting the local feature vectors of protein structures. Each residue is 

represented by a triangle, and the correlation between a set of residues is described by the 

distances between !C  atoms and the angles between the normals of planes in which the 

triangles lie. The normalized local feature vectors are indexed using a suffix tree. For all 

query segments, suffix trees can be used effectively to retrieve the maximal matches, 

which are then chained to obtain alignments with database proteins. Similar proteins are 

selected by their alignment score against the query. Our results shows classification 

accuracy up to 97.8% and 99.4% at the superfamily and class level according to the 

SCOP classification, and shows that on average 7.49 out of 10 proteins from the same 

superfamily are obtained among the top 10 matches. These results are competitive with 

the best previous methods.  

 

1. Introduction 

Proteins are composed of chains of basic building blocks called amino acids. 

Traditionally the problem of determining similar proteins was approached by finding the 

amount of similarity in their amino acid sequences. However biologists have determined 

that even proteins which are remotely homologous in their sequence similarities, can 

perform surprisingly very similar functions in living organisms [24]. This fact has been 

attributed to the dependency of the functional role of proteins on their actual three-



dimensional (3D) structure. In view of this then it can be stated that two proteins with 

remote sequence homology can be functionally classified as similar if they exhibit 

structural homology. 

Searching the growing database of protein structures for structural homologues is a 

difficult and time-consuming task. For example, we may want to retrieve all structures 

that contain sub-structures similar to the query, a specific 3D arrangement of surface 

residues, etc. Searches such as these are the first step towards building a systems level 

model for protein interactions. In fact, high throughput proteomics methods are already 

accumulating the protein interaction data that we would wish to model, but fast 

computational methods for structural database searching lag far behind; biologists are in 

need of a means to search the protein structure databases rapidly, similar to the way 

BLAST [1] rapidly searches the sequence databases. 

 

1.1. Our Contributions 

 In this paper, we present a fast, novel protein indexing method called PSIST 

(which stands for Protein Structure Indexing using Suffix Trees). As the name implies, 

our new approach transforms the local structural information of a protein into a 

“sequence” on which a suffix tree is built for fast matches. We first extract local 

structural feature vectors using a sliding a window along the backbone. For a pair of 

residues, the distance between their !C  atoms and the angle between the planes formed 

by the !C , N  and C atoms of each residue are calculated. The feature vectors for a 

given window include all the distances and angles between the first residue and the rest 

of the residues within the window. Compared with the local features from a single 

residue, our feature vectors contain both the translational and rotational information. 

After normalizing the feature vectors, the protein structure is converted to a sequence 

(called the structure-feature sequence or SF-sequence) of discretized symbols. 

We use suffix trees to index the protein SF-sequences. A suffix tree is a versatile 

data structure for substring problems [11], and they have been used for various problems 

such as protein sequence indexing [14][18] and genome alignment [7][8]. Suffix trees can 

be constructed in )(nO  time and space [17][29], and thus are an effective choice for 

indexing our protein SF-sequences.  



 

For a given query, all the maximal matches are retrieved from the suffix tree and 

chained into alignments using dynamic programming. The top proteins with the highest 

alignment scores are finally selected. Our results shows classification accuracy up to 

97.8% and 99.4% at the superfamily and class level according to the SCOP classification, 

and shows that on average 7.49 out of 10 proteins from the same superfamily are 

obtained among the top 10 matches. These results are competitive with the best previous 

methods. 

 

1.2. Prior Research 

Protein structural similarity determination can be classified into three approaches: 

pair-wise alignment, multiple structure alignments, and database indexing. 

Pair-wise structure alignment methods can be classified into three classes [10]. The 

first class works at the residue level [12] [26]. The second class focuses on using 

secondary structure elements (SSEs) such as ! -helices and ! -strands to align two 

proteins approximately [16] [19] [22]. The third approach is to use geometric hashing, 

which can be applied at both the residue [15] and SSE level [13]. 

Previous work has also looked at multiple structure alignments. These methods are 

also based on geometric hashing [21], or SSE information [9]. A recent method [25] aims 

to solve the multiple structural alignment problem with detection of partial solutions; it 

computes the best scoring structural alignments, which can be either sequential or 

sequence-order independent [30], if one seeks geometric patterns which do not follow the 

sequence order. Due to their time complexity, the pair-wise and multiple structure 

alignment approaches are not suitable for searching for similarity over thousands of 

protein structures. Database indexing and scalable searching approaches satisfy this 

requirement. 

There are two classes of protein structure indexing approaches according to the 

representation of the local features. The first class focuses on indexing the local features 

at the residue level directly, and the other class uses SSEs to approximate the local 

feature of the proteins. 

CTSS [4] approximates the protein !C  backbone with a smooth spline with 



minimum curvature. The method then stores the curvature, torsion angle and the 

secondary structure that each !C  atom in the backbone belongs to, in a hash-based index. 

ProGreSS [3] is a recent method, which extracts the features for both the structure and 

sequence, within a sliding window over the backbone. Its structure features are the same 

as the CTSS features (curvature, torsion angles, and SSE information); its sequence 

features are derived using scoring matrices like PAM or BLOSUM. Like CTSS, 

ProGreSS features are not localized. 

The LFF profile algorithm [6] first extracts some representative local features from 

the distance matrix of all the proteins, and then each distance matrix is encoded by the 

indices of the nearest representative features. Each structure is represented by a vector of 

the frequency of the representative local features. The structure similarity between two 

proteins is the Euclidean distance between their LLF profile vectors. This method is more 

suitable for global rather than local similarity between the query and database proteins. 

There are also some methods that index the protein structures using SSEs. For each 

protein, PSI [5] uses a *
R -tree to index a nine-dimensional feature vector, a 

representation of all the triplet SSEs within a range. After retrieving the matching triplet 

pairs, a graph-based algorithm is used to compute the alignment of the matching SSE 

pairs. Another SSE-based method, ProtDex [2] obtains the sub-matrices of the SSE 

contact patterns from the distance matrix of a protein structure. The grand sum of the sub-

matrices and the contact-pattern type are indexed by an inverted file index. By their 

nature, SSEs model the protein only approximately, and therefore these SSE-based 

approaches lack in retrieval accuracy and furthermore, are not very useful for small query 

proteins with few SSEs. 

For a given query, the most common similarity-scoring scheme is the number of 

votes accumulated from the matching residues [3][4][15]. CTSS and ProGreSS further 

define the p -value of a protein based on the number of votes and smaller p -values 

imply better similarity. These scoring schemes, however, do not take into account the 

local similarity. 

The work most relevant to our approach is PAST [15], which also uses a suffix tree 

to index protein structures. While PAST shares with PSIST the general idea of using a 

discretized alphabet to represent structural sequences, and indexing them using suffix 



trees, the actual details of the methods are very different. PSIST uses a different feature 

representation, and searches for chains of maximal matches, and most importantly is 

especially designed for approximate matches.  

 

2. Indexing proteins  

2.1. Local feature extraction  

A protein is composed of an ordered sequence of residues linked by peptide bonds. 

Each residue has !C , N  and C  atoms, which constitute the backbone of the protein. 

Although the backbone is linear topologically, it is very complex geometrically. The 

bond lengths, bond angles and torsion angles completely define the conformation and 

geometry of the protein. 

 
Figure 1. Bond length and bond angles 

 
Figure 2. Torsion angles 

 



 
Figure 3. The distance and angle between two residues 

The bond length is the distance between the bonded atoms, and the bond angle is 

the angle between any two covalent bonds that include a common atom (see Figure 

Error! Reference source not found.). For instance, the bond length of N -C  is 1.32 Å  

(Å  denotes distance in angstroms), the bond angle between !C - N  and N -C  is o
123 . 

Torsion angles are used to describe conformations around rotatable bonds (see Figure 

Error! Reference source not found.). Assume four consecutive atoms are connected by 

three bonds 
1!ib , 

i
b  and 

1+ib . The torsion angle of 
i
b  is defined as the smallest angle 

between the projections of 
1!ib  and 

1+ib  on the plane perpendicular to bond 
i
b . In Figure 

Error! Reference source not found., ! , !  and !  are the torsion angles on the bond 

N - !C , !C -C  and C - N  respectively. 

To capture the local features more accurately, we need to extract the features from a 

set of local residues. To obtain the local feature vector, we first represent each residue 

individually, and then consider the relationship between a pair of residues and a set of 

residues. For each residue, the length of !C -N  bond is Å1.47  and that of the !C -C  

bond is Å1.53 , and the angle between !C - N  and !C -C  bonds is o
110 . Thus all the 

triangles formed by N - !C -C  atoms in each residue are equivalent, and each residue can 

be represented by a triangle of the same size. 

The relationship between a pair of residues in 3D (three-dimensional) space can be 

fully described by the rigid transformation between two residues, which is a vector of 6 

dimensions, containing 3 translational and 3 rotational degrees of freedoms. To reduce 

the dimension of the vector, we use a distance and an angle to describe the transformation 



features between two residues. 

We define the distance d  between a pair of residues as the Euclidean distance 

between their !C  atoms. The angle !  between a pair of residues is defined as the angle 

between the planes that contain N - !C -C  triangles representing each residue (see Figure 

Error! Reference source not found.). 

The distance and angle are invariant to displacement and rotation of the protein. 

The Euclidean distance between two !C  atoms is calculated by their 3D coordinates 

directly. The angle between the two planes defined by the N - !C -C  triangles, is 

calculated between their normals having !C  as the origin. The normal of the plane define 

by the triangle N - !C -C  is given as  

  
  

! 

n =
NC" #C"C

|| NC" #C"C ||
 

The angle between the two normals 1n  and 2n  is then calculated as  

  
  

! 

cos" =
|| n1 ||2 + || n2 ||2 # || n2 # n1 ||2

2$ || n1 || $ || n2 ||
 

To describe the local features between a set of residues, we slide a window of 

length w  along the backbone of the protein. The distances and angles between the first 

residue i  and all the other residues j  (with 1]1,[ !++" wiij ) within the window are 

computed and added to a feature vector. Each window is associated with one feature 

vector. 

Let },,,{= 21 npppP K  represent a protein, where 
i
p  is the i th-residue along the 

backbone. The feature vector of the protein is defined as },,,{= 121

v

wn

vvv
pppP +!K , where 

w  is the sliding window size, and v

i
p  is a feature vector 

),,(,),,(cos),,(( 111 !+++ wiiiiii ppdppppd K"  )),(cos 1!+wii
pp" , where ),( ji ppd  is the 

distance between the residues 
i
p  and j

p , and ),(cos
ji
pp!  gives the angle between the 

residues 
i
p  and j

p . With window size is w , the dimension of each feature vector v

i
p  is 

1)(*2 !w . 

 



 

2.2. Normalization 

Our feature vector is a combination of distances and angles, which have different 

measures. A normalization procedure is performed after the feature vectors are extracted. 

The angle !  is in the range ][0,! , so 1,1][cos !"# . 

For normalizing the distances, we need to know the upper bound on the distance 

between the i -th and 1)( !+ wi -th residue in the protein. From Figure 24, the average 

distance between 
1!C - N  atoms is Å1.47=

1
d , the average distance between N -C  

atoms is Å1.32=
2
d , and the angle !  between 

1!C -N  and N -C  bonds is o
123 . The 

distance between 
1!C -C  atoms is therefore 

! 

d(C"1,C) = d1
2

+ d2
2
# 2d1d2 cos" = 2.453. 

The distance between C -
2!C  atoms is 1.53=),( 2!CCd , so the average distance between 

two !C  atoms is: 4.023=1.572.453=),(),(<=),( 2121 ++ !!!! CCdCCdCCd . If the 

distance between two atoms are greater than 4.023, it is trimmed to 4.023. For a sliding 

window of size w , the lower bound of the distance between any two atoms is 0 , and the 

upper bound is 1)(*4.023 !w , so the distance between any pair of residues within a w  

length window is in the range 1)](*[0,4.023 !w . 

   Table 1. Examples of normalized feature vectors for 3=w  and 10=b    

Feature vector  

d  !cos  d  !cos  

Original   3.55 0.29 5.4 -0.23 

Normalized  4 6 6 3 

Original   4.04 0.11 5.75 -0.25 

Normalized 5 5 7 3 

Original 3.60 0.45 5.29 0.21 

Normalized 4 7 6 6 

 

All the distances and angles are normalized and binned into an integer within the 

range 1][0, !b . We use the equation !
"

#
1)(*4.023

*
=

w

bd
d  to normalize and bin the 



distance and !
+

"
2

*1)cos(
=cos

b#
#  to normalize and bin the angle. Table 24 shows 3 

examples of normalized and binned feature vectors for 3=w  and 10=b . The size of 

each feature vector is 4=1)(*2 !w , and the normalized value is within [0,9] . 

After normalization and binning, each feature vector is defined as 

},,,{= 11)*(210

s

w

sss
pppp !!K , where s

i
p  is an integer within the range 1][0, !b . Thus, the 

structure of each protein P  is converted to a structure-feature sequence 

},{= 110

s

wn

sss
PPPP +!K , called the  SF-sequence, where s

i
P  is the i -th normalized feature 

vector ( s
p ) along the backbone. Note that each symbol within an SF-sequence is a vector 

of length 1)2( !w , to which we assign a unique integer identifier as its label. Thus the 

SF-sequences are over an alphabet of size 1)2( !w
b . 

 

2.3. Generalized suffix trees construction 

After obtaining the SF-sequences for all proteins in the database, we use 

generalized suffix tree (GST) as the indexing structure. GST is a compact representation 

of the suffixes of sequences, and can be constructed in linear time [29]. A suffix can be 

located by following an unique path from the root to a leaf. 

To save the storage space of the suffix tree, we map each structure feature vector 
s
p  to an unique key or symbol for the suffix tree construction, and map it back to the 

normalized vector when we compute the distance between two feature vectors. For 

instance, the three feature vectors in Table 24 could be mapped to the symbols a , b  and 

x  respectively. 

 

Notation: Let GST  be a generalized suffix tree, we use the following notation in the rest 

of the paper. We use N  for a node in the suffix tree, E  for an edge, )(EC  for a child 

node of the edge E , )(EL  for the label on edge E , ])[( iEL  for the th
i  symbol of the 

edge label )(EL , )(NP  for the path-label of the node N  (formed by concatenating all 

the edge labels from the root node to N ), and ])[( iEP  for the path-label of ])[( iEL . 

Further, each leaf node in GST  contains a sequence-position pair ),( px , where x  is a 



sequence identifier, and p  is the start position of the suffix within sequence x . For any 

node N , we use the notation 

! 

sp" list(N) for the collection of the sequence-position pairs 

for all the leaves under N . 

 

Example: Figure Error! Reference source not found. shows an example of GST for 

two SF-sequences xabxaS =
1

 and babxbaS =
2

, over the alphabet },,{ xba , obtained by 

mapping each normalized feature vectors in Table Error! Reference source not found. 

to a unique letter symbol. Node 0 is the root node, node 1 to 7 are internal nodes, and the 

rest are leaves. '$' is the unique termination character. The path label of node 7 is xa . The 

edge label )(EL  of the edge out of node 7 is bxa , so its second character [2])(EL  is x , 

and its path-label [2])(EP  is xabx . The sequence-position identifier (1,0)  of the node 7 

stands for xabxa , a suffix of sequence 
1
S  that starts at position 0 . Thus 

! 

sp" list(7) = {(1,0),(1,3)}, and the sp-list for node 6 is (1,0)}(1,3),{(2,3),=(6)listsp ! . 

 
Figure 4. GST for sequences xabxaS =

1
and babxbaS =

2
 

 

3. Querying  

So far we have discussed how to build the suffix tree indexing based on the local 

structure features for each protein. In this section, we will present how to search for 

similar proteins. 

Given a query ),( !Q , we first extract its feature vectors and convert it into a SF-



sequence s
Q  as described in Section Error! Reference source not found.. Then three 

phases are performed: searching, ranking and post-processing. The searching phase 

retrieves all the matching segments/subsequences from the database within a distance 

threshold !  (on a per symbol basis), the ranking phase ranks all the proteins by chaining 

the matching segments, and the post-processing step further uses Smith-Waterman [27] 

approach to find the best local alignment between the query and the selected proteins. 

 

3.1. Searching 

For a given query SF-sequence }{= 21

s

n

sss
QQQQ K , maximum feature distance 

threshold ! , and a minimum match length threshold l , the search algorithm finds all 

maximal matching SF-subsequences },{= 21

s

m

sss
PPPP K  that occur in both the query SF-

sequence and any database protein SF-sequence. A maximal match has the following 

properties:   

1. There exists a matching SF-subsequence s

mi

s

i QQ ++ K1  of  s
Q , such that 

!<),( s

j

s

ji PQdist + , where mj K1,2= , s

jiQ +  and s

jP  are the normalized and 

binned feature vectors of length 1)(*2 !w . The distance function used in our 

algorithm is Euclidean distance.   

2. The length of the match is at least as long as the length threshold, i.e., lm ! .       

3. Assume s
P  is a SF-subsequence of protein s

R , then neither vP
s  nor s

vP  is a 

matching SF-subsequence of s
Q  and s

R  for any feature vector v  (this 

ensures maximality).   

For instance, abx  is a maximal match between the SF-sequences xabxa  and 

babxba  of Figure Error! Reference source not found.. Note that our approach differs 

from MUMmer genome alignment method presented in [7] which finds  exact maximal  

unique matches between  two genomes. 

To find all maximal matches within !  between the query s
Q  and suffix tree 

d
GST  

built from the database proteins, one solution is to trace every SF-subsequence of s
Q  

from the root of 
d

GST , but the common prefix of two subsequences will be searched 

twice and more comparisons will be performed. To reduce the number of comparisons, 



we build another suffix tree qGST  for s
Q , and then traverse two suffix trees 

simultaneously to retrieve all the maximal matches. In the discussion below, we use the 

subscript q  for the query, and d  for the database. For instance, qN  stands for a query 

suffix tree node, while 
d
N  stands for a database suffix tree node. 

The matching algorithm starts with the MMS  procedure as shown in Figure 24, and 

its inputs are the root node ( qN ) of the query suffix tree qGST , the root node (
d
N ) of the 

database suffix tree 
d

GST , the distance tolerance !  and the minimum length of the 

maximal match l . For every edge out of the query node and database node, MMS  calls 

the NodeSearch procedure (see Figure 1) to match their labels and follow the path to find 

all the matching nodes. 

 
Figure 5. MaximalMatchesSearch algorithm 

In the NodeSearch procedure, for two edges from different suffix trees, the distance 

between the corresponding pair of label symbols ( )][( qiEL  and djEL ][( ) is computed in 

step 2. If the distance is larger than ! , which implies a mismatch, the procedure updates 

the MMSet  and proceeds to the next branch. If there is no mismatch, the short edge will 

reach the end first. If the child node of the short edge is a leaf, we need to update the 

MMSet . If the child node is an internal node, two different procedures are called 

recursively. 1) If the lengths of two edge labels are the same, then MMS  procedure is 

called for two child nodes in step 3. 2) If one of the edge has a shorter label, the 

algorithm NodeSearch will be called recursively with the new input of all the edges out 

of the child node of the short edge (please see step 4 and 5). 



 
Figure 6. NodeSearch Algorithm 

 

 
Figure 7. UpdateMaximalMatchesSet algorithm 



Each matching SF-subsequence s  is defined by two triplets ),,( lpx  and ),,( lqy , 

where p  and q  are the start positions of s  in the query sequence xQ  and the protein 

sequence yP  respectively, and l  is the length. If s  is a maximal match, it will be added 

to the MMSet  in the updateMMS  procedure. To identify a maximal match, we need to 

compare whether any extension of the match will result in a mismatch. In our algorithm, 

each common subsequence s  is obtained either from characters mismatch or a leaf node, 

so we just need to compare the characters before the common subsequence ( 1][ !pQx  

and 1][ !qPy ) to identify the maximal match. 

We can also process multiple query SF-sequences at the same time by inserting 

them to the query suffix tree qGST , so the nodes with the same path-label are visited only 

once and the performance will be improved. 

 

3.2. Ranking 

The maximal matches are obtained for the query sequence and reference sequences 

in the database. Every maximal match is a diagonal run in the matrix formed by a query 

and reference sequence. We use the best diagonal runs described in the FASTA algorithm 

[23] as our ranking scheme. We calculate the alignment as a combination of the maximal 

matches with the maximal score. The score of the alignment is the sum of the scores of 

the maximal matches minus the gaps penalty. Both the score of a maximal match and a 

gap are their length in our algorithm. Two maximal matches can be chained together if 

there is no overlap between them. We use a fast greedy algorithm to find the chains of 

maximal alignments. At first, the maximal matches are sorted by their length. The longest 

maximal match is chosen first, and we remove all other overlapping matches. Then we 

choose the second longest maximal match which doesn't overlap with the longest match, 

remove its overlapping matches and repeat the above steps until no maximal matches are 

left. This way we find the longest chained maximal matches between the query and each 

retrieved database SF-sequence. Finally all the candidates with small alignment scores 

are screened out and only the top similar proteins are selected. 

 

 



3.3. Post-processing 

For each top protein SF-sequence with a high score selected from the database, it is 

aligned with the query by running Smith-Waterman [27] dynamic programming method. 

The similarity score between two residues is set to 1 if the distance between their 

normalized feature vector is smaller than ! , or it is 0. Proteins are then ranked in 

decreasing order according to their new alignment scores and the top proteins with the 

highest scores are reported to the user. 

 

4. Experiments 

The SCOP database [20] classifies proteins according to a four level hierarchical 

classification, namely, family, super-family, fold and class. Since the SCOP database is 

curated by visual inspection it is considered to be extremely accurate. For our tests, the 

target database we used, has proteins from four classes of SCOP: all ! , all ! , !" +  

and !"/ . Our dataset D  includes a total of 1810  proteins taken from 181 superfamilies 

which have at least 10  proteins, but only 10  proteins are chosen from each superfamily. 

One protein from each superfamily is chosen randomly as the query, so the size of the 

query set qD  is also 181. This is the same dataset used in several previous indexing 

studies [3][5]. 

To evaluate our algorithm we perform two different tests: The  retrieval test finds 

the number of correct matching structures from the same superfamily as the query among 

the top k  scoring proteins, and the  classification test tries to classify the query at the 

superfamily and class levels. Our algorithm was implemented in C++ and all experiments 

reported below were done on a PC with 2.8GHz CPU and 6GB RAM, running Linux 

2.6.6. 

 

4.1. Retrieval test  

We compare our approach with one of the best previous indexing approach 

ProGreSS [3], using the Java-based code provided by its authors. We also directly 

compare with a geometric hashing based [15] indexing method, which we coded 

ourselves. For geometric hashing we take two consecutive !C  atoms along the backbone 



as the reference frame. Each remaining !C  atom and the reference frame form a triplet. 

The three pair-wise distances from a triplet are added to an *
R -tree if all of them are 

within Å7 . For querying, we form query triplets in the same manner, and find all 

matching triplets within !  range. Suppose there are n  triplets with the same query 

reference frame, and the matching protein has m  triplets with the same reference frame, 

these two reference frames are considered to be a matching pair if the ratio between m  

and n  is greater than a threshold, i.e., if 0.75>/nm . The score of a protein is its number 

of matching reference frames with respect to the query, and the proteins are ranked based 

on their scores. 

We ran the experiments using PSIST, ProGreSS, and geometric hashing, to obtain 

the number of proteins found from the same superfamily for each of the 181 queries. 

Since each superfamily has 10 proteins, including the query, there can be at most 10 

correct matching proteins from the same superfamily. 

There are five parameters used in our approach. w  is the size of the window used to 

index the local features, b  is the range used to normalize the feature vectors, !  is the 

distance threshold based on the normalized feature vectors, l  is the minimum length of 

the maximal matches, and k  is the number of top scoring proteins reported. We first 

show how PSIST performs for different values of w , ! , b , l  and k . 

 

 
Figure 8. Number of proteins found from same superfamily for different top- k value 

( 3=w , 10=b , 3=! and 10=l ). 

Figure 24 shows the number of proteins found from the same superfamily for 



different top- k  cutoffs. Note that the number of correct matches is an average over all 

181 SCOP superfamilies used in our test. The retrieval performance tapers off as k  

increases. We choose the largest cutoff as 100=k , since there is not much to be gained 

by using larger values. 

 
Figure 9. Number of proteins found from the same superfamily for different 

window sizes   when ( 10=b , 3=! and 15=l ) 

We next study the effect of varying window size w , while keeping 10=b , 3=!  

and 15=l . Figure 24 shows that a smaller window size of 3=w  yields the most number 

of correct matches (on average 8  correct matches out of 10 ), and the retrieval rate drops 

as w  increases. For a smaller window size more matches are found in the database within 

the !  distance, and PSIST is able to find the best matches after finding the chain of 

maximal matches. For larger windows the number of matches drops and some of the 

correct proteins are missed. From this experiment we conclude that 3=w  is the best for 

PSIST. 



 
Figure 10. Number of proteins found from the same superfamily for different 

! ( 3=w , 

! 

b =10 and 15=l ) 

Figure 24 shows the effect of varying !  with 100=k . The larger the ! , the more 

the structures retrieved and then PSIST is able to find the correct ones by ranking the 

alignments. We find that 3=!  works well for PSIST, and performance tapers off for 

larger values. 

 

 
Figure 11. Number of proteins found from the same superfamily for different b  

( 3=w , 2.5=! and 15=l ) 

 



 
Figure 12. Number of proteins found from the same superfamily for different length 

of maximal matches ( 3=w , 2.5=! and 10=b ) 

 

Figure 24 and 1 show that the varying normalization range b  and the length of 

maximal match l  have the similar effect on the number of proteins found from the same 

superfamily. For smaller range b  and maximal match length l , there can potentially be 

many incorrect proteins with similar match segments, but for larger b  and l , fewer 

maximal matches, but correct proteins are found. PSIST obtains its best performance 

when the bin range is between 6 and 10, and the length between 9 and 12. 

 

 Table 2. Overall comparison of the number of proteins found from the same 

superfamily among the top k candidates    

Algorithm    top4    top10    top50    top100 

 GeoHash   2.43   3.74   4.40   4.86 

ProGreSS   3.53   6.17   6.69   7.09 

PSIST   3.72   7.49   8.10   8.40 

  

Table 10 shows the comparison of the number of proteins found from the same 

superfamily for different top k  values. The table compares the performance of our 

approaches against geometric hashing and ProGreSS. Geometric hashing can find only 



2.43 correct proteins within the top 10  proteins (with 0.18=! , which was the best value 

we determined empirically). It also has relatively poor performance for other values of k . 

Both ProGreSS and PSIST retrieve more than 3  correct proteins within the top 4  

candidates. However, PSIST performs better than ProGreSS when the cutoff increases. 

For instance, PSIST could find 7.49  out of 10  proteins within the top 10  candidates. 

Note that based on the previous experiments, for the PSIST algorithm we set 3=w , 

10=b , 3=!  and 9=l . For fair comparison, we tuned the parameter settings for 

ProGreSS to report its best results (we use sequence distance threshold 0.05=
t
! , the 

structure distance threshold 0.01=
q
!  and window size 3=w ). 

 

4.2. Classification test 

In the classification test, we assume we do not know the superfamily or the class to 

which a query protein belongs. For each query we then classify it into one of 181 SCOP 

superfamilies and one of the four SCOP classes (all ! , all ! , !" +  and !"/ ) as 

follows. For each query, the top k  similar proteins are selected from the database. The 

query itself is not counted in the top k  matches. Each protein among the top k  matches 

is assigned a score, a superfamily id, and a class id. The scores of the top k  proteins from 

the same superfamily or class are accumulated. The query is assigned to the superfamily 

or class with the highest score. This classification approach can thus be thought of as k  

Nearest Neighbor classification. Below we report results separately for the superfamily-

level and class-level classification. For the performance, we report the percentage of 

correctly classified query proteins (out of the 181 queries). For the classification tests we 

also compare with the numbers reported by PSI [5] and LFF [6], in addition to the results 

of ProGreSS and Geometric Hashing. For PSIST, ProGreSS and Geometric Hashing we 

use the best parameter settings reported in the last section. 



 
Figure 13. Percentage of query proteins correctly classified for different window 

sizes when ! =3 

Proteins are classified correctly if the proteins from the same superfamily have a 

better rank. Thus the classification accuracy is proportional to the number of the correct 

proteins found in the top candidates. For instance, Figure Error! Reference source not 

found. shows the percentage of query proteins correctly classified for different window 

sizes when 3=! , and using 3=k , at the superfamily (SF) and class (CL) levels. It has a 

similar shape as Figure Error! Reference source not found.; the more the proteins 

found from the same superfamily, the higher the accuracy obtained. 

 

 

 Table 3. SCOP Classification Accuracy Comparison at the superfamily (SF) 

and class (CL) level  

Algorithm    Superfamily    Class  

Geometric Hashing   60.2%    72.9%  

PSI   88%    N/A  

LFF   68.6%    93.2%   

ProGreSS   97.2%    98.3%  

PSIST   97.8%   99.4% 



  

Table Error! Reference source not found. shows the SCOP classification 

comparison with other algorithms at the superfamily and class level respectively. 

Geometric hashing has the worst performance, it can only classify 60.2% and 72.9% 

proteins correctly at the superfamily and class level. PSI [5] uses SSE-based features, and 

its accuracy for superfamily is 88%, but its class accuracy is unavailable. LFF profiles [6] 

only classify 68.5% of the superfamily correctly, but it agrees with SCOP classification at 

93% for class level (Note that LFF profiles use a different testing protein dataset than 

ours). ProGreSS and PSIST could obtain more than 3 proteins within the top 4 

candidates, so their accuracy is very close and much better than the others. ProGreSS 

uses both the structure and sequence features to classify the proteins, and its accuracy is 

97.2% and 98.3% at the superfamily and class level. Without considering the sequence 

features, PSIST has slightly better performance than ProGreSS, its accuracy is 97.8% and 

99.4% at the superfamily and class level. 

 

4.3. Performance test 

We compare the running time of different approaches in this section. Suppose a 

protein has n  residues, the window size is w , then the number of feature vectors is 

1+!wn , so the complexity of our approach is )(=1)( nOwnO !!  per protein. Assume 

the average number of neighbors of each reference frame is k , the complexity of our 

implementation of geometric hashing is )*( nkO . Although they have the same 

complexity, geometric hashing is slower because of the coefficient k ; its running time is 

1080.4  seconds per query for distance 0.18=! . 

 

 Table 4. Running time comparison  

Algorithm    SF%    CL%    top10   time(s) 

ProGreSS   97.2%   98.3%   6.17   1.67  

PSIST-1   96.7%   98.3%    6.57   0.47  

PSIST-2   97.2%   99.4%   7.19   4.41  

PSIST-3   97.2%   99.4%    7.19   3.28  

  



Both ProGreSS and PSIST provide a trade-off between the running time and the 

accuracy performance by adjusting the parameters such as window size and distance. For 

a fair algorithmic comparison, we compare the time performance of ProGreSS and PSIST 

based on their retrieval and classification test. Table Error! Reference source not 

found. shows the running time for ProGreSS and PSIST. For ProGreSS, we choose the 

best sequence and structure distance thresholds and set window size 3=w . We set 

3=w , 2=b , 0=!  and 15=l  for the first case of PSIST, and it is 3.5 times faster than 

ProGreSS with similar retrieval and classification perform ace. The last two cases have 

the same parameters: 3=w , 6=b , 2=! , 15=l , but the difference is that the third case 

builds a query suffix tree for every 20 queries and processes them together. They have the 

same retrieval and classification performance but the third case is faster. Although both 

cases are slower than ProGreSS, they retrieve on average more proteins (7.49 vs. 6.47) 

out of the top 10 matches and obtain slightly higher accuracy. 

 

5. Conclusion 

In this paper, we present a new local feature representation of protein structures and 

convert the structure indexing to sequence indexing. We also propose a novel use of 

suffix trees to find the maximal matches between structure-feature sequences and use the 

alignment between the query and database SF-sequences to measure the structure 

similarity. Compared to ProGreSS, our approach either obtains higher accuracy, or runs 

faster with similar classification accuracy. 
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