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Abstract consists of finding the frequently occurring item sets via an
iterative process. In thg-th scan of the database all fre-
Discovery of association rules is a prototypical problem quent items sets of lengthare obtained. For disk resident
in data mining. The current algorithms proposed for data databases, the I/O overhead in scanning the database during
mining of association rules make repeated passes over theeach iteration can be extremely high for large databases.
database to determine the commonly occuritegisetgor Random sampling from databases has been successfully
set of items). For large databases, the I/O overhead in scan-ysed in query size estimation. Such information can be used
ning the database can be extremely high. In this paper wefor statistical analyses of databases, where approxinate a
show that random sampling of transactions in the databaseswers would suffice. It may also be used to estimate selec-
is an effective method for finding association rules. Sam-tjvities or intermediate result sizes for query optimioati
pling can speed up the mining process by more than an[11]. In the context of association rules, sampling can be
order of magnitude by reducing 1/O costs and drastically ytilized to gather quick preliminary rules. This may help
shrinking the number of transactions to be considered. Wethe user to direct the data mining process by refining the
may also be able to make the sampled database residengriterion for “interesting” rules.
in main-memory. Furthermore, we show that sampling can | this paper we show that random sampling of transac-
accurately represent the data patterns in the database withyjqns in the database is an effective way for finding associa-
high confidenqe. We e_xperimentally evaluate the effectivesign rules. We empirically compare theory and experimen-
ness of sampling on different databases, and study the rey4tion present results on the percentage of errors aneatorr
lationship between the performance, and the accuracy andyjes derived at different sampling values, the perforreanc
confidence of the chosen sample. gains, and also the relationship between performance; accu
racy and confidence of the sample size. More specifically,
we make the following contributions:
1. Introduction

e Sampling can reduce I/O costs by drastically shrinking
the number of transaction to be considered. We show
that sampling can speed up the mining process by more
than an order of magnitude.

With large volumes of routine business data having been
collected, business organizations are increasinglytgrta
the extraction of useful information from such databases.
Such high-level inference process may provide information
on customer buying patterns, shelving criterion in super- ) . )
markets, stock trends, etc. Data mining is an emerging re- ® Sampling can provide great accuracy with respect to
search area, whose goal is to extract significant patterns or ~ the association rules. We show that the theoretical re-
interesting rules from such large databases. It combines re sults (using Chernoff bounds) are extremely conserva-

search in machine learning, statistics and databasesisin th tive, and that experimentally we can obtain much bet-
paper we will concentrate on the discovery of association teraccuracyfor a givenconfidenceor we can do with
rules. a smaller sample size for a givaocuracy

The problem of mining association rules obasketata
was introduced in [1]. Basket data usually consists of a e pegin by formally presenting the problem of finding
record per customer with a transaction date, along with association rules in section 2. Section 3 presents an analy-
items bought by the customer. The main computation steps;s of random sampling from databases. The effectiveness

*This work was supported in part by an NSF Research Initiatioard of sgmpling is experimentally .ana|yzed in section 4, and
(CCR-9409120) and ARPA contract F19628-94-C-0057. section 6 presents our conclusions.




2. Data mining for association rules Cr = Ly_1xLj_1, the set of candidaté-itemsets. The
general structure of the algorithm is given in figure 1. We
We now present the formal statement of the problem of refer the reader to [2] for more detail dkpriori, and its
mining association rules over basket data. The discussiorPerformance characteristics.
below closely follows thatin [1, 3].

LetZ = {iy,is,- -, im} be aset ofn distinct attributes, Ly = {large 1-itemsets;
also calledtems A set of items is called aitemsetand an for (k=2;L,1 # 0;k++)
itemset withk items is called &-itemset. Each transac- Cy = Set of New Candidates;
tion T in the databas® of transactions, has a unique iden- for all transactions € D
tifier 71D, andcontainsa set of items, such th&t C 7. for all k-subsets; of ¢
An association rulds an expressiodl = B, where item- if (s € Ck) s.count + +;
setsA,B c Z, andAN B = (. Each itemset is said to Ly, = {c € Cy|c.count > minimum support};
have asupports if s% of the transactions if® contain the Set of all large itemsets &, Ly;

itemset. The association rule is said to havefidence: if
c% of the transactions that contaih also containB, i.e.,
¢ = support(A U B)/support(A), i.e., the conditional
probability that transactions contain the itemégt given We now present a simple example of hayriori works.

that they contain itemset. L Let the databas@) = {T} = (1,4,5),T» = (1,2),T; =
The data mining task for association rules can be broken(3 4,5), Ty = (1,2,4,5)}. Let the minimum support value

into two steps. The first step consists of findinglatge MS = 2. Running through the iterations, we get
itemsets, i.e., itemsets that occur in the database witha ce ' ’
tain user-specified frequency, callednimum supportThe Ly = {{1},{2},{4},{5}}

second step consists of forming implication rules among the c, = 1.9V {1.4Y. {1.5Y.{2.41 {251 4.5
large itemsets [3]. In this paper we only deal with the com- ? {12341, 4}, 1,55, 42,4}, {2, 5}, {4, 5}}

Figure 1. The Apriori algorithm

putationally intensive first step. Ly = {{12}, {14}, {1,5},{4,5}}
Many algorithms for finding large itemsets have been C3 = {{1,4,5}}
proposed in the literature [1, 7, 3, 10, 12, 6, 13, 2]. Inthis ;3 = {{1,4,5}}
paper we will use thépriori algorithm [2] to evaluate the
effectiveness of sampling for data mining. We chégei- Note that while forming”’; by joining L, with itself, we

ori since it fast and has excellent scale-up properties. Weget three potential candidated,2,4},{1,2,5,and{1,4,5}.
would like to observe that our results are about sampling, However only{1,4,5} is a true candidate, and the first two

and as such independent of the mining algorithm used. ~ are eliminated in the pruning step, since they have a 2-
subset which is not large (the 2-sub$2t4}, and{2,5} re-

2.1. TheApriori algorithm spectively).

The naive method of finding large itemsets would be to 3- Random sampling for data mining
generate all the™ subsets of the universe of items, count
their support by scanning the database, and output those Random sampling is a method of selectingnits out of
meeting minimum support criterion. It is not hard to see a total N, such that every one of th@&) distinct samples
that the naive method exhibits complexity exponential in has an equal chance of being selected. In this paper we
m, and is quite impracticalApriori follows the basic iter-  considersequentiatandom samplingvithout replacement
ative structure discussed earlier. However the key observai.e., the records are selected in the same order as theyrappea
tion used is that any subset of a large itemset must also bén the database, and a drawn record is removed from further
large. In the initial pass over the database the supportifor a consideration.
single items (1-itemsets) is counted. During each itematio
of the algorithm only candidates found to be large in the 3.1. Sampling algorithm
previous iteration are used to generate a new candidate set
to be counted during the current iteration. A pruning step  For generating samples of the database, we use the
eliminates any candidate which has a small sub&gtiori Method A algorithm presented in [15], which is simple
also uses specialized data structures to speed up the counsénd very efficient for large sample size, A simple al-
ing and pruning (hash trees and hash tables, respectively.yorithm for sampling generates an independent uniform
The algorithm terminates at stepif there are no large- random variate for each record to determine whether that
itemsets. Letl; denote the set of Largk-itemsets and  record should be chosen for the samplemlfecords have



been chosen from the firgtrecords, then the next record 3.3. Sample size selection

will be chosen with the probabilityn — m)/(N —t). This

algorithm, calledMethod S [9], generateg)(N) random Given that we are willing to accommodate a certain accu-
variates, and also runs @(N) time. Method A signifi- racy, A = 1—e¢, and confidencé = 1—c of the sample, the
cantly speeds up the sampling process by efficiently deter-Chernoff bounds can be used to obtain a sample size. We'll
mining the number of records to be skipped over before theshow this for equation 1, by plugging in= ¢=<"7/2, to
next one is chosen for the sample. While the running time is obtain

still O(N), only n random variates are generated (see [15]

for more details). n =—21n(c)/(r€?) 3)
If we know the support for each itemset we could come
3.2. Chernoff bounds up with a sample size; for each itemsef. We would

still have the problem of selecting a single sample size from
among thex;. One simple heuristic is to use the user speci-
fied minimum support threshold fet. The rationale is that

by using this we guarantee that the sample size contains all
i , s ) the large itemsets contained in the original database. For
tion contains the itemset (X; = 0, otherwise). Clearly, oy ample let the total transactions in the original databas
P(X; = 1) = 7fori =1,2,---n. Wefurtherassume - _ '3 109 000, Let's say we desire a confidenGe—

that all X1, X»,---, X, are independent 0-1 random vari- 0.9(c = 0.1), and an accuracyt = 0.99(c = 0.01). Let the

abl_es. The random variabk giving the-number of tran.s- user specified support threshold be 1%. Using these values
actions in the sample containing the itemgethas a bi- in equation 3, we obtain a sample sizerof= 4,605, 170.
nomial distribution ofn trials, with the probability of suc-  1iq's even greater than the original database! The problem
cessr (note: the correct d|§tr|putlon for finite populau_ons is that the sample size expression is independent of the orig
IS th_e Hyper_geomejmc dlstrlbuthnal_thoqgh the Binomial 5| jatabase size. Moreover the user specified threshold is
d|str|but|(21n IS a sa(;|sfhact0ry appré)xm;atlo;[fl]). !\/Iorm,v also independent of the actual itemset support in the aigin
X_: > {Z an nt € exp_ecten value _'S given as database. Hence, using this value may be too conservative,
p= BX] = B[}, Xi] = >0, E[X] = n7,since 55 shown above. In the next section we will compare exper-

E[X;]=0- P(X_: O+1-PX=1)=r. imental results obtained versus the theoretical predistio
For any positive constanf) < ¢ < 1, the Chernoff using Chernoff bounds.

bounds [5] state that

Let 7 denote the support of an itemskt We want to
selectn transactions out of the totdV in the Database
D. Let the random variabl&; = 1 if the i-th transac-

4. Experimental evaluation

P(X < (1—¢e)nt) eme /2 1)

IN

PX>(4enr) < e /3 (2) In this section we describe the experiments conducted
in order to determine the effectiveness of sampling. We

Chernoff bounds provide information on how close is the demonstrate that it is a reasonably accurate technique in
actual occurrence of an itemset in the sample, as comparederms of the associations generated by the sample, as com-
to the expected count in the sample. This aspect, which wepared to the associations generated by the original databas
call as theaccuracyof a sample, is given by — e. The At the same time sampling can help reduce the execution
bounds also tell us the probability that a sample of size time by more than an order of magnitude.
will have a given accuracy. We call this aspect toafi-
denceof the sample (defined as 1 minus the expression on4.1. Experimental framework
the right hand size of the equations). Chernoff bounds give
us two set of confidence values. Equation 1 gives us the All experiments were conducted on a 233MHz DEC Al-
lower bound — the probability that the itemset occurs less phaserver 2100 processor, with 256MB of main memory.
often than expected ( by the amounte), while equation 2 ~ The databases are stored on an attached 2GB disk, and data
gives us the upper bound — the probability that the itemsetis obtained from the disk via an NFS file server. We used
occurs more often than expected, for a desired accuracy. Afour different databases to evaluate the effectivenessnf s
low probability corresponds to high confidence, and adow pling. These are:
corresponds to high accuracy. Itis not hard to see that theree SYNTH800, SYNTH250: These are synthetic databases
is a trade-off between accuracy and confidence for a givenwhich mimic the transactions in a retailing environment.
sample size. This can been seen immediately, sinee) They have been used as benchmark databases for many as-
maximizes the right hand side of equations 1,2, white 1 sociation rules algorithms [3, 6, 12, 13, 2]. Each transac-
minimizes it. tion has a unique ID followed by a list of items bought in



SYNTH800: minimum support = 0.25% SYNTH250: minimum support = 0.50%
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Figure 2. Itemset size vs. number of large itemsets

that transaction. We obtained the datai&se. /6. D800 K, algorithm, for the different databases, and sample size.
by setting the number of transactiofi3| = 800, 000, av- In the graphs, ORIG indicates the actual number of large
erage transaction siZ&| = 10, average maximal poten- itemsets generated when the algorithm operates on the en-
tially large itemset size/| = 6. For T10.74.D250K, tire database. SAMP refers to the large itemsets gen-
|D| = 250000, |T'| = 10, |I| = 4. For both databases the erated when using a sample of sizéb of the entire

number of maximal potentially large itemséfg = 2000, database. ACHT refers to the number of itemsets gener-
and the number of item& = 1000. We refer the readerto  ated by SAMR that aretrue large itemsets in the original
[3] for more detail on the database generation. database. The number tdlse large itemsets is given as

¢ ENROLL: This is a database of student enrollments for (SAMPz — ACTz). From figure 2 we can observe that the

a particular graduating class. Each transaction condists 0 general trends of sampled databases resemble actuasresult
student ID followed by information on the college, major, Smaller sample sizes tend to over-estimate the number of
department, semester, and a list of courses taken durihg thaarge itemsets, i.e., they find more false large itemsets. On
semester. There are 39624 transactions, 3581 items and thine other hand, larger sample sizes tend to give bettettsesul
average transaction size is 9. in terms of fidelity or the number of true large itemsets. This
¢ TRBIB: Thisis a database of the locally available techni- is indicated by the way ACZ.comes closer to ORIG as

cal report bibliographies in computer science. Each item is (the sample percentage) is increased.

a key-word which appears in a paper title, and each transac-

tion has a unique author ID followed by a set of such key- More detailed results are shown in figure 3, which shows
words (items). There are 13793 transactions, 10363 itemsthe percentage of true and false itemsets generated for dif-

and the average transaction size is 22. ferent values of sampling and minimum support. The values
of minimum support were chosen so that there were enough
4.2. Accuracy measurements largek-itemsets, fok >= 2. For example, for SYNTH800

and SYNTH250, only large 1-itemsets were found at sup-

We report experimental results for the databases de-port more than 1%. Therefore, only support values less than
scribed above. Figure 2 shows the number of large item-those were considered. Furthermore, support values were
sets found during the different iterations of thgriori chosen so that we don'’t generate too many large itemsets.
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For example, for ENROLL at 1% sampling size, we get a denote the sample numbér< 2 < s. Let

sample of 396 transactions. For support of 0.5%, we must " { 1 if(nr — X) > nre in sample:
I =

find all itemsets which occur at least 2 times, in effect find- .
0 otherwise

ing all possible large itemsets. Thus only support values
greater than 0.5% were used. 1) = { 1 if(X —n7) > nre insample
The figure shows that at higher sampling size we gener- 0 otherwise
ate a higher percentage of true large itemsets, and a smallethe confidence can then be calculated a$""™ | h;(z)/s,

number of false large itemsets. It is interesting to not¢ tha for the upper bound, ant — S 1r(2)/s, for the lower
in all cases we found more than 80% of all the large item- pound. B

sets. We further observe that for other than very small sam-
pling size, we can keep the false large itemsets under 20%.

SYNTH: Probability Distribution of 1-itemsets
Experimental Chernoff
180 T 140 T T

4.3. Performance 0l
1201

Figure 4 shows the speedup obtained for the databaseson | 4o}
different minimum support and different sampling size val- loor
ues. The speedup is relative to the algorithm execution time il |
on the entire database. For SYNTH800 we obtain a speedup
of more than 20 at small sample size and high support. For
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SYNTH250 we get more than 10 speedup in the same range. [ [ 60f

The performance at lower support is poor due to the large ol ]

number of false large itemsets found. At higher sampling a0}

we get lower performance, since the reduction in database | < ]

I/O is not that significant, and due to the introduction of wl | 200

more inaccuracies. For the smaller databases (ENROLL HHH
and TRBIB), at small sample size, we get no speedup, due 05 s 2 o gﬂﬂs oo
to the large number of false large itemsets generated. We Probabilty Dist. ' Probability Dist. _

can observe that there is a trade-off between sampling size,
minimum support and the performance. The performance
gains are negated due to either a large number of false large
itemsets at very low support or due to decreased gainsin /0 VS chemoff
vs. computation. We can conclude that in general sampling
is a very effective technique in terms of performance, and g re 5 compares the distribution of experimental con-
we can expect it to work very well with large databases, as fijence to the one obtained by Chernoff upper bounds, for
they have higher computation and /O overhead. all m 1-itemsets or single items. It is possible (though im-
] ) ) practical) to do this analysis for all tH&" itemsets, how-
4.4. Confidence: comparison with chernoff bounds  ever we present results for only single items. This should
give us an indication whether the sample faithfully repre-
In this section we compare the Chernoff bound with sents the original database. The results shown are for the
experimentally observed results. We show that for the SYNTH250 database with= 0.01, n = 2500 (1% of total
databases we have considered the Chernoff bound is veryatabase size), and the number of samples taken100.

Figure 5. Probability distribution: experiment

conservative. We can see that the probability distribution across all #em
Consider equations 1 and 2. For different values of ac- varies from 0.30 to 0.60 for the experimental case, with a
curacy, and for a given sampling size, for each itenisete mean probability close to 0.43. The Chernoff bounds pro-

can obtain the theoretical confidence value by simply evalu-duce a distribution clustered between 0.998 and 1.0, with
ating the right hand side of the equations. For example, foran average probability of 0.9992. Chernoff bounds indi-
the upper bound the confiden€e= 1 — e~<’n7/3, Recall cate that it is very likely that the sample doesn’t have the
that confidence provides information about an item’s actual given accuracy, i.e., with high probability, the items viié
supportin the sample being away from the expected supporioverestimated by a factor of 1.01. However, in reality, the
by a certain amountifre). We can also obtain experimental probability of being over-estimated is only 0.43. The obvi-
confidence values as follows. We taksamples of size, ous difference in confidence depicts the limitation of Cher-
and for each item we compute the confidence by evaluatingnoff bounds in this setting. This was observed in all of the
the left hand side of the two equations, as follows. Let databases we looked at.
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Figure 6 gives a broader picture of the large gap betweenset. ThePartition algorithm [13] minimizes I/O by scanning
Chernoff bounds and experimentally obtained effectivenes the database only twice. In the first pass it generates the set
of sampling. For all four databases we plot the mean of the of all potentially large itemsets, and in the second pass the
confidence or the probability distribution for differentae supportis obtained. Algorithms using only general-pugpos
racies { —e¢). The mean confidence obtained from Chernoff DBMS systems and relational algebra operations have also
bounds is marked asd,.and that obtained experimentally been proposed [6, 7].
is marked as k.. Different values of the sample sizeare A theoretical analysis of sampling (using Chernoff
plotted (from 1% to 50%), and results for only the upper bounds) for association rules was presented in [2, 10]. We
bound are shown. For all the databases the upper and lowelook at this problem in more detail empirically, and com-
bounds give similar results. There is a small difference in pare theory and experimentation. In [8] the authors com-
the Chernoff bound values due to the asymmetry in equa-pare sample selection schemes for data mining. They make
tions 1 and 2. This is also true for the experimental results. a claim for collecting the sample dynamically in the context
For both cases the lower bounds give a slightly higher con- of the subsequent mining algorithm to be applied. A recent
fidence for the same value of accuracy, as expected from thepaper [14] presents an association rule mining algorithim us
Chernoff bounds. ing sampling. A sample of the database is obtained and all

For SYNTH800 and SYNTH250 we observe that as the association rules in the sample are found. These results are
accuracy is compromised (asncreases) the mean confi- then verified against the entire database. The resultsase th
dence across all items increases exponentially (thereforeexact and not approximations based on the sample. They
only e values upto 0.5 are shown). Furthermore, as the sam-also use Chernoff bounds to get sample sizes, and lowered
ple size increases, the curve falls more rapidly, so that weminimum support values for minimizing errors. Our work is
have higher confidence even at relatively higher accuraciescomplementary to their approach, and can help in determin-
For SYNTH800 we get higher confidence for higher accu- ing a better support value or sample size. We also show re-
racy, when compared to SYNTH250. For both ENROLL sults on the percentage of errors and correct rules dertved a
and TRBIB we get the same general trends, however thedifferent sampling values, the performance gains, and also
increase in confidence for lower accuracies is not as rapid.the relationship between performance, accuracy and confi-
This is precisely what we expect. For example, consider dence of the sample size.
the right hand side of Chernoff upper bounds (equation 2),
e=<nT/3 =, For a givere andr (the support for anitem), 6. Conclusions
a higher value of. gives us high confidence, as it results
in a lower value forC. For a given sampling percentage,  We have presented experimental evaluation of sampling
since SYNTH800 and SYNTH250 are large, we expect a for four separate databases to show that it can be an effec-
higher confidence than that for ENROLL or TRBIB (for ex- tive tool for data mining. The experimental results indi-
ample, with sampling = 10%, = 0.1, andr = 0.01, we cate that sampling can result in not only performance sav-
getn = 80000, C = 0.07 for SYNTH800;n = 25000, ings (such as reduced I/O cost and total computation), but
C = 0.43 for SYNTH250;n = 3962, C = 0.88 for EN- also good accuracy (with high confidence) in practice, in
ROLL; andn = 1379, C = 0.96 for TRBIB). We getthe  contrast to the confidence obtained by applying Chernoff
same effect for the experimental results. bounds. However, we note that there is a trade-off between

We can observe that for all the databases, the experimenthe performance of the algorithm and the desired accuracy
tal results predict a much higher confidence, than that usingor confidence of the sample. A very small sample size
Chernoff bounds. Furthermore, from the above analysis wemay generate many false rules, and thus degrade the per-
would expect sampling to work well for larger databases. formance. With that caveat, we claim that for practical pur-
The distribution of the support of the itemsets in the origi- poses we can use sampling with confidence for data min-
nal database also influences the sampling quality. ing.
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