
Context Shapes: Efficient Complementary Shape Matching for

Protein-Protein Docking

Zujun Shentu a, Mohammad Al Hasan a, Christopher Bystroff b, and Mohammed J. Zaki a⋆

aDepartment of Computer Science, bDepartment of Biology,

Rensselaer Polytechnic Institute, Troy, NY 12180, USA

⋆ Contact Author: Mohammed J. Zaki

CSCI, Lally 307

RPI, 110 8th St

Troy NY 12180

518-276-6340 (ph), 518-276-4033 (fax)

zaki@cs.rpi.edu

Accepted for Publication in Proteins: Structure, Function and Bioinformatics, 2007

Abstract

We describe an efficient method for partial complementary shape matching for use in rigid

protein-protein docking. The local shape features of a protein are represented using boolean

data structures called Context Shapes. The relative orientations of the receptor and ligand

surfaces are searched using pre-calculated lookup tables. Energetic quantities are derived from

shape complementarity and buried surface area computations, using efficient boolean operations.

Preliminary results indicate that our context shapes approach outperforms state-of-the-art ge-

ometric shape-based rigid-docking algorithms.

Availability: The context shapes software is available online at http://www.cs.rpi.edu/

∼zaki/software/ContextShapes.

1 Introduction

All biochemical processes involve some kind of molecular recognition, which can be defined as the

formation of an energetically favorable docking between two molecules. Docking between proteins

is involved in many cellular processes including cell signaling, regulation of enzyme function, intra-

cellular trafficking, transcriptional regulation, the immune response, and many others.

A growing database of molecular interaction data [37] combined with large amounts of structural

data for proteins [2], sets the stage for the development of computational methods that address
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systems biology questions. For example, we might want to predict protein-protein interactions

without previous knowledge of the protein partners involved. Given proteomic data and a database

of protein structures, we would like to be able to search this database using molecular surfaces

to predict which of the proteins interact with each other and how they interact. Such large scale

docking calculation required us to re-think the data structures used for docking calculations. To

contemplate such large-scale docking queries, we must overcome several computational hurdles,

including the problem of efficiently encoding and searching molecular surfaces. This paper addresses

the surface encoding problem with an eye towards enabling large-scale computational docking

experiments.

Interactions between proteins are governed by the kinetics and stability of the docked confor-

mation, or pose. The kinetics of interactions are governed by the concentration of each molecular

species in the cell, its sub-cellular location, and by its surface electrostatics. The stability of a pose

is governed by the surface electrostatics and by the surface shape complementarity. Shapes that

are more nearly complementary will fill space better when docked. The energetic stability of a pose

can be approximated by the amount of surface area excluded from solvent, which is approximately

the total area over which the two surfaces are complementary.

For this work we assume proteins are static shapes, i.e., rigid-bodies. We are aware that true

protein-protein interactions generally involve conformational changes of side chains and backbone

atoms. In some cases, flexible docking is modeled as an induced fit process, where the conformational

changes occur as refinements after initial rigid body docking [5]. In other studies, docking is a

selected fit process [34], in which flexibility is modeled as an ensemble of possible conformations of

each protein, with each conformation being treated as a rigid body when docking [31]. Selected fit

is our preferred approach, although we do not discuss flexible docking in this study.

Our new shape matching approach docks proteins in a rigid-body sense. Protein surface features

are captured using the novel notion of Context Shapes, which are boolean data structures describing

the local solvent excluded surface. It is assumed that docked proteins have one or more points of

direct atom-atom contact and the goal of our method is to find one such pair of points. A pair of

context shapes contains sufficient information to calculate the position and energy of a two-body

binding interaction, both accurately and rapidly. We search for the relative orientations of the

two surfaces using a pre-calculated lookup table. Furthermore, we derive energetic quantities from

shape complementarity and buried surface area computations using efficient boolean operations.

For a comprehensive evaluation, our approach is first trained on a set of bound complexes, and

it is then evaluated on an independent set of 84 bound and unbound receptor-ligand pairs taken

from the docking benchmark v2.4 [23]. Experimental results indicate that the crystallographically

determined pose is generally found within 2Å Root Mean Squared Deviation (RMSD) in a majority

of the cases for the bound complexes. Our results are also better than or competitive with the best

previous shape-based approaches on the unbound cases.
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1.1 Related Work

The geometric surface of a protein has been the basis of docking through shape matching in several

previous studies summarized briefly in the following paragraphs. The reviews by Via et al. [33],

Halperin et al. [16], and Mendez et al. [21, 22] provide a more detailed analysis on various protein-

protein docking methods.

The Geometric Hashing [24, 36] technique, originally developed in the computer vision domain,

was used in a protein docking algorithm [11, 14]. A set of critical points are derived from the

solvent excluded surface of a protein. Two critical points along with the mean of their surface

normals define a local reference frame onto which the local critical points are projected. These

transformation-invariant coordinates are extracted from the target proteins and saved in a hash

table. In the recognition stage, a similar process is carried out on the query protein, and the

hash table is used to find matching reference frames with maximally similar coordinates for their

local critical points. This method is reported to be fast at the recognition stage but it requires

a slow post-processing step in which the query protein is rotated into position to detect physical

penetration.

Critical points on molecular surface were first introduced in [9] where combinatorial search on

quartets of critical points were carried out to find candidate poses. Various pruning approaches

based on solid angles, local volume and “unit vector defined by local centroid” (called the Solid

Vector in our paper) were also proposed. The approaches proposed in both [9] and [11, 14] suffered

from the huge combinatorial space of critical surface points, even though various criteria were used

to prune the search space. Further, both methods had to perform actual transformation of one of

the two given proteins to check shape penetration, which is costly. Local reference frames defined on

combinations of critical points (quartets of critical points in [9] and pairs of critical points in [11, 14])

are very sensitive to the local shape and these methods might not work well on cases where the

docking interfaces do not have a very high degree of shape complementarity. We use the critical

points in another way without the need of local reference frames. Also, since we precompute

the transformation matrices in a table, shape penetration detection and shape complementarity

checking can be done at the same time. In [9] a local shape sampling method based on spherical

harmonics was suggested (but not implemented). We use a similar, radial sampling method defined

on a uniform point set on a unit sphere. Our representation based on bit-vectors is, however,

entirely novel.

BiGGER [25] used two 3D bit matrices defined on a 3D grid, to represent a protein’s surface

and the 3D volume enclosed by the surface (called the “core”). BiGGER has two main steps. In the

first step, the complete 6-dimensional binding spaces of both molecules is systematically searched to

find a set of candidate good poses. In each rotational and translational step, binary operations such

as OR and AND are applied to the bit matrices from the two molecules. Surface-surface contact is

preferable while core-core overlap implies that the current pose can be discarded. In a second step,
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an interaction scoring function is used to rank the putative docked structures. We also used binary

representation of context shapes in this work but in a very different manner. Context shapes are

sampled by a radial template of a set of context rays. Each ray is represented by a binary string.

Matching between context shapes is driven by a matching table; there is never a need to actually

rotate or translate any one of the given proteins.

TreeDock [13] represents both the protein molecules in a complex as a union of atoms. Its

docking process is guided by the user through a pair of anchor atoms, one from each of the protein

molecules, which are in contact in the docking complex. Out of the remaining five degrees of

freedom, four are searched exhaustively with a pre-specified resolution, and the fifth is analyzed

by their merry-go-round algorithm, which computes the minimum energy configuration. The only

scoring funciton is L-J potential that calculates the energy. Note that, TreeDock is fast only if the

docking-site information is supplied by the user. The authors reported that without docking-site

information, the docking process for proteins with about 500 heavy surface atoms, can take 3 to

5 days with 16 CPUs. Our approach takes on average 35 minutes of computing time on a single

CPU, and does not require any docking site information.

A docking algorithm based on the fast Fourier transform (FFT) and Fourier correlation theory

was first proposed in [17]. The algorithm begins by discretizing the surfaces of the two molecules

using a 3D grid. A correlation function is defined to compute a match. In the process of matching,

the receptor molecule is fixed and the ligand is rotated. For each rotation, each cell in the ligand

is shifted to match with each cell in the receptor. This operation takes O(n6) steps in the trans-

lational/rotational space, where n is the size of each dimension of the grid. The FFT reduces the

complexity to O(n3 ln n3). This method has been used in FTDock [15], ZDOCK(PSC) [7, 8], DOT

[20], and GRAMM [32] to search the translational space. FFT is also used in HEX [27] to search

the rotational space.

2 Methods

2.1 Context Shapes Overview

The shape of a protein is defined by its Solvent Excluded Surface (SES) [3, 10], which is the boundary

of the solvent excluded molecular volume, and it can be calculated by rolling a spherical probe of

the size of the solvent molecule over the exposed contact surface of each atom. The SES is composed

of faces having three types of curvature: (1) contact face: the solvent accessible atomic surface,

(2) toroidal face: the saddle-shaped surface where the probe makes contact with two atoms and

(3) re-entrant face: the concave bowl-shaped surface where the probe makes contact with exactly

three atoms.

If we extend SES by 2.8 Å (the diameter of a water molecule), we can get a new surface, called

the Solvent Included Surface (SIS). The region between SES and SIS, called the SIS layer, includes
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a single layer of solvent molecules, a hydration layer. The stability of a pose can be approximated

by the amount of surface area excluded from solvent, called the Buried Surface Area (BSA). The

BSA of a pose is the sum of the BSA of both proteins. Each BSA is the area of the local SES that

intersects with the SIS of the other protein.

In principle, when two rigid shapes are positioned as close as possible without passing through

each other, there are at least three points of actual contact, called Physical Contact Points (PCP).

In practice, crystal structures of oligomeric proteins may have fewer than three PCPs, or they

may cross each other slightly and thus have many overlapping points. For rigid docking these are

most likely to be deviations due to errors in the structure, or errors in the way the surfaces were

calculated. On the other hand, PCPs are more difficult to find when only the unbound forms of

the proteins are known before docking, due to the large amount of conformational change that is

possible when proteins dock. Nevertheless, for rigid docking, deviations from the PCP assumption

are expected to be small, and even for flexible docking, PCPs provide a reasonable approximation.

Thus the task of finding the most stable pose reduces to the task of finding PCPs.

We define the notion of Context Shape (CS) as the shape of the protein that is inside of a

sphere centered at a point on the surface. Context shapes are sampled by radial Context Rays

which emanate from the center of the sphere and are uniformly distributed on the sphere. Each

context ray is composed of 32 bits, which are assigned a value of one or zero depending whether

the location of the bit is inside or outside of the surface or a surface layer. Superimposing two

CSs implies superimposing two surface points. We score superimposed CSs for complementarity

in order to determine whether the pair of points might be a PCP. So the task of finding PCPs

reduces to the problem of evaluating the shape complementarity of all CS pairs. The best shape

complementarity is determined by trying all rotations of one CS versus the other. At each rotated

position, the complementarity is evaluated using boolean operations on the aligned context rays.

Looking only for PCPs obviates the need for a translational search.

Dense sampling of the SES was found to be essential to the success of finding the PCPs, but

using too many points would slow the search. The SES can be efficiently represented by a sparse

set of critical surface points without significant loss of accuracy [14]. Critical surface points are

the face centers of the contact and re-entrant portions of the SES, ignoring the toroidal faces. The

face centers are computed by projecting the centroid of each face to a point on the face. Only the

sparse critical surface points are considered to be possible PCPs, which dramatically reduces the

search space.

The BSA, defined above, is the final score of a given pose. But before the relatively expensive

calculation of the BSA, simpler filters were applied: the Solid Vector, Solid Angle and Overlap

Volume filter.

The calculations of both overlap volume and BSA require a one-to-one association of the context

rays in the two CSs. Boolean operations are carried out on associated rays. Two rays from different
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context shapes are associated if, after rotating one CS relative to the other, the rays are nearest

neighbors on the sphere. This is defined later in more detail. Since all CSs are based on the same

template, a set of rotations and nearest neighbor ray associations were pre-calculated and stored

as a Matching Table, greatly speeding up the rotational search.

The first pruning step was based on Solid Angle. The solid angle of the region of each context

shape inside the protein was measured for different radii [9] (see Figure 3). For complementary

context shapes the solid angles should roughly sum to 4π, or else the pose can be pruned.

Another pruning step used the notion of a Solid Vector, which is defined as a ray from the PCP

to the center of mass of the corresponding context shape. The solid vectors of two CSs should be

approximately 180 degrees apart in true poses. Poses in which the angle between solid vectors was

too small were assumed to be impossible, as illustrated in Figure 3, since this would lead to too

much overlap. To speed the search, only entries in the matching table that had highly obtuse solid

vector angles were used. The search for a PCP then reduces to evaluating the overlap volume and

BSA over rays associated by the selected entries in the matching table of pre-computed rotations.

Since docked proteins cannot pass through each other, we further pruned poses by considering

the overlap volume, which is defined as the extent to which the two surfaces penetrate each other

in a pose. To calculate the overlap volume, we created multiple surface layers projected inward

and outward from the SES. Using multiple layers enabled us to permit shallow penetration of

surfaces but disallow deep penetrations. Shallow overlaps in near-native poses can be the result of

conformational changes in the proteins, but deep penetrations should never occur in near-native

poses. Having multiple layers enabled the assignment of different weights to different depths of

penetration.

For a given CS pair, all poses that were not pruned were scored using the BSA calculation. The

rotation with the highest BSA score was stored, to be ranked later with all other CS pairs.

In short, the method has three main steps: 1) surface sampling and local shape representation

as CSs, 2) pruning and complementary shape matching on CS pairs, and 3) ranking of poses based

on scores. Details of these steps are described next.

2.2 Local Shape Representation

The local shape features of a protein were captured using context shapes. A context shape was

represented using a sphere of a given radius r centered on a surface point (a potential PCP). The

local shape features were captured by sampling the parts of the protein body bounded by the sphere.

The sampling of shape features within a context shape consisted of a set of κ vectors, called context

rays (CR), originating from the center of the sphere and ending at points evenly distributed on the

surface of the sphere. The sphere was sampled at a density high enough that there was one end

point per ρÅ2, on a sphere of radius rÅ. Thus we need approximately κ = ⌊4πr2

ρ
⌋ rays to sample

the local features; for example, κ = 1256 rays to sample at a density ρ = 1 for r = 10Å.
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Each context ray was divided into β segments, where each segment had one of two possible

states: inside (1) or outside (0). We used β = 32 bit words to represent a context ray, a size which

allowed for fast bit operations on 32-bit machines (64 bits can be used for a more dense sampling

if required). The notation CR[i] denotes the i-th bit of context ray CR.

x

Binary String

Context Ray

11111111111111111000000000000000

Origin (O)

SES

Sphere

Context Ray

Figure 1: Context Shape Representing the Local Volume at a Critical Surface Point. The protein,
SES, and the sphere centered at critical point O, are shown in 2D for simplicity. The shaded area
gives the local volume of the protein at O. The context rays used to sample the context shape are
also shown. Each segment of the ray has one of two possible states: inside “1” (shown in bold) or
outside “0” (shown in dashes) of the local protein volume. The binary string composed of β bits
for a given context ray is also shown.

Context shapes were used to represent different types of shape features such as surfaces and

layers. The context shape representing a local solvent excluded volume is illustrated in Figure 1.

Starting with the SES we computed several layers both inwards and outwards with each layer

having a thickness of 1 Å. For any given distance δÅ, relative to the SES, we can compute the

surface layer at that distance. Let Sδ denote the surface at distance δ, where δ ∈ [−r, r], and where

δ < 0 indicates inner layers, δ > 0 indicates outer layers, δ = 0 indicates the SES, and where

δ = −r and δ = r denote the sphere boundaries inside and outside the SES, respectively. See

Figure 2 (a) for an illustration. A context shape in general is then the volume within the sphere

bounded by two surface layers, and is given as CS(Sl,Su, r), where Sl and Su denote the lower and

upper surface boundaries, and r is the radius of the sphere. Since we used a fixed r, we denote a

context shape as CS(Sl,Su). Figure 2(b) shows the different types of context shapes representing

different shape features. For example CS(S−r,S0) represents the solvent excluded volume. The

context shape representing the SES is simply CS(S0,S0). The figure also shows the context shapes

for an inner layer volume CS(S−2,S−1) and for an outer layer volume CS(S1,S2).

We refer to the different context shapes by simpler mnemonics: CSvol = CS(S−r,S0); CSses =
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x

Core

in1

SES

in2

out1

out2

SES
O1

O2

I1
I2

SES SES

SES

Local Layer Volume (Inner) Local Layer Volume (Outer)

Local SESLocal Volume

(a) (b)

Figure 2: (a) Layers Inside and Outside the SES. Different layers are used to generate local shape
features. Each layer is at a given distance from the SES (inwards or outwards). (b) Four main
types of context shapes are shown (as the shaded region): i) local volume, ii) local SES, iii) local
inner layer volume, and iv) local outer layer volume.

CS(S0,S0); CSinK = CS(S−K ,S−K+1), for inner layers; and CSoutK = CS(SK−1,SK), for outer

layers (where K is in units of Angstroms Å). In this work we used four in and four out layers,

namely: in4, in3, in2, in1, out1, out2, out3, and out4. See Figure 2(a) for an illustration of these

layers. Finally, we refer to CS(S−r,S−4) as the CScore region inside the SES, and we refer to

CS(S0,S2.8) as the CSsis region (for the solvent included surface), where δ = 2.8 is the diameter

of the water (solvent) molecule. Each context shape CS(Sl,Su) is given as a set of κ context rays

{CRi | i ∈ [1, κ]}, where each CRi is a context ray, a binary string with a ‘1’ for segments within

the bounded region, and ‘0’ outside the region. In the case of CSses, for a context ray, a single bit

is set to ‘1’ for each segment that intersects the SES and all other bits are set to ‘0’. Also note that

a different number of rays may be used for different context shapes.

Generating Context Shapes

The different surface layers were computed using a 3D grid with a resolution of 0.2Å ×0.2Å ×0.2Å

(along the x, y, and z axes). Each cell has a type identifier t ∈ {ses, inner, outer, empty, core}, and

is assigned cell coordinates 〈cx, cy, cz〉, with ci ∈ N (for i ∈ {x, y, z}). The coordinates are used to

denote the distance (in terms of the number of cells) to the closest ses cell along the three axes. A

pre-computed table is used to expedite the actual (Euclidean) distance calculation.

To identify the layers, in the first step, the cells that intersect with the SES were marked ses; the
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cells that were inside of the protein were marked core and the cells that were outside of the protein

were marked empty. Then for each ses cell, we checked all of its local cells, within a distance of

4Å, to see if the current ses cell was their closest ses cell. If such a cell was currently marked as

core, we changed its type to inner and updated its coordinates with respect to the current ses cell.

Likewise, if a cell was marked as empty, we updated its coordinates to the ses cell and marked it as

outer. Finally, if a cell was already marked inner or outer we only updated its coordinates if the

current ses cell was closer. If any cell was updated, we recursively updated its local cells to see if

the current ses cell was also closer to them. Once the local cells for all the ses cells were checked,

we had two layers with a thickness of 4 Å from the SES, one inward and the other outward. A single

pass was then made to generate all the context shapes (CSvol, CSses, CSinK , CSoutK , CScore, CSsis)

based on the cell types and their Euclidean distance from the closest ses cell.

2.3 Complementary Shape Matching

A pose, π, between the context shapes CSR
X from protein PR (the receptor) and CSL

Y from protein

PL (the ligand), with X,Y ∈ {vol, ses, sis, core, inK, outK} and K ∈ [1, 4], was represented by a

one-to-one mapping of the context rays between the two context shapes. The feasibility of the pose

was assessed using the overlap volume, defined as the volume that is labeled as inside in both CSs.

For a given pose π, the overlap volume of protein PL’s context shape CSL
vol with respect to the

context shape CSR
X for layer X of protein PR, is given as:

OV (CSL
vol, CSR

X , π) =

κ∑

i=1

V (CRL
i ∧ CRR

iπ
) (1)

where CRL
i ∈ CSL

vol, and CRR
iπ ∈ CSR

X is a context ray mapped to CRL
i according to pose π. Here

CRL
i ∧CRR

iπ
denotes the bitwise and operation between the two context rays. The overlap volume

within a single thin cone-shaped segment of the sphere is given as V (CRL
i ∧CRR

iπ
) =

∑β
j=1 ν(j)V [j],

where ν(j) = (CRL
i [j] ∧ CRR

iπ
[j]) and V [j] is the actual volume corresponding to the j-th segment

of the context ray. Depending on the choice of the layer X above, we obtain different kinds of

overlap volumes. The total overlap volume between two context shapes is a symmetric quantity,

and is given as OV (CSL
vol, CSR

vol, π). It represents the overlap of one protein’s volume with the

other, for a given pose. On the other hand the layered overlap volume is asymmetric, and is

given as OV (CSL
vol, CSR

X , π) and OV (CSR
vol, CSL

X , π), where X is one of the inK or outK layers. It

represents the part of one protein’s volume that overlaps a given layer X in the other protein, for

a given pose.
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2.3.1 Pruning Based on Solid Angle

The solid angle is defined as the area of the surface of a sphere that passes through the solvent

excluded volume, divided by the radius squared. Figure 3 shows the solid angle θR(r) the receptor’s

context shape for a given radius value r. Given two Context Shapes, the sum of their solid angles

θR(r) + θL(r) at radius r Å(0 < r ≤ 10) should be less than but close to 4π, if they match very

well [9]. Using a range of radii from r = 5 Å to 8 Å, with an increment of 1, we get an array of 4

solid angles for each Context Shape. We sum the solid angles and take the average over all the 4

radii, then set the lower bound to 0.75 × 4π = 3π and the upper bound to 1.05 × 4π = 4.2π. The

upper bound is a little bit bigger than the theoretical maximum value 4π to allow for flexibility.

2.3.2 Pruning Based on Overlap Volume

The optimal pose will have a low overlap volume. In the ideal case, the docked surfaces from

the two proteins around the PCP should not have any overlap. However, since we use discrete

steps to rotate the proteins to a candidate pose, we might miss the ideal pose. Data sampling also

contributes some error, so a small amount of overlap must be allowed. Overlap volume is used as

a filter to prune infeasible poses, especially overlap volume in deep layers. Poses that have a small

but deep overlap volume (i.e., sharp penetration) are more likely to be false than poses that have

shallow overlap volumes. In our method, any pose with a non-zero overlap in layers in3, in4 and

core, more than 5Å3 overlap in in2, or a total overlap volume of 80Å3 or more was pruned.

The overlap filters can be formally stated as follows:

• Prune Large Overlap: if OV (CSL
vol, CSR

vol, π) > 80Å3, then reject pose π.

• Prune Sharp Penetration: For A,B ∈ {L,R}, reject pose π if either:

(a) OV (CSA
vol, CSB

X , π) > 0 for X ∈ {in3, in4, core}, or

(b) OV (CSA
vol, CSB

in2, π) > 5Å3

Note that L and R represent the ligand and receptor proteins, and the expression A,B ∈ {L,R},

means that the calculations were done twice, switching L and R superscripts.

2.3.3 Enumerating Rotations

The comparison of two context shapes, CSL from the ligand protein and CSR from the receptor

protein, begins by superimposing their centers. Then there are three rotational degrees of freedom

that must be sampled in order to find all possible poses. We can sample the rotational space by

first rotating the z-axis to evenly distributed points on the surface of the sphere (e.g., we can use

the context rays, CRl, of CSL and align z to each ray, CRi, of CSR), and then rotating in steps

of γ◦ around each rotated z-axis, yielding ⌊360
◦

γ◦ ⌋ poses (e.g., for γ = 5.8◦, we get 62 poses). The
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first step assures that the z-axis is positioned uniformly on the sphere, and the second step assures

that the x and y-axes positions are uniformly sampled. Using this approach, we generated a total

of 1256 × 62 = 77872 rotations.

r

Context Shape (L)

Context Shape (R)

Solid Vector (R) Solid Vector (L)
Reversed Solid Vector (R)

φ
φ

Pose Search RegionSolid Angle (R)

θ

Figure 3: Solid Angle Pruning: For a given pose π if the sum of the solid angles θR(r) and
θL(r) is not within [3π, 4.2π], we reject the pose. Solid Vector Pruning: For a given pose π if
the reversed solid vector of CSR

vol is not within an angle of φ around the solid vector of CSL
vol, we

reject the pose.

To prune obviously impossible poses, we computed the center of mass of each context shape

CSvol. For two CSvols, the vectors to the center of mass, called the Solid Vectors, should be almost

in the opposite directions when correctly docked. We can safely restrict the search for good poses

to those where the reversed solid vector of CSR
vol lies within an angle of φ◦ (we used φ = 15◦) around

the solid vector of CSL
vol, as illustrated in Figure 3.

For each of the rotated positions, a one-to-one association of context rays between two context

shapes was pre-computed and stored in a Matching Table, since table checking is much faster in

general than rotation operations. Note that for a given pose, since one set of uniformly sampled

rays (say from the ligand) will not, in general, exactly match the other set of rays (say, from

the receptor), we sample the receptor ray set at a much finer detail, so that the approximate ray

correspondences would have negligible impact on the accuracy of the pose. Thus, in order to get a

one-to-one association, one of the CSs, CSR, was sampled at a higher density, between 2κ and 3κ

rays, versus κ context rays for CSL. Context rays in CSL were then associated one-to-one with a

subset of the context rays in CSR by rotating and then finding the nearest neighbor.

Consider the example shown in Figure 4. Context shape CSL has κ = 4 context rays and CSR

has 2.5κ = 10 rays. Both sets of rays are evenly distributed inside the sphere (shown here in 2D for

simplicity), and are labeled consecutively in the clockwise direction. Assume we sample the poses

in steps of 45◦ (clockwise) starting from the alignment of ray a ∈ CSL with ray 1 ∈ CSR. Then

there are eight possible poses, since 360◦

45◦ = 8. For each of these poses, we would have to rotate

the rays of CSL and find the closest rays of CSR. An example pose (after rotating CSL by 45◦) is

illustrated in the figure, given as π2 = {a→ 2, b→ 5, c→ 7, d→ 10}.
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Context Shape (L) Context Shape (R)

Relative Pose between Context Shapes Matching Table

Context Rays (L)

Po
se

 I
D

Mapped Context Rays (R)

π2      2        5        7        10
π3      3        6        8        1
π4      5        7        10      2
π5      6        8        1        3
π6      7        10      2        5
π7      8        1        3        6
π8      10      2        5        7

π1      1        3        6        8

Figure 4: Matching Table. CSL has 4 context rays, whereas CSR has 10. The context shapes are
shown in 2D. There are 8 candidate poses using a step size of 45◦. Once such pose corresponding
to the second row π2 in the matching table is shown on the left, i.e., π2 = {a → 2, b → 5, c →
7, d→ 10}.

2.4 Ranking Matches

To find the best docking orientation of two proteins, we estimated the amount of surface excluded

from the solvent, called the Buried Surface Area (BSA). The BSA approximates the desolvation

energy, which is the primary driving force of protein-protein interactions. The more surface excluded

from the solvent, the better the binding energy. The BSA of one protein is the amount of its SES

area that overlaps in the SIS layer of the other protein, as shown in Figure 5. The sum of the

buried surface area from both context shapes is used to score the quality of the pose. In practice,

to account for the approximate nature of PCPs, we used the weighted sum of the buried area in

several external layers.

For a given pose π, the buried surface area of protein PL’s context shape CSL
ses with respect to

the context shape CSR
X for layer X of protein PR, is given as:

BSA(CSL
ses, CSR

X , π) =

κ∑

i=1

A(CRL
i ∧ CRR

iπ) (2)
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SIS

Context Shape R Context Shape L

SES

Figure 5: Buried Surface Area. CSR’s SIS layer can include a single layer of water molecules. If
any part of CSL’s SES falls in the region, we can safely claim that to be buried. The buried part
of CSR’s SES can be calculated in the same way by using CSL’s SIS layer.

where CRL
i ∈ CSL

ses, and CRR
iπ
∈ CSR

X is a context ray mapped to CRL
i according to pose π. The

buried area is given as A(CRL
i ∧ CRR

iπ
) =

∑β
j=1 α(j)A[j], where α(j) = (CRL

i [j] ∧ CRR
iπ

[j]) and

A[j] is the actual area corresponding to the surface point represented by bit j. Note that the

total buried surface area for layer X is the sum BSA(CSL, CSR,X, π) = BSA(CSL
ses, CSR

X , π) +

BSA(CSR
ses, CSL

X , π).

The scoring function used to rank different poses is the weighted sum of the buried area across

several layers, given as follows:

Score(CSL, CSR, π) = w1 ×BSA(CSL, CSR, in1, π) +
3∑

K=1

wK ×BSA(CSL, CSR, outK, π) (3)

The weights for each layer were chosen empirically to optimize the rankings; we used w1 = 4,

w2 = 1, and w3 = 0.25, indicating the relative importance of the buried area in each of the

inner/outer layers. Finally, for the two context shapes CSL and CSR we find the best pose π, which

has the highest score, given as: Match(CSL, CSR) = maxπ Score(CSL, CSR, π)). To match two

proteins, we check all the possible context shape pairs and rank them in decreasing order of their

scores.

2.5 Context Shapes: The Complete Method

The complete context shapes method is composed of two steps: off-line preprocessing and online

shape matching.

The off-line preprocessing step is used to generate the context shapes and the matching table.

13



Given a protein complex along with information about the chains to use as the ligand and receptor,

we use the MSMS algorithm [29] to generate the SES. The SES is given as a triangular mesh

consisting of a set of surface vertices and a set of surface triangles, also called the faces. Next we

generate a 3D grid with cell size (0.2Å)3 to compute the surface layers, the context shapes, and the

context rays, as described previously. The matching table, a common device in matching of any

pair of context shapes, is also pre-computed off-line.

CSR ← context shapes from receptor protein PR;1

CSL ← context shapes from ligand protein PL;2

Candidate-Pairs ← ∅;3

foreach (Context Shape CSR in CSR) do4

foreach (Context Shape CSL in CSL) do5

Calculate the average Solid Angle sum Θ over CSR and CSL;6

Calculate angle φ between Solid Vector of CSL and Reversed Solid Vector of CSR;7

if (φ and Θ exceed corresponding pruning thresholds) then8

Skip to next context shape in CSL;9

foreach (Pose π of context shapes CSR and CSL) do10

Calculate the overlap volume OV , under the given pose π;11

if (OV exceeds threshold value) then12

Reject pose π;13

Calculate the buried surface area BSA, under the given pose π;14

Only keep the best pose π with the largest buried surface area;15

Insert the tuple (CSR, CSL, π, BSA) in Candidate-Pairs;16

Sort Candidate-Pairs based on BSA (decreasing order);17

Figure 6: Context Shape Algorithm

In the online matching step, given the matching table and the set of context shapes from the

ligand and receptor proteins, our matching algorithm outputs a ranked list of possible poses. The

pseudo-code for our context shape matching algorithm is given in Figure 6. For each pair of context

shapes, CSR in the receptor protein PR (line 4) and CSL in the ligand protein PL (line 5), we first

apply the solid angle and vector pruning (line 8). We next enumerate all the possible poses π (line

10) using the matching table. Of the poses that pass the filters on the overlap volume (line 12), we

retain only the pose that has the largest buried surface area (line 15). Finally the candidate pairs

of context shapes, along with their pose, are sorted based on their buried surface area, and the top

ranked ones are reported (line 17).

It is worth mentioning that we adopted a database oriented approach to the problem of setting

the various parameter settings, and for better experiment management. Given two sets of context

shapes, one from a receptor and the other from a ligand, the algorithm generated a set of SQL

(Structure Query Language) statements to insert the pose information, including partial scores, into
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a SQLite database (http://www.sqlite.org/). Then we wrote various SQL scripts to extract and

analyze the data using different parameter settings. For example, we tried varying the weights for

the different surface layers and varying pruning cutoffs while optimizing the ranks of the true poses.

3 Results and Discussion

To evaluate the effectiveness of our context shapes (CS) approach, we compared it with two state-

of-the-art geometry-based docking algorithms: ZDOCK(PSC) [7] (a FFT based approach; also

called ZDOCK v2.1) and PatchDock [11, 30] (a Geometric Hashing based approach, along with

other optimizations). The executable code for both methods was downloaded directly from their

respective web-sites: http://zlab.bu.edu/zdock/ for ZDOCK v2.1 and http://bioinfo3d.cs.

tau.ac.il/PatchDock/ for PatchDock. Unless noted otherwise, all experiments were done on a

PC with dual-core 2.2Ghz Opteron CPU, with 32GB of physical memory, running Linux.

In the evaluation, a prediction is called a hit if the interface RMSD between the predicted ligand

pose and the original ligand (after superimposing them), is less than a threshold value (e.g., 2.5Å).

The same threshold value was used for ZDOCK(PSC) and PatchDock. In all three methods an

interface RMSD value is calculated over the interface Cα atoms of the ligand protein. A Cα atom

of the ligand protein is in the interface if any atom of the receptor is within a distance of 10Å. Note

also that for all three methods, for each complex, the ligand is randomly rotated before docking.

3.1 Comparison with ZDOCK(PSC) and PatchDock

We compared our new CS approach against ZDOCK(PSC) and PatchDock on the 84 test cases

from benchmark v2.4 [23]. For all three methods only the top 3600 predictions are considered,

since ZDOCK(PSC) returns a maximum of 3600 predictions. Three sets of results are presented: i)

R-bound/L-bound: Here the receptor and ligands are both bound, i.e., the receptor and ligand from

the co-crystallized protein complexes are used. ii) R-unbound/L-bound: Here the receptor is taken

from the unbound form of the protein, whereas the ligand is taken from the bound co-crystallized

complex. iii) R-unbound/L-unbound: Here both receptor and ligand are in their unbound form. In

all three cases, as mentioned above, randomly rotated ligands are used to test each method. In the

results shown below, we mainly refer to the best ranked hit, which is not necessarily the same as

the best rmsd hit. Please note that a hit always has an RMSD lower than the chosen cut-off (like

2.5Å); it is the best ranked hit, if it has the least rank, and it is best rmsd hit if it has the least

rmsd, among all hits.

For CS, MSMS [29] was used to calculate the SES of both the receptor and ligand proteins,

with probe-radius 1.4Å and surface point density of two points per 1Å2. The surface layers were

computed using a 3D grid with a resolution of (0.2Å)3. The sparse critical surface points were

calculated based on the analytical representation of the SES. On the receptor protein PR, we used
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only the centers of re-entrant faces, whereas on the ligand protein, only the centers of contact faces

were used. In both cases, if the area of a re-entrant or contact face was less than 1Å2, it was

ignored. If a contact face was bigger than 4Å2, we evenly re-sampled the face to obtain one point

per 2Å2. These sparse critical surface points were used as the centers of the context shapes. The

radius of the template sphere was r = 16Å.

ZDOCK(PSC) can be run in two modes: coarse or dense. In the default coarse mode, used in

this and previous studies [7], the rotational sampling density is of 15 degrees, while in dense mode

it is 6 degrees. The dense mode is around 15 times slower than the coarse mode, and is suggested

to be used only if further refinement of the structures is required. PatchDock was also run under

its default parameters. Note that the results on ZDOCK(PSC) reported below, cannot be directly

compared with those reported in [8], since the latter presents results on cases from benchmark v0.0,

whereas we consider the latest benchmark v2.4. Furthermore, the latter uses the much slower dense

sampling mode, whereas we use the coarse mode in this study.

We first trained/optimized the parameters of our CS approach on 25 R-bound/L-bound cases

from the docking benchmark v0.0 [6]. In other words, we optimized CS on the receptor and ligand

parts of the co-crystallized protein complexes. The results are shown in Table I. The table gives

details on the complexes used, as well as the rank and RMSD for the best ranked hits (with RMSD

cut-off of 2.5Å). Out of the 25 cases, CS failed to return a hit among the top 3600 predictions for

two cases, namely 1DFJ and 2PCC. On 16 cases the best rank hit is found in the top 10 predictions.

After optimizing the default parameters for CS, we did a comprehensive evaluation of CS against

ZDOCK(PSC) and PatchDock on 84 test cases from the most recent docking benchmark v2.4 [23].

Benchmark v2.4 has 12 cases in common with the subset of 25 complexes from benchmark v0.0.

Note that whereas 1AHW appears in both benchmarks, it refers to different complexes with different

chains. Furthermore, even the common cases do not refer to identical complexes, presumably

because benchmark v2.4 refers to the latest cleaned PDB (Protein Data Bank) structures. It is

important to note that CS was optimized only on the 25 bound complexes (R-bound/L-bound)

from benchmark v0.0, but it was tested on an independent test set of 84 bound complexes as

well as the corresponding unbound conformations (R-bound/L-bound, R-unbound/L-bound and

R-unbound/L-unbound) from benchmark v2.4. In other words the test cases were not used for

training the parameters of CS.

We first consider the R-bound/L-bound scenario. Table II shows the best ranked hit, along

with its RMSD, for each of the 84 test cases from benchmark v2.4, for the three methods. Note

that the 12 common cases with benchmark v0.0 are included here only for completeness. Note also

that the results on the common cases do not match those reported in Table I due to the differences

in the complexes between the two benchmarks. On the 84 test cases, a RMSD cut-off of 2.5Å was

used to obtain a hit. In the vast majority of the cases (56 out of 84) the best ranked hit for CS had

an RMSD under 2Å. In comparison ZDOCK returns 39, and PatchDock 26 cases under 2Å. On 10
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Table I: 25 R-bound/L-bound complexes from docking benchmark v0.0 [6] used for optimizing the
parameters of CS. PDB column gives the PDB id for the protein complex, as well as the chains
used as the receptor and ligand. Atoms gives the size of the receptors and ligands. RMSD and
Rank give RMSD and the rank of the best ranked hit (using a RMSD cut-off of 2.5Å).

PDB Atoms Rank RMSD (Å)

1ACB:E,I (1733, 521) 6 1.97
1AHW:DE,F (1737, 1595) 1 1.85
1AVW:A,B (1631, 1268) 2 1.28
1AVZ:B,C ( 873, 461) 1 2.08
1BRC:E,I (1642, 410) 16 1.26
1BRS:A,D ( 863, 692) 5 2.37
1BVK:DE,F (1742, 983) 38 1.91
1CGI:E,I (1798, 439) 1 1.18
1CHO:E,I (1748, 399) 7 1.33
1CSE:E,I (1919, 521) 11 1.09
1DFJ:I,E (3410, 950) - -
1DQJ:AB,C (1666, 1000) 87 1.73
1FSS:A,B (4225, 463) 82 1.78
1MAH:A,F (4104, 459) 1 1.89
1MDA:HL,A (3378, 790) 223 2.29
1MLC:AB,E (3288, 1000) 5 1.27
1TGS:Z,I (1628, 415) 3 1.37
1UGH:E,I (1807, 646) 1 1.05
1WEJ:LH,F (1702, 822) 135 1.56
1WQ1:G,R (2531, 1321) 1 1.76
2KAI:AB,I (1790, 438) 6 1.17
2PCC:A,B (2370, 846) - -
2PTC:E,I (1628, 445) 2 2.15
2SIC:E,I (1937, 763) 7 1.68
2SNI:E,I (1937, 512) 1 1.62

cases (as listed in the table), all three methods failed to return a hit in the top 3600 predictions.

On the remaining 74 cases, CS failed only on two cases (1KAC and 2PCC), whereas ZDOCK failed

on 19, and PatchDock failed on 32, additional cases.

Table III and Table IV show the results for R-unbound/L-bound and R-unbound/L-unbound

scenarios, respectively. Here too, an RMSD cut-off of 2.5Å was used to report hits.

The results from all three scenarios are summarized in Table V. Consider first the results using

the RMSD cut-off of 2.5Å for a hit. Table V(a) shows the number of cases with a success for all

three methods, where success means that a hit was found in the top 3600 ranked predictions. The

number of successes decreases sharply as we move from the bounded to unbounded scenarios. For

example, on R-unbound/L-unbound, CS returned a hit in only 18 out of the 84 test cases, whereas
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Table II: R-bound/L-bound: Comparisons between CS, ZDOCK(PSC) and PatchDock on 84 test cases from
Benchmark v2.4. PDB gives the PDB id for the protein complex. RMSD and Rank give the RMSD and rank
of the best ranked hit (using 2.5Å cut-off). 1DFJ⋆, 1FQ1, 1GHQ, 1HE8, 1IJK, 1NSN, 1SBB, 2HMI, 2PCC⋆,
and 2VIS are not listed above, since all three methods failed to return a hit in the top 3600 predictions for
these cases. ⋆ denotes complexes common with the 25 cases from benchmark v0.0 [6]. † and ‡ refer to the
same protein, but using two different set of chains as the receptor.

Context Shape ZDOCK(PSC) PatchDock
PDB Rank RMSD (Å) Rank RMSD (Å) Rank RMSD (Å)
1A2K 40 1.08 570 2.41 300 1.47
1ACB⋆ 8 2.32 6 0.82 10 1.60
1AHW 7 1.20 56 1.18 40 1.55
1AK4 2925 2.08 3471 1.14 - -
1AKJ 265 2.15 448 1.88 - -
1ATN 49 2.10 558 1.15 - -
1AVX 10 1.76 1 1.96 43 2.14
1AY7 193 1.23 46 1.68 24 2.07
1B6C 11 1.78 24 1.69 40 1.92
1BGX 1 1.96 - - - -
1BJ1 1 1.05 3 1.42 - -
1BUH 61 1.55 393 1.43 83 1.14
1BVK⋆ 45 1.69 1087 1.43 131 2.12
1BVN 1 1.55 10 1.24 1 0.75
1CGI⋆ 1 1.37 1 1.12 1 1.08
1D6R 4 1.68 35 1.04 - -
1DE4 13 1.21 452 1.62 - -
1DQJ⋆ 67 1.65 19 2.00 83 1.71
1E6E 1 1.58 58 2.06 2 2.29
1E6J 1337 1.92 699 2.02 1706 1.43
1E96 1206 1.84 - - 1767 1.44
1EAW 1 1.41 1 1.75 1 0.99
1EER 1 1.62 - - 1 1.66
1EWY 518 2.26 - - 139 1.42
1EZU 1 1.60 - - 1 0.94
1F34 1 1.99 - - 1 1.90
1F51 7 2.01 - - 1 1.92
1FAK 1997 1.70 - - - -
1FC2 7 1.85 55 2.18 49 1.24
1FQJ 12 1.94 120 1.94 248 1.48
1FSK 9 2.06 19 1.70 218 1.57
1GCQ 2 1.26 382 1.81 - -
1GP2 53 1.86 - - - -
1GRN 1 1.84 7 2.26 3 1.45
1H1V 14 2.37 1510 2.40 - -
1HE1 1 1.44 7 1.67 1 1.06
1HIA 2 1.07 1 1.70 14 1.19
1I2M 6 1.36 14 1.80 - -
1I4D 104 1.42 793 2.08 167 1.05
1I9R - - 1271 2.04 - -
1IB1 2 1.48 - - - -
1IBR 1 2.05 - - - -
1IQD 14 1.19 55 1.83 - -
1JPS 2 1.26 23 2.30 96 1.87
1K4C 5 0.88 30 1.16 337 1.53
1K5D 2 2.06 10 2.11 - -
1KAC - - 381 1.52 - -
1KKL 226 1.67 - - - -
1KLU 1108 1.80 - - - -
1KTZ 2280 1.41 - - - -
1KXP 3 2.17 - - - -
1KXQ 229 1.51 30 1.60 29 1.63
1M10 - - 33 2.23 - -
1MAH⋆ 1 1.45 1 1.91 1 1.27
1ML0 569 1.91 75 1.94 7 0.58
1MLC⋆ 30 1.15 1205 1.37 516 1.79
1N2C 3 1.36 - - - -
1NCA 3 1.77 20 1.48 - -
1PPE 1 2.32 2 1.21 1 1.03
1QA9 972 1.30 - - - -
1QFW† 1247 2.21 16 2.46 - -
1QFW‡ 38 2.13 54 1.84 - -
1RLB 311 1.63 - - 3143 2.32
1TMQ 1 2.32 8 1.79 1 1.52
1UDI 3 1.52 1 1.50 1 1.97
1VFB 8 1.50 - - - -
1WEJ⋆ 496 1.25 1120 1.11 - -
1WQ1⋆ 1 1.14 4 2.04 1 0.84
2BTF 4 1.13 21 1.21 137 1.82
2JEL 56 1.40 532 1.77 282 1.65
2MTA 21 1.45 1447 2.26 115 1.71
2SIC⋆ 4 1.36 9 1.19 - -
2SNI⋆ 2 1.27 4 2.50 13 2.10
7CEI 123 1.90 5 2.18 - -
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Table III: R-unbound/L-bound: Comparisons between CS, ZDOCK(PSC) and PatckDock on 84
test cases from Benchmark v2.4. PDB gives the test case. RMSD and Rank give the RMSD and
rank of the best ranked hit (using 2.5Å cut-off). Results for cases where all three methods failed
to return a hit in the top 3600 predictions are not shown.

Context Shape ZDOCK(PSC) PatchDock

PDB Rank RMSD (Å) Rank RMSD (Å) Rank RMSD (Å)
1ACB - - 1395 2.03 - -
1AHW 3 2.46 127 2.47 - -
1AVX 1022 2.36 291 1.67 2490 1.26
1AY7 667 1.79 - - 1109 1.92
1B6C 128 2.35 541 1.82 - -
1BJ1 1 1.05 3 1.42 - -
1BUH 77 1.64 267 1.52 135 1.65
1BVN 24 1.13 - - 27 2.50
1CGI - - 2879 2.41 - -
1D6R 237 1.56 227 1.40 - -
1DQJ 3317 1.96 232 1.91 - -
1E6E - - - - 69 2.24
1EAW 6 2.40 23 1.92 23 1.17
1EWY 1325 2.20 - - - -
1EZU 33 2.48 - - - -
1F34 1 1.72 - - - -
1F51 3061 2.47 - - - -
1FSK 9 2.06 19 1.70 218 1.57
1GCQ 535 2.28 - - 973 2.01
1GRN 266 1.98 997 2.18 73 1.52
1HE1 77 1.19 56 1.64 2 2.10
1HIA 16 1.31 7 1.68 - -
1I4D 343 1.98 - - 770 1.45
1I9R 55 1.64 - - - -
1IQD 14 1.19 55 1.83 - -
1JPS 1957 2.33 188 1.54 481 2.13
1K4C 5 0.88 30 1.16 337 1.53
1KAC 1489 2.05 - - - -
1KXP - - 2 2.48 - -
1KXQ 247 2.04 272 1.38 10 1.82
1M10 3092 2.49 - - - -
1MAH 18 1.65 3 1.49 157 2.49
1ML0 2467 2.05 - - - -
1MLC 361 2.15 - - - -
1N2C 13 1.54 - - - -
1NCA 3 1.77 20 1.48 - -
1PPE 2 1.55 4 2.28 1 2.27
1QFW† 1247 2.21 16 2.46 - -
1QFW‡ 38 2.13 54 1.84 - -
1SBB - - - - 3547 2.06
1TMQ 9 1.25 59 2.03 1 1.14
1UDI 109 2.12 496 2.40 169 2.46
1VFB 77 2.10 858 1.26 360 2.16
1WEJ - - 1289 0.96 - -
1WQ1 12 1.77 1 2.42 3 1.43
2JEL 56 1.40 532 1.77 282 1.65
2MTA 29 1.60 744 1.75 - -
2SIC 3069 2.30 150 1.19 - -
7CEI 191 2.23 319 2.24 - -
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Table IV: R-unbound/L-unbound: Comparisons between CS, PatchDock and ZDOCK(PSC) on 84
test cases from Benchmark v2.4. PDB gives the PDB id for each test case. The Rank and RMSD of
the best ranked hit (using 2.5Å cut-off) are also shown. Results for cases where all three methods
failed to return a hit in the top 3600 predictions are not shown.

Context Shape ZDOCK(PSC) PatchDock

PDB Rank RMSD (Å) Rank RMSD (Å) Rank RMSD (Å)

1AHW 402 2.46 - - 181 2.49
1BJ1 1893 1.93 224 1.66 - -
1BVK - - - - 2757 2.27
1BVN 34 2.41 76 1.11 - -
1CGI - - 68 2.43 1120 2.11
1EAW 94 2.29 96 1.74 85 2.09
1F34 - - 21 2.02 490 1.81
1FSK 20 1.57 16 1.15 221 2.39
1HE1 1029 2.17 - - - -
1KXQ 2226 1.73 310 1.26 - -
1MAH 597 1.16 176 1.55 887 2.38
1ML0 - - 1 2.43 231 2.02
1MLC 18 2.28 2198 2.11 - -
1NCA 26 1.79 - - - -
1PPE 2 2.31 4 2.20 - -
1QFW† 597 1.73 213 1.93 - -
1QFW‡ 33 2.32 - - - -
1TMQ 783 1.68 - - 1 1.96
1UDI 2469 2.14 - - 27 2.42
1VFB 228 2.46 - - - -
1WEJ - - 462 1.90 - -
2MTA - - - - 515 2.19
2SIC 1077 2.28 1154 2.22 - -
7CEI 2290 1.90 366 1.07 - -

ZDOCK(PSC) returned 15 hits, and PatchDock only 11 hits. The number of instances where all

three methods fail to return a hit is also shown. For the R-unbound/L-unbound cases, all three

methods failed in 59 cases.

Table V(b) shows the win-tie-loss-failure records for CS versus ZDOCK(PSC) and PatchDock.

Comparing CS against ZDOCK(PSC), for R-bound/L-bound, we find that CS returns a better

ranked hit than ZDOCK in 57 cases, whereas ZDOCK returns a better hit in 14 cases. CS and

ZDOCK tie in 3 cases, and both fail on 10 cases. On R-unbound/L-bound CS wins in 33 cases

as opposed to 15 cases for ZDOCK. Finally on R-unbound/L-unbound cases, the win-loss record

is 12-11. Comparing against PatchDock, CS once again has a better performance across all three
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Table V: Summary of results for bound and unbound test cases using 2.5Å and 5.0Å cut-off for
ranking. (a) Number of test cases with success (i.e., a hit found in the top 3600 predictions) for
each method, and the number of test cases where all three methods fail (All Fail). (b) Win-tie-loss
summary for CS versus ZDOCK and PatchDock; both-fail gives the number of test cases on which
both methods fail. (c) Average running time over all 84 test cases.

RMSD <= 2.5Å

CS ZDOCK(PSC) PatchDock All Fail

R-bound/L-bound 71 55 42 10
R-unbound/L-bound 43 33 22 34
R-unbound/L-unbound 18 15 11 59

RMSD <= 5.0Å

CS ZDOCK(PSC) PatchDock All Fail

R-bound/L-bound 76 71 63 4
R-unbound/L-bound 52 52 50 19
R-unbound/L-unbound 41 43 38 35

(a)

RMSD <= 2.5Å

CS vs. ZDOCK(PSC) CS vs. PatchDock
win tie loss both-fail win tie loss both-fail

R-bound/L-bound 57 3 14 10 54 11 6 13
R-unbound/L-bound 33 0 15 36 36 0 9 39
R-unbound/L-unbound 12 0 11 61 14 0 9 61

RMSD <= 5.0Å

CS vs. ZDOCK(PSC) CS vs. PatchDock
win tie loss both-fail win tie loss both-fail

R-bound/L-bound 50 11 18 5 54 14 10 6
R-unbound/L-bound 29 2 29 24 34 4 22 24
R-unbound/L-unbound 20 0 28 36 27 0 19 38

(b)

CS ZDOCK(PSC) PatchDock

Avg. Time 2126s 3091s 1164s

(c)

scenarios; it has 54-6, 36-9, and 14-9 win-loss record against PatchDock for the R-bound/L-bound,

R-unbound/L-bound and R-unbound/L-unbound cases, respectively.

Table V (a) and (b) also show the comparative performance of CS versus ZDOCK and Patch-

Dock, using an RMSD cut-off of 5.0Å for a hit. As expected, Table V (a) shows that across all three

methods, more successes are obtained using the higher cut-off. Table V (b) shows the win-tie-loss-

failure comparison. Compared to PatchDock, CS remains superior across all three scenarios. CS
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also outperforms ZDOCK(PSC) on the R-bound/L-bound cases. On R-unbound/L-bound, both

methods perform equally. Finally, on R-unbound/L-unbound ZDOCK(PSC) has better results; CS

returns better ranked hits in 20 cases, whereas ZDOCK does better in 28 cases.

Table V (c) summarizes the average running time (in seconds) for the three methods across all

84 test cases (for R-bound/L-unbound). Pre-processing time is not included. For example, for CS,

the SES surface and context shapes are computed off-line. Likewise, the time to calculate the SES

for PatchDock, and surface residues for ZDOCK, is also not included. We find that on average,

PatchDock is the fastest approach. It is about 2 times faster than CS. On the other hand CS is

about 1.5 times faster than ZDOCK(PSC).

3.2 Performance Analysis of CS
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Figure 7: Scatter-plot of receptor plus ligand size versus the running time for CS on the 84 bench-
mark v2.4 test cases (R-bound/L-bound). The best fitting line through the points illustrates a
clear linear relationship.

Figure 7 shows the scatter-plot of the combined receptor+ligand size (number of atoms) versus

the running time (in seconds) for CS on the 84 test cases from benchmark v2.4 (R-bound/L-bound).

We can see clearly that the running time for CS is linearly proportional to the number of atoms in

the complex.

We also studied the effect of increased and decreased sampling of the context rays on the

performance of CS. We selected a representative sample of 11 R-bound/L-bound complexes from

Benchmark v2.4 so that the size of the receptor/ligand ranged from small to large. Table VI shows

the ranks of the hits (with RMSD cutoff of 2.5Å) when we use coarser and denser sampling of the

context rays. The base scenario, CS(Base), used in the experiments above, used κ = 1256 context

rays for the context shapes of the ligand (CSL), and 3κ = 3768 rays for the receptor (CSR). For the

dense sampling, CS(Dense), we used twice as many rays, namely, κ = 2518 for CSL and 2.5κ = 6295

rays for CSR. For the coarse sampling, CS(Coarse), we used about half as many rays, namely,
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Table VI: Effect of Coarse and Dense Ray Sampling in ContextShape. R-bound/L-bound results
(with RMSD cutoff of 2.5Å) shown on a sample of 11 representative complexes from Benchmark
v2.4.

PDB Complex CS (Base) CS (Dense) CS (Coarse)
ID Size (R,L) Rank RMSD(Å) Time Rank RMSD(Å) Time Rank RMSD(Å) Time

1BGX (3245, 6570) 1 1.96 2461.0s 1 2.08 6596.8s 1 1.25 1104.0s
1DE4 (3063, 10044) 13 1.21 2354.3s 21 1.61 5943.5s 9 1.28 1068.9s
1FC2 (354, 1656) 7 1.85 378.3s 18 1.78 654.4s 6 1.83 127.5s
1GCQ (468, 558) 2 1.26 216.0s 3 1.51 450.6s 2 1.11 75.7s
1GRN (1522, 1586) 1 1.84 504.7s 1 1.29 1123.2s 1 2.34 191.7s
1HE8 (6070, 1358) - - 1341.1s - - 3349.4s - - 575.4s
1K4C (3252, 765) 5 0.88 722.6s 5 1.01 1560.8s 54 1.89 278.7s
1KXP (2767, 3431) 3 2.17 1265.8s 3 1.39 3202.9s 1 1.51 550.3s
1N2C (15926, 4132) 3 1.36 4742.6s 12 1.79 12287.1s 5 1.61 1899.0s
1RLB (3760, 1411) 311 1.63 655.9s 703 1.69 1601.2s 515 1.93 293.3s
2HMI (7630, 3264) - - 2563.1s - - 6349.6s - - 1163.6s
Average Time 1564.1s 3919.9s 666.2s

κ = 630 for CSL and 2.5κ = 1575 rays for CSR. We find that the dense sampling slightly decreases

the quality of the ranking and RMSD values, since it may generate more false positives. On the

other hand, the coarse sampling did not have a noticeable impact on the quality of the results. In

fact, except for 1RLB where the ranks are significantly different, all three sampling scenarios have

comparable results. Looking at the time, it is clear that coarser sampling results in faster times,

whereas a denser sampling takes considerably more time. Thus by using a coarser sampling, it is

possible to further improve the running times for CS, without a significant loss in the accuracy of

the results.

Finally, we analyzed the memory requirements of our CS approach in terms of the 3D grid size

used to generate surface layers, the context shapes for the ligand/receptor, and the matching table.

Figure 8(a) shows the memory usage for the matching table for the different context ray sampling

scenarios. Note that the Matching Table size is independent of the protein size, but it does depend

on the sampling density. We find that the coarse sampling takes about 8.0MB, the base sampling

takes 50.6MB, and the dense sampling takes 150.5MB.

Figure 8(b) shows that the 3D grid used to generate the surface layers during context shapes

creation, which depends on the size of the protein, can consume memory anywhere from 25.7MB for

the smallest protein (1FC2, receptor with 354 atoms) to 727.2MB memory for the largest protein

(1N2C, receptor with 15926 atoms). The results follow a clear linearly increasing memory usage

trend with increasing protein (receptor/ligand) size.

Figure 8(c) shows the memory usage trend for context shape generation, which clearly depends

both on the size of the protein, as well as on the context ray sampling density. The memory

usage for CS(Base), with κ = 1256 rays, takes between 100.3MB–2580.8.5MB corresponding to the

smallest and largest proteins. The memory consumption for CS(Coarse) with κ = 630 (half the
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Figure 8: Memory usage for CS. (a) The size of the matching tables for the poses for different
sampling densities (number of context rays κ). (b) The size of the 3D grid used to calculate the
context shape surface layers. (c) The total memory usage for generating the context shapes for the
receptor/ligand shown using different sampling densities for the context rays. CS(Coarse) has half
as many, and CS(Dense) has twice as many rays compared to CS(Base). Sub-plots (b) and (c)
also show the linear regression line through the plotted points, indicating a clear linearly increasing
trend of memory usage with increasing receptor/ligand (R/L) size.

number of rays), is 82.2MB–2147.5MB, and for CS(Dense) with κ = 2518 (twice the number of

rays) is 137.5MB–3484.9MB. These results show a linear increase in the memory consumption with

increasing protein size, as well as with increasing sampling density.
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It is worth noting that we have not yet optimized the memory usage for CS. For example, when

generating the context shapes, CS currently keeps them in memory and writes them to disk only

after all of them have been generated. Furthermore, during the pose enumeration step, the entire

set of context shapes from the receptor and ligand are read into memory. In fact, during context

shape generation, only the grid needs to be kept in memory all the time, whereas each context

shape can be immediately written to disk. Also, during pose matching, only the matching table

needs to be in memory, and pairs of context shapes from the receptor and ligand can be read into

memory as needed. However, the current implementation of CS, which is not memory optimized,

requires considerably more memory as seen above.

3.3 Discussion

To better understand the strengths and weaknesses of our new CS approach, we did an analysis of

the receptor-ligand interface, for those cases where CS does particularly well, and for those cases

where it fails.

Figure 9 shows four test cases (R-unbound/L-unbound) where CS does particularly well, i.e.,

it returns a hit with 2.5Å RMSD cut-off. For example, for 1BVN and 1PPE, CS returns a better

ranked hit than ZDOCK(PSC), whereas PatchDock fails, and for 1HE1 and 1NCA, only CS returns

a hit, whereas both ZDOCK and PatchDock fail. As we can observe in the figure, the best ranked

hit matches very well with the crystallographic (unbound) conformation. For comparison, the rank

1 prediction (which is not necessarily a hit) is also shown. For these good cases, we can see that

even these rank 1 predictions are in the vicinity of the actual conformation (except for 1NCA, in

the other three cases the RMSD for the rank 1 prediction is less than 25Å).

Figure 10 shows four test cases (R-unbound/L-unbound) where CS fails to return a hit with

RMSD cut-off of 2.5Å, but either ZDOCK or PatchDock do return a hit. If we relax the RMSD

cut-off, then even for these cases CS does return a hit. For example, CS found a hit for 1BVK

with RMSD 5.01Å, for 1ML0 with RMSD 6.85Å, for 1WEJ with RMSD 9.06Å, and for 2MTA

with RMSD 2.70Å. These best ranked hits are shown in the figure. Also shown are the rank 1

predictions. In contrast to the good cases above, for these bad cases, the rank 1 predictions have

very high interface RMSD (except for 2MTA, the other three rank 1 predictions have RMSD more

than 40Å).

To further understand our CS approach, we show in Table VII(a), the best RMSD predictions,

i.e., those with the least interface RMSD values compared to the actual unbound ligand, obtained

for each of the 84 test cases. As summarized in Table VII(b), if we let cut-off for a hit to be 10Å,

then in 65 out of the 84 cases, CS does return a hit. In fact, in 82 out of the 84 cases, CS finds a

hit within 16Å of the actual ligand. This implies that in the vast majority of the cases, CS finds a

hit in the vicinity of the actual pose.

We also analyzed those instances among the 84 test cases that are hard for all three methods,
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Table VII: ContextShape on R-unbound/L-unbound. (a) Best RMSD hits in the top 3600 predic-
tions for all 84 Benchmark v2.4 test cases. (b) Summary of number of hits within a given RMSD
cut-off value.

PDB Rank RMSD (Å) PDB Rank RMSD (Å)
1A2K 1112 5.88 1I4D 652 7.37
1ACB 1449 8.87 1I9R 3367 3.38
1AHW 1810 1.55 1IB1 2806 12.01
1AK4 2584 9.86 1IBR 3303 7.46
1AKJ 3599 15.14 1IJK 2107 10.58
1ATN 2541 16.20 1IQD 2990 9.78
1AVX 3477 4.16 1JPS 1112 3.63
1AY7 3160 4.27 1K4C 984 7.81
1B6C 1856 2.90 1K5D 814 15.97
1BGX 1220 12.94 1KAC 2293 3.23
1BJ1 1893 1.93 1KKL 2247 4.14
1BUH 2372 2.58 1KLU 931 11.27
1BVK 532 5.01 1KTZ 3571 6.58
1BVN 34 2.41 1KXP 2591 2.73
1CGI 3261 4.38 1KXQ 2226 1.73
1D6R 1536 4.96 1M10 3472 10.74
1DE4 1933 13.46 1MAH 597 1.16
1DFJ 1291 3.51 1ML0 514 6.85
1DQJ 3452 7.37 1MLC 2650 1.87
1E6E 1568 6.09 1N2C 1309 11.20
1E6J 3231 2.66 1NCA 2746 1.19
1E96 2985 6.15 1NSN 1203 13.17
1EAW 94 2.29 1PPE 17 1.11
1EER 3023 19.43 1QA9 103 4.63
1EWY 2382 3.13 1QFW† 597 1.73
1EZU 301 4.88 1QFW‡ 1207 1.82
1F34 161 2.72 1RLB 2223 6.10
1F51 3190 3.03 1SBB 2667 10.37
1FAK 3494 8.90 1TMQ 1092 1.54
1FC2 1732 7.19 1UDI 2469 2.14
1FQ1 3384 14.61 1VFB 228 2.46
1FQJ 937 8.24 1WEJ 2008 9.06
1FSK 275 1.33 1WQ1 159 3.92
1GCQ 1825 4.90 2BTF 1506 15.62
1GHQ 1327 7.72 2HMI 337 13.14
1GP2 1769 6.72 2JEL 2797 3.67
1GRN 3221 2.95 2MTA 1643 2.70
1H1V 3471 15.17 2PCC 3599 8.43
1HE1 1749 2.15 2SIC 1254 1.81
1HE8 2334 6.45 2SNI 1340 5.93
1HIA 1141 5.87 2VIS 3184 14.16
1I2M 1735 11.49 7CEI 2290 1.90

(a)

RMSD cut-off Number of Hits

5Å 41
10Å 65
15Å 78
16Å 82
20Å 84

(b)
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(a) 1BVN (b) 1PPE

(c) 1HE1 (d) 1NCA

Figure 9: Good test cases for CS (R-unbound/L-unbound). Hits within 2.5Å RMSD were found
for (a) 1BVN, (b) 1PPE, (c) 1HE1, (d) 1NCA. The unbound receptor surface is shown. The best
ranked hit is shown in black, the original unbound ligand is shown in red, and the rank 1 prediction
is shown in blue.

as shown in Figure 11. With a RMSD cut-off of 5Å, with R-bound/L-bound, for 1GHQ, 2HMI,

2PCC, and 2VIS all three methods fail, whereas for 1FQ1 only PatchDock returns a hit, and

for 1M10 only ZDOCK returns a hit. For R-unbound/L-unbound (with RMSD cutoff of 5Å) all

methods fail on 35 test cases (see Table V). Upon closer inspection, we find that these cases can be

divided into three main classes. For example, 1GHQ and 2HMI, shown in Figure 11(a)-(b), have a

very small interface (so do other proteins like 2VIS). 1M10 and 2BTF, shown in Figure 11(c)-(d),

including other proteins like 1FQ1 and 1ATF, have relatively large cavities in the interface. 1DE4

and 1EER, shown in Figure 11(e)-(f), and other proteins like 1AKJ, 2PCC, and 1K5D, all have
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(a) 1BVK (b) 1ML0

(c) 1WEJ (d) 2MTA

Figure 10: Bad test cases for CS (R-unbound/L-unbound). No hits within 2.5Å RMSD were found
for (a) 1BVK, (b) 1ML0, (c) 1WEJ, (d) 2MTA. The unbound receptor surface is shown. The best
ranked hit is shown in black, the original unbound ligand is shown in grey, and the rank 1 prediction
is shown in light grey.

enough differences between the bound and unbound conformations of the receptor and ligands,

which confound purely geometric approaches.

Based on our analysis above, we can conclude that our CS approach almost always finds the

largest complimentary surface, but this may be the wrong pose in some cases, since we do not

consider electrostatics and hydrogen bonds (for bound cases), and we currently do not model

flexibility (for unbound cases). The use of chemical properties, such as electrostatic potential, and

modeling flexible docking, will most certainly improve the prediction accuracy, especially in the

hard cases, and this is planned for future work.
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(a) 1GHQ (b) 2HMI

(c) 1M10 (d) 2BTF

(e) 1DE4 (f) 1EER

Figure 11: Hard Cases for Docking: (a)-(b) Small docking interface. (c)-(d) Voids in the interface.
(e)-(f) Unbound conformations without a very good fit. The unbound receptor surface is shown in
dark gray, whereas the unbound ligand surface is shown in light gray.
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4 Conclusions

The success of our ContextShape method in correctly identifying docked poses shows that the

assumptions that underly the method are correct for the most part. Specifically, we assumed

that geometric complementarity of the interface surface plays a key role in protein docking, and

furthermore that poses with superimposed surface points (PCPs) were the only important ones.

We also assumed that the energy of a docked pose was best estimated as being proportional to

the buried surface area, but only if the two shapes had little or no overlap. Success in the absence

of any electrostatic considerations showed that shape complementarity plays a dominant role in

determining binding specificity.

It is well-known that the conformation of a protein undergoes changes when it binds a ligand

such as a substrate molecule or another protein [4]. This is often explained using the induced fit

model [26]. The term unintentionally suggests a process in which binding happens first, and then a

conformational change happens, improving the fit. That is, binding somehow induces a fit. This is

how flexible docking is modeled in most cases [12, 18, 28, 35]. However, proteins exist in a dynamic

equilibrium, constantly sampling slightly different conformational micro-states. The micro-state

that exhibits the best fit for the ligand is the one that binds the ligand. This binding event

effectively locks the protein into the bound conformation, shifting the dynamic equilibrium towards

this micro-state. The result is the same, but in this view, the conformational sampling event occurs

before binding. We believe, as do many others [1, 19], that modeling the conformational sampling

can and should be done before, not after, binding. In short, the protein molecules can be modeled

as an ensemble of conformational samples, and our context shapes approach can then be used on

these ensembles to predict the good docking poses. We plan to extend our method to incorporate

this in the future.
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