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Abstract

Very often, related data may be collected by a number of sources, which may be 
unable to share their entire datasets for reasons like confidentiality agreements, 
dataset size, and so forth. However, these sources may be willing to share a con-
densed model of their datasets. If some substructures of the condensed models of 
such datasets, from different sources, are found to be unusually similar, policies 
successfully applied to one may be successfully applied to the others. In this chap-
ter, we propose a framework for constructing condensed models of datasets and 
algorithms to find similar substructure in pairs of such models. The algorithms are 
based on the tensor product. We test our framework on pairs of synthetic datasets 
and compare our algorithms with an existing one. Finally, we apply it to basketball 
player statistics for two National Basketball Association (NBA) seasons, and to 
breast cancer datasets. The results are statistically more interesting than results 
obtained from independent analysis of the datasets.
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Introduction

Often, data may be collected by a number of sources. These sources may be 
geographically far apart. There are a number of disadvantages in transferring the 
datasets from their source to a central location for processing. These include less 
reliability, security, higher computational and storage requirements, and so forth. It 
may be preferable to share condensed models of the datasets. Similarly, for reasons 
like confidentiality agreements, it may be required to use condensed models of da-
tasets, which obfuscate individual details while conveying structural information 
about the datasets. Lastly, the datasets may have slightly different dimensionality or 
transformations like rotations, with respect to each other. This may preclude simply 
appending the datasets to each other and processing them.
If unusually similar substructure can be detected from the condensed models of some 
of the datasets, then policies successfully applied to one may be successfully applied 
to the others. For example, two consumer markets (A and B) differing in geogra-
phy, economy, political orientation, or some other way may have some unusually 
similar consumer profiles. This may prompt sales managers in B to use successful 
sales strategies employed by sales managers in A for consumer profiles in which 
they are unusually similar. Also, profiles which are unusually dissimilar to any of 
those in the other graph are particularly interesting. The latter is analogous to the 
problem of finding contrast sets (Bay & Pazzani, 2001). Additionally, determining 
similarities and dissimilarities between snapshots of a dataset taken over multiple 
time intervals can help in identifying how the dataset characteristics evolve over 
time (Ganti, Gehrke, Ramakrishnan, & Loh , 1999).
A dataset may be a set of points drawn in possibly different proportions, from a 
mixture of unknown, multivariate, and perhaps non-parametric distributions. A 
significant number of the points may be noisy. There may be missing values as well. 
We currently assume that the dataset may belong to non-identical attribute spaces, 
which are mixtures of nominal and continuous variables. The datasets may be subject 
to translational, rotational, and scaling transformations as well. High-dimensional 
datasets are inherently sparse. It has been shown that under certain reasonable 
assumptions on the data distribution, the ratio of the distances of the nearest and 
farthest neighbors to a given target is almost 1 for a variety of distance functions 
and data distributions (Beyer, Goldstein, Ramakrishnan, & Shaft, 1999). Hence, 
traditional distance metrics which treat every dimension with equal importance have 
little meaning. Algorithms using such dissimilarity measures as a building block 
for application to high-dimensional datasets may produce meaningless results due 
to this lack of contrast.
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In this chapter, we explore similarities across datasets using a two-step solution:

1.	  Constructing a condensed model of the dataset. This involves finding the 
components of the model, and relationships between these components. In 
our case, the components are subspaces. The condensed model is a weighted 
graph where the vertices correspond to subspaces and the weighted edges to 
relationships between the subspaces. A condensed model allows: (a) sharing 
of dataset summaries, (b) noise and outlier removal, and (c) normalization and 
dataset scaling.

2.	  Identifying similarities between the condensed models. In our solution, this 
reduces to finding structurally similar subgraphs in the two models and match-
ing vertices between the structurally similar subgraphs.

In previous work (Sequeira & Zaki, 2004), we have shown algorithms to find com-
ponents of the model. In this chapter, we make the following contributions:

1.	  We propose two kinds of similarity measures for subspaces (components). 
The first kind is projection basedthat is, it uses the similarity of the pro-
jections of the subspaces. The other is support basedit uses the number of 
points shared by the subspaces.

2.	  We provide algorithms for identifying unusually similar substructure from the 
condensed models corresponding to pairs of datasets with possibly differing 
dimensionality.

3.	 We test our framework with synthetic datasets and apply it to finding similar 
substructure in models constructed from basketball player statistics and breast 
cancer datasets. Inferences from the similar substructure are found to be logi-
cally meaningful. Further, they reveal information, which remains unknown 
under independent dataset analysis.

Preliminaries

Consider dataset DA having dA dimensions. If SA,i is the domain of the ith dimen-
sion, then SA=SA,1 ×SA,2 ×...×SA,dA

 is the high-dimensional space for DA, where 
DA={xi|i∈{l,m,}xi∈SA}. Similarly, DB={yi|i∈{l,n,}yi∈SB}. If the range SA,i of each 
dimension is divided into x equi-width intervals, then SA has a grid superimposed 
over it. Accordingly, we have the following definition: a subspace is a grid-aligned 
hyper-rectangle [l1, h1]×[l2, h2]×...×[ld, hd], ∀i∈[l, d,] [li, hi]⊆SA,i. Here for a given 
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interval [li, hi], we have li =(aS A,i)/x and hi =(bsA,i)/x, where a,b are non-negative 
integers, and a<b≤x.
If [li, hi]⊂SA,i, the subspace is said to be constrained in dimension ithat is, the 
subspace does not span the entire domain of the dimension i, A subspace that is 
constrained in all the dimensions to a single intervalthat is, b−a=1 is referred to 
as a grid cell.
If our algorithm to find components in a dataset finds |VA| components/subspaces 
internal to DA, the relationships between these subspaces are expressed by a |VA|×|VA| 
matrix wA : SA ×SA→ℜ.
We also use the following notations for the rest of this chapter: let A=(ai,j)1≤i, j≤m,n and 
B=(bkl)1≤k,l≤p,q be two matrices. If m=n, Tr[A]=Σi[1,m]ai,i  is the trace of A. A T refers 
to the transpose of A. 

 1/22
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An n×n matrix X is called normal, if it can be written as X=UX DXUT
X. UX is a unitary 

matrix containing the eigenvectors of X, and DX is a diagonal matrix containing the 
eigenvalues of X.lX,i denotes the ith eigenvalue, where ∀i[1,n-1], lXi

≥lX,i+1, and 
UX,i denotes the eigenvector corresponding tolXi

. If lX1>lX2, lX,1 and UX,1are called 
the dominant eigenvalue and dominant eigenvector respectively.
If S=[s1,s2...] where s1,s2... are column vectors, then vec(S) creates a column vector 
by stacking its column vectors one below the other, so that TTT ssSvec ]  [=)( 21  .
Let VA and VB be the components (subspaces) of datasets DA and DB, respectively. 
Let P be the function, which takes as argument a mapping f:VA→VB, and returns a 
permutation matrix (typically, a permutation matrix is a square matrix)that is, a 
|VA|×|VB| matrix, such that
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If f is a one-to-one mapping, then if |VA|≤|VB| (|VA|>|VB|), the rows (columns) of P are 
orthogonal to each other and PPT=I (PTP=I). As in Van Wyk and Van Wyk (2003), 
we want f which minimizes the associated error function err, which we define as:

F
T
fBfABA PwPwwwferr ||=||),|( − 						      (2)

A mapping f from a subset of subspaces corresponding to wA to a subset correspond-
ing to wB is unusually similar, if the probability of finding another mapping f ′ 
between these subsets, by MonteCarlo sampling as later in this chapter, such that 

),|(>),|( BABA wwferrwwferr ′ is very low.

Example

Let DA and DB be two datasets as shown in Table 1, with domains [0,1000) for each 
dimension. DA(p1,d1) refers to row p1, column d1 of dataset DA. If we discretize the 
domain of each dimension into 10 intervals (i.e., x=10), then the grid cells sur-
rounding the points in DA, DB yield the datasets  BA DD ' ,'  in Table 2. For example, 
DA(p1,d1)=915. Therefore,  

9=
1000
915=),(' 11 ×dgD A . 

Thus, p1 is constrained to the last interval in dimension d1that is, [900,1000). 
We then run a subspace mining algorithm (e.g., SCHISM (Bay & Pazzani, 2001), 
CLIQUE (Ganti et al., 1999)) on each of the discretized datasets independently 
and find two sets of subspaces S and S’ corresponding to DA and DB respectively, as 
shown in Table 3. Here -1 implies that the dimension is unconstrained. S(c1,d2)=5 
means that the subspace c1 in the set S of subspaces is constrained to interval 5 in 
dimension d2 that is, [500,600). Subspaces may be constrained to more than one 
interval in a dimension.
Typically, subspace mining algorithms also partition the dataset based on the subspaces 
it finds. Let us assume that the subspace mining algorithm assigns p1, p2 to c1, p3, p4, 
p5 to c2, p6, p7, p8 to c3 and labels p9 as noise. Similarly, it assigns 4321 ',',',' pppp  
to  1'c ; 765 ',',' ppp  to  2'c  vand labels 8'p  as noise.
Given such subspaces and the points assigned to them, we wish to construct con-
densed models of the datasets, which can be used to discover structurally similar 
subspaces across the two datasets without having access to the datasets or their 
schema. For example, in Table 3, if d2 corresponds to  4'd  and d4 corresponds to 
 2'd , then c1 and  1'c  are both constrained in the same dimension and to the same 
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Table 2. Discretized data

Table 1. Original data

AD  1d  2d  3d  4d  5d  BD  1d ′  2d ′ 3d ′ 4d ′ 5d ′ 
1p  915 561 866 657 661 

1p′ 889 710 591 564 679 

2p  965 575 534 860 365 
2p′ 854 189 641 564 666 

3p  217 506 121 452 303 
3p′ 553 869 449 612 199 

4p  758 512 357 423 289 
4p′ 779 690 203 598 872 

5p  276 531 327 418 335 
5p′ 88 453 965 541 324 

6p  268 520 351 348 454 
6p′ 391 436 193 578 301 

7p  239 514 369 301 451 
7p′ 574 450 220 588 270 

8p  237 510 377 650 472 
8p′ 805 60 803 525 152 

9p  33 118 144 388 280 

 

      

AD′  1d  2d  3d  4d  5d  BD′  1d ′  2d ′ 3d ′ 4d ′ 5d ′ 

1g    9   5   8   6   6  1g′   8   7   5   5   6  

2g    9   5   5   8   3  2g′    8   1   6   5   6  

3g    2   5   1   4   3  3g′   5   8   4   6   1  

4g    7   5   3   4   2  4g′    7   6   2   5   8  

5g    2   5   3   4   3  5g′   8   4   9   5   3  

6g    2   5   3   3   4  6g′    3   4   1   5   3  

7g    2   5   3   3   4  7g′    5   4   2   5   2  

8g    2   5   3   6   4  8g′  8   6   8   5   1  

9g   3   1   1   3   2  

 

      

Table 3. Two sets of subspaces

S  1d  2d  3d  4d  5d  

1c   -1 5 -1 -1 -1 

2c   -1 5 -1 4 3 

3c   2 5 3 -1 4 

      
S ′ 1d ′   2d ′  3d ′ 4d ′ 5d ′ 

1c′  -1 -1 -1 5 -1 

2c′   -1 4 -1 5 2 
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intervalthat is, [500,600). Also, c2 and  2'c  are constrained in the same dimen-
sions to similar intervals. Hence,  11 'cc ≈  and 22 'cc ≈ . Thus, we wish to recover the 
mapping between c1 and  1'c , and c2 and  2'c .

Related Work

Our two-step solution to finding unusually similar substructure across datasets 
involves:

1.	  Constructing a condensed model of the dataset; this involves two sub-steps: 
a.	  finding components in the dataset
b.	  constructing a condensed model from the components

2.	  Identifying similarities between the condensed model

Finding Components in the Dataset

We find components in the dataset using a subspace mining algorithm called SCHISM 
(Bay & Pazzani, 2001), which finds sets of possibly overlapping subspaces, for 
example, set S from dataset DA in the example above. It partitions the points in the 
datasets using these subspaces. Note that any other hyper-rectangular subspace 
mining algorithmfor example, MAFIA (Beyer et al., 1999), CLIQUE (Sequeira 
& Zaki, 2004), and so forthmay be used to find the subspaces and partition the 
dataset. Hence, we do not delve into the details of the SCHISM algorithm.

Constructing Condensed Models from the Components

We condense the dataset using a weighted graph, where the vertices correspond 
to subspaces and the weights on the edges to similarities between the subspaces. 
While we are unaware of much related work on similarities between subspaces, it 
is noteworthy that subspaces are also clusters. Accordingly, we review some of the 
existing similarity measures used for comparing clusterings.
Clusterings may be compared based on the number of point pairs, in which the two 
clusterings C,C′ agree or disagree. Each pair of dataset points is assigned to one of 
four categories N00, N01, N10 , and N11. Pairs of points in N00 are assigned to distinct 
clusters in both C and C′, those in N01  are assigned to the same cluster in both C 
and C′, those in N01 are assigned to the same cluster in C but to distinct clusters in 
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C′, and so on. If the dataset has n points, N00+N01+N10+N11=n(n-1)/2.
Accordingly there exists the Rand index,

00011011

0011=),(
NNNN

NNCCRand
+++

+′
  

and the Jaccard index,

 

011011

11=),(
NNN

NCCJaccard
++

′  

to compare the clusterings. Further Meila (2003) proposes the VI (variance of infor-
mation) metric to compare clusterings: ),(2)()(=),( CCICHCHCCVI ′−′+′ , where 
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with ni being the number of points in Ci, the ith cluster in C. This implies that pi and pi,j are simply the support of clusters Ci  and ji CC ∩  respectively, according to 
the traditional definition of support in the data mining literature (Bay & Pazzani, 
2001).
Thus, these clustering (dis)similarity measures use (dis)similarity in support overlap 
to express cluster similarity.

Identifying Similarities Between Condensed                     
Models of Different Datasets

Ganti et al. (1999) compare datasets by comparing their respective models. The 
datasets share a common schema. A dataset may be typically modeled by a decision 
tree, a set of clusters, or a set of frequent itemsets. The model consists of a set of 
pairs. Each pair consists of an “interesting region” in the dataset (called the struc-
tural component) and the fraction of the dataset (called the measure component) it 
accounts for. They then partition the attribute space using hyperplanes, which (as per 
the type of model chosen) define the leaves, clusters or frequent itemsets, induced 
by the models of the two datasets. Using a single scan of each dataset, they can 
compute the fraction of each dataset in each distinct hyperspace, resulting from the 
superposition of the two models of the datasets. They then compare these fractions, 
corresponding to different datasets but the same hyperspace, using a “difference” 
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function and combine the resulting “deviation” using an “aggregation” function 
which returns a measure of the similarity of the datasets. This method does not 
leverage the structure present in the data and hence is susceptible to translational 
transformations.
Much of the existing work in the database community (Bay & Pazzani, 2001) assumes 
the datasets have identical schema and that access to both datasets simultaneously 
is possible. By utilizing the underlying structure in the datasets, we avoid making 
such assumptions.
Li, Ogihara, and Zhu (2002) use a variant of the mutual information between da-
tasets DA and DB, modeled by sets of maximal frequent itemsets (MFIs) FA and FB, 
which is defined as:

|)||,(|*)
||
||(1

||
||

,=),( jimin
ji
jilog

ji
ji

FjFFI
BAFiBA ∪

∩
+

∪
∩
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They assume an identical schema for two datasets and define the similarity between 
the datasets as:

 ),(),(
2*),(

BBAA

BA

FFIFFI
FFI
+ . 

To test for significance of similarity, they propose bootstrapping-based approaches 
in which disjoint pairs of subsets of the attributes are drawn at random from samples 
of the given datasets. The similarity between the pairs of samples is used to esti-
mate the distribution of similarity between the two datasets. They then generalize 
their approach to heterogeneous datasets, of which matchings between some of 
the attributes of the two datasets are known. These matchings are used to identify 
matchings of at least x attributes of one dataset with those of the other.
There have been a number of graph matching algorithms, stemming from work in 
the field of computer vision, regarding applications like image registration, object 
recognition, and so forth. Many of the past approaches involve matching between 
labeled or discrete-attributed graphs (Bunke, 1999; Carcassoni, 2002; Kalviainen & 
Oja, 1990; Van Wyk & Van Wyk , 2003). Like the solutions to many other NP-hard 
problems, graph matching algorithms may be enumerative (Bunke, 1999; Shapiro 
& Haralick, 1985) or optimization based (Carcassoni, 2002; Van Wyk & Van Wyk, 
2003). Most of these algorithms assume the graphs lie in the same space, which is 
usually low dimensional (i.e., two or three dimensions).
The concept “two vertices are similar, if vertices they are related to are similar” 
allows recursive definition of inter-vertex similarity. This idea is used explicitly or 
implicitly by a number of propagation-based algorithms (Melnik, Garcia-Molina, & 
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Rahm, 2002) for a range of applications. The recursive definition causes similarity 
to flow from one vertex to the other.
Blondel, Gajardo, Heymans, Senellart, and Van Dooren (2004) show that given 
wA and wB (the similarity among the subspaces with the two datasets), |VA|×|VB| 
similarity matrix S, whose real entry si,j represents the similarity between vertex i 
of GA and j of GB, can be obtained as the limit of the normalized even iterates of 
 

Ak
T

B
T

AkBk wSwwSwS ++ =1 . Note that this model does not assume that wA and wB  are 
symmetric. This algorithm has time complexity of matrix multiplication, which is 
currently O(=n2.376). We compare our algorithms with Blondel’s algorithm.
Gionis, Mannila, and Tsaparas (2005) examine the problem of finding a clustering 
that agrees as much as possible with a set of given clusterings on a given dataset 
of objects. They provide an array of algorithms seeking to find either: (i) the clus-
tering that minimizes the aggregate number of disagreements with the given set 
of clusterings (clustering aggregations), or (ii) a partition of the objects into two 
groups, such that the sum of aggregate dissimilarities between objects in the same 
group and aggregate similarities between objects in different groups is minimized 
(correlation clustering). Here the (dis)similarities between objects are defined using 
the given clusterings. This differs from our work, in that the same dataset is used 
to produce each clustering.

Constructing A Condensed Model Of The Dataset

We represent each dataset DA by a weighted graph GA(VA, EA, wA), where VA is the 
set of subspaces found by the subspace mining algorithm, EA⊆VA×VA is the set of 
edges between the subspaces in the dataset, and wA:SA×SA→ℜ is the adjacency 
matrix/set of weights on the edges of the graph GA, indicating similarity between 
components/subspaces in the condensed model/graph of GA. Depending on whether 
we use support or similarity of projections as the basis for comparing subspaces, 
we prescribe the following subspace similarity measures.

Support-Based Subspace Similarity

Each subspace u∈VA partitions the space SA into a clustering containing two clustersthat 
is, u and SA\u. Accordingly, if Cu,Cu′ are the clusterings yielded by subspaces u,u′∈VA, 
we can define wAv(u,u′) using ),( uu CCJaccard ′  and  ),( uu CCRand ′ . Additionally, we 
experiment with using the VI measure of Meila (2003): )),((=),( uuA CCVIexpuuw ′−′ .
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Projection-Based Subspace Similarity

Consider the case where the datasets being modeled are sets of points sampled in 
different proportions with respect to each other from the same mixture of multivari-
ate distributions. Then, correctly matching these distributions using support-based 
subspace similarity measures is unlikely. Accordingly, we seek similarity measures 
which use similarity of the projections of the subspaces.
We define the similarity between subspace R∈VA and a grid cell Q surrounding a 
point r∈DA using the Jaccard-coefficient as:
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1= ii
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Here, Qi, Ri refer to the set of intervals spanned by subspaces Q, R respectively, in 
dimension i. If dimension i of R is unconstrained, then |Ri|=x.
For example, using our running example, 
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Based on the subspaces found by the subspace mining algorithm, it is possible, for 
example using nearest neighbors, to assign points in the dataset to subspaces. Using 
the assignment of points to subspaces, we have devised two similarity measures: 
AVGSIM and HIST.

AVGSIM

Each subspace may be thought to be more accurately approximated by the points 
assigned to it. As we know the similarity between the grid cell around each point and 
every subspace found by the subspace mining algorithm using r() from Equation 3, 
the similarity between two subspaces u∈VA,u′∈VA can be defined as:
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From our running example, 
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Based on the coordinates of points assigned to each subspace in VA, we estimate 
discrete p.d.f.s. for each dimension for each subspace. If each dimension of the dA-
dimensional dataset is discretized into x equi-width intervals, then u(i,j) corresponds 
to the fraction of points assigned to vertex/subspace u, which are discretized to the 
jth interval in the ith dimension. Using our running example, there are two points 
p1,p2 assigned to subspace c1. Both of them are discretized to the interval 5 in the 
dimension d2that is, [500,600). Therefore, 1=

2
2=(2,5)1c . Accordingly,
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where [0,1][0,1][0,1]: →×sim  is a similarity function.
Note that this wA() requires no normalization if we use the Gaussian or increasing 
weighted sim() function shown below. Otherwise, normalization is required. We 
have tested a number of symmetric similarity functions: 

• 	 Dot product: babasim ×=),(

• 	 Gaussian weighted: )
2

)((=),( 2

2

s
baexpbasim −−

• 	 Increasing weighted:  

s
babasim ||1

1=),(
−

+

where s is a user-defined parameter controlling the spread of sim.  Note that our 
similarity measures are both symmetric and independent of the number of points 
assigned to each subspace.
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Identifying Similarities Between Condensed Models

Once we have the internal similarity among the subspaces within each dataset in the 
form of weighted graphs, to find similarities between the dataset graphs, we test three 
algorithms. One (OLGA) uses the tensor product, the next (EigenMatch) uses ideas 
from the first and Blondel’s algorithm, and the last uses MonteCarlo sampling.

OLGA

We combine the graphs GA and GB into a single bipartite graph 
),,(= Π×⊆∪ BABA VVEVVG . Π is a |VA|×|VB| matrix of pairwise vertex similari-

ties.
To find Π, we construct the product graph (see function ProductGraph in Figure 
1  )),()(,(= ,BABABABA wVVVVEVVG ×××⊆′×′ , where ℜ→′Ew BA :,  is the adjacency 
matrix, indicating similarity between vertices corresponding to pairs of subspaces 
from underlying graphs of G′. Let )),(),,((=),( vvwuuwsimBA BA ′′ , then



 >

′′
otherwise

BAifBA
vuvuw BA

),(
0

),(
=)),(),,((, 			   (6)

where t is a user-specified threshold, used to minimize noise and limit space complex-
ity of the algorithm. As ),( ),,( vvwuuw BA ′′  depend on GA,GB respectively, the weight 
of an edge in product graph G′ is high, if the weights on the corresponding edges in 
the underlying graphs are similar. Thus, we do not explicitly compare dimensions 
of vertices in the two graphs, thereby making no assumptions on identical schema. 
Let )(= ΠvecS  (as defined above) and |||=| BA VVl length column vector. Using the 
concept, “two vertices are similar, if vertices they are related to, are similar,” then 
similarity between u∈VA and v∈VB is a function of all the vertices in VA and VB, and 
the relationships that u and v have with them, respectively. If Si denotes S at itera-
tion i, we can write this as (with  BA VvVu ∈′∈′ , ):

1,

1,

1,

= ,
:)),,((= 

)),(()),(),,((=)),((

−

−

−

⋅

⋅

′′′′∑

iBAi

iBA

iBAi

SwSThen
Svuw

vuSvuvuwvuS

where :)),,((, vuw BA  returns the (u,v)th row of wA,B. As shown in Figure 1, we set the 
initial similaritiesthat is, all entries in S0to 1.0 (line 6). We then iterate using 
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Equation 7 (line 8). We determine convergence by checking to see if the Frobe-
nius norm of the residual at the end of each iteration is less than a user-specified 
threshold e (line 9).
As we are looking for a matching between vertices from GA to GB, we may unstack 
the vector S and use the resulting |VA×|VB| matrix as the adjacency matrix of the 
bipartite graph G (i.e.,∏).
Ideally, ∏ is a permutation matrix which minimizes err(f |wA,wB) (Equation 2). Typi-
cally however, ∏ is a real matrix. Hence, we need to round ∏ to a permutation matrix. 
We use the Match function to do the same. Match returns f: VA→VB. There are a 
number of matching algorithms, for example, stable matching, the Kuhn-Munkres 
algorithm (Kuhn, 1955), perfectionist egalitarian polygamy (Melnik et al., 2002), 
and so forth. We can formulate the rounding as finding a matching which maximizes 
the sum of the weights on the edges of the matching. Finding such a matching 
(also called an alignment) is called bipartite weighted matching, which has earlier 
been optimally solved by the Hungarian algorithm (Kuhn, 1955). This algorithm 
has complexity  )|})||,{|max( 3

BA VVO . This is equivalent to partitioning G into a 
number of clusters such that no cluster contains two vertices from the same graph, 
and the total of the similarity among the vertices within each cluster is maximized. 
Match, unless otherwise mentioned, refers to the Hungarian algorithm. There are 
other approximate matching algorithms of lower complexity. We do not take into 

ProductGraph( BA GGG ,, ): 
1.  )(),( BA VVvu ×∈∀  create vertex ),( vu  
2.  )(),( AA VVuu ×∈′∀  
3.        )(),( BB VVvv ×∈′∀  
4.              add edge )),(),,(( vuvu ′′  using Eq. 6 
  
OLGA( kGG BA ,,, ): 
5.   ProductGraph( BA GGG ,, ) 
6.  |)||,(|=0 BA VVonesS  
7.  for i=1:k 
8.      

FiBA

iBA
i Sw

Sw
S

||||
=

1,

1,

−

−

⋅
⋅   

9.       if <|||| 1 Fii SS −−  break 
10. return Match( kS ) 
  
FastOLGA( BA GG , ): 
11. Find ,2,1,1 ,, AAAU  
12. Find ,2,1,1 ,, BBBU  
13. if ,2,1 = AA /  and ,2,1 = BB /  
14.     ,1,1= BA UUS ⊗  
15.      return Match( S ) 

Figure 1. Matching two graphs
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account the complexity of Match while stating complexity of the algorithms, as it 
is a parameter. This idea is similar to similarity propagation in Melnik et al. (2002). 
However, they use directed, labeled graphs.
If wA,B is normal, it is diagonalizable. If it has a dominant eigenvalue,

 
FBA

BA
i

iFiBA

iBA
i Sw

Sw
SSThen

Sw
Sw

S
||||

== , 
||||

=
,

,

1,

1, lim ′⋅

′⋅
′

⋅
⋅

∞→−

− 			   (7)

Rearranging, 0=)||||( ,, SISww FBABA ′⋅′⋅− , where I is the l×l identity matrix. Note, 
this is the characteristic equation for wA,B. Then, wA,B has a dominant eigenvalue 
 FBA Sw ||=|| ,1 ′⋅  and dominating eigenvector S′. The rate of convergence is deter-
mined by the ratio 

 
1

2  (Golub & Van Loan, 1996).

If  sim  returns the scalar product of i ts  inputs and t=0, then 
 ),(),(=)),(),,((, vvwuuwvuvuw BA ′′′′  and BABA www ⊗=, , as defined above. If wA,B 
corresponds to the tensor product, further improvements in the time and space 
complexity of the algorithm are possible. Accordingly, we have FastOLGA algo-
rithm in Figure 1.
It is known (West, 1996) that the set of eigenvalues of the tensor product of two 
matrices is the set of values in the tensor product of the eigenvalues of these ma-
trices, that is,

 jiVVjiwww
BwAwBABABA ,,|,||,|,1=, ≤≤⇒⊗  

is an eigenvalue of wA,B. Hence, the dominant eigenvalue of the tensor product of 
wA,B (if it exists) is the product of the dominant eigenvalues of the wA and wB. This 
implies that convergence is achieved if both wA and wB have dominant eigenvalues 
(line 13). Similarly, the set of eigenvectors of the tensor product of two matrices is 
the set of values in the tensor product of the eigenvectors of these matrices. This 
implies that ,1,1= BA UUS ⊗′ , using notation from above for dominant eigenvectors. 
Finding a maximal matching in the tensor product of the dominant eigenvectors 
corresponds to projecting the longer eigenvector onto the space of the smaller eigen-
vector and permuting the dimensions of the former, such that their cosine similarity 
is maximized (i.e., aligning them).
The dominant eigenvector of an n×n matrix can be determined in O(n2)time (lines 
11,12) using QR factorization (Golub & Van Loan, 1996), and the tensor product of 
|VA| and |VB| length vectors is computed in |VA|VB| steps (line 14). This allows compu-
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tation of S′ in  ))||,|(|( 22
BA VVmaxO  time (i.e., faster than the Blondel algorithm).

EigenMatch

The main result of the OLGA algorithm is that it approximately reduces graph 
matching to the problem of aligning the dominant eigenvectors of the two graphs 
to be matched. This raises the question: why not try to align more than just the 
dominant eigenvectors? Accordingly, we analyze the optimization function err in 
2. As 2||=||][ F

T wwwTr ,

][             

||||||||=

]             

[=

]))([(=

||||

22

2
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As the trace of the product of two square matrices is independent of the order of mul-
tiplication,  ])[(=)]([ A

T
B

T
BA wPPwTrPPwwTr . Also,  22 |||| ,|||| F

T
BFA PPww  are terms 

related to the magnitude of the matched subgraphs, while the latter two terms pertain 
to the structure of the matching. Hence the problem reduces to ][max T

BAP PPwwTr . If 
wA,wB are normal matrices, then using eigen decomposition,
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Blondel et al. (2004) use normalized even iterates of BkAk wSwS =1+  to find similarities 
between normal matrices wA,wB. We adopt this idea, so that BkAk DWDW =1+ . We drop 
the normalization as it is a constant for a single iteration. However, instead of an 
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iterative algorithm, we choose a good seed and utilize just one iteratio'— BA DWDW 01 =
. For the seed, we use the FastOLGA algorithm (line 2), which aligns the dominant 
eigenvectors. Substituting in W, we get B

T
ABA PUUDWD =0 . Rearranging, we get 

),(=    ,= 00 BA
T
BBAA wwFastOLGAWwhereUDWDUP  			   (8)

 ]  [= ,2,2,1,1 XXXXXX UUDU . Thus, each eigenvector of wA and wB will then be 
weighted by its eigenvalue. Then during rounding of P, the matching algorithm will 
be fully cognizant of the smaller eigenvalues as well.
Accordingly, we have the algorithm EigenMatch as shown in Figure 2. This algo-
rithm has the same time complexity as eigen decompositionthat is, O(n3)  (Golub 
& Van Loan, 1996).

Matching Using MonteCarlo Sampling

One way of estimating the unusualness of matchings produced by our algorithms 
involves generating random matchings and comparing the err value of the best of 
these, with that produced by our algorithms. Accordingly, if |VA|>=}|VB|, we generate 
a random permutation of the numbers [1,|VA|] and map the first |VA| numbers of this 
permutation to the vertices numbered [1,|VB|] of GB. Otherwise, we swap the graphs 
and get the mapping in the same way. We call this MonteCarlo sampling.
We repeat this sampling a number of times, evaluate them using the Zscore described 
further on, and keep the one with the best Zscore. The number of such samples 
generated is controlled by the time taken to run OLGA. This ensures that OLGA 
and MonteCarlo sampling have the same amount of time to find the matching.

EigenMatch ( BA GG , ): 
1.  T

BBBB
T
AAAA UDUwUDUw = ,=  

2.  =0W  FastOLGA( BA ww , ) 
3.  T

BBAA UDWDUP 0=  
4.  return Match( P ) 

Figure 2. Matching all eigenvectors
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Experiments

In evaluating the performance of the algorithms, we pay attention to the following 
measures:

• 	 Execution time
• 	 Number of matches (#(matches)): It is the number of DB’s matchable com-

ponents that are correctly matched. A component in DB is matchable if there 
exists a known, unusually similar component in DA.

• 	 Zscore: We estimate the distribution of err(f |wA,wB) (Equation 2) by generating 
a number of matchings using MonteCarlo sampling and computing the err. 
Using this distribution, the mean and standard deviation can be determined, and 
the scores corresponding to the mapping found by an algorithm are normalized 
to get the Zscore. Thus, the Zscore is the number of standard deviations from 
the mean. Very negative Zscore implies that the corresponding matching is 
very unlikely to have happened by MonteCarlo sampling, and such a matching 
is said to have found unusually similar substructure.

Experiments on OLGA, Blondel’s algorithm, and MonteCarlo sampling were carried 
out on a SUN Sparc 650 MHz machine running on Solaris O/S with 256 MB RAM 
in C++. Blondel’s algorithm, EigenMatch, FastOLGA, and MonteCarlo sampling 
were also implemented on a Pentium 2 GHz machine running on Windows XP with 
256MB RAM in Matlab.

Synthetic Datasets

We use synthetic datasets to test the performance of our algorithms and similarity 
measures, as dataset and algorithm parameters are varied. By generating the datas-
ets ourselves, we can verify the correctness. Our program for generating synthetic 
datasets is based on that previously described in Sequeira and Zaki (2004). It has 
the following set of parameters:

1.	  Average number of dimensions (d)
2.	  Average number of points in a dataset (n)
3.	  Average number of embedded subspaces (k)
4.	  Average probability that a subspace is constrained in a dimension (c)
5.	  Average probability that a subspace is constrained in the same dimension as 

the previous subspace (o)
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6.	  Amount of perturbation (p)
7.	  Type of transformation

First, 1.5k subspaces are generated one after the other. They are by default multivariate 
normal, with means in each dimension ])[1,( dj ∈ , chosen from U[0,1000), where 
U[l,h) implies a uniform distribution over the interval [l,h). The standard deviation 
in each dimension ])[1,( dj ∈  is by default set to 20. A dimension is constrained 
with probability c. Two serially generated subspaces are constrained in the same 
dimension with probability o. Their means are constrained to be within 2 standard 
deviations of each other, to allow overlapping of subspaces. Unconstrained dimen-
sions have means chosen from U[0,1000).
For {1,2}∈i , for dataset Di, ni, ki are chosen uniformly from U(5n,1.5n) and U(5k,1.5k) 
respectively. The first ki subspaces are embedded in Di after perturbing their param-
eters using a transformation. There are three types of transformations:

•	  Noisy: 1000*),()(=)(],[1, ppUjjdj −+∈∀

	   )),((1*)(=)( ppUjj −+

• 	 Translation: 1000**)(=)( pijj +

• 	 Scaling: /5)(1*)(=)( ipjj +

 where p is the perturbation parameter. Each embedded subspace accounts for at 
least 1% of the total number of points. The actual number of points corresponding 
to a subspace is a function of the imbalance factor,
 
 

ll

llaa
min
max= ,  

where  l is the fraction of Di generated using parameters of the lth subspace embed-
ded in Di. Noisy points, which account for 5% of the points in Di, are multivariate 
uniformthat is, each coordinate is chosen from U[0,1000).
In experiments shown below, we assume that the subspace mining algorithm finds 
the embedded subspaces correctly, so as to isolate the contributions of this chapter. 
Thus, we test only the graph creation and matching algorithms described in this 
chapter. We tested the algorithms by matching synthetic datasets having embedded 
subspaces. As we serially insert subspaces, for every pair of datasets, we ensure that 
the dataset with the larger number of embedded subspaces includes all subspaces 
embedded in the other dataset. The datasets have, on average, n=1000 points and 
d=50 dimensions and k =25 embedded subspaces, except those with k >40 subspaces, 
which have  n=10000 points. Unless otherwise stated,c=o=0.5, p=0.03, a=4.0, we 
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use the noisy transformation and Gaussian weighted sim()function. By default, we 
try to map a 27-vertex graph to a 34-vertex one using OLGA and the HIST similar-
ity measure. For OLGA, we set t=.925, k=30. We evaluate the algorithms based 
on the #(matches) and its Zscore, as some parameter in the dataset is varied or the 
subspace similarity function is varied.

Comparison of Similarity Functions
We first tested the similarity functions by attempting to match each graph to itself. 
As expected, we found that while the linear algebra-based algorithms succeed in 
doing so, the MonteCarlo sampling often does not. We have not shown these results, 
due to space constraints.
In Figures 3, 5, and 7 we compare OLGA’s performance in terms of #(matches) 
as some parameter, namely, p,o and c, used in generating the embedded subspaces 
is varied. Note that #(matches) is virtually the same for both measures, except 
parameter p, where HIST performs better at p>0.05. It also outperforms AVGSIM 
in terms of Zscore as seen in Figures 4, 6, and 8. This suggests that HIST favors a 
more global solution as compared to AVGSIM. This occurs because it develops a 
profile for the entire subspace, including dimensions for which the subspace is not 
constrained, whereas AVGSIM takes more of a discretized approach. Also, there 
exist some values of these parameters, for which HIST’s Zscore drops below that 
of the optimal matching, in spite of having a significantly lower #(matches). This 
happens for extreme settings of the parameters. It suggests that Zscore and hence 
err quality measures are best suited to matching datasets having a low amount of 
perturbation.
In Figures 9 and 10, we compare the effect that different transformations on the dataset 
have on similarity measures. We notice that AVGSIM is consistently outperformed 
by HIST in the Zscore category, emphasizing the robustness of the latter. In terms 
of #(matches), HIST is outperformed for the noisy transformation because again it 
tries to optimize globally. Thus, in general HIST outperforms AVGSIM.

Comparison of Support-Based Similarity Functions

Early in this chapter, we discussed three functions used to compare clusterings. 
We then showed how to use them to find support-based subspace similarity. From 
Figure 11, Jaccard Index outperforms Rand Index and VI Metric.
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Comparison of Mapping Algorithms

Firstly, we found experimentally that FastOLGA and Blondel’s algorithm always 
arrive at the identical matching, suggesting that the similarity transformation found 
by Blondel’s algorithm is basically the tensor product of the dominant eigenvectors. 
Note however that our algorithm is theoretically faster than Blondel’s. In view of 
this result, we show their results combined except for the timing results.
In Figures 12, 13, and 14, we compare the performance of OLGA and EigenMatch 
with that of Blondel’s algorithm (Blondel et al., 2004) and the best matching produced 
in terms of Zscore by MonteCarlo sampling. Note that for Figure 12, the log scale 
is used for the y-axis. Although OLGA is the most consistent performer, the best 
matching produced by MonteCarlo sampling (denoted in the figures as ̀ `best Mon-
teCarlo”) performs well for matching small graphs, as it has a smaller state space to 
search. In Figure 13, EigenMatch outperforms the others in minimizing the Zscore 
more often than not. However, EigenMatch is unreliable in terms of #(matches) it 
produces. It sometimes produces no matches, while for k =75, it perfectly matches 
13 vertices. This is because it attempts global optimization in trying to align all the 
eigenvectors. OLGA, by virtue of using the sim function, prunes the graph and hence 
tries to find unusually similar matches. Hence, it typically outperforms Blondel’s 
algorithm. Also note that while Blondel’s algorithm converges faster than the other 
algorithms, it is provably slower than FastOLGA and produces the same results. 
We have verified this using our Matlab simulation, but have not shown it in the 
graph, as efficient simulation of OLGA in Matlab is non-trivial.
All the algorithms have running time independent of n and d. Hence, results for 
these are not shown.

Figure 3. #(matches) v/s p
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Figure 4. Zscore v/s p

Figure 5. #(matches) v/s o

Figure 6. Zscore v/s o
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Figure 7. #(matches) v/s c

Figure 8. Zscore v/s c

Figure 9. #(matches) v/s transformation
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Figure 10. Zscore v/s transformation

Figure 11. Clustering Comparison Functions

Figure 12. #(matches) v/s k
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Applications

As stated in the introduction to this chapter, our framework may be applied to 
monitoring evolution of datasets over time. Rather than use dataset snapshots, we 
use the statistics of players from the NBA, averaged annually from two consecutive 
basketball seasons, namely, 2003-04 (dataset A) and 2004-05 (dataset B). They are 
accessible from http://sports.yahoo.com/nba/stats/.
Another possible application of our framework is the mining of related but schemati-
cally differing datasets. We use two datasets pertaining to breast cancer (Beyer et al., 

Figure 13. Zscore v/s k

Figure 14. Time v/s k
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1999) donated to the UCI ML repository at ftp://ftp.ics.uci.edu/pub/machine-learn-
ing-databases/breast-cancer-wisconsin, obtained from the University of Wisconsin 
Hospitals, Madison from Dr. William H. Wolberg.
Finally, we apply our methodology on time series microarray datasets from the cell 
cycle of S. Cerevisiae.

NBA Data Analysis

Datasets A and B contain statistics for 443 and 464 players respectively. Each dataset 
has 16 columns:number of games played, average minutes played per game, average 
field goals, 3-pointers and free throws made and attempted, offensive and defensive 
rebounds, assists, turnovers, steals, blocks, personal fouls, and points per game. In 
this application, we seek to find groups of players having similar performance across 
the two seasons. If models of performance for the two seasons yield structurally 
similar clusters which overlap in their members, then these overlapping members are 
likely to have very similar performance. Consider the following scenario in which 
such knowledge may be employed: let players, say E, F, and G, currently belonging 
to distinct teams P, Q, and R respectively, all wish to leave their current team. If by 
our clustering models for the two seasons, it is known that players E and F belong 
to structurally similar clusters, then they show similar performance across the two 
seasons, prompting management at P and Q to consider “exchanging” them.
The statistics of each year yield a set of clusters/subspaces, 22 for dataset A and 15 
for dataset B, for which we construct a graph using methods described above. We 
then structurally matched the two graphs using OLGA. For each pair of matched 
clusters, we report the intersection set of players. We found clusters as shown in 
Figure 4, preserved structurally, with respect to the rest of the dataset, across the 
two years. In basketball, there are primarily three positions at which the players 
play: ‘center’, ‘forward’, and ‘guard’. Within these three positions there are further 
variants, like ‘power forward’, ‘point guard’, and so on. The position at which the 
NBA players played (i.e., player position) is not a column in our datasets. Examina-
tion of the cluster members revealed that the clusters primarily had members having 
the same player position.
For example, in the first cluster, out of six members, fourCurtis Borchardt, Ervin 
Johnson, Kendrick Perkins, and Stanislav Medvedenkoall play as ‘centers’. Across 
both datasets, the probabilities of a randomly chosen player being either ‘center’, 
‘forward’, or ‘guard’ are approximately the same and are given as p(‘center’)=0.25, 
p(‘forward’)=0.42, p(‘guard’)=0.33. If the six players were drawn independently 
with replacement from this distribution, the probability that k of them are ‘centers’ 
is binomially distributed with parameters n=6 and p=0.25. Accordingly, the p-value 
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of this cluster is bounded by the area of the tail of this distribution, to the right of 
k=4. Thus, p-value=

 0.0562=(0.75)(0.25)
5
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which may be considered to be statistically significant. As player position was not 
a part of the dataset, this analysis has provided us with a new insight. Also, it was 
found that all the players in the clusters do not start the game and come off the 
bench. As the players in the same cluster, as found by our algorithm, are typically 
in the same position, exchanging them seems very reasonable.
The cluster from dataset A corresponding to the first cluster in Table 4 has 50 play-
ers, of which 11, 25, and 14 are ‘centers’, ‘forwards’, and ‘guards’, respectively. 
These players are alike in that they belong in the lower third in terms of attempts at 
field goals, 3-pointers, and free throws; middle third for field goals made; and up-
per third for number of games played. Such a cluster has high entropy with respect 
to the player position. None of these categories singly yield statistically significant 
p-values. The same is true for the corresponding cluster from dataset B as well. 
The corresponding cluster in B has players belonging to the lower third in terms of 
attempts at field goals, 3-pointers, and free throws; number of field goals and free 
throws made; number of blocks and personal fouls; and average minutes per game. 
The six players reported in the table. Thus, structural alignment of the models for 
the datasets produces higher-entropy clusters with respect to those of the original 
models, with respect to the hidden variable (i.e., player position).

Table 4. Structurally similar clusters from two NBA seasons
Common Cluster Members Characteristic p-value

Curtis Borchardt, Ervin Johnson,

KendrickPerkins, Stanislav Medvedenko,

Walter McCarty, Lonny Baxter

4/6 are ‘centers’ 0.0562

Calbert Cheaney, Howard Eisley,

Kendall Gill, Anfernee Hardaway,

Jumaine Jones, Mickael Pietrus,

James Posey, Kareem Rush, Theron Smith

7/9 are ‘forwards’ 0.062

Jeff Foster, Mark Madsen, Jamal Sampson 3/3 are ‘centers’ 0.0156

Brevin Knight, Tyronn Lee, Jeff McInnis,

Latrell Sprewell, Maurice Williams

4/5 are ‘guards’ 0.0436
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Breast Cancer Data Analysis

The first dataset (X) has nine dimensions/columns having integral values between 
1 and 10 for clump thickness, uniformity of cell shape and size, marginal adhesion, 
bare nuclei, and so forth, and 699 samples/rows. There are a few missing values as 
well. Thirty-five percent of the samples are malignant (M) and the rest are benign. 
The second dataset (Y) has 30 dimensions/columns corresponding to three statistics 
(mean, standard error, max) for each of 10 real-valued features (radius, symmetry, 
area, texture, etc.) of the cell nuclei drawn from 569 samples/rows. Thus, the schema 
for X and Y is different. In Y, 37.25% are malignant and the rest are benign.
Each sample in both X and Y is labeled as either malignant or benign. Our goal is 
to discover these labels using unsupervised, rather than supervised learning tech-
niques. Using SCHISM (Sequeira & Zaki, 2004), we find 36 clusters in X and 21 in 
Y. After creating the graphs and matching the clusters structurally, we examine the 
labels of the samples in matched clusters. Let  ),( ),,( YX VvMpVuMp ∈∈  denote the 
probability that a sample drawn uniformly at random from clusters u,v respectively, 
from graphs corresponding to datasets X,Y respectively, is labeled malignant. Then 
if our framework finds that Pf(u,v)=1, from Equation 1that is, the cluster u of X 
is matched to cluster j of Y we found that p(M,u)≈ p(M,v) (i.e., we found a strong 
correlation between labels of elements of matched clusters). In Table 5, we report 
the probabilities of p(M,u∈VX) and p(M,v∈VY) ∀Pf(u,v)=1 and p(M,u)≠p(M,v). The 
first column, interpreted as cluster 0 of the second dataset (Y), has all its elements 
labeled as malignant, while cluster 31 of the first dataset (X) has three of its five 
elements (i.e., 3/5=0.6) labeled as malignant. Such findings allow us to search for 
correlations between the two spaces corresponding to X and Y. Although, the clus-
ters found in both datasets are predominantly malignant, our algorithm correctly 
matches the benign onesthat is, cluster 2 of Y with cluster 23 of X, and the higher 
entropy clusters 16 of Y with 25 of X. A few of the clusters matched do not have a 
high correlation, as we forcibly attempt to match every cluster in Y to some cluster 
in X. Blondel’s algorithm produces a worse mapping, in that it matches a cluster of 

Table 5. Structurally similar clusters from schematically different breast cancer da-
tasets and ),(=),( vMpuMp / . Here XY VuVv ∈∈ , , and  22 )),(),(((= uMpvMp − . 

( v,u) (0,31) (2,23) (4,13) (8,3) (11,24) (14,34) (16,25) (17,28) (19,35) (20,2)

p(M,v) 1.0 0.021 0.933 0.5 0.97 1.0 0.833 0.833 1.0 0.8

p(M,u) 0.6 0.027 1.0 1.0 1.0 0.56 0.77 1.0 0.28 1.0

d2 0.16 0.0000036 0.0044 0.25 0.0009 0.193 0.0044 0.027 0.50 0.04
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malignant samples with a cluster of predominantly benign samples. We compare 
the results from the algorithms by measuring the correlation between the matched 
clusters using

1)(

))))(,(),(((
=)(

2

−

−−

∑

∑

∈

∈

exp

vfMpvMpexp
fcorr

YVv

YVv

Accordingly, we find  2.586=)( OLGAfcorr  and  2.0636=)( BLONDELfcorr , where  OLGAf  
and  BLONDELf  are the mappings produced by OLGA and Blondel’s algorithm, re-
spectively. Thus, OLGA outperforms Blondel’s algorithm for the breast cancer 
dataset.

Microarray Data

With a large number of noisy, high-dimensional gene expression datasets becom-
ing available, there is a growing need to integrate information from heterogeneous 
sources. For example, different clustering algorithms, designed to serve the same 
purpose, may be run on a dataset, and we may wish to integrate output from the two 
algorithms. Alternatively, the same algorithm may be run on two datasets differing 
only slightly in experimental conditions. In the first example, the algorithm provides 
heterogeneity, while in the latter, it is the experimental conditions.
In our specific application, we look at three microarray datasets, called GDS38, 
GDS39, and GDS124, pertaining to the Saccharomyces cerevisiae (yeast) cell cycle (to 
access the datasets, visit http://www.ncbi.nlm.nih.gov/projects/geo/gds/gds_browse.
cgi). The datasets contain expression values of the different genes of yeast sampled 
over its cell cycle. The cultures are synchronized by different mechanisms, namely, 
alpha factor block-release(A), centrifugal elutriation (E), and cdc15 block release 
(C). GDS38 (i.e., A) has 16 samples/columns taken at seven-minute intervals, while 
GDS39 (i.e., E) has 14 samples/columns taken at 30-minute intervals, and GDS124 
(i.e., C) has 25 samples/columns taken from almost three full cell cycles. Datasets A 
and E have 7,680 genes/rows, while C has 8,832 rows. The entry in the ith row and 
jth column of the dataset corresponds to the gene expression value for the jth time 
sample of gene i during the cell cycle of yeast. Microarray datasets are known to be 
very noisy. Also, these datasets have a large number of missing values as well.
It is hypothesized that genes which exhibit similar expression patterns may be co-
regulatedthat is, having similar regulation mechanisms. Hence, we are looking for 
subspaces having similar expression patterns. We use SCHISM (Sequeira & Zaki, 
2004) to find these subspaces. We use x=3. This discretizes gene expression values 
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into three categories: under-expressed (first interval), normal (second interval), and 
over-expressed (third interval). Thus, the subspaces correspond to a subset of the 
genes/rows which are simultaneously either under-expressed or normal or over-
expressed for some subset of the time samples/columns. SCHISM returns 13 and 
25 subspaces for datasets GDS38 and GDS39 respectively. We then construct the 
graphs for each dataset and match the underlying subspaces/vertices using OLGA. 
We examined the genes in the intersection of the matched subspaces to verify the 
efficacy of our algorithms. We submitted the list of genes in the intersection of the 
matched subspaces to the SGD Gene Ontology (GO) Term Finder (for details, see 
http://db.yeastgenome.org/cgi-bin/GO/goTermFinder) tool. This tool searches for 
significant shared GO terms, or parents of the GO terms, used to describe the genes 
in the submitted list of genes to help discover what the genes may have in common. 
A small sample of their results is shown in Table 6.
The first row of Table 6 is interpreted as follows: Genes SUM1 and BRE1 are 
associated with the process of chromatin silencing at telomere. These genes actu-
ally belong to a cluster of seven genes, but out of 7,274 genes in yeast, there are 

Table 6. GO-based interpretation of similar substructure

Gene Ontology(GO) Term p-value Genes

chromatin silencing at telomere 0.00068 SUM1, BRE1

telomeric heterochromatin formation 0.00068

gene, chromatin silencing 0.00215

regulation of metabolism 0.00561 BRE1, ADR1, SUM1

organelle organization and biogenesis 0.00918 BRE1, ADR1, SUM1, SPC110

ribosome biogenesis 4.13e-05 MAK16, SPB4, CGR1 ...

ribosome biogenesis and assembly 0.0001 ... TSR2, RLP7, NOP4

dicarboxylic acid transporter activity 0.00059 SFC1, DIC1

recombinase activity 0.00059 KEM1, RAD52

cytoskeletal protein binding 0.00251 NUM1, BNR1, ASE1, MLC2

transcription cofactor activity 0.00885 SPT8, SWI6, ARG81

signal transduction 0.01704 COS111, BEM2

DNA replication 0.00194 ECO1, DPB2

DNA repair 0.00402

response to DNA damage stimulus 0.00551

response to endogenous stimulus 0.00551

growth 0.0078 TEC1, BEM2
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42 involved in this process. Using the right tail of the binomial distribution, GO 
TermFinder reports the p-value (measure of statistical significance) as 0.00068. 
Further, they are also associated with gene silencing, and the p-value is 0.00215. 
SUM1 and BRE1 belong to a subspace of 193 genes when SCHISM is applied to 
dataset GDS38. This results in a much lower p-value and is hence not reported as 
statistically significant. This is true for other clusters reported too. Thus, the con-
densed model technique yields smaller, more statistically interesting clusters, by 
leveraging information from multiple sources.

Conclusion

From the Zscore values obtained by the algorithms, it is obvious that the algorithms 
find unusually similar matchings with respect to MonteCarlo sampling. The p-values 
of the inferences from the application to the NBA datasets confirm this. It is evident 
that OLGA and EigenMatch succeed in finding similar subspaces based on the 
structure of the dataset alone, without sharing the datasets. The experiments on the 
breast cancer data suggest that correlations between clusters in related datasets of 
differing schema may also be inferred, using our framework.
As part of future work, we hope to extend our algorithms to finding common 
substructure across multiple datasets. Also, currently our similarity measures are 
best suited to finding similarities between hyperrectangular subspaces. Patterns in 
datasets may require less restrictive descriptions, for example, coherent patterns 
in NBA datasets, curves, and so forth. We hope to develop similarity measures for 
such patterns as well.
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Section II

Patterns


