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Abstract: In this paper, we introduce the concept of α-orthogonal patterns to mine a representative set of graph patterns.
Intuitively, two graph patterns are α-orthogonal if their similarity is bounded above by α. Each α-orthogonal pattern is also
a representative for those patterns that are at least β similar to it. Given user defined α, β ∈ [0, 1], the goal is to mine an
α-orthogonal, β-representative set that minimizes the set of unrepresented patterns.

We present ORIGAMI, an effective algorithm for mining the set of representative orthogonal patterns. ORIGAMI first uses a
randomized algorithm to randomly traverse the pattern space, seeking previously unexplored regions, to return a set of maximal
patterns. ORIGAMI then extracts an α-orthogonal, β-representative set from the mined maximal patterns. We show the effectiveness
of our algorithm on a number of real and synthetic datasets. In particular, we show that our method is able to extract high-quality
patterns even in cases where existing enumerative graph mining methods fail to do so.  2008 Wiley Periodicals, Inc. Statistical
Analysis and Data Mining 1: 67–84, 2008
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1. INTRODUCTION

Increasingly, today’s massive data is in the form of
complex graphs or networks. Examples include the physi-
cal Internet, the world wide web, social networks (includ-
ing blogs, chat rooms, phone networks, and networking
web-sites), biological networks (including protein interac-
tions networks and bio-chemical compounds). Mining such
databases for graph patterns has attracted a lot of interest
in recent years.

Typical graph mining methods follow the combinato-
rial pattern enumeration paradigm, and aim to extract all
frequent subgraphs, perhaps subject to some constraints.
In many real-world applications arising in bioinformatics
and social network analysis, the complete enumeration of
all patterns is practically infeasible because of the combi-
natorial explosion in the number of mined subgraph pat-
terns. For example, on a set of six proteins taken from the
HOMSTRAD database of homologous protein structures
(see dataset PS in Section 6), a typical enumerative graph
mining method (we used gSpan [19]) did not finish running
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in even two days. These six graphs contain common motifs
of size over 50–60 residues, and therefore any method that
tries to enumerate all subgraphs is simply unable to mine
this dataset. In fact, mining only the closed or even the
maximal patterns in such domains can be untenable.

Aborting the mining process prematurely does not help
either, as there is no guarantee that the resulting set of
patterns is representative in any sense. Typically, one can
expect that the patterns cover only a small region of the
output search space (e.g. a breadth-first search approach
will have seen patterns only up to some level, and a depth-
first method may have seen patterns covering branches up to
some point). For example, we ran a depth-first graph mining
algorithm [9] on a protein-interaction dataset consisting
of three graphs (see dataset protein interaction (PI) in
Section 6), each graph having 2154 nodes, and on average
81607 edges, with total database size 3 MB. The mining
process was aborted after a day of running, at which point it
had generated a 7 GB output file containing over 8 million
subgraphs. The largest mined graph had only 22 edges;
there were 57 such subgraphs, but these had a similarity of
over 95% (differing in only a few edges), indicating that

 2008 Wiley Periodicals, Inc.



68 Statistical Analysis and Data Mining, Vol. 1 (2008)

only a small fraction of the possible output space had been
seen.

Note also that in many real-world cases, enumerating all
frequent patterns is not necessarily the primary objective.
Rather, mined patterns are likely to be used as inputs for
a subsequent analysis/modeling step, and as such, a rela-
tively small representative set of patterns may suffice. For
example, mining frequent motifs in protein structures sets
the stage to solve problems such as structural alignment,
homology detection, etc. Recurring patterns in a social
network can be used for link prediction, de-duplication,
hidden group identification, etc. Frequent patterns obtained
from network log data can be used to build a classifica-
tion model that can predict network intrusion and other
anomalous behavior. None of these applications requires
the entire set of frequent patterns. Note also, that the lack
of interpretability and the curse of dimensionality due to
a large set of redundant patterns can cause problems for
subsequent steps like clustering and classification. Many
successful applications of pattern mining for solving real-
life problems thus require the result-set to be a summary,
rather than a complete set of the frequent pattern space.

In this paper, our goal is to address all the above
limitations that prevent graph mining to be applied in real-
world problems. Instead of enumerating all graph patterns,
we aim to mine a relatively small set of representative
patterns that share little similarity with each other. More
specifically, given user-defined parameters α, β ∈ [0, 1],
our goal is to find an optimal α-orthogonal β-representative
set of patterns. Two patterns are said to be α-orthogonal
if their similarity is at most α, and a pattern is said to
be a β-representative for another pattern if their similarity
is at least β. Instead of enumerating the entire set of
subgraph patterns, we employ a randomized (but principled)
search over the partial order of subgraph patterns, to obtain
a representative sample of the possible output space (of
maximal patterns). The aim is to cover, or traverse, different
unexplored parts of the partial order yielding potentially
representative patterns. In a second step, a locally optimal
orthogonal representative pattern set is extracted from the
output sample. The main contributions of our paper are as
follows:

• We propose a new paradigm for mining a summary
representation of the set of frequent graphs. Unlike
previous techniques, which focus on the distance in
the transaction space to obtain representatives, our
approach captures representatives by considering the
distances in the pattern space.

• We introduce a randomized approach for mining max-
imal subgraph patterns. The method is designed to
cover the partial order of subgraphs, so that orthogo-
nal maximal patterns are obtained quickly.

• We formulate the α-orthogonal β-representative set
finding as an optimization problem. We show that
the optimization problem is NP-Hard and we thus
propose a local optimization solution that is efficient
and practically feasible.

Our algorithm that finds the α-orthogonal β-representa-
tive set is called ORIGAMI (which stands for Orthogonal
RepresentatIve GrAph MIning). We demonstrate the effec-
tiveness of ORIGAMI on a variety of synthetic and real dataset,
and show that it is able to mine good-quality orthogonal
representative sets, especially for datasets where traditional
enumerative methods fail completely.

2. RELATED WORK

Many recent methods have been proposed for graph
mining; these include [5, 12,13,19,10,15]. The focus of
these methods is to mine all frequent subgraph patterns,
rather than finding orthogonal or representative patterns.
There is also an increasing interest in using the mined graph
patterns for indexing [21].

There are several works guided towards finding a subset
of frequent patterns that are most informative, compressed,
discriminative and non-redundant [1,18,17,4]. However, all
these previous works handle itemset patterns only. In the
graph domain, we did not find any work on compressed
frequent patterns, except works on closed frequent graphs
[20] and maximal frequent graphs [16,11]. Even though
these two approaches generate a smaller set of patterns, the
number of patterns in both cases can still be very large.
Moreover, many patterns in the resulting sets can be very
similar; hence, they may not be appropriate as a summary
or representative pattern set.

We present a set of frequent graphs that are representative
of the entire frequent graph partial order. Each element
in the representative set is more than α distant from the
others. Moreover, since graphs represent the most general
type of patterns, a solution to this problem in the graph
setting automatically covers the other pattern types such as
itemsets, sequences and trees.

3. ORIGAMI: PROBLEM FORMULATION
AND OVERVIEW

Graphs and Subgraphs: A graph G = (V , E), consists of
a set of vertices V = {v1, v2, . . . , vn}, and a set of edges
E = {(vi, vj ) : vi, vj ∈ V }. Let LV and LE be the set of
vertex and edge labels, respectively, and let V : V → LV

and E : E → LE be the labeling functions that assign labels
to each vertex and edge. The size of a graph G, denoted |G|
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is the cardinality of the edge set (i.e. |G| = |E|). A graph
of size k is also called a k-graph. A graph is connected
if each vertex in the graph can be reached from any other
vertex. All graphs we consider are undirected, connected
and labeled.

A graph G1 = (V1, E1) is a subgraph of another graph
G2 = (V2, E2), denoted G1 ⊆ G2, if there exists a 1–1
mapping f : V1 → V2, such that (vi, vj ) ∈ E1 implies
(f (vi), f (vj )) ∈ E2. Further, f preserves vertex labels, i.e.
V(v) = V(f (v))), and preserves edge labels, i.e. E(v1, v2) =
E(f (v1), f (v2)). f is also called a subgraph isomorphism
from G1 to G2. If G1 ⊆ G2, we also say that G2 is a
super-graph of G1. Note also that two graphs G1 and G2

are isomorphic iff G1 ⊆ G2 and G2 ⊆ G1. Let D be a set
of graphs, then we write G ⊆ D if ∀Di ∈ D, G ⊆ Di . G is
said to be a maximal common subgraph of D iff G ⊆ D,
and � ∃H ⊇ G, such that H ⊆ D.
Graph Support: Let D be a database (a set) of graphs,
and let each graph Di ∈ D have a unique graph identifier.
Denote by t(G) = {i : G ⊆ Di ∈ D}, the graph identifier
set (gidset), which consists of all graphs in D that contain
a subgraph isomorphic to G. The support of a graph G in D
is then given as π(G,D) = |t(G)|, and G is called frequent
if π(G,D) ≥ πmin, where πmin is a user-specified minimum
support (minsup) threshold. A frequent graph is closed if
it has no frequent super-graph with the same support. A
frequent graph is maximal if it has no frequent super-
graph. Denote by F, C,M the set of all frequent, all closed
frequent, and all maximal frequent subgraphs, respectively.
By definition, F ⊇ C ⊇ M. The set of all maximal frequent
subgraphs M is also known as the positive border. Note
that the set of all (frequent) subgraphs forms a partial order
with respect to the subgraph relationship, and associated
with each graph in the partial order is its gidset.
Graph Similarity Measures: Similarity between graphs
can be measured by using features in the pattern space or
in the transaction space (the gidset) or a combination of
both. In the case of pattern space, the most common way
to compute similarity is using the edit distance between
two patterns. Depending on the pattern complexity, the cost
of edit distance computation varies. For complex patterns
such as graphs, the computation is usually costly. On the
other hand, the similarity in the gidset space is very easy to
compute. The ratio of intersection-set and union-set can be
used as a similarity measure. For two patterns Ga and Gb, it
can be computed as: sim(Ga, Gb) = |t(Ga)∩t(Gb)|

|t(Ga)∪t(Gb)| . This is a
rudimentary measure for similarity since two very different
patterns can have a very similar set of transactions. We
do not use this measure in this work. But, for simpler
patterns, such as itemsets, it plays an important role in
finding distances between patterns.

In this work, we used the graph similarity measure pro-
posed by Bunke et al. [3,2], which computes the similarity

between two patterns by finding the relative size of their
common sub-patterns. For the case of graphs, this is equiv-
alent to finding the relative size of the maximal common
subgraph of two graphs. If G1, G2 are two graphs and
Gmc is the maximum common subgraph between these two
graphs, then the following equation computes the similarity:

simmc(G1, G2) = |Gmc|
max(|G1|, |G2|) (1)

Orthogonal and Representative Graphs: Define sim :
F × F → [0, 1] to be a symmetric binary function that
returns the similarity between two graphs. For instance, the
similarity based on the maximum common subgraph [3] is
given above. Given any collection of graphs G, and given
a similarity threshold α ∈ [0, 1], we say that a subset of
graphs R ⊆ G is α-orthogonal1 with respect to G iff for any
Ga, Gb ∈ R, sim(Ga, Gb) ≤ α and for any Gi ∈ G \ R
there exists a Gj ∈ R, sim(Gi, Gj ) > α.

Given a collection of graphs G, an α-orthogonal set
R ⊆ G, and given a similarity threshold β ∈ [0, 1], we say
that R represents a graph G ∈ G, provided there exists
some Ga ∈ R, such that sim(Ga, G) ≥ β. Let ϒ(R,G) =
{G ∈ G : ∃Ga ∈ R, sim(G, Ga) ≥ β}, then we say that R
is a β-representative set for ϒ(R,G).

Finally, given G, and its α-orthogonal, β-representative
set R, define the residue set of R to be the set of
unrepresented patterns in G, given as �(R,G) = G \ {R ∪
ϒ(R,G)}. The residue of R is defined to be the
cardinality of its residue set, |�(R,G)|. Define the average
residue similarity as follows: ars(R,G) =∑

Gb∈�(R,G) maxGa∈R{sim(Ga,Gb)}
|�(R,G)| .

LEMMA 1: α < ars(R,G) < β.

PROOF: For any Ga ∈ �(R,G), we have sim(Ga, Gb)

< β for all Gb ∈ R. Furthermore, by definition, for any
Gb ∈ G \ R, ∃Ga ∈ R, such that sim(Ga, Gb) > α. Thus
the numerator is always in the range (α, β).

Problem Definition: In this paper we are interested in
finding the α-orthogonal, β-representative set for the set
of all maximal frequent subgraphs, i.e. when G = M. In
general, one can find orthogonal representative sets for
any collection of patterns G. Since the maximal patterns
provide a synopsis of the frequent patterns, and since they
are generally a lot fewer than the sets of all frequent and
closed frequent patterns, it seems reasonable to try to find

1 This is inspired by linear algebra, where two vectors are said to
be orthogonal if their similarity (dot product) is 0. We extend this
notion to say that two graphs are α-orthogonal if their similarity is
at most α. When α = 0, it gives the usual sense of orthogonality.
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an orthogonal representative set among those. However,
since even mining all the maximal graphs can be infeasible
in many real-world domains, we try to find orthogonal
representative sets for a subset of the maximal patterns
M̂ ⊆ M.

Given a graph database D, user-defined similarity thresh-
olds α, β ∈ [0, 1], and a minimum support threshold πmin,
the problem of mining α-orthogonal β-representative graph
patterns can now be formulated as follows:

1 Mine a (diverse) sample of maximal frequent patterns
M̂ ⊆ M.

2 Mine an α-orthogonal β-representative set R, that
minimizes the residue |�(R,M̂)|.

Note that an alternative objective can be to maximize
ars(R,M̂). In this paper we focus on minimizing the
residue (|�(R,M̂)|).

A solution to the above problem provides a small set
of maximal frequent graph patterns that are non-redundant
or orthogonal (for the α constraint) and also representa-
tive (for the β constraint). Depending on the value of β,
the following two cases make interesting variants of the
problem:

case I (β ≤ α): By definition of α-orthogonal set, for any
Gi ∈ M̂ \ R, there exists Gj ∈ R, such that
sim(Gi, Gj ) > α ≥ β. This implies that each Gi ∈
M̂ \ R is represented by some Gj ∈ R. We imme-
diately have ϒ(R,M̂) = M̂ \ R, which in turn
implies that �(R,M̂) = ∅. Thus, when β ≤ α, the
residue of any α-orthogonal set R is 0, implying that
every α-orthogonal set is optimal w.r.t. the residue.

case II (β > α): This is the general case for which the α-
orthogonal set R may not be a β-representative for
some maximal frequent graphs in M̂. In other words,
when β > α, the residue |�(R,M̂)| ≥ 0; thus an
optimal solution is a set of orthogonal patterns that
minimizes the residue. A special case of β > α occurs
when β = 1. In this case, each element in the α-
orthogonal represents only itself, and the residue is
|�(R,M̂)| = |M̂ \ R|.

As an example, assume that we are given the pair-
wise similarities between a set of graphs M̂, as shown
in Fig. 1. If α = 0.2, then there are two possible α-
orthogonal sets, namely R1 = {M1, M3} and R2 = {M2,

M4, M5} as illustrated in Fig. 1(b). If β ≤ α, both these will
be optimal in terms of the residue. However, if β = 0.6,
then ϒ(R1,M̂) = {M2, M5}, which gives |�(R1,M̂)| =
|{M4}| = 1. This is illustrated in Fig. 1(b), which shows that
M4 remains unrepresented by R1. For R2, ϒ(R2,M̂) =
{M1, M3}, yielding |�(R2,M̂)| = |∅| = 0. Thus in this
case R2 is the optimal α-orthogonal β-representative set.

M1

M1

1.0 0.3 0.18 0.4 0.7

M2

M2

M3

M3

M4

M4

M5

M5

- 1.0 0.7 0 0.1

- - 1.0 0.4 0.5

- - - 1.0 0.15

- - - - 1.0

SimilarityMatrix

M1

M3

M2

M4

M5

Similarity Graph

(a)

(b)

Fig. 1 Similarity matrix & graph: In the graph, sim ≤ α = 0.2 is
denoted by bold edges, and sim ≥ β = 0.6 by dotted edges.

The intuition behind our definition of α-orthogonal β-
representative set should now be clear. The orthogonality
constraint ensures that the resulting set of frequent patterns
has controlled redundancy. For a given α, several sets of
(maximal) patterns qualify as feasible α-orthogonal sets.
Besides redundancy control, we also want to achieve rep-
resentativeness, i.e. for every maximal frequent pattern not
reported, we want it to have a representative similar to it
(based on the β threshold). Some patterns may still remain
unrepresented, which make up the residue set. For a given
α and β, the size of the residue set becomes an objec-
tive function to minimize when choosing the orthogonal
representative sets.
The ORIGAMI Approach: ORIGAMI has two distinct steps to
mine the orthogonal representative patterns. The first step
finds a subset of frequent maximal patterns M̂. The second
step refines M̂ to obtain an orthogonal representative set.
The pseudo-code for ORIGAMI is shown in Fig. 2. The
algorithm accepts a graph database D, a minimum support
value πmin and values for the parameters α and β. ORIGAMI

first computes two global data structures that are used to
generate maximal frequent patterns (lines 1–2). The edge-
map (EM) stores for each vertex label lva a pair (lvb

, le), if
(va, vb) is an edge with edge label le in some graph in D.
F1 stores the set of all frequent 1-graphs (i.e. single edges).

ORIGAMI then computes an approximation or sample of the
set of maximal patterns M̂, by generating random maximal
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graphs until the stopping condition is met (lines 4–6). The
stopping condition mainly ensures that the partial order
of frequent graph patterns has been sufficiently explored.
Once M̂ is obtained, ORIGAMI computes one or several α-
orthogonal β-representative sets (line 7). The first step of
ORIGAMI is described in Section 4 and the second step is
elaborated in Section 5.

4. MINING RANDOM MAXIMAL GRAPHS

The first step in ORIGAMI finds a sample M̂ of the set of all
maximal frequent graphs M. Our goal is to find a sample
that itself has as diverse a collection of maximal patterns
as possible. In other words, we want to avoid generating
maximal patterns that are very similar to other maximal
patterns already found. This necessitates a deviation from
traditional enumerative pattern mining approaches.

Enumerative graph mining methods either explore the
pattern space in a breadth-first (level-wise) or depth-first
manner. The approaches work by extending an existing
graph S of size k by adding one more edge to obtain a
(k + 1)-graph S ′. The drawback of the breadth-first explo-
ration of the pattern space is that longer patterns may never
be reached because of the combinatorial explosion in the
number of subgraphs. On the other hand, depth-first explo-
ration can produce some large maximal patterns; however,
it is likely to explore only a limited portion of the positive
border, and most of the maximal patterns it enumerates will
be very similar.

4.1. Random Walks over Chains

ORIGAMI adopts a random walk approach to enumerate a
diverse set of maximal patterns from the positive border.
Each run of Random Maximal Graph (Fig. 2, line 5) outputs
one random maximal pattern M by starting at the empty
pattern and successively adding a random edge during each
extension, until no extensions are possible. Each run of
the method thus walks a random chain in the partial order

Fig. 2 ORIGAMI Algorithm.

(recall that a chain in a partial order is a path composed of
subgraph to immediate super-graph edges). Figure 3 gives
an illustration of this process. Each intermediate pattern is
denoted by a star, and there exists an edge between two
graphs Ga ⊆ Gb in the partial order if |Ga| = |Gb| − 1.
The set of all maximal patterns or the positive border is
denoted by the bold curve. Each random walk starts at the
empty pattern ∅, and follows a random chain until it hits the
positive border. Different runs of Random Maximal Graph,
taken together, produce an approximate set of maximal
patterns M̂.

Ideally the random chain walks would cover different
regions of the partial order, and would produce dissimilar
maximal patterns. However, in practice, this may not be the
case, since duplicate patterns can be encountered in the fol-
lowing ways: (i) multiple iterations following overlapping
chains, or (ii) multiple iterations following different chains,
both leading to the same maximal pattern.

Let us consider a maximal frequent graph M of size n.
Let e1e2 · · · en be a sequence of random edge extensions,
corresponding to a random chain walk, leading from the
empty graph to the maximal graph M . Corresponding to
the edge sequence is a series of intermediate graphs on
the walk: ∅ = S0 → S1 → S2 · · · → Sn = M , where Si is
the intermediate obtained by extending Si−1 with ei . The
probability of a particular edge sequence leading from ∅ to
M is given as:

P [(e1e2 · · · en)] = P (e1)

n∏
i=2

P (ei |e1 · · · ei−1) (2)

In general, any permutation, π , of an edge-sequence, i.e.
(π(e1) π(e2) · · ·π(en)) can also generate the same graph,
M; however, all n! permutations may not be valid, since
we require all intermediate graphs to be connected. For
example, for a k-edge star graph, the number of valid edge-
sequences is k!, but for a linear k-edge graph (a sequence),
the number of valid edge-sequences is 2k−1, which can be
easily shown by induction.

Fig. 3 Frequent graph partial order.

Statistical Analysis and Data Mining DOI:10.1002/sam



72 Statistical Analysis and Data Mining, Vol. 1 (2008)

Denote by ES(M) the set of all valid edge-sequences for
a graph M . The probability that a graph M is generated in
a random walk is proportional to:

∑
(e1e2···en)∈ES(M)

P [(e1e2 · · · en)] (3)

The probability of obtaining a specific pattern depends
on the number of chains or edge sequences leading to that
pattern and the size of the pattern. As we can see from
Eq. 2, if a graph grows larger, the probability of an edge
sequence gets smaller, though a larger graph typically has
more chains leading to it.
Termination Condition: The iterative loop (Fig. 2, line
4) that generates the maximal graphs terminates when an
appropriate stopping condition is satisfied. The simplest
case is to stop after a given number of walks k. We also
implemented a dynamic termination condition, based on
an estimate of the collision or hit rate of the patterns.
Intuitively, the collision rate keeps track of the number
of duplicate patterns seen within the same or across dif-
ferent random walks. As each chain is traversed, ORIGAMI

maintains the signature of the intermediate patterns in a
bounded-size hash-table. As each intermediate or maximal
pattern is seen, its signature is added to the hash-table and
the collision rate is updated. If the collision rate exceeds
a threshold ε, the terminating condition can be triggered,
since a collision rate exceeding ε implies that parts of
the partial order are being revisited. An advantage of this
dynamic approach is that the user need not explicitly specify
k (though ε is now the new parameter).

4.2. Random Maximal Graph Generation

Let us take a closer look at the Random Maximal Graph
method that performs a random walk along a chain in the
subgraph partial order. Starting from the empty pattern, it
adds random edges to obtain a succession of intermediate
graphs leading to some maximal pattern M ∈ M. To extend
an intermediate pattern, say Sk ⊆ M , we first choose a
random source vertex, with id v and label i, from where
an extension will be attempted. Then, a random destination
vertex label j is chosen from the EM, out of all e(i, j)

node pairs that form the two ends of an edge. The edge
can, optionally, have an edge label. If no such e is found,
no extension is possible from vertex v, and v is inserted in a
list of expired vertices. When all vertices in the intermediate
graph Sk are expired, the loop breaks and the pattern
Sk = M is a maximal pattern. But, if such edges are found,
we randomly choose one of them. Note that there can be
multiple edges with one end at vertex v and the other end
at a vertex with label j . If such an edge is already in the

graph Sk , it is called a backward extension: otherwise, it is
a forward extension. An edge is added between node v and
this node, resulting in the candidate pattern Sk+1. Its support
is then computed, and if the pattern is infrequent, we insert
the following map entry, (v → e) in another data structure
called the failed map, to ensure that the edge e shall not be
attempted at vertex v again. Details of the actual support
counting via a vertical data representation are essentially the
same as the graph mining method in data mining template
library (DMTL) [9].

Figure 4 demonstrates an example of the Random
Maximal Graph algorithm, while finding a random max-
imal graph from a graph database of size 3 (Fig. 4 a-c)
with πmin = 2. The EM (Fig. 4 d) records all the possible
extensions for a given vertex label, recording the labels of
the vertices on the other end of that edge. If the edges have
labels, the edge label is recorded along with the vertex label
of the other end. For simplicity, we ignore edge labels in
this example. The edge map also remembers the highest
frequency of an edge within any graph in the database, so
that some candidates which are not frequent shall never
be attempted. For instance, consider the candidate frequent
graph A—A—C, which is not maximal (Fig. 4 (e,f)). But,
the graph already has one A—A edge, with vertex ids (vid)
1 and 2, respectively. Since the maximum frequency of the
A—A edge is 1, the edge extension A—A shall never be
attempted from vid 1 or 2. The failed list that we maintain
along with every iteration of the maximal graph genera-
tion process is also shown (Fig. 4 (g)). Note that for vid 1,
all possible labels for the other end are in the failed list,
i.e. they had been attempted and found to produce infre-
quent graphs. So, vid 1 is marked as expired (denoted by
*). When all the vertices are expired, the process termi-
nates and we obtain a maximal graph. For this particular
example, adding an edge A—D at vid 2 yields the maximal
graph with support 2 (in graphs G1 and G2).
Support Counting using Vertical Data Representation:
ORIGAMI uses a vertical data format for support counting. In
this approach, a data structure is maintained for each pat-
tern, which captures all its embedding in every transaction
graph. We called this the vertical attribute table (VAT) of
the pattern. At the beginning, the VAT structures of all the
frequent single edge patterns are created (Fig. 2 step 2).
While a pattern is extended, its VAT is intersected with the
VAT of the new edge (that is added to the pattern) to obtain
the VAT of the new pattern. Figure 4(e) shows the VAT for
the pattern A–A–C. Since this graph has two edges, we
have two rows in the VAT table, one for each of its edges.
The pattern appears in G1 and G2, and the corresponding
columns in the VAT table record all its embedding. Note
that in G2 the pattern has totally three embedding, of which
two embedding share the edge A(vid 1)–A (vid 2).
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A A(1), B(1), C(3), D(1)
B A(1), C(1), D(2)
C A(3), B(1)
D A(1), B(2)

(d)

VAT of pattern in figure 4(f)
Edge G1 G2

A – A 1 – 2 1 – 2

A – C 2 – 4 2 – 3
2 – 4
1 – 3

(e)
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A

C
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(f)

Vid V_label Failed_list

1* A A, B, C, D
2 A B, C
3 C B

(g)

Fig. 4 (a–c) A graph database with three graphs. (d) The EM
data structure that shows possible extensions, with the maximal
edge count. (e) An example VAT for the pattern in figure (f). (f–g)
A snapshot of the random extension process while mining with
πmin = 2. The failed-list table shows which edge extensions have
been attempted and which failed; * denotes an expired vertex id.

4.3. Collision Assisted Random Walk over Chains

As noted earlier, during a random walk previously
explored graphs could be visited. Each repeated visit to an
intermediate graph is considered as a collision (in a hash
context). The repeated collisions during the random walks
can also be used for controlling the traversal over the graph
partial order. The advantage of such a biased traversal is
two-fold. First is the reduction in the number of repeated
maximal patterns generated by the random walks. Second,
an evenly spread traversal over the graph partial order could
lead to a smaller residue set (equivalently, a larger ϒ(R,G)

set).
As discussed in Section 4.1, we maintain a hash contain-

ing a signature for the graph along with an integer value.
The integer value captures the number of times a given
graph is generated across all random walks. The signature is
inserted the first time a graph is generated. During a random

walk, each generated graph is checked against the hash. A
sequence of k contiguous collisions prompts the algorithm
to take a corrective action such that further collisions can
be averted and the partial order explored uniformly. The
intuition is that a sequence of collisions is indicative of a
previously explored portion of the partial order. Once we
determine that we have ventured into a previously explored
region, various corrective actions can be taken. One option
would be to completely discard the current random walk
and start afresh. This approach leads to wasted effort, as
we do not leverage the intermediate graphs leading up to
the sequence of collisions. Another strategy that we apply is
to backtrack along the current chain till we find an ‘appro-
priate’ intermediate graph, from which the random walk is
restarted. The following criteria can be used to select such
an intermediate graph from the current random walk.

• Number of collisions - Backtrack to an intermediate
graph in the current path that has had the minimum
number of collisions. This idea is driven by the logic
that the partial order around such a graph has not
been sufficiently explored.

• Drop in support - The graph that has the highest
drop in support value as compared to its successor in
the chain. Such a graph has the potential of multiple
paths leading to the border of the partial order, since
the difference between its support and the minimum
support is large.

One can think of other global approaches as compared
to the two path-based criteria discussed above. In a global
approach, nodes are ranked by a certain criterion that
represents their probability of leading to newer maximal
patterns. For instance, a graph in the partial order that has
a larger number of super-graphs which are maximal has
a higher chance, as compared to a graph that has paths
leading to fewer maximal graphs. A set of patterns P with
the highest estimated probability is stored at any time. As
the random algorithm proceeds, it is likely that all maximal
super-graphs of a particular graph g are explored. This
implies that the probability of g leading to newer maximal
graphs will go to zero. Nodes are removed or inserted into
set P based on changes in their estimated probability. When
a random traversal encounters k collisions, it can restart its
traversal from the node that has the highest probability of
reaching newer maximal patterns. The above approaches
are designed with the aim of providing a uniform and
a wider traversal of the positive border. Experiments in
Section 6.3 compare the collision-directed approach with
the random approach, both in terms of the computation
time and the quality of the selected representatives.
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4.4. Convergence Rate of Random Walk

ORIGAMI generates maximal graphs by randomly travers-
ing the partial order structure. With a suitable terminat-
ing condition, we get a collection of maximal patterns
M̂ ⊆ M; where, M is the true set of maximal patterns. If
t is the number of iterations and (M̂)t is the set of maxi-
mal patterns after t iterations, we have, limt→∞(M̂)t = M.
This is obvious since every pattern has a generation prob-
ability strictly greater than 0. Now, the convergence rate
of the above limit depends on the dataset: more precisely,
on the probability of generating each maximal pattern. If
the generation probability of some patterns are very small
compared to some other patterns, then the convergence rate
could be low. The best convergence can be achieved when
all the patterns have an equal probability to be generated.
Recall that ORIGAMI is not intended to be a complete max-
imal graph mining algorithm. It is better suited for large
datasets where the traditional maximal graph mining algo-
rithms fail to finish, so the user is willing to sacrifice the
completeness and is content with a set of representative
frequent patterns.

The rate of convergence can be formally analyzed by
answering the following question:

Is there a probabilistic bound on the number of random
walks required to capture a certain number (or fraction) of
the set of maximal patterns (M)?

For a database D of graphs and a given minimum
support πmin, let us assume that the set of maximal patterns
M is known. Let the probabilities of arriving at each
of these maximal graphs be p1, p2, . . . , p|M|, such that∑i=|M|

i=1 pi = 1. With these assumptions, bounds for the
number of random walks to capture a certain number
maximal patterns can be provided by using the results
for the generalized Coupon Collector’s problem. The basic
Coupon Collector’s problem [14] is defined as follows.

DEFINITION 1 (Coupon Collector’s Problem) Given u

distinct coupons, what is the expected number of attempts
required for picking d distinct coupons, when coupons are
drawn at random with replacement. Each coupon is equally
likely (i.e. p1 = p2 = . . . = p|M|) to be picked and each
attempt is independent of the others.

If Xd is the random variable for the number of attempts
to obtain d distinct coupons, then the expected value for
Xd is given by Lemma 2.

LEMMA 2: [14] E[Xd ] = u(Hu − Hu−d); where, Hc

is the c-th harmonic number, given by Hc = 1 + 1
2 + 1

3 +
. . . + 1

c
.

For, d = u, we have, E[Xu] = O(u ln u). In ORIGAMI

setting, the number of maximal patterns is the number of

distinct coupons and the number of iterations is the number
of attempts to pick coupons. However, in our formulation,
the probability of each maximal graph (coupon) is not
uniform. The generalized version of the Coupon Collector’s
problem provides a closed-form solution for E[Xd ] when
the probabilities are not uniformly distributed [7]. The
generalized version of the Coupon Collector’s problem
resembles the ORIGAMI setting. The result derived in [7]
is reproduced in Theorem 1.

THEOREM 1: In the case of non-uniform probabilities,
represented by the probability distribution (p1, p2, . . . ,

p|M|), the expected value of Xd is given by

E[Xd ] =
q=d−1∑

q=0

(−1)d−1−q

(
u − q − 1

u − d

) ∑
|J |=q

1

1 − PJ

(4)

where, PJ = ∑
j∈J pj .

The above expression in Eq. 4 reaches its minimum
with respect to the probability values when the term inside
the second summation reaches its minimum value, which
occurs when all the probabilities are equal.2 The outer
summation has d terms. Each term in the outer summation
contributes to the number of attempts (on an average)
required to obtain the qth unique coupon.

The above analysis has the following intuitive explana-
tion. Note that the maximal patterns in a dataset are of
different sizes. Consider that the smallest and the largest
maximal pattern have s and l edges, respectively. To sim-
plify the analysis, consider that all the edges have the same
probability, (say µ), of being selected at any time. Hence,
the probability that a graph of length s and l will be gen-
erated is of the order of µs and µl . Note that although
there are more valid edge-sequences for larger graphs, for
sparse larger graphs the count of the edge-sequences does
not grow exponentially with number of edges. On the other
hand, for a clique of the same size, the number of valid
edge sequences does grow exponentially. The convergence
rate is inversely proportional to the range of the probabil-
ity values, i.e. Prange = µl − µs . Section 6.3 confirms this
observation empirically.

5. MINING ORTHOGONAL REPRESENTATIVE
SETS

Given a set of maximal patterns M̂, ORIGAMI extracts an
α-orthogonal β-representative set from it.

2 1
1−x1

+ 1
1−x2

is minimum when, x1, x2 = 1
2 .
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THEOREM 2: Given M̂, let �(M̂) be the graph with
V = M̂ and E = {(Ma, Mb)|sim(Ma, Mb) ≤ α}. Then any
α-orthogonal set R is a maximal clique in �(M̂), and vice
versa.

PROOF: If R is an α-orthogonal set, then for any
Ma, Mb ∈ R, sim(Ma, Mb) ≤ α, and for any Ma ∈ M̂ \
R, there exists Mb ∈ R, with sim(Ma, Mb) > α. This
implies that the α-orthogonal set must be maximal. Since
�(M̂) has edges only for α-orthogonal graphs, it follows
that every maximal clique in �(M̂) is α-orthogonal set,
and vice versa.

As mentioned earlier, the α-orthogonality controls the
amount of redundancy allowed among the output patterns.
For a given α, several maximal cliques can exist in the
graph �(M̂), each a feasible solution to the orthogonal
set problem. The β-representative condition allows each
element of the orthogonal to represent similar graphs, and
also allows us to rank the maximal cliques in terms of their
residue (or average residue similarity).

There are several challenges in finding the optimal α-
orthogonal β-representative set. At the outset it should be
noted that the orthogonal set is a representative set only for
the sample M̂. If sufficient number of maximal patterns
were not sampled (for example, if the stopping conditions
were too restrictive), then M̂ may not approximate the set
of all maximal patterns M very well, and the quality of
M̂ would suffer. Another challenge is that, depending on
the size of the maximal set M̂, it may not be reasonable
to compute the full pairwise similarity matrix between
all elements of M̂, since it has O(M̂2) time and space
complexity. That is, it may not be reasonable to compute
the full graph �(M̂). Even if �(M̂) were available, the
challenge is that finding the optimal maximal clique that
minimizes the residue is an NP-hard problem.

THEOREM 3: Finding the optimal α-orthogonal
β-representative that minimizes the residue is NP-hard.

PROOF: This is easy to show, since the general prob-
lem contains an NP-hard subcase. For β = 1, each element
in the α-orthogonal set represents only itself, giving the
residue for any R as |�(R,M̂)| = M̂ \ R. Thus mini-
mizing the residue for β = 1 corresponds to solving the
maximum clique problem, which is known to be NP-hard.

5.1. Clique Finding

Given the hardness result, instead of enumerating the
optimal maximal clique, we resort to approximate algo-
rithms to solve the problem efficiently. Since, the optimal
solution is a maximal clique of the similarity graph, we

adopt maximal clique finding as a heuristic. Using this
approach, ORIGAMI finds a maximal clique without comput-
ing the full similarity matrix. Given the set M̂, it randomly
selects one element M ∈ M̂, and adds it to R. The idea is
to iteratively add one element from M̂ \ R to the current R
set until no more elements can be added, which would yield
a maximal clique. At any intermediate step, we compute
the similarities for all Mb ∈ M̂ \ R to elements Ma ∈ R.
If there exists Mb ∈ M̂ \ R, such that sim(Ma, Mb) ≤ α

for all Ma ∈ R, we add Mb to R. This process is repeated
until a maximal clique is obtained. The complexity of find-
ing a single clique is O(|M̂||R|), but in general we expect
|R| � |M̂|, so that the time is closer to O(|M̂|). Finally,
to obtain multiple cliques ORIGAMI simply starts with differ-
ent initial maximal graphs. Finally, the best clique is chosen
on the basis of the residue size.
Clique Refinement: We also designed a refinement to the
above heuristic approach that guarantees local optimality.
The neighborhood structure of the local optimal formula-
tion uses maximal clique in a meta-heuristic approach. The
algorithm starts with a random maximal clique. At each
state transition, another maximal clique, which is a local
neighbor of the current maximal clique, is chosen. If the
new state has a better solution, the new state is accepted
as the current state and the process continues. The pro-
cess terminates when all neighbors of the current state have
equal or higher residue size. Two maximal cliques of size
m and n (where, m ≥ n) are considered neighbors if they
share exactly n − 1 vertices. The state transition procedure
selectively removes one vertex from the maximal clique of
current state and then expands it to obtain another max-
imal clique, which satisfies the neighborhood constraints.
Figure 5 shows an example state transition for the local-
optimal algorithm. In Fig. 5(a) we show a toy similarity
graph, where the solid lines represent low similarity (≤ α)

and broken lines represent high similarity (≥ β) between
corresponding elements. Figure 5(b) shows an initial clique
(1, 2, 3) which has residue = 2 (since element 4 and 6
are not covered). Figure 5(c) shows a neighboring clique
(2, 3, 4) having 2 common nodes (2 and 3), which has a
better residue value (residue = 1; since only element 1 is
not covered). Thus, the local optimal algorithm will accept
the new clique in Figure 5(c) and will continue. For this
toy example, this clique is also optimal. In the experimen-
tal section we show the performance superiority of the local
optimal method over the random clique approach.
Other Refinements for Clique Finding: In the above
discussion on finding a clique, we computed the similarity
by using a maximal graph mining algorithm [11] that takes
two graphs as input and mines patterns with 100% support.
The frequent graph of maximum size is used to compute
the size of the maximal common subgraph in the similarity
equation.
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(a) A similarity graph, solid lines
represent elements with similarity
≤ a, broken lines represent
simi-larity ≥ b

(b) Initial clique (1,2,3) with
residue=2

(c) A local neighbor clique (2,3,4)
with better residue=1

Fig. 5 Local optimization example.

However, computing the exact similarity by solving the
maximal common subgraph can be costly. Moreover, for the
α-orthogonal graph problem, most often, we can compute
a lower bound on the graph-distance by considering a
graph as a labeled edge-multiset. We define the edge-
multiset similarity as follows: For graphs G1, G2, let EG1

and EG2 be the edge-multiset where each edge is defined
by an ordered triple of its vertex labels and edge label:
〈vl1, el, vl2〉. The edge-multiset similarity is then given
as: simem(G1, G2) = |EG1∩EG2|

max(|EG1 |,|EG2 |) . The following lemma

always holds.

LEMMA 3: simem ≥ simmc.

PROOF: simem ≥ simmc, unless |Gmc| > |EG1 |
∩ |EG2 |. But this is impossible, since all the edges in Gmc

are present in both the sets EG1 and EG2 .

In computing similarity between two patterns, we first
compute the simem. If simem is smaller than α, accord-
ing to Lemma 3, simmc is also smaller than α, and the
corresponding patterns satisfy the α-orthogonal constraints.
Otherwise, we compute simmc.

Earlier, a randomized approximate solution was proposed
to obtain the set of α-orthogonal β-representatives. The
end result of this algorithm depends on the initial random

element M ∈ M̂. Starting from a bad choice of the initial
element can hamper the chances of obtaining a smaller
residue set even with the local optimization strategy. We
propose two heuristics that improve upon the existing
strategy.

Heuristic 1: The first approach is based on finding a
maximal clique in �em(M̂), where �em(M̂) is the graph
with V = M̂ and E = {(Ma, Mb)|simem(Ma, Mb) ≤ α}.
�mc(M̂) can be defined similarly. Since simem is rela-
tively cheaper to compute, generating �em(M̂) is much
easier than generating �mc(M̂). The rationale behind this
approach can be explained with the following lemma.

LEMMA 4: Every maximal clique Cem in �em(M̂) is a
subset of some maximal clique Cmc in �mc(M̂).

PROOF: Proof follows from lemma 3. Since simem ≥
simmc, every edge in �em(M̂) is an edge in �mc(M̂).
Hence a maximal clique in �em(M̂) is a subset of some
maximal clique in �mc(M̂).

Starting from the maximal clique obtained from �em

(M̂),3 nodes can be added iteratively to this maximal
clique to generate the corresponding clique in �mc(M̂).
The algorithm is similar to the random algorithm, except
that instead of starting from a single random node, we start
with the maximal clique. The performance of this heuristic
depends on how well �em(M̂) approximates �mc(M̂). The
better the approximation, the better the result.

Heuristic 2: The second heuristic also utilizes �em(M̂).
In this case, the vertices of �em(M̂) are sorted in ascending
order of degree. The vertex with the lowest degree is chosen
as the initial node for the random algorithm followed by the
local optimization. This heuristic is based on the assumption
that the vertex in �em(M̂) with the least degree has a higher
chance of being similar to a larger number of graphs in
M̂ \ R. We talk in terms of chance because �em(M̂) is a
subset of �mc(M̂) and the absence of an edge in the former
does not necessarily imply absence of an edge in the latter.

6. EXPERIMENTS

6.1. Dataset Description

Chemical Compound Datasets (DTP and CM): The
chemical dataset is obtained from the DTP AIDS Antivi-
ral Screen test. The dataset can be retrieved from DTP
website.4 The dataset is classified into three subsets of
compounds: confirmed active (CA), confirmed moderately

3 Cliquer (http://users.tkk.fi/˜pat/cliquer.html) was used to obtain
maximal graphs.

4 http://dtp.nci.nih.gov/docs/aids/aids data.html.
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active (CM) and confirmed inactive (CI). Each chemical
compound is modeled as a graph where atoms represent the
labeled vertices and bonds represent the labeled edges of
the graph. There are 3 bond types and 61 vertex types. The
full DTP database has 40942 graphs, with average graph
size 45 edges and 43 vertices. The CM subset has 1084
graphs with average 31 vertices and 34 edges.
Protein Structure Dataset (PS): Given a protein structure,
we create a protein graph as follows. Each amino acid
residue is treated as a vertex (labeled by one of the 20 amino
acids), and there exists an edge between two vertices vi and
vj if d(vi, vj ) ≤ t , i.e. if the Euclidean distance between the
Cα atom of the residues is at most t (we use t = 7Å). We
created a database of 100 proteins (10 structural families,
with 10 proteins from each family), from the HOMSTRAD
(http://www-cryst.bioc.cam.ac.uk/ homstrad/) database of
structurally aligned homologous proteins. The protein
graphs have on average 165 nodes and 734 edges. The
goal is to discover the orthogonal representative structural
motifs for each protein family.
Protein Interaction Dataset (PI): Data on pairs of interact-
ing proteins was collected from three different sources. This
dataset contains only three large graphs, with an average of
2154 vertices and 81, 607 edges per graph.5 Each interac-
tion graph is created using one source: the first graph has
an edge if the proteins involved are known to interact (via
biological experiments), the second graph has an edge if the
proteins are part of a known pathway, and the third graph
has an edge if the proteins have correlated gene expression
values.
Synthetic Implanted Dataset (SI): We wrote a graph
generator that accepts seed graphs and implants them in
larger graphs to create a database D. First, we restrict the
seeds to be α-orthogonal. The |S| α-orthogonal seeds can
be generated randomly or they may be extracted from a real
dataset. We generate |D| graphs with the average graph size
taken from a Poisson distribution with mean T . Seeds are
selected to be added to the current graph Di ∈ D uniformly
at random; as each seed is added we ensure that the graph
Di remains connected (by adding random edges). If the
addition of a new seed to Di would exceed size T , instead
of adding the seed, we make up the differential by adding
edges/vertices randomly to existing nodes in Di . The vertex
and edge labels are chosen randomly from LV (the vertex
labels) and LE (the edge labels), respectively.

6.2. Empirical Results

All experiments were run on a 2.75 GHz PowerPC G5
Machine with 4 GB Memory and 400 GB disk. Since

5 This dataset was provided by Prof. Igor Kuznetsov at SUNY,
Albany.

ORIGAMI is randomized, we perform several runs (typically
between three to five). Each run generates an approximate
maximal set M̂. We next extract several orthogonal rep-
resentative sets (typically 10) using our primary algorithm
that reports the best clique found. All numbers reported
in the experiments below are the averages over the best
results over all the runs. Wherever possible we tried to run
state-of-the-art graph mining methods such gSpan [19],
and DMTL [9] (which mine all frequent subgraphs) and
SPIN [11] (which mines maximal graph patterns). The
local optimization algorithm was used only in the result that
compares against the random maximal clique algorithm.

6.2.1. Protein Interaction Mining

First we evaluate our random walks approach to mining
maximal patterns. As mentioned in the introduction, we
ran a depth-first graph mining algorithm from DMTL [9]
to mine the protein interaction dataset (PI), looking for
frequent graphs at πmin = 100% (3 out of 3). The method
was running for over a day before we terminated it. During
this time it had generate a 7 GB output (from an initial 3
MB database), containing 8 million subgraphs. SPIN was
not able to run on this dataset; it terminated with a segment
fault. Utilizing the fact that each protein appears only once
in a given graph, we converted each graph into an itemset
of edges, and we were then able to mine the maximal
edge-sets. At πmin = 100% this yields 90 maximal frequent
graphs.

Next, we ran ORIGAMI on the original PI dataset. Figure 6
shows the number of unique maximal patterns found versus
the number of random walks. The figure shows that all
90 maximal patterns were found after 1400 random walks,
and it took under 300 s running time! This illustrates the
effectiveness of our random walks maximal pattern mining
approach. In this particular example, it was able to return
the exact set of maximal patters (i.e. M̂ = M).
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Fig. 6 Random walk performance (PI).
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Table 1. Protein structure mining.

πmin Time(s) |M̂| |R| H(M̂) H(R) maxH

7 154.4 1002 213 1.092 1.039 1.946
8 75.5 1003 180 1.154 1.128 2.079
9 64.9 1007 190 1.217 1.195 2.197
10 50.4 1009 184 1.274 1.243 2.303

6.2.2. Protein Structure Mining

Table 1 shows the time taken to mine the protein struc-
ture dataset at different values of minimum support. It also
shows the number of maximal and α-orthogonal patterns
found (for α = 0.2). Also shown is the average entropy of
the patterns in M̂ and in R. Note that for a set of graphs G,

the average entropy is given as H(G) =
∑

G∈G H(G)

|G| , where
H(G) = − ∑

i pi ln pi , where pi is the fraction of occur-
rences of G in protein family i. For example, if πmin = 8,
and the protein subgraph appears in eight different HOM-
STRAD families, then its entropy will be −8 1

8 ln( 1
8 ) =

2.079. The maximum possible entropy for a pattern with
support exactly πmin is also shown. We can see that, in
general, ORIGAMI produces relatively good patterns that have
about half the entropy compared to the maximum entropy.
An example of a low entropy pattern in the Immunoglobulin
family from HOMSTRAD is shown in Fig. 7.

6.2.3. Chemical Compound Mining

Next we mined the chemical compound datasets. Note
that neither gSpan nor SPIN was able to run on the full 40
942 graph DTP dataset. On the other hand, we were able to
successfully run ORIGAMI on DTP, using as the stopping
criteria for M̂, the number of unique maximal patterns
generated. We next extracted orthogonal representative sets
for different values of α and β. The results are shown in

Fig. 7 Low entropy motif (in Red/Black).

Fig. 8. In (a)–(c) we plot three curves, corresponding to
increasing number of unique maximal patterns found, i.e.
for different |M̂| values. Figure 8(a) plots the effect of α on

the average residue, which is defined as |�(R,M̂)|
|M̂| . As we can

observe, as α increases the average residue shrinks to under
10%, indicating that the α-orthogonal β-representative set
has left unrepresented less than 10% of the mined maximal
patterns M̂. Figure 8(b) plots the size of the orthogonal
representative set (or maximal clique) for different αs. We
see that, as expected, bigger cliques are found for larger αs.
Figure 8(c) shows the effect of β on the average residue. As
β increases, we find that average residue increases, since the
more stringent (i.e. higher) the representativeness threshold,
the fewer the patterns that are represented.

Whereas SPIN was not able to run on the full DTP
dataset, we were able to run it on the smaller 1084 CM
dataset at a minimum support of πmin = 25/1084 = 2.3%.
At this support level it output 1227 maximal patterns in
about 181 s. Thus for this smaller dataset we know the true
set of maximal patterns M. Figure 8(d) plots the average
residue with respect to the true maximal set M, and the
time for mining as a function of the size of M̂. The
observed trend is that as |M̂| increases, the average true
residue also decreases, since the orthogonal set is able to
represent more true maximal graphs.

Figure 8(e) shows a comparison of the random maximal
clique method and the local optimization method for dif-
ferent α values using the CM dataset. In every case, the
residue of the local optimal method is 30% to 50% smaller
than that of the random maximal clique method.

6.2.4. Implanted Seed Mining

The goal of this experiment was to recover implanted
seeds. We generated a set of seeds from the full DTP dataset
as follows: Initially |M̂| = 3550 maximal patterns were
generated from DTP using ORIGAMI. Next an orthogonal set
R was mined at α = 0.6, which yielded a maximal clique of
size |R| = 9. These nine seed graphs, containing on average
6.4 edges and 7.4 nodes, were fed into the graph generator
to create varying datasets, as shown in Table 2.

Once the datasets were generated, we mined them at
different πmin values, and used α = 0.8 to extract the
α-orthogonal sets. The first three rows show results for
varying dataset size. As the dataset size increases, the
number of seeds found increases, since the odds of the
graphs containing the nine implanted seeds increases. Rows
4 and 5 in the table show results for varying the minimum
support on a dataset with 20000 transactions. The number
of seeds captured does not change in this case. Rows 6–9
show the effect of varying the average size (T ) of a graph
in D. The results confirm our intuition that as the average
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Fig. 8 Performance on DTP and CM.

size increases, the number of seeds in a graph increases,
resulting in greater number of seeds being captured.

6.2.5. Scalability Results

Figure 9 shows the effect of varying dataset sizes for
three datasets—DTP, Clique and Random. As the name
indicates, the Clique dataset consists of complete graphs.
The Random dataset consists of graphs generated under the

Erdős-Renyi model. The datasets are generated such that the
average number of vertices and edges per graph is nearly
the same for the DTP and the Random datasets. For the
Clique dataset, since it is not possible to match both the
number of vertices and edges, the number of vertices was
reduced to match the number of edges.

The time on the y-axis indicates the time taken to
generate 100 maximal graphs by the random-walk-based
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Table 2. Results on implanted seeds.

|D| T πmin |R| Seeds Found

20000 50 200 25 4/9
30000 50 200 26 5/9
40000 50 200 27 8/9

20000 50 400 23 4/9
20000 50 800 19 4/9

20000 20 200 25 4/9
20000 30 200 21 5/9
20000 40 200 25 6/9
20000 60 200 24 7/9

graph mining algorithm. For each dataset and size, the
mean execution time over 10 runs of the algorithm is
shown. In order to truly understand the scalability of the
algorithm, we need to suppress the effect of randomization
across each run of the algorithm. This is achieved through
a combination of two effects. First, larger datasets are
generated by replicating copies of the smaller datasets. For
instance, the 10K (10000 graphs) and 15K datasets are
generated by merging two and three copies of the 5K (5000
graphs) dataset, respectively. This ensures that the same 100
maximal graphs are generated for datasets of varying sizes,
provided the minimum support is kept the same. Second, the
seed for the random number generator within the algorithm
is kept the same for datasets of same size.

Figure 9(a) shows the mean run time for the DTP dataset
along with the error bar. The two ends of the error bar
represent the maximum and minimum run times over 10
executions of the algorithms, thus capturing the variation in
run time with different random seeds. The figure shows that
the run time increases almost linearly with the increase in
the dataset size. The large difference between the maximum
and minimum run times indicates that this dataset is very
sensitive to the seed, which in turn points out that the max-
imal patterns are not uniformly distributed over the partial
order. Both the Clique (Fig. 9(b)) and the Random dataset
(Fig. 9(c)) show a similar linear relationship between run
time and the dataset size. But both these datasets differ
from the DTP dataset, in that they exhibit very little varia-
tion in run times. For the Random dataset, the variation is so
small that it is hardly visible in Fig. 9(c). The small varia-
tion indicates that the maximal patterns are more uniformly
distributed over the partial order, for these two datasets.

6.3. Parameter Settings

Section 4.3 and 4.4 recommended alternatives to random
walk and analyzed the expected number of random walks
required to obtain a subset of the maximal graphs. In this
section, we provide empirical evidence for the superior
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Fig. 9 Scalability on DTP, clique and random datasets.

performance of the collision-directed traversal. We also
highlight the influence of dataset characteristics on the
number of random walks required to obtain a set of maximal
graphs.
Collision-assisted Random Walk: Fig. 10(a), compares
random traversal with the collision-directed traversal
method for the CM dataset (described in Section 6.1). The
entire set of maximal patterns M for this dataset (with
πmin = 25) is obtained from SPIN [11]. The y-axis in the
plot is the percentage of M found upto certain number of
random walks (on the x-axis). The x-axis is the count of the
number of random walks along the partial order (indicated
by “Iteration #” in the figure). Two metrics are used to
compare the plain vanilla random walk with the collision-
directed random walk. The first metric measures the number
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Fig. 10 Comparison between random extension and collision-
directed extension.

of iterations required to obtain a certain fraction of maximal
patterns. The number of iterations corresponds directly to
the time required to generate the set of maximal graphs. As
can be seen in Fig. 10(a), on the CM dataset, the collision-
directed extension approach has a 25%–45% improvement
in terms of the number of iterations needed to find the
same number of maximal patterns. The CM dataset rep-
resents chemical compounds which are sparse; as a result
the maximal graphs obtained are sparse, too. As noted in
Section 4.4, sparse datasets have a larger Prange resulting
is a faster convergence. On the other hand, Fig. 10(b) com-
pares the two traversal techniques for a dataset of random
graphs, generated under the Erdős-Renyi model. For such
a dataset, the performance of random traversal is almost
identical to the collision-directed approach. Notice that for
this dataset, almost every random walk results in a unique
maximal graph. This can be attributed to the uniform dis-
tribution of the maximal graphs over the partial order. For
the same reason, the collision-directed approach is unable
to perform better. For this dataset, SPIN could not generate

the entire set of maximal patterns M̂; as a result the plot
for only the first 1000 maximal graphs is shown.

The second metric for evaluating the traversals com-
pares the fraction of M covered by the M̂ generated
by each of the two traversals—henceforth referred to
as M̂random for the random traversal and M̂collision for
the collision-directed traversal. The premise behind this
metric is that an efficient collision-directed traversal has
larger ϒ(M̂collision,M)

|M| ratio as compared to ϒ(M̂random,M)

|M| .
To remind the reader, ϒ is the set of represented graphs,
i.e. those that have a similarity at least β with some graph in
R. We chose to set β = 1 − α, with α = 0.3. The coverage
ratio for varying | M̂ | is computed, where coverage ratio

is given by the expression |ϒ(M̂random,M|)
|ϒ(M̂collision,M|) . Table 3 shows

the comparison of the two traversals for the CM dataset.
The coverage ratio in Table 3 shows that for a smaller

representative set the collision-directed traversal outper-
forms random traversal by more than 40%, although as the
representative set size increases the gap decreases.
Convergence Rate: The intuitive argument for the rate
of convergence provided in Section 4.4 is validated in the
following discussion, by showing the convergence rate on
different datasets, where their maximal frequent graphs
have different range of generation probabilities.

In Fig. 11 we compare two different types of datasets
for their convergence. The first is the CM dataset and
the other is a synthetic dataset (referred to as the clique
dataset) that is built by converting an itemset dataset into a
graph dataset. An itemset dataset is converted into a graph
dataset by representing each itemset as a clique with each
item as a vertex of the clique. Note that all the maximal
frequent graphs for the clique dataset are cliques and
there is a one-to-one correspondence between the maximal
itemsets mined on the itemset dataset and the maximal
cliques. We also ensured that both the CM dataset and the
clique dataset have an almost equal number of maximal
graph patterns. However, the generation probability of each
maximal pattern in the clique dataset is almost uniform, as
the opposing tendencies in Eqs 2 and 3 cancel out. As a
result, the range of the probability values, Prange, for the
clique dataset is much smaller than the CM dataset. In the
figure, the label on the y-axis side corresponds to the clique
dataset and the right corresponds to the CM dataset. We
can see that in 15 k iterations, around 98% of the maximal

Table 3. Coverage Ratio on the CM
dataset for varying | M̂ |.
| M̂ | (s) Coverage Ratio

100 1.42
200 1.2
300 1.1
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dataset and the CM dataset.

frequent graphs have been obtained for the clique dataset,
whereas even in 90K iterations only 75% of the maximal
graphs were obtained for the CM dataset.

7. REPRESENTATIVE SET MINING: DISCUSSION

The second step of ORIGAMI that uses a local-optimal
algorithm to obtain an α-orthogonal β-representative set
ensures strict orthogonality (two patterns are not more than
α similar) and a locally optimal representativeness (residue
patterns are at least β similar to a representative pattern).
Interestingly, these two properties are contradicting crite-
ria; orthogonality restricts the set R from growing, while
representativeness encourages it to grow. In absence of β

constraint (or setting β = 0), any clique of Theorem 2 is
an optimal solution. In the absence of the α constraint, the
entire M̂ set is an optimal solution. For other choices of
α and β, it may not be feasible to obtain |�(R,M̂)| = 0;
so, we seek the best representative set that we can obtain,
while enforcing strict orthogonality. This is exactly how
ORIGAMI works. Since, no efficient global optimization algo-
rithm exists, it minimizes the residue set by a local optimal
algorithm. Several variations of ORIGAMI can be obtained
by trading off orthogonality upto a certain extent for better
representativeness.
Orthogonality as constraints with penalty: Representa-
tives can be obtained by solving a typical data clustering
problem, where the cluster centers can be taken as member
of R. However, for a user-defined β, we also want that the
farthest element of a cluster to be at least β similar to its
center so that |�(R,M̂)| = 0. To satisfy this, an appro-
priately large k should be chosen; otherwise the problem
will be infeasible. Thus far, this formulation does not offer
any orthogonality, to enforce that we can apply cannot-
link constraints among the cluster centers if the similarity
between them is greater than α. Thus, a constraint K-means

clustering formulation similar to one proposed in [6] can
be adopted as a variation of our approach. However, this
formulation has three parameters: β, k, and a penalty value
for not satisfying a cannot-link constraint. Also it does not
enforce strict orthogonality, it may violate some cannot-link
constraints. Furthermore, it will only produce local optimal
solution. In fact, the authors in [6] have proved that fea-
sibility problem for K-means clustering with cannot-link
constraints is NP-complete.
Only β constraints: In this formulation, we have no α con-
straint (or α = 1) and we want complete representativeness
for some β. As mentioned before, an immediate solution
would be to take the entire M̂ set as the representative
set. However, that is a trivial solution. For the purpose
of summarization, we need to introduce another constraint
that will control the summary set size. For instance, we can
choose to have at most k representatives. However, feasi-
bility of this problem for arbitrary value of β and k is not
guaranteed; in fact, the following theorem holds:

THEOREM 4: Given α = 1, the problem whether for
an arbitrary β there exists a k such that |R| ≤ k, with
|�(R,M̂)| = 0, is NP-complete.

PROOF: In graph theory, a dominating set for a graph
is a subset V ′ of the vertices of the graph such that each
vertex not in V ′ has an edge to at least one member of V ′.
Given a graph and a positive integer k, the dominating set
problem asks whether the graph has a dominating set of size
k or less. We can reduce a dominating set problem (known
NP-complete problem [8]) to the problem in Theorem 4.
For a given graph G(V, E), assume that each vertex v ∈ V

represents a pattern in M̂, so |V | = |M̂|. For every edge
(v1, v2) ∈ E we consider that the similarity between the
corresponding pattern is greater than β, i.e. v1 is a β-
representative for v2 and vice versa. Now, there exist a
dominating set, R of size k or less in G if and only if,
we have a representative set, R, of size k or less such
that the |�(R,M̂)| = 0. For any v ∈ R, the corresponding
pattern in M̂ is a representative pattern, because for any
v /∈ R, there exists a u ∈ R adjacent to it. Correspondingly,
for any pattern q ∈ M̂ \ R, there exists a pattern p ∈ R
such that sim(p, q) ≥ β. Hence, every pattern in M̂ is
either in the representative set or is covered by at least one
representative, so we have |�(R,M̂)| = 0. Since, α = 1,
there is no restriction how we choose the elements for the
set R.

Thus, finding an optimal k is NP-hard and no efficient
algorithm exists to solve this problem. This formulation
has two parameters, β and k, and there is absolutely no
guarantee regarding orthogonality.
Only α constraints: In this formulation, we only care
about strict orthogonality, and no β constraint exists (or
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β = 1). However, to obtain the best representative set,
we like to obtain the largest summary set that respects the
orthogonality. In the proof of Theorem 3 we have already
shown that obtaining the optimal set for such a formulation
is NP-Hard.

7.1. Experimental Comparison

On the basis of the discussion above, we can see that
finding the optimal α-orthogonal β-representative set is
very difficult; even different restrictive versions of this for-
mulation lead to NP-Hard problems and they all have to
be solved with some local optimization or approximation
algorithms. The local optimization formulation of ORIGAMI

tries to respect both orthogonality and representativeness.
We experimentally compare the performances of our algo-
rithm with a standard k-means algorithm, to show that our
approach is considerably better. CM dataset is used for this
comparison and size of M̂ is fixed at 1000. For the sake of
valid comparison we optimize a different performance mea-
sure avgsim (Average Similarity), since the size of residue
(|�|) is meaningless for the k-means formulation. avgsim is
computed by finding the average similarity of a pattern to
its representative. In k-means, each pattern belongs to some
cluster, hence it is covered by the corresponding cluster
representative. The β parameter is not required, and hence
ignored for this performance metric. Now, for k-means we
need to find a value for k. To provide the same k value
for both our algorithm and the k-means, we first run our
local optimal algorithm for some value of α, and from its
result we record the size of the representative set and use
that for k.

Figure 12(a) shows the avgsim value for different αs.
Note that as α is increased, the non-redundancy constraint
is relaxed and more patterns are inserted in the representa-
tive set, and naturally the value of avgsim increases for both
the algorithms. We used the size of the clique from our algo-
rithm as the value of k. So, for the k-means graph in 12(a) is
showing the avgsim value for those k values. In Fig. 12(b)
we show the clique sizes (i.e. the different k values) that are
obtained for those different α values. The value of avgsim
for k-means is better for smaller α, which is expected, since
k-means has no constraints to choose the members of the R
set, while our algorithm can only choose as members of the
R those graphs that respect the pairwise α-orthogonality
constraints. For higher α values, the orthogonality con-
straint is relaxed and our algorithm performs as good as
k-means. In Fig. 12(b), we also plot the orthogonality of
the k-means approach. Orthogonality is defined as the frac-
tion of pairwise similarity among the k-representatives that
satisfy the α constraint. It is evident that for low-α k-means
shows very poor orthogonality. For example, for α = 0.25
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algorithm.

only 40% of the pairwise orthogonality constraints are hon-
ored out of

(
k
2

)
constraints. Thus k-means is just trading off

orthogonality to obtain better representativeness. But, our
algorithm is guaranteed to be alpha-orthogonal (orthogonal-
ity=1) for all values of α. From Figs 12(a) and 12(b), we
can see that for reasonable values of α, ORIGAMI guarantees
orthogonality, and yet has a good average similarity score.

8. CONCLUSIONS
In this paper we proposed a new paradigm for mining

a summary representation of the set of frequent graphs.
This is a very difficult problem to solve, as it consists
of individually hard problems: (i) computing similarity
between graphs, (ii) random sampling from the set of fre-
quent maximal graphs, and (iii) finding maximal cliques.
ORIGAMI employs effective techniques to tackle these chal-
lenges, as demonstrated empirically on a variety of datasets.
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Unlike previous techniques that focus on the distance in the
transaction space to obtain representatives, our approach
captures representatives by considering the distances in the
pattern space. We introduced a randomized approach for
mining maximal subgraph patterns. The method is designed
to cover the partial order of subgraphs, so that orthogo-
nal maximal patterns are obtained quickly. We also discuss
the convergence properties, both theoretically and empir-
ically. We formulated the α-orthogonal β-representative
set finding as an optimization problem. We show that
the optimization problem is NP-Hard and we thus pro-
pose a local optimization solution that is efficient and
practically feasible. We demonstrate that ORIGAMI is able
to mine good-quality orthogonal representative sets, espe-
cially for datasets where traditional enumerative methods
fail completely.
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