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Abstract Despite recent advances in digital health solutions and machine learning,
personal health applications that aim to modify health behaviors are still limited in
their ability to offer more personalized decision support. Moreover, while many
personal health applications cater to general health and well-being, there remains a
significant opportunity to increase the clinical relevance of the insights being gener-
ated. This chapter describes the motivation for, and illustrative applications of,
semantic technologies for enabling clinically relevant personal health applications.
We present two use cases that demonstrate how semantic web technologies, in com-
bination with machine learning and data mining methods, can be used to provide
personalized insights to support behaviors that are consistent with nutritional guide-
lines for people with diabetes.

Keywords Semantic web - Knowledge graphs - Artificial intelligence - Personal
health - Health behavior - Diabetes self-management - Consumer health - Decision
support systems

C.-H. Chen (<)
Center for Computational Health, IBM Research, Yorktown Heights, NY, USA
e-mail: chinghua@us.ibm.com

D. Gruen - J. Harris - J. Hendler - D. L. McGuinness - N. Rastogi - O. Seneviratne - M. J. Zaki
Rensselaer Polytechnic Institute, Troy, NY, USA

e-mail: gruend2 @rpi.edu; harrij15 @rpi.edu; hendler@cs.rpi.edu; dim@cs.rpi.edu;
nidhi.rastogi @rit.edu; senevo @rpi.edu; zaki@cs.rpi.edu

M. Monti

Cognitive Al and Analytics, IBM Global Business Services, Circonvallazione Idroscalo,
Segrate, Milan, Italy

e-mail: marco.monti@it.ibm.com

© The Author(s), under exclusive license to Springer Nature 199
Switzerland AG 2022

P-Y. S. Hsueh et al. (eds.), Personal Health Informatics, Cognitive Informatics

in Biomedicine and Healthcare, https://doi.org/10.1007/978-3-031-07696-1_10



200 C.-H. Chen et al.
Decision Support for Health Behavior Change

Health outcomes are known to be driven by a combination of medical, genetic and
lifestyle factors. In the United States, a disproportionate emphasis is placed on med-
ical treatment, as compared to lifestyle modifications (Bipartisan Policy Center
2012). Where the former is primarily delivered in reaction to poor health status, the
latter is often used as a form of disease prevention and/or health maintenance. As
such, efforts to implement lifestyle modifications often rest on the shoulders of
patients (or more generally, health consumers) with sufficient means, skills and
motivation. The process of behavior change is well-studied. Yet, sustained behavior
change remains challenging to intervene effectively on (Bouton 2014). While
behavior change is recognized by experts as being a complex process involving
dynamic and stochastic factors that span the psychological, social and physical
domains, popular misconceptions are that changing one’s behavior requires no
more than ‘common sense’ or a good marketing campaign, and that most people
will rationally process relevant knowledge and information (Kelly and Barker
2016). Arguably, interventions that are adaptive and sensitive to an individual’s psy-
chological, social and environmental context, are in a better position to address
behavior change than those that are static, or adopt a ‘one-size-fits-all” approach.

With the rapid adoption of mobile phones and wearable sensing technologies,
most people now have access to mobile applications that can provide real-time sens-
ing and feedback to their users. This trend has led to the development and study of
several ‘context-aware’ digital technologies for tackling health behavior change
(Thomas Craig et al. 2020). Common approaches of incorporating contextual
awareness into digital behavior change interventions include the use of statistical
and machine learning models to generate feedback based on user generated data
(e.g., step counts and other forms of physical activity, food logs, sleep logs), as well
as the use of rule-based dialog systems, or chat bots, that provide deterministic
responses to user textual inputs that conform to anticipated patterns. However, most
mobile health applications, while popular among patients, have not seen significant
levels of acceptance from clinicians (Gordon et al. 2020). This lack of clinical
acceptance is partly explained by factors pertaining to regulations, payment sys-
tems, and clinical workflows. It may also be explained by the limited incorporation
of evidence-based, clinical guidelines into the function and design of mobile health
applications.

Semantic technologies are well-suited for representing clinical knowledge that
has been curated by medical and health experts. When semantic technologies that
can represent and reason over clinical knowledge are used together with machine
learning methods that learn from and adapt to the ‘big data’ that is continuously
generated by activities of daily living, there is the potential to improve the clinical
relevance of personal health applications. With a few notable exceptions (Michie
et al. 2017; Dragoni et al. 2020; Chen et al. 2021) there has been limited work
exploring the use of semantic technologies for health behavior change. This chapter
aims to introduce readers to semantic technologies and the potential benefits that
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they present for enhancing the personalization, interpretability and clinical utility of
personal health applications.

The objective of this chapter is to provide an introduction to semantic technolo-
gies to health informatics researchers and practitioners, and to demonstrate their
application in combination with other artificial intelligence methods (e.g., data min-
ing and machine learning) via exemplary use cases pertaining to people with diabe-
tes. These use cases were selected to highlight how clinical and health knowledge
can be combined with “big data” sources of personal behaviors and personal con-
text, to provide insights that are relevant to both health consumers and the clinicians
who serve them. The remainder of this chapter is organized as follows: In Sect.
“Semantic Technologies and the Personal Health Knowledge Graph”, we provide
an introductory overview of semantic technologies, highlighting key concepts
related to knowledge graphs and defining Personal Health Knowledge Graph
(PHKG). In Sect. “Combining Learning and Logic for Personal Health Applications”,
we explain how methods that combine machine learning and semantic technologies
are able to exploit the best of machine learning and knowledge graphs, allowing
computers to simultaneously tap into deep data and deep knowledge. To ground our
discussion in a personal health application, Section “Nutrition Self-Management for
People with Type 2 Diabetes” describes the experiences of people with type 2 dia-
betes who are engaging in self-management behaviors, and includes two examples
of how semantic technologies have been used in conjunction with machine learning
and data mining to generate personalized and context-aware meal recommenda-
tions. We close our chapter with a discussion of the many opportunities we see for
using semantic technologies in the pursuit of improving personal health applica-
tions for health consumers.

Semantic Technologies and the Personal Health
Knowledge Graph

Semantic technologies are used to enable computers to process data in ways that
leverage the meaning of terms, such as through the use of logical reasoning. At the
heart of these technologies is the knowledge graph (KG), which has been defined as
“as a graph of data intended to accumulate and convey knowledge of the real world,
whose nodes represent entities of interest and whose edges represent relations
between these entities.” (Hogan et al. 2022) DBpedia, YAGO and Wikidata are
examples of public knowledge graphs generated from content available in
Wikipedia, a crowd-sourced encyclopedia available on the Internet (Ringler and
Paulheim 2017; Abidn et al. 2018; Pillai et al. 2019). Knowledge graphs inherit
from classic artificial intelligence such formalisms as semantic networks and
description logics (Baader et al. 2007). The advantages of using knowledge graphs
to represent knowledge are that they are amenable to the linking of knowledge
across multiple sources and domains (through identifying overlapping semantic
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concepts across ontologies). To be regarded as high-quality, knowledge represented
in knowledge graphs should be consistent, and feature a certain degree of complete-
ness, accuracy and timeliness (i.e., degree to which knowledge is kept up-to-date)
along with containing provenance content (where the knowledge came from).
Semantic reasoners are capable of inferring new knowledge from the data con-
tained in knowledge graphs. These reasoners may be based on logic (e.g., first-order
logic, predicate logic, non-monotonic logic), fuzzy logic, or machine learning. The
use of machine learning methods for reasoning over KGs has been of rising interest
in the artificial intelligence community, due to the rapid and parallel growth in
availability of very large, electronic data sets and access to computing power.
Section “Combining Learning and Logic for Personal Health Applications” of this
chapter discusses the advantages of combining machine learning and semantic tech-
nologies, and our subsequent use cases in Sect. “Nutrition Self-Management for
People with Type 2 Diabetes” demonstrate a combined use of both types of
approaches for personal health applications. For a recent survey on methods for
reasoning over knowledge graphs, the reader is referred to Chen et al. (Chen
et al. 2020).

Semantic technologies are often at the core of interactive decision-support sys-
tems that have to deal with complex knowledge. They are useful for addressing key
challenges in knowledge management such as finding, summarizing or answering
questions pertaining to information contained in electronic medical records, legal
documents and scientific literature. Typical functions performed using semantic
technologies include: entity summarization, faceted search, and question answer-
ing. Entity summarization involves generating a concise description of what is
known about an entity, such that it satisfies users’ information needs (Liu et al.
2021; Cheng et al. 2020). Faceted search is a method of finding information that
allows users to progressively navigate towards more relevant results using filters
that are meaningful within the search domain (e.g., searching for recipes based on
filters for nutritional content, cuisine, preparation time, etc.) (Arenas et al. 2016).
Question and answering over knowledge bases allows users to seek answers (from
the knowledge graph) to questions posed in natural language (Arenas et al. 2016;
Moschitti et al. 2017). Before the invention of the World Wide Web (WWW),
semantic technologies were used within large organizations with significant institu-
tional knowledge bases, and wherein knowledge representation could be centralized
(Pan et al. 2017). With the invention of the WWW, the potential for semantic tech-
nologies to enable intelligent agents that could ‘traverse’ globally linked knowledge
became an exciting and real proposition (Berners-Lee et al. 2001; Hendler 2003).
Applications using the KG should be able to provide a set of knowledge services,
which should be feature high reliability (e.g., fast response time, and high fault
tolerance) and high usability (e.g., good learnability).

When constructing knowledge graphs, the usual assumption is that the entities
and the relationships between entities are shaped by domain experts, who define an
ontology. The ontology defines the vocabulary that is used to describe the various
concepts, relations and axioms that need to be represented in the knowledge graph.
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The knowledge graph then uses the terms from that ontology when representing
assertions regarding individuals, instances within the domain of interest. The ontol-
ogy may be partially or entirely contained within the knowledge graph itself. The
process of ontology engineering (Kendall and McGuinness 2019) lies in capturing
necessary and sufficient conditions for including terms, and connections between
terms, in the ontology. Complementary to such a ‘top-down’ approach is a ‘bottom-
up’ approach, wherein new knowledge is generated (through descriptive statistics
and/or logical inference) from specific instances of the data. Using this approach,
new categories and related concepts can be derived, resulting in the creation of new
knowledge. Since the construction of large knowledge graphs can be time consum-
ing, various efforts exist to increase the degree of automation of knowledge graph
construction. For example, the Semantic Data Dictionary (SDD) approach is able to
facilitate automatic creation of knowledge graphs by semantically annotating tabu-
lar data with concepts from existing ontologies (Rashid et al. 2020). Furthermore,
the automated knowledge base construction community has been employing natural
language processing techniques to develop knowledge graphs (Suchanek et al.
2013a), and these efforts have given rise to the Automated Knowledge Base
Construction workshop series (Suchanek et al. 2013b), that has now become a full-
fledged conference (https://www.akbc.ws), which supplements parallel efforts by
the larger semantic web community.

The World Wide Web Consortium (W3C) has established standards for imple-
menting semantic technologies. The Resource Description Framework (RDF) is
the basic mechanism through which basic statements can be made. The RDF data
model is based upon the idea of making statements about resources in expressions
of the form subject—predicate—object, known as an RDF triple. The subject denotes
the resource, and the predicate denotes traits or aspects of the resource and
expresses a relationship between the subject and the object. For example, one way
to represent the statement “The lasagna contains meat” in RDF is as the triple: a
subject denoting “the lasagna”, a predicate denoting “contains”, and an object
denoting “meat”. RDF triples can be serialized using several alternative syntaxes,
including N-Triples, Turtle, RDF/XML, and JSON-LD. Examples of how the triple
for “the lasagna”-“contains”-“meat” using the alternative RDF data formats are
shown below.

Using N-Triples syntax:

99 ¢

<http://example.com/exampleOntology#Lasagna>
<http://example.com/exampleOntologyfcontains>
<http://example.com/exampleOntology#Meat> .

Using Turtle syntax:

@prefix ex: <http://example.com/exampleOntology#>

ex:Lasagna ex:contains ex:Meat .



204 C.-H. Chen et al.

Using RDF/XML syntax:

<?xml version="1.0" encoding="utf-8" ?>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-
ns#" xmlns:nsO0="http://example.com/exampleOntology#">

<rdf:Description rdf:about="http://example.com/
exampleOntology#Lasagna">

<ns0O:contains rdf:resource="http://example.com/
exampleOntology#Meat"/>

</rdf:Description>

</rdf:RDF>

Using the JSON-LD syntax:

{ "@id":"http://example.com/exampleOntology#Lasagna",
"http://example.com/exampleOntology#contains™: [
{"@id":"http://example.com/exampleOntology#Meat"}
]
by
{"@id":"http://example.com/exampleOntology#Meat"}

While RDF is a way of representing knowledge graphs, languages such as the
RDF Schema (RDFS) language and the Web Ontology Language (OWL) can be
used to define ontologies. While OWL is more expressive than RDES, it is also
more complex to use. Both OWL and RDFES are recommended standards by the
W3C. For more on semantic modeling in RDFS and OWL, readers are referred to
an introductory text by Allenmang and Hendler (Allemang et al. 2020) and Ontology
Engineering text by Kendall and McGuinness (Kendall and McGuinness, 2019).

The predominant query language for RDF graphs is SPARQL, (pronounced
spahr- kuhl, and it is the recursive acronym for SPARQL Protocol And Query
Language) is an SQL-like query language for RDF that has been standardized by
the W3C. The following is an example of a SPARQL query to show all foods con-
tained within a menu named italian menu, using a fictional ontology called
exampleOntology:

PREFIX ex: <http://example.com/exampleOntology#>
SELECT ?food ?menu
WHERE {

?x ex:foodname ?food ; ex:isContainedin ?y .

?y ex:menuname ?menu ; exX:isInMenu ex:italian menu .
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While most popular knowledge graphs capture entities that are of global rele-
vance (i.e., of interest to the general population), knowledge graphs that capture
data that is relevant only to a particular individual (i.e., a personal knowledge
graph), can also be useful. Given the large amount of data that is now being
tracked and recorded from personal activities, and increased consumer demand
for more personalized services, in particular for health and wellness, reasoning
over a personal knowledge graph presents an opportunity for generating insights
highly relevant to the person whose data is represented in the knowledge graph.
Moreover, if data in a personal knowledge graph is linked to data in general
knowledge graphs, a reasoner could generate insights that relate a personal experi-
ence to those in the general population. Balog and Kenter (Balog and Kenter
2019) present the concept of the personal knowledge graph and how it differs from
general knowledge graphs. They note an increased, but fragmented amount of
research relating to personal knowledge graphs, and propose a research agenda for
personal knowledge graphs. Meanwhile, Gyrard et al. (Gyrard et al. 2018) specifi-
cally consider the concept of a personal knowledge graph for health, which inte-
grates and represents all health information specific to an individual, including
their medical history and health behaviors, as well as relevant socio-environmen-
tal factors that the individual may be exposed to. They also identify several
research challenges for advancing the state-of-the-art in personal knowledge
graphs for health, including how to model and integrate general health and per-
sonal health knowledge, and how to analyze data from the Internet-of-Things
(IoT) to produce meaningful contextual information for supporting health behav-
ior change. For additional perspectives on personal knowledge graphs for health,
the reader is referred to (Rastogi and Zaki 2020) and (Shirai et al. 2021). In this
chapter, we consider a Personal Health Knowledge Graph (PHKG) to be a knowl-
edge graph representation of a person’s health and wellness data. This data may
come from various sources (e.g., physical activity trackers, digital food logs, per-
sonal health records). In Sect. “Populating a Personal Health Knowledge Graph
with Personalized Assessments of Dietary Needs and Preferences” we will
describe how a PHKG can be automatically constructed from a user’s temporal
food log data, and how the PHKG can be used (along with general health knowl-
edge) to derive a user’s dietary needs and preferences. Then, in Sect. “Personalizing
Dietary Recommendations” we describe how to identify recipes that satisfy these
needs and preferences.

Combining Learning and Logic for Personal
Health Applications

In the context of personal health, the combination of knowledge graphs and machine
learning opens up new possibilities for designing effective digital health assistant
applications (Thomas Craig et al. 2020). The use of conversational agents in digital
health applications is a popular design choice because it supports natural language
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queries from the user. These natural language queries need to be converted into
SPARQL queries if one wants to answer the query by retrieving information from a
knowledge graph. While SPARQL is well-suited to retrieve factual information
stored in the knowledge graph, and also to infer answers via reasoning, it is not
well-suited for answering ranking based queries (i.e., multiple answers that are
sorted in order of relevance) that arise in recommendation settings. Indeed, in per-
sonal health applications, users may seek recommendations and/or facts to support
decisions about what health behaviors to engage in. In recommendation settings, the
answer to the user’s query should ideally be personalized to take into account a
user’s intent, context and constraints. As it turns out, such personalized responses
can be provided via machine learning based methods, such as knowledge base ques-
tion answering (KBQA).

Learning-based methods have the advantages of discovering and leveraging
implicit semantics, and can scale to large datasets. However, learning is data-
intensive, can produce trivial or known insights and insights are often difficult to
explain. Knowledge-based methods have the advantages of being able to explicitly
represent and use knowledge without requiring “big data”, and this knowledge is
easier to transfer between projects. On the other hand, capturing knowledge is labor
intensive and logical inference can be computationally intensive. The best of both
approaches can be captured via a hybrid approach that injects semantics within
machine learning methods, and on flip side, leverages machine learning to scale up
semantic approaches. In this section we will highlight the interaction between logic
and learning for answering personalized user queries.

Since knowledge graphs store high quality information in a structured format,
they are well-suited for answering factual queries by leveraging the underlying
semantics. For example, a query like “What are some physical exercises I can try?”
can be converted into the following SPARQL query.

SELECT DISTINCT ?exerciseName
WHERE {
?exercise <http://purl.org/dc/terms/subject> <http://dbpedia.
org/resource/Category:Physical exercise>;
<http://www.w3.0rg/2000/01/rdf-schema#label> ?exerciselabel .
BIND (STR(?exerciselLabel) AS 7?exerciseName)

}

Interpreted as a factual retrieval question, this query would return a list of physi-
cal exercises, which can then be displayed to the user. However, it is clear that
returning a long list of exercises is probably not what the user intends as the
response. Rather, the user’s context and preferences should be taken into account
while answering such a query. For example, taking into consideration the fact that
the user might be at the gym, or taking into account their health goals (e.g., lose
weight) and their exercise preferences and also their physical ability, and so on.
Going even further, this query can be interpreted as asking for recommendation of
physical exercises, e.g., “what are some physical exercises I can try that are good for
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wants To Eat

belongs To Weight

Classification

Person

subclass

subclass
Negative
Statement

Fig. 10.1 Example of the inference rules and ontology for answering the query “Can I eat a
Gala apple?”

subclass

Positive
Statement

me?” Instead of simple retrieval this may require the system to compare alterna-
tives, and then suggest the most beneficial activities at that given place, time, and
context, potentially along with an explanation of the suggestion.

As another example, consider the query “Can I eat a Gala apple?” To answer this
question well, the system should recognize that there could be an implicit context at
play. Namely, the user may be concerned about weight management, or other rele-
vant underlying health conditions. To answer this query we need to rely on a reason-
ing engine over the personal knowledge graph, as illustrated in Fig. 10.1.

The logic for the inference required to answer this query is captured by the infer-
ence rules below.

Rule O:

Subclass Transitivity

Rule 1:

(Person and

(person:bmi > WeightClassification:bmiLimit))
=>

Person belongsTo

[owl:equivalentClass WeightClassification]

Rule 2:

(Person and

(WeightClassification and (Person:wantsToEat Food) and
(Person:sugarConsumed + Food:sugarContent > WeightClassification:s
ugarLimit))))

=>

Person given NegativeStatement
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In this example, the focus is on comparing the sugar limit for the person based on
their health condition and status, who are returning that they cannot eat the Gala
apple if they exceed the sugar intake limit. This example also illustrates the chal-
lenges associated with inferring the user intent and health conditions. Additional
constraints besides sugar intake may have to be considered to answer this question
adequately. Furthermore, there is the question of automatically deducing the infer-
ence rules. So far, we have assumed that an expert provides these. However, this
approach is not scalable, and is a challenge that machine learning-based approaches
are in a good position to address.

Machine learning can help construct sets of inference rules for reasoning over
the KG. They can also help in automatically converting natural language queries to
SPARQL queries. Furthermore, learning can help infer the set of active constraints
to consider when answering a query—these would span the user’s preferences,
health guidelines, and all other relevant information. In general, learning is required
to hone in on the user intent, as well as to evaluate the relevance of the input con-
straints and responses. On the other hand, machine learning methods can benefit
tremendously from the structured knowledge in the knowledge graphs by leverag-
ing the underlying semantics of the concepts and relationships. For example, knowl-
edge graph embedding methods (Bordes et al. 2011) can be employed to learn
concept and relationship embeddings, or representations, that can be used in a deep
learning framework to answer user queries.

The combination of semantics and machine learning is even more important
when dealing with queries that involve providing recommendations. For example, a
user may ask “What is a good breakfast for me?” To answer this type of query, the
machine learning framework would have to leverage the interlinked knowledge
graphs such as their personal health knowledge graph, a medical guidelines knowl-
edge graph, and a food knowledge graph.

If all of the constraints (e.g., food preferences, allergies, ingredient availability,
etc.) are treated as mandatory constraints, the answer is likely to be a null set. While
SPARQL provides the OPTIONAL clause to allow for optional constraints, the
resulting answer set is not trivial to rank based on relevance to the query (Feyznia
et al. 2014). Such queries can be answered by KBQA based methods such as
BAMNET (Chen et al. 2019), which is an end-to-end bidirectional attention mem-
ory network for complex question answering over a knowledge graph. Readers are
referred to Fu et al. (Fu et al. 2020) for an in-depth review of KBQA methods. In
more recent work, we have developed a novel system for personalized food recom-
mendation, called pFoodReq (Chen et al. 2021) that uses constrained question
answering over a food knowledge graph to help users search for relevant recipes.
We describe pFoodReq in detail in Sect. ‘“Personalizing Dietary Recommendations”.

Nutrition Self-Management for People with Type 2 Diabetes

Diabetes is a chronic health condition that affects approximately 10.5% of the
United States population (National Diabetes Statistics Report 2020). People with
diabetes are typically advised to engage in several self-management behaviors in
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order to improve their health outcomes. People newly diagnosed with diabetes or
pre-diabetes, and advised to modify their diet face numerous challenges. In addi-
tion to understanding which specific dietary guidelines apply to them, they must
also understand how these guidelines translate into specific actions and food
choices they can make. Then they must actually implement these changes.
Successful behavior change requires understanding and knowledge of the guide-
lines and nutritional content of different foods and their impact. It requires intro-
spection on their current dietary behavior to understand what changes need to be
made and the relative importance of making those changes. Beyond understand-
ing what to do, changing one’s diet is notoriously difficult. It can require chang-
ing long-term habits, eschewing foods one enjoys, and avoiding foods that are
prominent in social gatherings or play an important role in their cultural cuisine.
As such, the challenges are both informational—understanding (and remember-
ing) what changes to make and specifically how to implement them, and motiva-
tional—providing messages, options, and specific suggestions to encourage
making good choices and making doing so as appealing and non-disruptive as
possible.

Our current efforts aim to address these challenges by surfacing the health guide-
lines relevant to a specific user, explaining why those guidelines apply to them, and
suggesting foods the user could eat. We also aim to help the user understand their
current dietary behavior to see where they are successfully adhering to the guide-
lines and what changes would be most beneficial to make.

We describe two use cases in the following subsections. In the first use case
described in Sect. “Populating a Personal Health Knowledge Graph with
Personalized Assessments of Dietary Needs and Preferences”, we review a
user’s food log (i.e., a daily diary of meals consumed) through the lens of a set
of relevant dietary guidelines, and generate semantic expressions in the OWL
language to represent the gaps between their actual and expected food con-
sumption patterns. In this use case, we combine semantic technologies with
data mining methods. In the second use case described in Sect. “Personalizing
Dietary Recommendations”, suggests specific foods that will fit a user’s dietary
guidelines and food preferences. In this use case we combine semantic tech-
nologies with machine learning. An essential knowledge resource common to
both use cases is the Food Knowledge Graph (FoodKG). The FoodKG was con-
structed by Haussmann et al. (Haussmann et al. 2019) and integrates recipe data
from the RecipelM+ data set (Marin et al. 2021) with ingredient nutritional
information from the United States Department of Agriculture’s National
Nutrient Database for Standard Reference (Haytowitz et al. 2019). The FoodKG
uses the FoodOn ontology (Dooley et al. 2018). Resources and instructions for
constructing the FoodKG are provided at https://foodkg.github.io/
foodkg.html.
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Populating a Personal Health Knowledge Graph
with Personalized Assessments of Dietary Needs and Preferences

In this section, we demonstrate how semantic technologies can be combined with
data mining techniques to generate semantic expressions of a user’s dietary needs
and preferences. In this example, the user’s dietary needs are assessed by comparing
the user’s recent eating patterns with relevant health guidelines set by the American
Diabetes Association (ADA) (American Diabetes Association 2021). Any gaps
between the user’s behaviors and the guidelines are considered to represent the
user’s current dietary needs. The user’s dietary preferences can also be discovered
from their reported eating patterns. These dietary needs and preferences can be
captured in the user’s personal health knowledge graph (PHKG) and queried by
downstream applications. Unlike most efforts for automatic KG population, which
extract entities and relationships from unstructured text using natural language pro-
cessing methods, we discover relevant patterns from time-series data in our use
case. To support this use case, we created the Personal Health Ontology (PHO)
based on a set of interviews conducted with 21 people who declared themselves to
be within five years of being diagnosed with type 2 diabetes. Using a semi-struc-
tured interview style, we asked participants to describe their eating patterns and
probed specifically about the contextual, health and lifestyle factors that influenced
their eating behaviors. The PHO differs from existing efforts such as (Puustjarvi and
Puustjarvi 2011), which have put a focus on interoperability of various e-health
tools through a shared vocabulary. In contrast, our focus was on capturing the per-
sonal behavioral preferences. The essential steps involved in populating a PHKG
with the user’s dietary needs and preferences are four-fold: (i) relevant eating pat-
terns need to be discovered from temporal food log data (ii) eating patterns need to
be mapped to a personal health ontology (iii) eating patterns need to be assessed
against medical nutrition therapy guidelines (iv) semantic ‘directives’ for health
needs need to be inferred. These steps are depicted in Fig. 10.2.

Dietary
Guidelines
Semantic Personal Health
[ ] Pﬁ?aol%al Data Knowledge Graph (iif) s kG
Records Dictionary
w % <> Semantic Sg S,:
Reasoner
Personal [ 3 ]
User Food Log (iv)
(i) User

Dietary Needs
& Preferences

Fig. 10.2 Illustration of how personal health data from the user is transformed by the Time Series
Summarizer (Harris et al. 2021) and Semantic Data Dictionary (Rashid et al. 2020) into RDF tri-
ples that populate a PHKG. A semantic reasoner is used to generate expressions of the users dietary
needs and preferences based on the PHKG and clinical dietary guidelines
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Behavioral Insight RDF Triple
Discovery Generation

PHKG

SAX o RDF Triple
Translation E}———» Output %

Time Series
Data

Fig. 10.3 Workflow to discover behavioral insights within a user’s food log data and generate
RDF triples to populate the PHKG

To implement the use case depicted in Fig. 10.2, we customized an existing
Time-Series Summarization (TSS) framework (Harris et al. 2021) to generate RDF
triples representing a user’s temporal personal health data (e.g., digital food diaries,
personal wearables logs). The TSS applies advanced data mining approaches to
discover patterns within time-series data. In order to identify ‘interesting’ patterns,
the TSS framework relies on a dimensionality reduction algorithm called Symbolic
Aggregate Approximation (SAX) (Lin et al. 2007) to translate the raw time-series
data into a string of alphabetical letters (e.g., ‘abbbacdae’ ). Each of these let-
ters can represent different time granularities (e.g., ‘a’ can represent a day or a
week in the data). Data mining algorithms, such as the frequent item-set mining
tool called SPADE (Zaki 2001) and the categorical clustering algorithm called
Squeezer (He et al. 2002), are used to search the data for patterns once the data is
translated into categorical data. Once a pattern is retrieved, it is represented as a
template-based natural language summary, or ‘protoform’. An example protoform
is “On <quantifier><sub-time window (plural)> in the past <time window (singu-
lar)>, your <attribute> was <summarizer>.” Within this protoform, there are five
defined placeholders that are each filled with words/phrases chosen from a pre-
defined vocabulary. An example of how this example protoform could be filled is
“On most of the days in the past week, your calorie intake was high.” This frame-
work uses extended versions of rule-based linguistic summarization algorithms
that use fuzzy logic to select the correct words/phrases for a protoform (Zadeh
2002; Zadeh 1983; Zadeh 1975; Kacprzyk et al. 2002). TSS was customized to
produce RDF triples that would conform with the PHO. The TSS workflow is
shown in Fig. 10.3.
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An example set of TSS PHKG triples with respect to the user’s carbohydrate
intake is as follows':

:Alice a prov:Person;
sio:has-attribute :AliceInsulinMedicationDosage,
:AliceCarbIntakePattern

:AliceInsulinMedicationDosage a pho:FixedMedicationDosage.

:AliceCarbIntakePattern a pho:ConsistentPattern;
sio:has-attribute chebi:carbohydrate,
:AliceCarbIntakePatternSumm,

:AliceCarbIntakePatternCvV,

:AliceCarbIntakeTimeWindow.

:AliceCarbIntakePatternSumm a pho:Summarizer;
sio:has-value "considerably"

:AliceCarbIntakePatternCV a stato:CoefficientofVariation;
sio:has-value "0.99"

:AliceCarbIntakeTimeWindow a pho:TimeWindow;

sio:has-value sio:week

Once the RDF triples from the user’s daily personal logs have been generated,
we implemented a semantic reasoner to evaluate the generated graph against guide-
lines that determine whether the user has complied with the applicable medical and
dietary guidelines. To that end, we modeled several ADA guidelines related to diet
and activity into a computable form using OWL. As an example, consider the fol-
lowing ADA guideline recommendation (American Diabetes Association 2021),
which we will refer to as ‘Dietary-Guideline-01":

For individuals whose daily insulin dosing is fixed, a consistent pattern of carbohydrate

intake with respect to time and amount may be recommended to improve glycemic control
and reduce the risk of hypoglycemia.

The guideline contains a rule portion that indicates the necessary and sufficient
conditions, and a directive that indicates what action to take if the rule was evaluated
to be true. A semantic reasoner can ingest such ADA guidelines implemented as
rules and the PHKG triples output from the TSS to recommend a course of action in
the form of a directive,

! The full form of the prefixes used in the code listings are as follows:

e chebi http://purl.obolibrary.org/obo/chebi#

e owl http://www.w3.0rg/2002/07/owl#

* pho http://idea.rpi.edu/heals/pho#

e prov http://www.w3.org/ns/prov#

e rdf http://www.w3.0rg/1999/02/22-rdf-syntax-ns#
e rdfs http://www.w3.0rg/2000/01/rdf-schema#

* sio http://semanticscience.org/resource/

e stato http://purl.obolibrary.org/obo/stato.owl#



10 Semantic Technologies for Clinically Relevant Personal Health Applications 213

The rule (i.e., Dietary-Guideline-01) is represented in OWL as follows. First,
this rule applies an OWL property restriction on any instances of the
pho:FixedMedicationDosage on its has-attribute property (i.e., our patient
should be taking a fixed medication dose for this rule to take effect). Then we check
to see if the patient has been following a pho:ConsistentPattern of
chebi:carbohydrate consumption, which is again implemented as an OWL
property restriction.

pho:Dietary-Guideline-01 rdf:type owl:Class ;
owl:equivalentClass
[ owl:intersectionOf (
[ rdf:type owl:Restriction ;
owl:onProperty sio:has-attribute ;
owl:someValuesFrom pho: FixedMedicationDosage ]
[ rdf:type owl:Restriction ;
owl:onProperty sio:has-attribute ;
owl:someValuesFrom [
owl:intersectionOf (
pho:ConsistentPattern
[ rdf:type owl:Restriction ;
owl:onProperty sio:has-attribute ;
owl:someValuesFrom chebi:carbohydrate ] ) ;
rdf:type owl:Class]
1) 7
rdf:type owl:Class] ;
rdfs:subClassOf pho:DietaryGuideline ;
rdfs:label "For a diabetic individual, if their daily insulin
dosing is fixed, and there is a consistent pattern of carbohydrate
intake with respect to time and amount, that pattern should be main-
tained."

Note that concepts such as pho:FixedMedicationDosage,
pho:ConsistentPattern, and chebi:carbohydrate that are mentioned
in the rule are defined in the corresponding ontologies, i.e. Personal Health Ontology
(PHO) and Chemical Entities of Biological Interest (ChEBI). For example, the con-
sistent pattern is defined as follows, which indicates that a
pho:ConsistentPattern should consist of some pho:TimeWindow (i.e.,
week, day, month, etc.) and a pho : Summarizer (slightly, considerably, etc.):
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pho:ConsistentPattern rdf:type owl:Class ;
owl:equivalentClass [
owl:intersectionOf (

[ rdf:type owl:Restriction ;
owl:onProperty sio:has-attribute ;
owl:someValuesFrom pho:TimeWindow ]

[ rdf:type owl:Restriction ;
owl:onProperty sio:has-attribute ;
owl:someValuesFrom pho:Summarizer ] ) ;

rdf:type owl:Class] ;
rdfs:subClassOf pho:TemporalPattern

The directive is represented in OWL in the following manner. This is a custom
declaration to suit our specific application, which simply states that if a certain
PHKG instance is conforming to the above rule, that instance would be classified
under Dietary-Guideline-01 and has an associated pho:hasDirective
Representation that provides the python programmatic representation for the
constraints (i.e., the lower and upper limits of the carbohydrate intake along with
the daily total limit) that would be plugged into KBQA as an input.

pho:ConsistentCarbIntakeDirective rdf:type owl:Class ;
owl:equivalentClass [ rdf:type owl:Restriction ;
owl:onProperty sio:has-attribute ;
owl:someValuesFrom pho:LowCarb] ,
[ rdf:type owl:Restriction ;
owl:onProperty sio:is-associated-with ;
owl:allValuesFrom pho:Dietary-Guideline-01] ;
rdfs:subClassOf pho:Directive ;
pho:hasDirectiveRepresentation
wrr{Ycarbohydrate’
{ Yunit’: ‘g’, ‘meal’ : { ‘type’: ‘range’, ‘lower’ : ‘30,
Yupper’ : “45%%, ‘daily total” : Y150"}pwnv
rdf:label "Baseline carbohydrate level should be 30g - 45g
per carbs per meal and for the whole day 150g max.".

Using the available set of OWL formalizations for ADA guidelines and the
PHKG, a semantic reasoner can be used to infer whether our user, i.e., Alice, has
been adhering to behaviors consistent with the guidelines. A corresponding set of
rules can be created to capture any cases of guideline violations. Then the semantic
representations allow us first to identify the eventual deviation and then to provide
evidence-based recommendations based on their lifestyle and diabetes condition.

Ongoing and future work is focused on expanding the set of addressable queries
and integrating personal health records with the PHO. Therefore, our ongoing
work includes: (1) expanding the PHO to further accommodate concepts important
for comparing behaviors to ADA guidelines, (2) applying the semantic data
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dictionary (Rashid et al. 2020) approach to the conversion of personal health
records into RDF triples that are consistent with the PHO, and (3) linking the
PHKG to other semantic resources such as the Healthy LifeStyle (HeLiS) ontology
(Dragoni et al. 2018).

Personalizing Dietary Recommendations

In this section, we present the personalized food recommender pFoodReq (Chen
et al. 2021), a recommender system for answering questions that seek relevant food
recommendations (e.g., “What is a Chinese dish with beef that does not include
ginger?”). pFoodReq frames the recommender problem as that of performing
knowledge base question and answering (KBQA). While recommender systems
(De Croon et al. 2021) need not use semantic technologies, KBQA methods do, by
definition, require a knowledge graph. Specifically, KBQA systems assume that a
subset of the nodes in the knowledge graph contains answers to a general class of
questions, and that the relationships between graph entities are useful for identify-
ing good answers. Typically, questions are posed in natural language and the func-
tion of the KBQA system is to efficiently and effectively identify relevant and
correct answers to the question, from the knowledge graph. Here, we will describe
the specific approach used by pFoodReq to retrieve recipes from the
FoodKG. Figure 10.4 shows the core elements of the pFoodReq system. At the heart
of the system is a KBQA component that retrieves recipes from the FoodKG. In
Fig. 10.4, the “User Dietary Needs & Preferences” could be extracted from users’

User
Dietary Needs
& Preferences

U]

Y
’ Expanded User .
/ User Question —’mstion (i)

Y Food KG

Knowledge Base Q&A |<—— o%\(?\Q;\Z

Recipe
Recommendations

User

Personal
Food Log

Fig. 10.4 Tllustration of how a user’s question is combined with a directive regarding the user’s
general dietary needs and preferences to produce an expanded question that is provided to a KBQA
model, resulting in a set of recipes retrieved from the Food Knowledge Graph
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PHKG by a semantic reasoner, as presented in Sect. “Populating a Personal Health
Knowledge Graph with Personalized Assessments of Dietary Needs and
Preferences”.

The KBQA model in pFoodReq has been trained to retrieve recipes from the
FoodKG as answers to questions that are expressed as a combination of ‘positive’
(i.e., attributes to be included) and ‘negative’ (attributes to be excluded) con-
straints. Attributes that can be accommodated include recipe ingredients (e.g.,
mushrooms, peanuts), nutritional content (e.g., carbohydrates, fat), and cuisine/
diet/dish type (e.g., Korean, vegan, dessert). Examples of these questions are:
What are jellies recipes that contain orange? What turkish or dinner-party recipes
can I cook without milk? Can you recommend low protein russian recipes which
have onions? Although the user’s question (refer to (i) in Fig. 10.4) represents the
user’s immediate preferences, people with diabetes also have long-term health
needs. For example, according to the ADA guidelines (American Diabetes
Association 2021), diabetics may need to control their caloric intake, target high
fiber foods, or avoid carbohydrates with high protein content. Since any recipes
recommended by pFoodReq would be expected to accommodate these needs,
pFoodReq may expand the user’s question (refer to (ii) in Fig. 10.4) to include
constraints related to these needs, even though the user does not include them in
their question. For example, the user’s question “What turkish or dinner- party
recipes can I cook without milk?” would be expanded by pFoodReq to become
“What turkish or dinner-party recipes can I cook without milk and includes carbo-
hydrates within the desired range of 5 g to 30 g7’ In general, if a user typically
avoids certain foods, these foods can also be appended to the user’s question as a
negative constraint.

Rather than semantically parsing the user’s natural language questions and con-
verting them into SPARQL queries, pFoodReq adopts an information retrieval
approach that relies on a large training set of ‘ground-truth’ questions and answers
to train a deep learning model that learns how to locate good answers to a question
from the FoodKG. However, questions with positive and negative constraints are not
easily represented in deep learning models. Hence, a new approach for using deep
learning to handle these positive and negative constraints was implemented in the
KBQA model in pFoodReq. Intuitively, the deep learning model learns associations
between words in the question sentence and the corresponding answer (recipe)
entity, or entities, and its nearby (recipe and non-recipe) entities and relationships in
the knowledge graph. Unlike a SPARQL query (without an OPTIONAL clause),
which would treat all answers satisfying the query as equally relevant, pFoodReq’s
deep learning KBQA approach produces a continuous, scalar score for each candi-
date answer, allowing them to be ranked in priority of ‘relevance.” These rankings
are generated by comparing learned representations of the candidate recipe answers
(Li and Zaki 2020) with recipes in the user’s historical food log and assigning higher
scores to recipe answers that are more semantically similar to recipes in the food log
(refer to (iii) in Fig. 10.4). The full details of the deep learning model used for
KBQA in pFoodReq are provided in an earlier methodological paper by Chen, Wu
and Zaki (Chen et al. 2019).
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Summary

In this chapter, we have described how semantic technologies and machine learn-
ing can be used to bring both logic and learning to personal health applications.
We have shared two use cases related to supporting dietary behaviors for people
with diabetes. In our first use case, we showed how semantic technologies and
data mining were used to extract, represent and reason over applicable dietary
health guidelines and past user behaviors, resulting in a personal health knowl-
edge graph that contains knowledge about a user’s health preferences and needs.
In our second use case, the user’s health preferences and needs provide context to
a user’s question, allowing the recommendations to the user to consider the user’s
immediate and ongoing interests. There remains a significant opportunity to
enhance and expand upon the ideas presented in this chapter. For example, the
scope of the PHO is still limited, as are the number of ADA guidelines represented
in OWL and the types of RDF triples that the TSS generates. Several dimensions
of the user context could also be incorporated, such as geographical location,
social context and financial constraints. Additionally, KBQA remains an active
area of research from both a methodological and an application-oriented
perspective.

A major advantage of using semantic models (particularly in comparison to
machine learning models) is that they are inherently interpretable, and therefore
amenable to providing explanations for their results. Readers are referred to works
by Dragoni et al. (Dragoni et al. 2020; Dragoni et al. 2018), which present state-of-
the-art applications of semantics for explainable, personalized health insights.
Further, extending the work described in this chapter, we are modeling an ontology
for food and diet recommendation explanations, called the Food Explanation
Ontology (FEO) (Padhiar et al. 2021). FEO can be used to generate various types of
explanations, such as contextual, contrastive, and counterfactual. Many of these fac-
ets can supplement the clinically relevant personal health applications in promoting
effective behavior change through suitable explanations. Ideally, a personal health
application would be able to provide explanations for any suggestions and recom-
mendations, to improve their overall understanding of their health condition, the
health guidelines, and their behaviors.

To keep the scope of this chapter amenable to readers new to semantic technolo-
gies, we have limited our discussion to the most salient and essential ideas and
trends. There is a vast body of literature on semantic technologies, such as various
reasoning techniques (higher order (Eiter et al. 2006), probabilistic (Giugno and
Lukasiewicz 2002), causal (Gudivada et al. 2008)), OWL2 profiles (Motik et al.
2009), and linking data using protocols such as Linked Data Platform
(Mihindukulasooriya et al. 2013), all of which are quite useful when considering the
next generation personal health applications powered by semantics. The software
and ontologies described in this chapter are available at https://github.
com/semantics-for-personal-health/semantics-for-
personal-health.github.io. This work was conducted as part of the
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Health Empowerment by Analytics, Learning and Semantics (HEALS) project
(HEALS 2017). The primary goal of the HEALS (Health Empowerment by
Analytics, Learning, and Semantics) project is to apply advanced cognitive comput-
ing capabilities to help people understand and improve their own health conditions.
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